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Abstract

This thesis presents research exploring aspects of inflation and cosmology in the
context of inflation models in which an inflaton is non-minimally coupled to the Ricci
scalar, or is considered in conjunction with a term quadratic in the Ricci scalar. We
consider a ϕ2 Palatini inflation model in R2 gravity and investigate whether this
model can overcome some of the problems of the original ϕ2 chaotic inflation model.
We investigate the compatibility of this model with the observed CMB when treated
as an effective theory of inflation in quantum gravity by examining the constraints
on the model parameters arising due to Planck-suppressed potential corrections and
reheating. Additionally, we consider two possible reheating channels and assess their
viability in relation to the constraints on the size of the coupling to the R2 term.
We present an application of the Affleck-Dine mechanism, in which quadratic B-
violating potential terms generate the asymmetry, with a complex inflaton as the
Affleck-Dine field. We derive the B asymmetry generated in the inflaton condensate
analytically and numerically. We use the present-day asymmetry to constrain the
size of the B-violating mass term and derive an upper bound on the inflaton mass in
order for the Affleck-Dine dynamics to be compatible with non-minimally coupled
inflation in the metric and Palatini formalisms. The baryon isocurvature fraction
generated in this model is also examined against observational constraints. We
demonstrate the existence of a new class of inflatonic Q-balls in a non-minimally
coupled Palatini inflation model, through an analytical derivation of the Q-ball
equation and numerical confirmation of the existence of solutions, and derive a
range of the inflaton mass squared within which the model can inflate and produce
Q-balls. We derive analytical estimates of the properties of these Q-balls, explore
the effects of curvature, and discuss observational signatures of the model.
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Chapter 1

Introduction

This thesis focuses on the cosmology of the early Universe, namely inflation and
the embedding of inflation into the Hot Big Bang model of cosmology. Addition-
ally we explore how a chosen model of inflation can be used as a basis for solving
other problems in cosmology, or can exist in conjunction with other phenomena
important to cosmology. It is important to consider this, as the consequences of an
inflation model when incorporated into a more complete cosmological model can be
far reaching, for both observational compatibility of the model, observability of the
model, and the impacts of the physics of the model on the evolution of the Universe
following inflation and other physical processes.

In Chapter 2 of this thesis, we present an overview of Big Bang Cosmology, in-
cluding inflation and the generation of the density perturbations following inflation.
Chapter 3 presents some important general results used throughout Chapters 4-6 of
the thesis from field theory, particle physics and non-minimally coupled inflation.

Chapters 4-6 present three pieces of original research. Chapter 4 presents a
study of an inflation model in the Palatini formalism with a ϕ2 potential and an R2

term in the gravitational part of the action. We present the slow-roll parameters
and the inflationary observables in the Einstein frame and examine the observational
compatibility of the model using three different physical constraints on the size of the
R2 term. Reheating in the model is also explored, for two specific reheating channels,
and the constraints each reheating mechanism places on the model parameters are
discussed.

In Chapter 5 we introduce a model of Affleck-Dine baryogenesis in the context of
non-minimally coupled inflation with quadratic symmetry-breaking potential terms.
We analytically derive expressions for the asymmetry generated in the inflaton con-
densate, and the asymmetry transferred to the Standard Model. We then test the
analytical result numerically, and calculate the baron-to-entropy ratio generated in
this model. The conditions for compatibility with non-minimally coupled inflation,
isocurvature fluctuations, and the treatment of the asymmetry generated in this
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model in quantum terms are also discussed.
Chapter 6 presents a model of Q-balls within a non-minimally coupled inflation

model in the Palatini formalism. The Q-ball equation is derived and constraints on
the inflaton potential from inflation and the existence of Q-balls are used to derive
a mass range for the inflaton compatible with the existence of Q-ball solutions.
We solve the Q-ball equation both analytically and numerically and compare the
predicted properties of the Q-balls. We also estimate what the effects of curvature on
these Q-balls could be and explore possibilities for the formation of these Q-balls, as
well as possible observational signatures of the model and the possible implications
for these Q-balls on cosmology in the broader sense.

In Chapter 7 we present our conclusions.

1.1 Connection to Published Work by the Author

In the course of completing the research in this thesis, the results of the work were
published.

The research presented in Chapter 4 resulted in the publication:

• Sub-Planckian ϕ2 Inflation in the Palatini Formulation of Gravity with an R2

Term; Amy Lloyd-Stubbs and John McDonald; Physical Review D, Volume
101 (2020) 12, 123515; e-print: 2002.08324 [hep-ph].

The research presented in Chapter 5 resulted in the publication:

• A Minimal Approach to Baryogenesis via Affleck-Dine and Inflaton Mass Terms;
Amy Lloyd-Stubbs and John McDonald; Physical Review D, Volume 103
(2021), 123514; e-print: 2008.04339 [hep-ph],

with the exception of Figures 5.3 - 5.12 and the content of Sections 5.6 and 5.8
- 5.9 which will form a part of a paper currently in progress.

The research presented in Chapter 6 resulted in the publication:

• Q-balls in Non-Minimally Coupled Palatini Inflation and their Implications
for Cosmology; A. K. Lloyd-Stubbs and J. McDonald; Physical Review D,
Volume 105 (2022) 10, 103532; e-print: 2112.09121 [hep-th].

1.2 Notation and Conventions

Throughout this thesis, units where ℏ = c= kB = 1 are used. Planck masses are left
in explicitly, and should be taken as the reduced Planck mass M2

pl = 1/8πG.
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In Chapters 2 and 3, the mostly minus convention is used for the metric signature,
(+,−,−,−) unless specified otherwise. In Chapters 4-6 the metric signature used
in each chapter is stated at the beginning of each individual chapter.

While care has been taken in this thesis to use different symbols for unrelated
quantities, usage of the same symbol is sometimes unavoidable in places owing to
convention within the fields of cosmology and particle physics, or for consistency
with published work. Throughout this thesis symbols are defined in the text when
their corresponding quantity is first introduced in the chapter, and any relation to
other quantities with the same symbol should not be assumed unless directed.
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Chapter 2

Cosmological Background

In this chapter, we introduce the Big Bang Model of Cosmology as the basis for the
research presented in this thesis, introduce inflation and the formation of the density
perturbations following inflation, and discuss the conditions needed for baryogenesis
to occur.

2.1 Big Bang Cosmology

In standard cosmology, the timeline of the evolution of the Universe begins with a
singularity, after which the General Relativity description of gravity becomes ap-
plicable and we mark the beginning of cosmological time. The era prior to this
is known as the Planck epoch, wherein temperatures exceeded the Planck energy
∼ 1019 GeV. The Universe evolved to the universe we observe today as it expanded
and cooled over a period of 13.8 billion years, and the purpose of cosmology is to
study how we reached the point we are at now, using the observations we now have
access to.

By means of an introduction, we first present a timeline of the evolution of the
Universe from the initial singularity to the present.

2.1.1 Timeline of Cosmological Evolution

• Initial Singularity · "Big Bang" t= 0−10−43s, T ≳ 1019GeV, T ≳ 1032K.

Taken to be the beginning of cosmological time, signifies the end of the Planck
epoch and the transition to a regime in which General Relativity is a valid
description of gravity.

• Inflation · t= 10−34 s.

An era of supercooled exponential expansion of space, in which the Universe
expands by a factor of about 1028.
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• Reheating · t > 10−34 s.

Phase of the end of inflation where the inflaton field decays and transfers its
energy to the particles of the Standard Model. Transition from the inflaton
field dominating the energy density to the Universe being filled with a ther-
mal plasma of particles. Onset of epoch of radiation domination. Reheating
temperature depends on the inflation model.

• Electroweak Phase Transition · t= 2.0×10−11 s, z = 1015, T = 159 GeV,
T = 1.9×1015 K.

Weak interaction becomes significant. Higgs field develops an expectation
value and the Higgs mechanism gives mass to particles.

• Quark - Hadron Phase Transition · t= 2.0×10−5 s, z = 1012, T = 150 MeV,
T = 1.7×1012 K.

Strong interaction becomes significant. Quarks and gluons combine into hadrons.
Onset of confinement era, no free quarks at temperatures lower than this.

• Neutrino Decoupling · t= 1.0s, z = 6.0×109, T = 0.8 MeV, T = 9.3×109 K.

Neutrinos decouple from the thermal plasma.

• Electron - Positron Annihilation · t= 6.0s, z = 2.0×109, T = 500 keV,
T = 5.8×109 K.

Electrons and positrons in the thermal plasma annihilate, and the energy from
the annihilations is transferred to the photons still coupled to the thermal
plasma. This "heats" the photons but not the neutrinos, which have already
decoupled from the thermal plasma. Seed of the temperature of the photon
background today, Tγ , being greater than the neutrino background tempera-
ture, Tν .

• Big Bang Nucleosynthesis · t= 3.0 minutes, z = 4.0×108, T = 100 keV,
T = 1.16×109 K.

Formation of the nuclei of the light elements; namely H, 2H, 3He and 4He with
trace amounts of higher proton number elements, following the freeze out of
neutrons from equilibrium.

• Matter - Radiation Equality · t= 6.0×104 years, z = 3400, T = 0.75 eV,
T = 8706 K.

Transition of the Universe from an era of relativistic matter and radiation being
the dominant component of the energy density to non-relativistic matter being
the dominant component.
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• Recombination · t= (2.6−3.0)×105 years, z = 1200−1400,
T = 0.30−0.33 eV, T = 3500−3800 K.

Formation of neutral hydrogen atoms from hydrogen nuclei and free electrons.
Free electron density falls sharply and interactions between electrons and pho-
tons fall off.

• Decoupling · t≃ 3.5×105 years; z ≃ 1100, T = 0.26 eV, T ≃ 3000 K

Photons decouple from thermal equilibrium and begin freely streaming through
the Universe. These photons form the Cosmic Microwave Background today.

• Reionisation · t = (1.0 − 4.0) × 108 years, z = 11 − 30, T = 2.6 − 7.0 meV,
T = 30−80 K.

Neutral hydrogen left over from recombination is reionised by ultraviolet light
from the first stars. The photon scattering from reionised hydrogen can con-
tribute to temperature anisotropies in the sky.

• Dark Energy - Matter Equality · t= 9.0×109 years, z = 0.4, T = 0.33 meV,
T = 3.83 K.

Transition from an era of non-relativistic matter being the dominant compo-
nent of the Universe to an era of dark energy being the dominant contribution
to the total energy density of the Universe. Epoch of accelerated expansion.

• Present · t= 1.38×1010 years, z = 0, T = 0.24 meV, T = 2.79 K.

The Universe as it is now. Epoch of vacuum energy dominated expansion.

2.1.2 Homogeneity and Isotropy

In standard cosmology, we work to a set of rules which determine how we view the
Universe and our place in it, referred to as the Cosmological Principle. These rules
are namely that we treat the Universe as being isotropic and homogeneous on large
scales. Homogeneity refers to the fact that matter is evenly distributed throughout
the Universe when viewed on large scales, and the Universe therefore looks the same
at each point. Isotropy refers to the fact that the Universe has no dynamical centre
and therefore looks the same in all directions; there are no privileged observers. This
combined with the assumption that the Universe is approximately smooth (average
density of luminous matter is almost the same in every observed direction) on large
scales comprises the Cosmological Principle. (Approximate large scale smoothness
was confirmed by galaxy surveys 2dF Redshift Survey [1] and the Sloan Digital Sky
Survey [2]). The Universe is not entirely homogeneous and isotropic throughout its
volume, but it is an implicit assumption when doing cosmological calculations that
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the Hubble volume we occupy can be considered to be isotropic, homogeneous and
smooth.

2.1.3 The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is microwave radiation which pervades
all of the observable Universe today, discovered by radio astronomers in 1964 [3] after
the prediction of a ’relic radiation’ from the Big Bang by [4, 5], and interpreted
as such by [6]. This microwave radiation originates from the end of the epoch
of recombination, when nuclei of the light elements and free electrons from the
particle plasma formed neutral atoms for the first time. This caused interactions
between photons and electrons - namely Thomson scattering - to fall off and for the
photons to decouple from thermal equilibrium and start freely streaming through the
Universe. It is at this point that the Universe became transparent to electromagnetic
radiation, referred to as the surface of last scattering, beyond which the Universe is
not observable from the perspective of Earth observers. The CMB has a temperature
of 2.73 K(2.14 × 10−14 GeV) today [7], and has been shown by experiments COBE
[8], WMAP [9] and later the Planck satellite [10] to be isotropic to around one part
in 105.

2.2 Hubble Expansion

In the 1920s, it was observed by Edwin Hubble that the Universe is expanding
[11], and that galaxies further away were accelerating away at a faster rate. This
relationship was parameterised using Hubble’s Law:

v =Hd, (2.1)

where v is the recession velocity of the galaxy/distant object in question, d is the
proper distance from the observer to the object and the Hubble parameter H evolves
with time. Hubble’s law is valid for distances of up to about 100 Mpc - beyond which
the relationship becomes less well defined - and still applies today. The velocity of
recession is directed along the distance vector r in the direction of the proper distance
to the observer

v = dr
dt
. (2.2)

In an expanding universe the proper distance from an observer to an object is given
by r = a(t)x, where a(t) is a quantity known as the scale factor which will be intro-
duced more formally in Section 2.3, and x corresponds to the comoving coordinates
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xi =
(
x1,x2,x2

)
. Comoving coordinates remain fixed in an expanding background

(distances between objects or events remain constant over time), while proper co-
ordinates are defined on the expanding space (distances increase with expansion).
Equation (2.2) can be written

v = |ṙ|
|r|

r = ȧ |x|
a |x|

r = ȧ

a
r. (2.3)

From Hubble’s law (2.1), this leads to the definition

H = 1
a

da

dt
, (2.4)

of the Hubble parameter in terms of the scale factor. From this definition, we can
establish

H = d(lna)
dt

⇒ a(t) ∝ e
∫
Hdt, (2.5)

as the time-dependence of the scale factor provided ȧ > 0.
The Hubble parameter today is H0 = 67.4 km s−1 Mpc−1, as measured most

recently by the Planck Satellite [12]. It was originally discovered in the 1990s by
two different research teams [13, 14] studying Type 1a supernovae that the Universe
is expanding now, and that the rate of expansion is accelerating. The data found
in these studies was found to be consistent with the presence of a cosmological
constant, Λ, which is referred to in the present era as Dark Energy.

Although we will use the value of the Hubble parameter today from the CMB
predictions as the reference value throughout this thesis, there are conflicting ob-
servational values of H0, between the measurements of the parameter from CMB
experiments (see e.g. [12] for the most recent result) and the measurement of the
parameter from Type 1a supernovae data. More recent late-Universe measurements
of H0 from Cepheid variable data give a value of H0 = 73.2 ± 1.3 km s−1 Mpc−1,
which is a 4.2σ difference with the prediction on H0 from the Planck experiment
[15]. This open problem in cosmology is known as the Hubble tension1.

2.2.1 Horizons in Cosmology

There are a number of important definitions which are central to discussing cos-
mological history in relation to cosmological observations. Namely, these are the
different types of horizon used in determining the connection between cosmological
events.

1Whether this tension in the measurements of H0 is physically motivated is a current topic
of research in cosmology, and the reduction of systematic effects in different methods of local
measurement is an important facet of this. For detailed discussion of this see [16] and references
therein.
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In order to discuss horizons in cosmology, it is convenient to use the definition of
conformal time

dτ = dt

a(τ) , (2.6)

and comoving distance

χ=
∫
dτ =

∫ dt

a(τ) . (2.7)

In an isotropic expanding universe in comoving coordinates, the line element (intro-
duced more formally in Section 2.3) is given by

ds2 = a2 (τ)
[
dτ2 −dχ2

]
. (2.8)

For lightlike (null) geodesics, ds2 = 0, and the path of the light photons is defined
by

∆χ(τ) = ±∆τ, (2.9)

where the sign convention +(−) corresponds to outgoing (incoming) photons from
the perspective of the observer. Comoving coordinates therefore allow events to be
placed at a precise location in space and time from the perspective of an observer
in static space.

• Particle Horizon

The particle horizon is defined as being the region within which past events
can be observed by a given observer, or alternatively as the region of the past
lightcone of an event or observer which causal influences come from. This is
defined as

χp (τ) = τ − τi =
∫ t

ti

dt

a(t) , (2.10)

where τ > τi is some location in conformal time further in time from the
spacelike surface τ = τi, corresponding to the Big Bang singularity, before
which no signals can be observed by an observer in the present.

• Event Horizon

The event horizon is defined as representing the furthest comoving distance an
observer or event in the present can influence or observe events in the future.
More formally
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χe (τ) = τf − τ =
∫ tf

t

dt

a(t) , (2.11)

where χ(τ)>χe (τ). χe (τ) defines a spatial surface beyond which an observer
will never be able to observe events in, or receive signals from, the present. It
denotes the region of the future light cone beyond the causal influence of the
present.

• Hubble Horizon

The Hubble horizon is defined as the distance of an object from a observer
when it is expanding away at light speed at a given time. It can roughly
be described as the region surrounding a particle within which it can receive
signals or communicate with other particles in a given instant. The comoving
Hubble horizon is defined as

χH (t) = (aH)−1 , (2.12)

and can be approximated as the particle horizon at a given moment in time
t0. If the distance between two particles at the present time t = t0, d0, is
greater than the Hubble horizon (a(t0)H (t0))−1, then the particles cannot
communicate in the present but that may have been different in the past. If
d0 is greater than the particle horizon then the two particles have never been
in causal contact and will never have been able to communicate.

2.3 Friedmann-Lemaître-Robertson-Walker Space-
time

Expanding spacetime is described by the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric,

ds2 = dt2 −a2 (t)gijdxidxj , (2.13)

given in polar coordinates by

ds2 = dt2 −a2 (t)
[

dr2

1−kr2 + r2dθ2 + r2 sin2 θdϕ2
]
, (2.14)

where (r,θ,ϕ) are comoving coordinates. This spacetime can be visualised as spatial
slices of constant (r,θ,ϕ) at each point on the time axis, which are "counted" by the
time coordinate. The factor k can be chosen to be +1, 0 or −1 depending on whether
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the universe in question has positive, zero, or negative curvature respectively (the
choices of curvature are discussed in more depth in Section 2.6.1). The quantity
a(t) is known as the scale factor and parameterises the expansion of space. The
scale factor can be treated as a dimensionless quantity normalised to a(t0) = a0 = 1
in the present day, in which case r has units of length and k has units of inverse
length squared, and we use this convention in this thesis.
In order to discuss the dynamics of the FLRW Universe, there are some important
geometric quantities which need to be defined. The first of these is the Riemann
curvature tensor

Rσµρν = ∂ρΓσνµ−∂νΓσρµ+ΓσρλΓλνµ−ΓσνλΓλρµ, (2.15)

which describes the curvature of each point on the spacetime manifold. It is built
from the affine connection Γ, which in Riemannian geometry is given by the Levi-
Civita connection

Γσµρ = 1
2g

σν [∂µgνρ+∂ρgµν −∂νgµρ] , (2.16)

where the gµν are the metric tensor of the spacetime geometry.
The non-zero components of the Levi-Civita connection (Christoffel symbols) in

FLRW spacetime are [17]

Γ0
ij = − ȧ

a
gij , (2.17)

Γi0j = ȧ

a
δij , (2.18)

and

Γijk = 1
2g

il
[
∂jgkl+∂kglj −∂lgjk

]
. (2.19)

The Riemann tensor can be contracted on its first and third indices to give the
Ricci tensor

Rσµρν →Rσµσν ≡Rµν , (2.20)

which can be contracted using the metric tensor to give the Ricci scalar

Rµν → gµνRµν =Rνν ≡R. (2.21)

In FLRW spacetime, the non-zero components of the Ricci tensor are

R00 = −3ä
a
, (2.22)
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Rij = −
[
ä

a
+2

(
ȧ

a

)2
+ 2k
a2

]
gij , (2.23)

and the Ricci scalar is

R = −6
[
ä

a
+
(
ȧ

a

)2
+ k

a2

]
. (2.24)

These will be used in Section 2.5.

2.4 Redshift

An important phenomenon used in cosmological observations is that of redshift,
which is the process by which the wavelength of electromagnetic radiation may be
shifted slightly in the spectrum to either a longer wavelength (red-shifted) or to a
shorter wavelength (blue-shifted).

In the classical description of redshift, the emitted light from distant objects is
treated as plane waves. Let an object be at a distance r = r1 from an observer at
r = 0 emit a wave of light at a time t= t1 which is received by an observer at t= t0.
The coordinate distance and time for lightlike geodesics

(
ds2 = 0

)
are related by

∫ t0

t1

dt

a(t) =
∫ r1

0

dr√
1−kr2 . (2.25)

If a subsequent plane wave is emitted at t = t1 + δt1 and received at t = t0 + δt0,
then in a comoving coordinate system we have that

∫ t0

t1

dt

a(t) =
∫ t0+δt0

t1+δt1

dt

a(t) (2.26)

due to the fact that the position of the source relative to the observer is fixed and
the right hand side of (2.25) is constant. If the time elapsed between emission and
detection is the same for both waves, then we can say that the time delay between
the first and second wave is also the same for both emission and detection, and we
can write this as

∫ t1+δt1

t1

dt

a(t) =
∫ t0+δt0

t0

dt

a(t) . (2.27)

If δt is a small timespan which measures the time between successive wavecrests we
can say that it corresponds to the wavelength of the light, and that a(t) is constant
over the integration, giving

δt1
a(t1) = δt0

a(t0) ⇒ λ1
a(t1) = λ0

a(t0) , (2.28)
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⇒ λ0
λ1

= a(t0)
a(t1) ≡ 1+ z, (2.29)

where the quantity z is defined as the redshift of the photons. Since the redshift of
an object is defined in terms of the ratio of the detected to the emitted wavelength,
it is clear that an increase in the scale factor leads to an increase in the wavelength of
the light from distant sources, and the greater the a(t), the further away the source
and the greater the redshift.

In the case of treating light quantum mechanically, the light received by an
observer as emitted by a distant object is treated as a stream of freely propagating
photons. For radiation in quantised wavepackets, the wavelength of the light is
inversely proportional to its momentum. From the geodesic equation of a lightlike
trajectory- or more simplistically from (2.3) - in FLRW spacetime, it can be shown
that the three-momentum is inversely proportional to the scale factor, p∝ 1/a. This
means that the wavelengths of photons emitted at a source at time t1, λ(t1) = λ1,
and then received by the observer at a time t0, λ(t0) = λ0 are given by

λ1 = h

p(t1) , λ0 = h

p(t0) . (2.30)

Letting p(t0,1) = p0,1, the ratio of the emitted and observed wavelengths is

λ0
λ1

= h

p0

p1
h
. (2.31)

Since p0 ∝ 1/a(t0) ,p1 ∝ 1/a(t1), this means that

λ0
λ1

= a(t0)
a(t1) = 1+ z, (2.32)

where the quantity z is defined as the redshift of the photons. This shows that as
the Universe expands, the wavelength of any freely propagating photon increases-
as all proper length scales in an expanding universe do as the expansion progresses.
The redshifting of light therefore occurs because the Universe expands between the
light being emitted by its source and received by an observer.

2.5 The Friedmann Equations

In order to consider the dynamics of the Universe in FLRW spacetime fully, we
need the equations of motion of the cosmological model. The action of a physical
theory is composed of the gravitational action and the "matter" action. In General
Relativity, the gravitational action is given by the Einstein-Hilbert action [18]
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SEH = −
∫
d4x

√
−g 1

2M
2
pl (R+2Λ) , (2.33)

where g= det(gµν) is the determinant of the metric tensor, M2
pl is the reduced Planck

mass squared, R is the Ricci scalar as defined in (2.21) and Λ is a cosmological
constant term which we include for completeness. The matter part of the action is
given by

Smatter =
∫
d4x

√
−g L(ϕa,∂µϕa) , (2.34)

where ϕa is a sum over the matter fields of the theory.
The gravitational equations of motion of the theory can be derived by varying the

action with respect to the spacetime metric, with solutions existing when the action
is stationary under these variations δS/δgµν = 0. Extremising the Einstein-Hilbert
action in this way gives the Einstein equations

Gµν = 8πGTµν +Λgµν , (2.35)

where

Gµν =Rµν − 1
2Rgµν , (2.36)

is the Einstein tensor. Tµν is the energy-momentum tensor and this is defined by
[19]

Tµν = 2∂Lmatter
∂gµν

−gµνLmatter. (2.37)

The Einstein tensor (left hand side of the Einstein equations) is generally recognised
as describing the curvature of the spacetime, while the energy-momentum tensor
(right hand side of the Einstein equations) is considered to describe the matter
content of the Universe.
The rules of FLRW spacetime impose certain constraints on the form that the
energy-momentum tensor can take. Firstly, since the metric is symmetric and di-
agonal, the energy-momentum tensor itself must also be diagonal. This, and the
assumption of isotropy, means that the off-diagonal components must be zero, so
we have that

T 0i = T j0 = 0. (2.38)

Secondly, under the assumption of isotropy, the spatial components must be equal.
The simplest realisation of an energy-momentum tensor with this form is that of
a perfect fluid with energy density, ρ(t), and pressure, p(t), as seen by a comoving
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observer

Tµν = gµλTλν = diag (ρ,−p,−p,−p) , (2.39)

where the non-zero elements more formally are given by

T00 = ρ(t) , Tij = −p(t)gij (t,x) , (2.40)

and gij (t,x) is the spatial metric tensor.
In General Relativity, the conservation law for the energy-momentum tensor is

given by

∇µT
µ
ν = ∂µT

µ
ν +ΓµµλT

λ
ν −ΓλµνT

µ
λ = 0, (2.41)

and the evolution of the energy density in the Universe is governed by the ν = 0
equation from this conservation law. Using the fact that T i0 vanishes, the ν = 0
equation is

dρ

dt
= Γµµ0ρ−Γλµ0T

µ
λ = 0. (2.42)

Using the symmetry of the Levi-Civita tensor on its second and third indices under
zero torsion, we can use (2.18) and find that the only surviving Christoffel symbols
are the Γij0 for i= j. Substituting Γii0 = ȧ/a and T ii = −p the ν = 0 equation is

ρ̇+ 3ȧ
a

(ρ+p) = 0. (2.43)

This equation can be solved using an equation of state solution, p=wρ, where w
is a time independent parameter and its value changes depending on the nature of
the fluid. This is a solution to the fluid equation (2.43) if the energy density evolves
as

ρ∝ a−3(1+w). (2.44)

In standard cosmology, there are three different types of fluid which may come to
dominate the energy density of the Universe at a given point in its lifetime up until
the present. These are

1. Non-relativistic, pressureless matter - referred to as "matter".

2. Relativistic matter and radiation - referred to collectively as "radiation".

3. Vacuum energy/cosmological constant - referred to as "dark energy" or "Λ" in
the context of the present state of the Universe.
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We will now explore the properties of each of these fluid types as solutions to the
fluid equation.

2.5.1 Matter

For the case of non-relativistic matter, in the equation of state we have that

w = 0 ⇒ p= 0, (2.45)

which gives a fluid equation of

ρ̇+ 3ȧ
a
ρ= 0. (2.46)

This can be rewritten as

ρ̇+ 3ȧ
a
ρ= 1

a3
d

dt

(
ρa3

)
= 0 ⇒ d

dt

(
ρa3

)
= 0. (2.47)

Upon integration of this equation, we can see that ρa3 = constant and therefore

ρ∝ 1
a3 . (2.48)

This means that in a matter-dominated universe, the energy density decays away
inversely proportional to the volume of the universe as it expands. This makes sense
as, since p= 0, there is no pressure force from the fluid contributing to the expansion,
and the fluid simply dilutes throughout the universe as its volume increases with
time.

In both the fluid equation (2.43) and the Friedmann equations (2.56) - (2.58),
only the factor ȧ/a appears in the equations provided k = 0, so they are left un-
changed if the scale factor is multiplied by a constant. As such, the energy density
of a matter dominated universe is often normalised in terms of the energy density
and scale factor today

ρ= ρ0

(
a0
a

)3
, (2.49)

where the scale factor today is typically defined as a0 = 1, and this convention is
followed throughout this thesis.

Note that "matter" in this context may refer to conventional matter as described
by the Standard Model of particle physics, or it may refer to non-relativistic dark
matter - Cold Dark Matter (CDM) - when discussing the matter components present
in the Universe today. Dark matter, unlike conventional "luminous" matter does not
reflect, emit or absorb electromagnetic radiation and is therefore difficult to detect
but accounts for a significant fraction of the matter energy density of the Universe
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today (see Section 2.6.1).

2.5.2 Radiation

In the case of a radiation dominated universe, we have that

w = 1
3 ⇒ p= ρ

3 . (2.50)

Substituting this into the fluid equation (2.43), we have

ρ̇+ 4ȧ
a
ρ= 0. (2.51)

This can be rewritten as

ρ̇+ 4ȧ
a
ρ= 1

a4
d

dt

(
ρa4

)
= 0 ⇒ d

dt

(
ρa4

)
= 0. (2.52)

Integrating shows that ρa4 = constant, and that therefore

ρ∝ 1
a4 ⇒ ρ= ρ0

(
a0
a

)4
. (2.53)

Radiation dilutes away faster with expansion than non-relativistic matter. This
is because the positive pressure of radiation does work on the Universe as it expands,
causing slower expansion and the radiation to lose energy with expansion faster than
matter would.

2.5.3 Vacuum Energy

In the case of a universe dominated by a cosmological constant, we have that

w = −1 ⇒ p= −ρ, (2.54)

which gives a fluid equation of

ρ̇= 0. (2.55)

The energy density is therefore constant in a universe dominated by a cosmological
constant, and its negative pressure drives the expansion itself. In the most recent
results from the Planck satellite (2018) [12] it was found that the dark energy equa-
tion of state of the Universe was w0 = −1.03 ± 0.03, consistent with the Universe
currently being in an epoch of vacuum energy dominated expansion.
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2.5.4 The Friedmann Equation

The equations which govern the dynamics of the Universe can be derived by consid-
ering the Einstein equations in FLRW spacetime. Using the non-zero components
of the Ricci tensor and the Ricci scalar given in (2.22) - (2.24), substituting into
the Einstein equations (2.35), and taking gµνTµν = diag (ρ,−p,−p,−p), the 0 − 0
component of the Einstein equations is

(
ȧ

a

)2
+ k

a2 = 8πG
3 ρ+ Λ

3 . (2.56)

This is the first Friedmann equation, typically just referred to as the Friedmann
equation. Taking the i− i component of the Einstein equations in FLRW gives the
second Friedmann equation

2ä
a

+
(
ȧ

a

)2
+ k

a2 = −8πGp+Λ, (2.57)

and subtracting (2.56) from (2.57) gives the acceleration equation

ä

a
= −4πG

3 (ρ+3p)+ Λ
3 . (2.58)

Since H = ȧ/a, the Friedmann equation can be written in terms of the Hubble
parameter

H2 + k

a2 = 8πG
3 ρ+ Λ

3 , (2.59)

as can the acceleration equation

H2 + Ḣ = −4πG
3 (ρ+3p)+ Λ

3 . (2.60)

2.5.5 Time Dependence of the scale factor in different solu-
tions of the Friedmann equation

From the Friedmann equation, we can derive the time dependence of the scale factor
for energy densities corresponding to the different types of matter.

• Matter

For a flat universe k = 0 and an insignificant cosmological constant, the Fried-
mann equation for conventional matter energy density (2.49)

ȧ2 = 8πG
3

a3
0
a
ρ0. (2.61)
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This equation can be solved by using a power law ansatz, a∝ tq. Substituting
this into (2.61) and solving for q we find that q = 2/3 and therefore for an
energy density dominated by ordinary matter

a∝ t
2
3 . (2.62)

In terms of the Hubble parameter (2.4) this means that

H = 2
3t ⇒ t= 2

3H
−1, (2.63)

in a matter dominated universe.

• Radiation

Similarly for a radiation dominated universe, the Friedmann equation using
(2.53) is

ȧ2 = 8πG
3

a4
0
a2ρ0, (2.64)

and using the same power law ansatz as we did for non-relativistic matter, we
find that q = 1/2 and therefore

a∝ t
1
2 , (2.65)

for a radiation dominated universe. The time dependence of the Hubble pa-
rameter is then

H = 1
2t ⇒ t= 1

2H
−1. (2.66)

• Vacuum Energy

For vacuum energy domination, w = −1, and using (2.44) we find ρ∝ a0 and
is therefore constant. We have that in this case, the time dependence of the
scale factor is

a∝ e
∫
Hdt ∝ eHt ⇒ t=H−1 ln

(
a

a0

)
. (2.67)

2.6 Critical Energy Density of the Universe and
Curvature

The Friedmann equation in terms of H (2.59) can be rewritten
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k

H2a2 = 8πG
3H2 ρ−1. (2.68)

If we define the critical density of the Universe, ρc to be

ρc = 3H2

8πG, (2.69)

and the ratio of the energy density to the critical density is given by

Ω = ρ

ρc
, (2.70)

then we can write (2.68) as

k

H2a2 = Ω−1. (2.71)

This expression is valid for all times, although ρc and Ω − 1 are not constant and
evolve as the Universe expands. The total energy density today Ω0 was measured
to be Ω0 = 1.003±0.010 by the Sloan Digital Sky Survey in 2006 [20], so it has been
confirmed observationally that the Universe is very close to critical density today.
We discuss the implications of this in Sections 2.6.1 and 2.7.2.

Since ȧ≥ 0 today, then (aH)2 ≥ 0, and this means that the sign of k affects the
sign of Ω−1.

2.6.1 Three Values of k

In FLRW spacetime, the parameter k can take values of +1, 0 or −1, depending on
the curvature of the Universe.

• Flat Geometry, k = 0, Ω = 1.
k = 0 corresponds to a flat universe, where the spatial geometry is three-
dimensional Euclidean. Angles of a triangle add up to 180◦ and the circum-
ference of a circle of radius r is given by 2πr. Universe is infinite and expands
in all directions.

• Spherical Geometry, k = +1, Ω> 1.
k= +1 corresponds to a closed universe of positive curvature, where the spatial
geometry is spherical. Angles of a triangle add up to > 180◦ and the circum-
ference of a circle of radius r is given by < 2πr. Observers in this kind of
universe exist on the surface of the spatial three-sphere. Universe is finite but
without a boundary, expands as a physical three-sphere of increasing radius.

• Hyperbolic Geometry, k = −1, Ω< 1.
k = −1 corresponds to an open universe of negative curvature, where the spa-
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tial geometry is hyperbolic. Angles of a triangle add up to < 180◦ and the
circumference of a circle of radius r is given by > 2πr, parallel lines never
meet. Universe can be visualised as a "saddleback".

To illustrate the interconnectedness of the k parameter, the curvature of space and
Ω we examine the spatial Ricci scalar in three dimensions, (3)R [17]

(3)R = 6k
a2 = 6H2 (Ω−1) . (2.72)

The "radius of curvature" of the Universe is defined as [17]

rcurv = a(t)√
|k|

=
√√√√ 6∣∣∣(3)R

∣∣∣ , (2.73)

and this can be written in terms of the Hubble parameter as

rcurv = 1
H
√

|Ω−1|
. (2.74)

From this expression for the radius of curvature of the Universe, we can see that
for |Ω−1| ∼ 1, rcurv ∼ H−1, and for |Ω−1| << 1, rcurv >>H−1. This means that
a universe close to critical density is very flat, and since we have |Ω−1| ∼ 1 today,
it means that |Ω−1| must have been very small at early times and the Universe
therefore must have been very near to critical density at early epochs. This means
that it is safe to ignore spatial curvature when studying cosmology in the very early
Universe.

In a generic universe of curvature k, the total energy density at a given time is

ρ= 3H2
0

8πG

[
ΩΛ +Ωm

(
a0
a

)3
+Ωr

(
a0
a

)4]
, (2.75)

⇒ ρ

ρ0,c
= Ω0 = ΩΛ +Ωm

(
a0
a

)3
+Ωr

(
a0
a

)4
. (2.76)

where ΩΛ is defined as

ΩΛ = Λ
3H2 , (2.77)

corresponding to a cosmological constant energy density, ρΛ = Λ/8πG. The Fried-
mann equation at today’s time is

a2
0H

2
0 +k = 8πG

3 ρa2
0, (2.78)

dividing through by (a0H0)2 gives

21



8πG
3H2

0
ρ= k

a2
0H

2
0

+1. (2.79)

Given this and (2.75), and taking ρ = ρ+ρΛ to be the energy density of today, we
can write

ΩΛ,0 +Ωm,0 +Ωr,0 +Ωk,0 = 1, (2.80)

where

Ωk,0 = − k

a2
0H

2
0
. (2.81)

From the 2018 results from the Planck satellite [12] it was found that the matter
density of the Universe is Ωm,0 = 0.3166±0.0084 (Ωm,0h2 = 0.315±0.007 ), of which
the baryonic matter content is Ωb,0h

2 = 0.0224 ± 0.0001 and the Cold Dark Matter
(CDM) content is Ωc,0h2 = 0.120±0.001, where the quantity h is defined as the nor-
malisation from the Hubble parameter today, defined as H0 = 100h km s−1 Mpc−1.
The dark energy density is ΩΛ,0 = 0.6847 ± 0.0073. This means that the Universe
today is about 30% matter (luminous and dark) and 70% dark energy, consistent
with a vacuum energy dominated Universe.

2.7 The Problems of the Hot Big Bang

There are a number of problems which arose during the conceptualisation of the
Hot Big Bang model in the process of outlining a standard model of cosmological
evolution, which were not explained by the model as it was at the time. These
problems are as follows.

2.7.1 The Horizon Problem

The horizon problem refers to the issue of the uniformity of the Cosmic Microwave
Background. As discussed in Section 2.1.3 the Cosmic Microwave Background is
a uniform temperature of TCMB = 2.4 × 10−14 GeV(2.725 K) and is very nearly
isotropic. Temperature uniformity across different regions of space is indicative of
these regions of space at one point being in thermal equilibrium. In order to do so,
the radiation in these currently causally disconnected regions of space would have to
have interacted and thermalised. The CMB was created at photon decoupling, after
recombination, which means that the radiation from it has been travelling towards
us since then. The fact that this has only just reached us means that, in the lifetime
of the Universe, this radiation could not have travelled as far as the other side of the
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observable Universe during this time. In order to have interacted and thermalised
enough to be near-isotropic in temperature, all regions of the observable Universe
would need to have been in contact well before decoupling in order to establish
thermal equilibrium and thus explain the temperature isotropy. There is also the
matter of the anisotropies in the CMB. At about one part in 100,000 the CMB is
anisotropic, and contains small fluctuations first detected by the COBE satellite.
These small fluctuations also pose another facet of the horizon problem. These
irregularities could not be created within the CMB after these regions of space had
thermalised, so it stands to reason that they must have been present to begin with.
The model therefore required a mechanism which not only brought all regions of the
observable Universe into contact well before decoupling, but also provided a means
for the fluctuations in the CMB to be present at its formation.

2.7.2 The Flatness Problem

In studies of Type 1a supernovae data in [13, 14] and later studies of the CMB
fluctuations from the BOOMERANG [21] and WMAP [22] experiments, it was
shown that the curvature of the Universe is very close to being flat. Most recent
observations from the Planck satellite combined with measurements from baryon
acoustic oscillations (BAO) show the spatial curvature of the Universe to be Ωk,0 =
0.001±0.002 [12]. If we examine the Friedmann equation in terms of Ω (2.71), and
substitute the scale factor-time relations for matter and radiation (2.49) and (2.53)
we find that

|Ωtot−1| ∝ t, (2.82)

for radiation, and

|Ωtot−1| ∝ t
2
3 , (2.83)

for ordinary matter. From this we can deduce that in a universe dominated by either
matter or radiation the total density is an increasing function of time, and that the
universe should move further away from critical density - and therefore further away
from flat geometry - over its lifetime.
In order for Ω to lie in the extremely narrow range it does today the Universe
must have been extremely close to critical density at the beginning, but there is no
obvious explanation as to why or how exactly the Universe has remained as close
to flat geometry as it has while containing matter content which should drive it to
increasing curvature over time.
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2.7.3 The Relic Abundances Problem

In the majority of Grand Unified Theories of particle physics, heavy exotic objects
such as magnetic monopoles are predicted, with energies E ∼ 1016 GeV. These have
not been observed and standard cosmology as it was did not provide a mechanism
for why this is the case, given that they should have been produced in abundance in
the high temperatures of the early Universe. If they had been produced in the early
Universe, even in a small amount, they should have come to dominate the Universe
quickly after the radiation decayed away with expansion. It has been surmised
that there must be some mechanism which diluted all of these massive, highly non-
relativistic particles away very quickly before they could come to dominate the
Universe, while also providing a possible explanation for why they have not been
observed today.

2.8 Inflation

A mechanism which solves all three of the aforementioned problems in the Hot Big
Bang was first proposed by Alan Guth in 1981 [23] (extended by Linde in 1982 [24]
and originally proposed without the broader cosmological context by Starobinsky
in 1979 [25, 26]), whereby the Universe initially expanded very rapidly by a large
amount before continuing to expand through Hubble expansion as we understand
it today. This initial epoch of exponential expansion was dubbed "inflation", and is
defined as an epoch in which the scale factor was accelerating

ä(t)> 0 ⇒ d

dt
(ȧ)> 0 ⇒ d

dt
(aH)> 0. (2.84)

From the acceleration equation (2.58), in order for ä > 0 to be possible, the following
must be true

ρ+3p < 0 ⇒ p <−ρ

3 ,w <−1
3 , (2.85)

which shows that the energy density of the Universe must be composed of a fluid of
negative pressure in order to drive expansion this rapid.
Inflation means that during the Planck epoch, all causally disconnected regions of
space today were originally in causal contact, and were very rapidly separated during
the era of exponential expansion. This allows that all regions of space we observe
today had the same initial conditions, which allows for all regions of space which
are outside of causal contact with each other today to have evolved to the same
temperature, as well as providing an explanation for the large scale smoothness
observed in the Universe today. This will be discussed in more detail in Section
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2.11.
When referencing the fluid equation (2.43), the Friedmann equations (2.56) -

(2.57), and the acceleration equation (2.58) from this point on in the thesis, it
should be taken as implicit that the cosmological constant term is not included, and
that k = 0 unless it is included explicitly on page.
In addition to accelerated expansion and negative pressure, there are a number of
other features which arise as a result of (2.84) and (2.85), and can also be used to
constrain whether or not inflation persists in a model.

• Slowly-varying Hubble parameter

The condition for accelerated expansion (2.84) can also be interpreted as a
shrinking comoving Hubble horizon

d

dt
(aH)−1 < 0, (2.86)

where this condition can be written as

d

dt
(aH)−1 = −1

a

(
aḢ+ ȧH

)
aH2 = −1

a
(1− ϵ)< 0, (2.87)

which is true if and only if ϵ < 1, where we define the Hubble slow-roll param-
eter ϵH as

ϵH = − Ḣ

H2 . (2.88)

This is an essential condition for inflation and will be referenced extensively
throughout this chapter.

• Quasi de-Sitter Expansion

If ϵH = 0, the spacetime becomes de Sitter

ds2 = dt2 − e2Htdx2, (2.89)

and the Universe continues accelerated expansion forever, so in order for in-
flation to end we need ϵH ̸= 0 and ϵH to be a small, finite number less than
unity.

• Constant Energy Density

Combining the fluid equation (2.43) and the acceleration equation (2.58) pro-
duces the following equation
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ρ̇

ρH
= −3

(
1+ p

ρ

)
, (2.90)

and ϵH can be rewritten using the Friedmann equations (2.56), (2.57) to derive
the condition

ϵH = − Ḣ

H2 = 3
2

(
1+ p

ρ

)
< 1. (2.91)

Combining (2.91) with (2.90) we have that

ρ̇

ρH
≡ 2ϵH . (2.92)

Rewriting the left hand side, we can write (2.92) as

∣∣∣∣∣d lnρ
d lna

∣∣∣∣∣= 2ϵH < 1. (2.93)

This shows that provided ϵH is small, the energy density can be regarded
as essentially constant during accelerated expansion. It also shows that the
negative pressure fluid dominating the Universe throughout inflation cannot
be conventional matter, since conventional matter dilutes away with expansion
as ρ ∝ a−3. The nature of the dominant energy density during inflation will
be discussed in the next section.

Interpretation of ϵH and ηH .

From (2.88), we can write the condition for inflation as

ϵH = −d lnH
dN

< 1, (2.94)

where we have defined

dN = d lna=Hdt, (2.95)

to be the change in the number of e-foldings (commonly abbreviated to "e-folds" in
cosmology, this thesis will follow this convention from here) of accelerated expansion,
such that a ∝ eN . The condition (2.94) implies that the fractional change of the
Hubble parameter per e-fold of inflation must be small in order to produce inflation
(ϵ < 1).

We will demonstrate in Section 2.11 that inflation needs to persist for around 60
e-folds to solve the horizon problem. This means that ϵH must be kept smaller than
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one for at least as much time as necessary to achieve this.
In order to measure the change in ϵH we introduce a second Hubble slow-roll pa-
rameter

ηH = ˙ϵH
HϵH

= d lnϵH
dN

. (2.96)

From this condition we can say that for |ηH | < 1, the fractional change of ϵH per
e-fold is kept small and inflation persists. To summarise, ϵH < 1 is the necessary
condition for the Hubble parameter to vary sufficiently slowly, and for the energy
density to comprise a fluid of negative pressure (w <−1/3), which allow accelerated
expansion of space (inflation) to occur. |ηH |< 1 is the necessary condition to ensure
that ϵH remains less than one long enough for there to be sufficient inflation to solve
the horizon problem.

2.8.1 Inflation Driven by a Scalar Field

In this subsection we explore the nature of the fluid constituting the energy density
of the Universe during inflation. In order to produce accelerated expansion, we
showed in Section 2.8 that the energy density of the Universe must be dominated
by a fluid of negative pressure. During inflation then, we must have that the matter
content of the Universe is composed of such a fluid.
In order to evaluate this in relation to the FLRW dynamics of the Universe, we
introduce a scalar field varying in space and time ϕ(t,x) with a potential V (ϕ).
This field is theorised to drive inflation and is known as the inflaton. In order for
the inflaton field to be consistent with FLRW spacetime we require that the energy-
momentum tensor of the inflaton matches with that of the perfect isotropic fluid
required for FLRW cosmology.

The inflaton field Lagrangian may be written as a general scalar field Lagrangian
with potential V (ϕ)

L = 1
2g

µν∂µϕ∂νϕ−V (ϕ) . (2.97)

in order to produce a massless scalar field theory comprised of scalar quanta of ℏω
when the theory is quantised.
The energy-momentum tensor of a scalar field is given by

Tµν = ∂µϕ∂νϕ−gµν

(1
2g

αβ∂αϕ∂βϕ−V (ϕ)
)
, (2.98)

where Tµν is derived for a scalar field in flat space (gµν = ηµν) in Chapter 3, Section
3.4. To match with the energy-momentum tensor of the perfect isotropic fluid of
FLRW cosmology, we require that the 00 component of (2.98) must be T 0

0 = ρ(t),
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and that the spatial components must be T ij = −p(t)δij in accordance with (2.40).
Calculating these components of (2.98), we find that

T 0
0 = 1

2 ϕ̇
2 +V (ϕ) , (2.99)

T ij = 1
2 ϕ̇

2 −V (ϕ) , (2.100)

where in both calculations, the terms ∼
(−→

∇ϕ
)2
/a2 have been left out of both final

results. This is because these gradient terms damp as a−2 ∝ e−2Ht and will therefore
become insignificant very quickly with expansion. In order for the inflaton field to
drive the FLRW dynamics throughout inflation we therefore require the inflaton
energy density and pressure to be

ρ(t) = 1
2 ϕ̇

2 +V (ϕ) , (2.101)

p(t) = 1
2 ϕ̇

2 −V (ϕ) , (2.102)

respectively. Comparing these to the negative energy condition (2.85), we require
that

p= 1
2 ϕ̇

2 −V (ϕ)<−1
6 ϕ̇

2 − 1
3V (ϕ) = −ρ

3 , (2.103)

and we establish that

ϕ̇2 < V (ϕ) , (2.104)

leads to inflation. In other words the inflaton potential must dominate over its
kinetic energy in order for the scalar field to act as the negative pressure fluid
driving inflation.

Using (2.101) we can rewrite the Friedmann equation (2.59) as

H2 = 1
3M2

pl

[1
2 ϕ̇

2 +V (ϕ)
]
, (2.105)

and using (2.101) and (2.102), the acceleration equation (2.60) can be written as

Ḣ = − ϕ̇2

2M2
pl

. (2.106)

Taking a time derivative of (2.105), we obtain

2HḢ = 1
3M2

pl

[
ϕ̈ϕ̇+ dV

dϕ
ϕ̇

]
. (2.107)

28



Substituting (2.106) and dividing through by ϕ̇ we obtain

ϕ̈+3Hϕ̇+ dV

dϕ
= 0. (2.108)

This is the classical evolution equation of the scalar field in a FLRW universe, also
known as the "Klein-Gordon equation" of the scalar field. This is also the field
equation governing the dynamics of the inflaton field which can be obtained by
variation of the Einstein equations in FLRW spacetime with the matter content of
the Universe dominated by the inflaton, or by conservation of the inflaton energy-
momentum tensor.

Examining the equation (2.108), we can see that the expansion of the Universe
provides friction through the Hubble term 3Hϕ̇ and that the potential term dV/dϕ

acts like a force term.

2.8.2 Slow-Roll Inflation

In this section we will examine the conditions on inflation in light of the inflaton
field driving the expansion. Using the definition of ϵH (2.88) and (2.106), we can
write

ϵH = ϕ̇2

2M2
plH

2 . (2.109)

In order for inflation to occur we therefore require that

ϵH < 1 ⇒ 1
2 ϕ̇

2 <M2
plH

2 ⇒ 1
2 ϕ̇

2 < ρ= 3M2
plH

2, (2.110)

from the Friedmann equation (2.59). This reiterates the point that in order for
the inflaton to drive accelerated expansion, its kinetic energy must make a small
contribution to the overall energy density. In order for inflation to proceed for
sufficiently long, this must remain true for the duration, which requires that the
acceleration of the inflaton field ϕ̈ must be small, i.e ϕ̇ cannot increase significantly
with time during the inflation period.

As a measure of this, we define the dimensionless acceleration per Hubble time

δ = − ϕ̈

Hϕ̇
. (2.111)

Taking a time derivative of (2.109), we obtain

dϵH
dt

= ϕ̇ϕ̈

M2
plH

2 − ϕ̇2Ḣ

M2
plH

3 . (2.112)

Combining this with (2.88), (2.96) and (2.111), we can write the ηH parameter as
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ηH = 2(δ− ϵH) . (2.113)

This relation shows that if the acceleration of the inflaton field is small, and subse-
quently the kinetic energy of the inflaton field makes up a small proportion of the
inflaton energy density, we have that

{ϵH , |δ|}<< 1 ⇒ {ϵH , |η|}<< 1. (2.114)

These conditions dictate that the inflaton can drive accelerated expansion for a
sufficiently long time provided that the field slowly rolls down its potential. These
conditions can be used to simplify the equations governing the dynamics of the
inflaton field, and the expansion of the Universe in what we will refer to as the
slow-roll approximation.

Firstly, if ϵH << 1, then the implication is that ϕ̇2/2<<V (ϕ). This can be used
to simplify the Friedmann equation (2.59) to

H2 = V (ϕ)
3M2

pl

, (2.115)

during slow-roll, and the expansion of the Universe is therefore completely driven
by the potential energy of the inflaton field.
Secondly, the condition

|δ| = ϕ̈

Hϕ̇
<< 1 ⇒ ϕ̈ << Hϕ̇, (2.116)

can be used to simplify the Klein-Gordon equation of the scalar field (2.108) to give

3Hϕ̇≃ −dV

dϕ
. (2.117)

So during slow-roll, the gradient of the inflaton potential is proportional to the
"speed" at which the inflaton field rolls down it. Combining this expression with
(2.115) and (2.109) gives an expression for ϵH in terms of the inflaton potential

ϵ=
M2
pl

2

(
V,ϕ
V

)2
. (2.118)

A similar expression can also be obtained for the ηH parameter. Taking the time
derivative of (2.117) and dividing through by 3H2 gives

V ′′

3H2 = − ϕ̈

ϕ̇H
− Ḣ

H2 = δ+ ϵH . (2.119)

Using the slow-roll Friedmann equation (2.115), we can define the left-hand side of
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(2.119) to be a parameter η, where

η =M2
pl
V ′′

V
. (2.120)

The expressions (2.118) and (2.120) are defined as being the potential slow-roll pa-
rameters, while the originally derived expressions for ϵH and ηH ((2.88) and (2.96)
respectively) are generally referred to as the Hubble slow roll parameters, and suc-
cessful slow-roll proceeds for {ϵ, |η|}<< 1. The Hubble slow-roll parameters can be
related to the potential slow-roll parameters through

ϵ≈ ϵH , η ≈ 2ϵH − 1
2ηH . (2.121)

2.8.3 How Much Inflation?

The total number of e-folds of inflation is given by

Ntot =
∫ aE

aI

d lna=
∫ tE

tI
H (t)dt, (2.122)

where tE and tI are defined as the end and the beginning of inflation respectively,
or more formally as ϵ(tE) = ϵ(tI) = 1. In the slow-roll regime we can write

Hdt= H

ϕ̇
dϕ= −1√

2ϵH
dϕ

Mpl
≈ −1√

2ϵ
dϕ

Mpl
, (2.123)

using (2.109) and (2.117). Substituting in (2.118) we can write the integrand (2.123)
into (2.122) as

Ntot = − 1
M2
pl

∫ ϕE

ϕI

V

V ′dϕ. (2.124)

The largest scales observed in the CMB are produced about 60 e-folds before the
end of inflation. A successful solution to the horizon problem therefore requires at
least 60 e-folds of inflation (demonstrated in Section 2.11).

2.8.4 Reheating

We now briefly discuss the end of inflation. Slow-roll inflation ends when ϵ, |η| = 1,
and at this point the inflaton field begins rapidly rolling down its potential. The
field gains kinetic energy as it does so, and inflation ends with the inflaton field
transferring this energy to the particles of the Standard Model. This is known as
reheating, and leads to the thermalisation of the Universe, signifying the beginning
of the Hot Big Bang within Big Bang cosmology.

The inflaton potential therefore needs to be fairly flat for long enough in field
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space that the inflaton can slowly roll along it for a sufficient number of e-folds. At
the end of inflation, the potential steepens and the inflaton field rolls down to the
minimum of its potential, losing potential energy and gaining kinetic energy before
it begins to oscillate about the minimum of its potential. The inflaton then transfers
its energy to the Standard Model particles through damped oscillations about the
minimum of its potential.

If the inflaton potential can be approximated as V (ϕ) ≈ 1
2m

2ϕ2 close to the
minimum of its potential - as the inflaton potentials discussed in Chapters 3-5 of
this thesis can - then the equation of motion for the scalar field from (2.108) is

ϕ̈+3Hϕ̇= −m2ϕ, (2.125)

at the end of slow roll, where m is the inflaton mass. This reduces to undamped
oscillations of frequency m once the expansion scale of the Universe becomes larger
than the oscillation period H <<m, and we can neglect the friction term.

Still approximating the potential near its minimum to be quadratic, the conti-
nuity equation for the inflaton at the end of inflation can be written as

ρ̇+3Hρ= −3Hp= −3
2H

(
m2ϕ2 − ϕ̇2

)
, (2.126)

where at the end of inflaton we have ϵ ∼ 1, 1
2 ϕ̇

2 ∼ V (ϕ), so the right hand side of
the equation averages to zero very quickly and we are left with the fluid equation
for conventional matter (2.46). The oscillating inflaton field therefore decays away
like conventional matter ρ∝ a−3, and the decay of the inflaton field therefore leads
to a decrease in the amplitude of the oscillations of the field.

The inflaton is coupled to the Standard Model particles, and produces them as
it decays. These particles then interact and create new particles until the Universe
is filled with a plasma of particles, which comes to reach thermal equilibrium. The
point at which the energy density of the Universe becomes dominated by relativistic
particles after inflation is defined by the temperature TR, which is referred to as the
reheating temperature. The temperature at which the particle plasma thermalises
varies widely depending on the inflation model, and depends on the energy density
at reheating, ρR. We require at least TR ≃ 1 MeV, and for the Universe to be
thermalised by this point, in order for Big Bang Nucleosynthesis to proceed following
inflation. If the inflaton decays very quickly, then we can approximate that ρR ∼
V (ϕ) at the end of inflation as all of the energy density of the inflaton can be
assumed to all be transferred to the Standard Model particles. This approximation
is known as instantaneous reheating and will be referred to in Chapters 4-6.
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2.9 Energy Density and Pressure

The energy density and pressure of the matter content of the Universe following
inflation can be calculated from the phase space distributions of all of the species
present. Upon reheating, the Universe is filled with a thermal plasma of all of the
particle content of the Standard Model. Different particle species will fall out of
equilibrium and become non-relativistic at different temperatures as the Universe
cools and expands, namely once the rate of the particle interaction becomes smaller
than the rate of expansion, Γ<H.
The total energy density and pressure as functions of temperature are therefore
generally given as the energy density and pressure of the relativistic species in the
plasma, since the energy density and pressure of the non-relativistic species (mi >>

T ) is exponentially smaller than the energy density and pressure of the relativistic
species (mi << T ) as calculated from the phase space distributions, so it is a good
approximation of the total energy density and pressure of the thermal plasma [17].
In this limit we have that [17]

ρ(T ) = π2

30g∗T
4, (2.127)

p(T ) = ρ

3 = π2

90g∗T
4, (2.128)

where

g∗ =
∑

i=bosons
gi

(
Ti
T

)4
+ 7

8
∑

i=fermions
gi

(
Ti
T

)4
, (2.129)

is the total number of relativistic degrees of freedom present in the particle plasma,
the factor of 7/8 accounts for the difference in bosonic and fermionic statistics, and
T is the photon temperature at the time of calculation. At the end of inflation, all
species of the Standard Model are relativistic and we have that g∗ = 106.75 [17].

2.10 Conservation of Entropy During Expansion

The Universe is in local thermal equilibrium for much of its history, from the end
of inflation until decoupling, which means that the entropy in a comoving volume
remains constant. The second law of thermodynamics can be written as

TdS = d(ρV )+pdV = d [(ρ+p)V ]−V dp, (2.130)

where V ∝ a3, and ρ and p are the energy density and pressure at thermal equilib-
rium. Using the fact that
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T
dp

dT
= ρ+p, (2.131)

(2.130) can be written as

dS = 1
T
d [(ρ+p)V ]− (ρ+p)V

T 2 dT = d

[
(ρ+p)V

T
+ constant

]
. (2.132)

Up to a constant we therefore have that the entropy is

S = a3 (ρ+p)
T

. (2.133)

The first law of thermodynamics is

d [(ρ+p)V ] = V dp, (2.134)

and applying this to (2.130) we find that dS = 0, and equivalently

d

[
(ρ+p)V

T

]
= 0, (2.135)

meaning that the entropy of the Universe in thermal equilibrium in a given expanding
volume is conserved, and that this is adiabatic expansion.

The entropy density can be defined as

s= S

V
= ρ+p

T
. (2.136)

Since the energy density and pressure at equilibrium are dominated by relativistic
species, this can be written as [17]

s= 2π2

45 g∗sT
3, (2.137)

where

g∗s =
∑

i=bosons
gi

(
Ti
T

)4
+ 7

8
∑

i=fermions
gi

(
Ti
T

)4
. (2.138)

If the particle species have a common temperature at a given time in the history of
the Universe then g∗s is equivalent to g∗.

From (2.135), the conservation of entropy implies that s ∝ a−3, which implies
that g∗sa

3T 3 = constant as the Universe expands. This implies that T ∝ g
− 1

3∗s a−1

or T ∝ 1/a if g− 1
3∗s is constant as the Universe expands, meaning that the Universe

cools when it expands.
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2.11 How Inflation Solves the Problems of the
Hot Big Bang

In this section we will discuss how inflation solves the problems of the Hot Big Bang
detailed in Section 2.7.

• Horizon Problem

Inflation solves the horizon problem by providing a mechanism for the Universe
to start off much smaller than it is now, in a smooth initial state, and expand
to its present size. A smooth initial state requires causal contact between
all regions of space in the Universe, and this therefore enables the causally
disconnected regions of space today to initially be in causal contact, and evolve
from the same set of initial conditions. This allows all space we observe today
to thermalise well before decoupling, and explain the temperature isotropy of
the CMB today.

In order to gauge the amount of inflation needed to solve the horizon problem
we use the Hubble horizon, as it is a more conservative estimate than the
particle horizon since χp (t)> (aH)−1 (t). In order to solve the horizon problem
then, the observable Universe today must have at least been able to fit inside
the comoving Hubble horizon at the beginning of inflation

(a0H0)−1 < (aIHI)−1 . (2.139)

By means of a simplification, for the purposes of an estimate, we make the
approximation that the Universe has been radiation dominated for most of its
history since the end of inflation. We therefore have that

H = 1
2t ⇒ a(t) = a0

(
t

t0

) 1
2

⇒ t∝ a2,H ∝ 1
a2 . (2.140)

We can take the ratio of the comoving Hubble radius of the observable Universe
today and the comoving Hubble radius at the end of inflation (a= aE)

a0H0
aEHE

= a0
aE

(
aE
a0

)2
= aE
a0

∼ T0
TE

, (2.141)

since T ∝ 1/a during inflation. Using T0 ∼ 10−3 eV(2.7 K) as the temperature
of the CMB today, and using TE ∼ 1015 GeV as an estimate of the temperature
at the end of inflation, we have that T0/TE ∼ 10−28. This means that

(aIHI)−1 > (a0H0)−1 ∼ 1028 (aEHE)−1 , (2.142)
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and so in order to solve the horizon problem, the comoving Hubble horizon
must shrink by a factor of around 1028 during inflation. In other words the
Universe must have been smaller by a factor of 10−28 before inflation in order
for the causally disconnected regions of space today to have been in causal
contact at early times. In order for this to happen, we approximate that
the Hubble parameter remains constant during inflation and the scale factor
increases exponentially. For HI ≈HE , we then have

aE
aI

> 1028 ⇒ ln
(
aE
aI

)
=NE −NI > 64. (2.143)

This implies that we need at least 60 e-folds of accelerated expansion in order
for inflation to solve the horizon problem.

• The Flatness Problem

In Section 2.6, we rewrote the Friedmann equation in terms of the total energy
density Ωtot (2.71), and established in Section 2.7.2 that for matter and radi-
ation dominated universes, |Ωtot−1| is an increasing function of time ((2.82)
and (2.83) respectively). For accelerated expansion we have

ä > 0 ⇒ d

dt
(ȧ) = d

dt
(aH)> 0. (2.144)

This means that the right-hand side of (2.71) is driven increasingly towards
zero. If H is approximately constant during inflation then

|k|
(aH)2 ∼ e−2Ht ⇒ |Ωtot−1| → 0, (2.145)

as inflation progresses. Inflation therefore pushes Ωtot very close to one, such
that all subsequent expansion after the end of inflation is not sufficient to drive
it away from one, and the Universe consequently to a more curved evolution.
Inflation therefore naturally predicts a universe very close to flat geometry and
provides a mechanism for which the Universe today can have very close to a
flat geometry.

• The Relic Abundances Problem

Inflation was originally surmised to solve the relic abundances problem by
diluting all of the heavy exotic particles produced in the very early Universe
(T ∼ 1016 GeV) such that they have not been observed in the Universe so
far today. However, reheating temperatures can easily reach those needed to
produce any Grand Unified scale particles, such as magnetic monopoles. Even
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if these heavy relics were diluted away by inflation, it is therefore possible that
more would be created by the decay of the inflaton, and therefore inflation
does not necessarily explain the non-observation of these particles. A solution
to the relic abundances problem given the possibility of production during
reheating, such as the dilution of the abundance of magnetic monopoles by
the galactic magnetic field [27], is a current area of research in cosmology.

2.12 Density Perturbations from Inflation

In addition to solving the problems of the Hot Big Bang, inflation provides a nat-
ural mechanism for producing the primordial seeds for the larger structures of the
Universe today (Large Scale Structure (LSS)) and also the temperature anisotropies
of the CMB. In this section we briefly discuss the production of the density pertur-
bations during inflation.

If we treat the inflaton as a quantum field, we can write it as an approximately
spatially constant classical background which experiences small quantum fluctua-
tions in space and time due to the Uncertainty Principle

ϕ(t,x) = ϕ̄(t)+ δϕ(t,x) . (2.146)

This means that different patches of space inflate by slightly different amounts, which
results in local differences in energy density δρ(t,x) once inflation ends, and eventu-
ally fluctuations in the temperature of the CMB, δT . This introduces irregularities
into the spacetime which we have thus far treated as smooth and homogeneous. The
dynamics of such a Universe can be examined by perturbing the Einstein equations
(2.35) on a given spatial slice of spacetime, which introduces perturbations in the
spacetime metric, gµν = ḡµν +δgµν , and in the stress-energy content of the Universe,
ρ(t,x) = ρ̄(t)+ δρ(t,x).

Perturbing the Einstein equations results in the emergence of a quantity known as
the comoving curvature perturbation R. We will briefly outline how this quantity is
obtained, and how it relates to the fluctuations of the inflaton field. This discussion
closely follows that given in [28].

The first step in perturbing the Einstein equations is to perturb the FLRW
metric. We start in flat FLRW space in conformal time

ds2 = a2 (τ)
[
dτ2 − δijdx

idxj
]
, (2.147)

and then perturb

ds2 = a2 (τ)
[
(1+2A)dτ2 −2Bidxidτ − (δij +hij)dxidxj

]
, (2.148)
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where A,B and hij are functions of space and time. A is a scalar, Bi is a three
vector which can be decomposed into a scalar part and a divergenceless vector

Bi = ∂iB+ B̂i, ∂
iB̂i = 0, (2.149)

and hij is a rank-2 symmetric tensor which can be decomposed into scalar, vector
and tensor parts

hij = 2Cδij +2∂(i∂ j)E+2∂(i Ê j) +2Êij , (2.150)

where, as defined in [28],

∂(i∂ j)E =
(
∂i∂j − 1

3δij∇
2
)
E, (2.151)

∂(i Ê j) = 1
2
(
∂iÊj +∂jÊi

)
, (2.152)

and ∂iÊi = 0, ∂iÊij = 0 and Êii = 0. Physically, the scalar perturbations lead to the
density perturbations we observe in the Universe today, the vector perturbations
aren’t produced by inflation, and the tensor perturbations lead to gravitational
waves. The scalar perturbations are those which we are the most concerned with
when discussing inflation, and this discussion will therefore be limited to the gener-
ation of the scalar perturbations in the energy density of the Universe.

In order to simplify the treatment of the perturbations, we consider the induced
metric on spatial slices of constant time

γij = a2 [(1+2C)δij +2Eij ] , (2.153)

which is the spatial part of (2.148) and Eij = ∂(i∂ j)E. The three-dimensional Ricci
scalar on these spatial constant-time slices is [28]

a2R(3) = −4∇2
(
C− 1

3∇2E
)
, (2.154)

where the terms in the bracket constitute what is known as the curvature perturba-
tion. The comoving curvature perturbation [28] is given by

R = C− 1
3∇2E+H (B+v) , (2.155)

where v is the comoving three-velocity and H is the comoving Hubble parameter.
In the spatially flat gauge C = E = 0 and we have

R = H (B+v) . (2.156)
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In order to derive an expression for the comoving curvature perturbation in terms
of the fluctuations of the inflaton field, we examine the first-order off-diagonal con-
tributions to the perturbed energy momentum tensor δT 0

j , the momentum fluxes.
For a perfect fluid these are [28]

δT 0
j = −

(
ρ̄+ P̄

)
(Bj +vj) , (2.157)

where vj is the coordinate velocity of the fluid. For a scalar field these are [28]

δT 0
j = g0µ∂µϕ∂jδϕ= ḡ00∂0ϕ̄∂jδϕ= ϕ̄′

a2∂jδϕ. (2.158)

Equating (2.157) and (2.158), we find that

(B+v) = −δϕ

ϕ̄′ , (2.159)

and substituting this into (2.156), we find that the comoving curvature perturbation
relates to the fluctuations of the inflaton field by

R = −H
ϕ̄′ δϕ, (2.160)

where this quantity is conserved on superhorizon scales.
We now briefly outline how the comoving curvature power spectrum is obtained.

This outline is based on the derivation presented in [28]. We start by defining a
comoving field f , which relates to the fluctuations of the inflaton field through

f = aδϕ. (2.161)

This field obeys the Mukhanov-Sasaki equation

f ′′ −
−→
∇2f − a′′

a
f = 0, (2.162)

which is derived from extremising the quadratic action in f of the inflaton action in
conformal time in de Sitter space. In terms of the Fourier modes of f , this is

f ′′
k +

(
k2 − a′′

a

)
fk = 0. (2.163)

On small scales (sub-horizon), the inflaton fluctuations can be modelled by a col-
lection of harmonic oscillators. The f field can therefore be canonically quantised,
and written as a mode expansion in creation and annihilation operators

f̂ (τ,x) =
∫ d3k

(2π)
3
2

[
fk(τ)âk +f∗

k (τ)â†
k
]
eik·x. (2.164)
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In the limit that the modes of interest are deep inside the horizon, the Mukhanov-
Sasaki equation (2.163) reduces to

f ′′
k +k2fk ≈ 0, (2.165)

which has the solutions fk ∝ e±ikτ , corresponding to a free field in Minkowski space.
In order for the solution to match with the conventional field theory vacuum - with
the vacuum state |0⟩ corresponding to the ground state of the Hamiltonian - we
can only choose the positive frequency solution fk ∝ e−ikτ . This then defines the
vacuum state for the modes during inflation on length scales much smaller than the
horizon

limτ→−∞fk (τ) = 1√
2k
e−ikτ , (2.166)

known as the Bunch-Davies vacuum. During slow-roll inflation, the exact solution
to the Mukhanov-Sasaki equation is

fk (τ) = e−ikτ
√

2k

(
1− i

kτ

)
. (2.167)

This mode function is completely fixed by the initial condition (2.166), and therefore
the evolution of the modes corresponding to the inflaton fluctuations is also fixed,
including the superhorizon evolution.

In order to find the power spectrum of the inflaton fluctuations, we calculate the
variance of the field f

〈
0
∣∣∣f̂ †(τ,0)f̂(τ,0)

∣∣∣0〉=
∫ dk

k
Pf (k,τ). (2.168)

Calculating the integrand on the right hand side, we find

Pf (k,τ) = k3

2π2 |fk (τ)|2 , (2.169)

and then substituting (2.167), this is

Pf (k,τ) = k2

4π2

(
1+ 1

k2τ2

)
. (2.170)

Since, δϕ = f/a, we can use (2.170) to define the power spectrum of the inflaton
fluctuations

Pδϕ(k) = 1
a2 Pf (k,τ) = k2

4π2a2

(
1+ 1

k2τ2

)
. (2.171)

Using the fact that conformal time is τ = −1/aH, this can be written as
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Pδϕ(k) = k2

4π2a2

(
1+ a2H2

k2

)
, (2.172)

where k/a is the physical wavenumber equal to 2π/λphys. For superhorizon pertur-
bations, the physical wavelength of the fluctuation is larger than the Hubble horizon,
λphys ≥H−1, and we have that

2π
λphys

≤ 2πH ⇒ k

a
≤ 2πH, (2.173)

Using this, we can rewrite (2.172) as

Pδϕ(k) =
(
H

2π

)2
1+

(
k

aH

)2 . (2.174)

Once perturbations exit the horizon, we have that k << aH and their power spec-
trum Pδϕ(k) →

(
H
2π

)2
. Evaluated at k = aH, the power spectrum of the inflaton

fluctuations is therefore

Pδϕ(k) =
(
H

2π

)2∣∣∣∣∣
k=aH

, (2.175)

where modes of a given k exit the Hubble horizon at k= aH when inflation stretches
the wavelengths of these modes to superhorizon scales. From (2.160) the variance of
these fluctuations is related to the variance of the comoving curvature perturbation
R by

⟨|Rk|⟩2 =
(

H
ϕ̄′

)2
⟨|δϕk|2⟩, (2.176)

where after horizon exit, the quantum expectation value of the inflaton fluctuations
can be identified with the ensemble average of a classical field δϕ. It is a property
of the comoving curvature perturbation R that it is conserved - does not evolve -
on superhorizon scales. This means that the value of R at horizon crossing survives
unaltered until much later times, and this gives an insight into the state of the
curvature perturbations at the end of inflation.

From (2.175) and (2.160) the power spectrum of the comoving curvature pertur-
bation is given by

PR (k) =
(

H
ϕ̄′

)2
Pδϕ (k)|k=aH = H2

8π2ϵM2
pl

∣∣∣∣∣∣
k=aH

. (2.177)

at horizon crossing. At k = aH, if H is constant, PR is independent of k is therefore
scale invariant. In actuality, the power spectrum of the curvature perturbation will
be near-scale invariant since H and ϵ are slowly-varying functions. The deviation
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from scale invariance can be measured by expressing PR as a power law

PR (k) = As

(
k

k∗

)ns−1
, (2.178)

where As = 2.1×10−9 is the measured amplitude of the power spectrum, as measured
using a reference scale k∗, known as the pivot scale, of k∗ = 0.05 Mpc−1 [12]. The
quantity ns is referred to as the scalar spectral index, and the power spectrum

ns−1 = d lnPR
d lnk

∣∣∣∣∣
k=k∗

, (2.179)

measures the deviation from scale invariance, where ns = 1 corresponds to a scale
invariant spectrum. Rewriting the right hand side of (2.179) in terms of ϵ and H

((2.94) and (2.96) respectively), we can express the deviation from scale invariance
in terms of the slow-roll parameters

ns−1 = −2ϵH −ηH ⇒ ns−1 = 2η−6ϵ. (2.180)

The power spectrum of the tensor modes (gravitational waves) which arise from
the perturbation of the geometry of the spacetime on a given slice of spacetime can
also be measured [28]

Pt (k) = 2H2

π2M2
pl

∣∣∣∣∣∣
k=aH

⇒ Pt (k) = At

(
k

k∗

)nt

. (2.181)

Analogously to ns for PR, nt measures the deviation from scale invariance. An
important quantity in observational cosmology is the amplitude of the tensor modes
normalised with respect to the amplitude of the scalar modes

r = At
As

= 16ϵ, (2.182)

known as the tensor-to-scalar ratio.

2.12.1 Adiabatic and Isocurvature Perturbations

In this section we examine the nature of the perturbations in the energy density
arising during inflation. Of the energy density fluctuations generated there are two
different types, adiabatic and isocurvature perturbations, and the role they play in
the evolution of the Universe is quite different.

• Adiabatic perturbations

These are primordial perturbations in which the fractional perturbation of the
number density of all conserved matter species, i, is equal to the fractional
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perturbation of the number density of photons

δni
ni

= δnγ
nγ

. (2.183)

The perturbations in the energy density during inflation are predicted to be
adiabatic and can be visualised as parts of the expanding Universe where the
expansion is slightly ahead or behind the average expansion. The expansion
is adiabatic itself, which means that the total entropy within the expanding
volume is conserved. An adiabatic perturbation therefore looks like a volume
of space that has been adiabatically squeezed (squeezed while conserving the
total entropy in the volume).

The total number of particles of a species i, Ni, in a volume V is conserved. For
small changes in number density, δni, and volume, δV , due to the adiabatic
squeezing

δNi = δ (niV ) = 0 ⇒ dNi
dni

δni+
dNi
dV

δV = 0, (2.184)

this means that for small changes in the number of a species in an expanding
volume

V δni+niδV = 0 ⇒ δni
ni

= −δV

V
, (2.185)

is true for all conserved matter species i.

The total entropy in a volume V is proportional to the total number of photons
in the volume. This is because the entropy density s∝ T 3 and so is the photon
number density nγ . Since entropy is conserved in an adiabatically expanding
volume, the number of photons is therefore conserved, and the photon number
density can be treated the same as the conserved matter species.

For adiabatic perturbations, for all species i we therefore have

δn1
n1

= δn2
n2

...= ...
δnγ
nγ

. (2.186)

Adiabatic fluctuations therefore refer to small changes in the total energy den-
sity of the Universe across all of its components. These adiabatic perturba-
tions occur because all the particle densities, δρi, originate from a single initial
matter density, the inflaton, meaning that all fluctuations in the density of the
species i are equal to the inflaton fluctuations. This is a serendipitous side
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effect of inflation in that it predicts the generation of adiabatic density per-
turbations, since all particle species arise from the decay of the inflaton field.
Inflation also predicts that different points in the Universe will look like they
have expanded a bit more or a bit less than the average expansion, and we
can interpret that a larger or smaller density of inflaton particles is therefore
equivalent to less or more expansion relative to the average.

• Isocurvature Fluctuations

The other kind of primordial perturbation which could be produced are isocur-
vature perturbations. In the case of isocurvature, the perturbations of individ-
ual conserved particle species, δρi, can be non-zero but the total perturbation
of the energy density of the Universe, δρtot = 0.

This can be realised if there are two or more types of energy density contribut-
ing to the total energy density of the Universe, non-relativistic matter, δρm,
and radiation, δρr, for instance

δρm = −δρr ⇒ δρtot = δρm+ δρr = 0. (2.187)

A primordial density perturbation can be decomposed into the sum of an adi-
abatic part and an isocurvature part. The primordial perturbations observed
in the Universe today are purely adiabatic, and have no observed isocurvature
component, although it is possible that an unobserved isocurvature component
could exist and this is a current topic of research in cosmology.

2.13 Baryogenesis

Baryogenesis refers to the generation of the baryon-antibaryon asymmetry present
in the Universe today, generally quantified in terms of the baryon-to-photon ratio.
The baryon-to-photon ratio today is nB

nγ
= 6.06 × 10−10 [20]. The presence and

size of the baryon asymmetry is an unsolved problem in physics, and the precise
mechanism which produces it is unknown. In 1967, Sakharov posited that the
underlying processes leading to the generation of a baryon asymmetry must fulfill
the following three criteria [29]

1. Baryon number (B) violation.
This refers to the fact that most particle interactions in the Standard Model
conserve baryon number. In order for an asymmetry in baryon number to
be produced there must be interactions which produce more baryons than
antibaryons in the early Universe, possibly requiring physics not yet discovered
by modern particle physicists.
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2. Charge Conjugation (C), and Charge-Parity (CP ) Violation.
This refers to the fact that if all charges are reversed (Charge Conjugation) and
the parity of any directional charges on particles are reversed (Charge-Parity:
sign flip of all charges and spatial vectors combined) then particles should be
indistinguishable from their antiparticles. Violation of both of these symme-
tries simultaneously enables the possibility of any excess in baryon number
generated by particle interactions to not be wiped out by the corresponding
antiparticle interactions.

As an example, consider a process X → Y +B in a theory which respects
charge conjugation symmetry. The rate of this process is the same as the
C-conjugate process X̄ → Ȳ + B̄

Γ(X → Y +B) = Γ
(
X̄ → Ȳ + B̄

)
. (2.188)

The net rate of baryon production is proportional to the difference between
these rates, because any excess baryon number could only be produced if the
rates become different

dB

dt
∝ Γ

(
X̄ → Ȳ + B̄

)
−Γ(X → Y +B) . (2.189)

This vanishes when C-symmetry is respected. Charge conjugation symmetry
violation alone is not enough to produce a baryon asymmetry however, and the
additional violation of Charge-Parity (CP) symmetry is needed. If we suppose
that X is a heavy bosonic species and decays to either two right-handed or left-
handed quarks [30]; X → qLqL, X → qRqR, then under Charge Conjugation
the decay products transform as

qL → q̄L, (2.190)

where the charges reverse but other quantum numbers remain the same. Under
Charge-Parity

qL → q̄R, (2.191)

where the charge and the parity of the particles reverse. C-violation alone
means that

Γ(X → qLqL) ̸= Γ
(
X̄ → q̄Lq̄L

)
, (2.192)
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whereas CP-conservation implies

Γ(X → qLqL) = Γ
(
X̄ → q̄Rq̄R

)
, (2.193)

Γ(X → qRqR) = Γ
(
X̄ → q̄Lq̄L

)
, (2.194)

which gives the condition

Γ(X → qLqL)+Γ(X → qRqR) = Γ
(
X̄ → q̄Rq̄R

)
+Γ

(
X̄ → q̄Lq̄L

)
. (2.195)

An initial state of equal X and X̄ particles therefore produces no net asymme-
try in quarks, and therefore no baryon asymmetry. CP-violation alone at most
could generate an asymmetry in the handedness of the quarks, and C-violation
is therefore needed additionally to generate a preference for the decay of X
or X̄ particles to either left- or right-handed quarks in order to produce an
excess of baryon number.

3. Departure from Thermal Equilibrium.
Thermal equilibrium means that all particle processes and their reverse pro-
cesses have the same reaction rate. This means that any non-zero baryon
number generated in particle interactions would be wiped out by the reverse
reaction if the Universe were in thermal equilibrium. A departure from ther-
mal equilibrium in this context means that forward or reverse reactions can
become more favourable than the other direction, and a preference for generat-
ing baryon number can be established without it being washed out completely.

To illustrate this, consider again the example reaction above, X → Y +B,
where we now consider X and Y to have zero net baryon number and B

represents the excess baryon number generated. Thermal equilibrium means
that this reaction and its reverse reaction occur at the same rate

Γ(X → Y +B) = Γ(Y +B →X) , (2.196)

and no net baryon asymmetry can be produced as any baryon number gener-
ated in the forward-reaction is depleted by the reverse-reaction. If the decay
occurs out of equilibrium then mX > T at the time of decay, τ = 1/Γ. The
energy of the reverse process in this case is ∼ O(T ), which is insufficient to
produce an X particle, and we say that the rate of the reverse reaction is
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Boltzmann-suppressed Γ(Y +B →X) ∼ e−mX/T . Out-of-equilibrium decays
therefore allow for a preferential rate of the forward-process, and an excess of
baryon number can therefore be generated.

The baryon asymmetry must be in place before nucleosynthesis at around 1 MeV.
This means that baryogenesis must occur earlier, such as during the Electroweak
Phase Transition, or as early as during inflation. The second possibility is the basis
of the research presented in Chapter 5.
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Chapter 3

Theoretical Background

In this chapter we present some important background and relevant results in par-
ticle physics and quantum field theory which will be used in the original research
presented in Chapters 4-6.

3.1 Palatini and Metric Formalism

In this thesis, the chapters which focus on inflation (namely Chapters 4 and 6)
present work in which inflation is discussed in the Palatini formalism, as opposed
to the conventionally used metric formalism used when dealing with non-minimally
coupled inflation. In this section we will briefly outline what these formalisms are.
General Relativity is described by the Einstein-Hilbert action [18]

SEH = −1
2

∫ √
−g M2

plR. (3.1)

In this thesis, much of the work presented is based on models of non-minimally
coupled inflation, where the gravitational action takes the form

SNMC = −1
2

∫ √
−g M2

pl

1+ 2ξ |Φ|2

M2
pl

R, (3.2)

where in addition to the usual Einstein-Hilbert action there is an interaction between
the scalar field ϕ and the scalar curvature R [31]. Additional terms quadratic in the
Ricci scalar or the Ricci tensor, R2, RµνRµν , or higher order may also be included,
and can arise in the gravitational action as a result of quantum corrections or due to
a UV completion depending on the model of gravity being used [32]. The inflation
model discussed in Chapter 4 is based on the inclusion of an R2 term.

In order to derive the equations of motion of a theory, the action must be ex-
tremised with respect to the parameters of the theory, Ai
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δS = δ

δAi

(∫
d4x

√
−gL

)
= 0, (3.3)

where in the Palatini (affine) formalism no assumptions are initially made about the
form of the affine connection, and as such the metric and the affine connection are
treated as separate quantities and the action is varied with respect to these objects
independently. The variation parameters, Ai, are therefore

Ai = (g,∂g,Γ,∂Γ,ϕa,∂ϕa) , (3.4)

i.e. the spacetime metric and its derivatives, the affine connection and its derivatives,
and the matter fields of the theory and their derivatives, respectively. Conversely,
in the (pure) metric formalism, the connection is assumed to be the Levi-Civita
connection from the beginning, and the metric can therefore be varied using

Ai =
(
g,∂g,(∂g)2 ,ϕa,∂ϕa

)
, (3.5)

since the connection is built from derivatives of the metric.
At the level of the equations of motion, the two formalisms are equivalent in the

absence of any fermion fields in the matter Lagrangian, or any matter fields coupled
to the metric or the affine connection [33]. In the Palatini case, the condition that
the covariant derivative of the metric must vanish arises when extremising the action
[33]

∇λgβγ = ∂gβγ
∂xλ

−gγσΓσβλ−gβσΓσγλ = 0, (3.6)

and solving for the Christoffel symbols then gives [33]

Γρµν = 1
2g

ρσ [∂νgµσ +∂µgσν −∂σgµν ] , (3.7)

which is the standard equation for the spacetime connection in Riemannian geom-
etry, the Levi-Civita connection. In this case, both formalisms in Einstein-Hilbert
gravity will produce the Einstein equations in a vacuum [33].

Differences arise in the presence of a non-minimal coupling of a matter field to
gravity, or higher-order curvature terms in the gravitational action. If the non-
minimal coupling is reparameterised in such a way that the gravitational action
looks Einstein-Hilbert, then the two formalisms will produce equivalent equations
of motion, but the reparameterised action of the field theory will be different. In
the case of inflation, this also means that the predictions of the observables will be
different depending on the formalism used.
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3.1.1 Non-Minimally Coupled Inflation in the Metric For-
malism

In this section we outline the treatment of non-minimally coupled inflation in the
metric formalism, including the derivation of the inflationary observables, to al-
low comparison to the Palatini formalism used in Chapters 4 and 6. The metric
convention used in this derivation is (−,+,+,+).
The Jordan frame action of a general complex non-minimally coupled inflaton, Φ,
is given by

SJ =
∫
d4x

√
−g

[1
2M

2
plRΩ2 −∂µΦ†∂µΦ−V (|Φ|)

]
, (3.8)

where the conformal factor Ω2 is given by

Ω2 = 1+ 2ξ |ϕ|2

M2
pl

. (3.9)

ξ parameterises the coupling between the inflaton and the Ricci scalar. In order to
reparameterise the model in such a way that gravity appears as it does in conven-
tional General Relativity, we perform a conformal transformation on the metric

gµν → g̃µν = Ω2gµν , (3.10)

gµν → g̃µν = 1
Ω2 g

µν , (3.11)

to the Einstein frame. We follow the convention of performing calculations relating
to inflation in the Einstein frame throughout this thesis, and we discuss the inter-
pretation of the Jordan and Einstein frames in Section 4.2.1. From [34] we have
that the transformation on the Ricci scalar in the metric formalism is

R̃ = 1
Ω2

[
R− 2(D−1)

Ω □Ω− (D−1)(D−4) 1
Ω2 g

µν∇µΩ∇νΩ
]
, (3.12)

where

□Ω = gµν∇µ∇νΩ = 1√
−g

∂µ
[√

−ggµν∂νΩ
]
, (3.13)

and D is the total number of dimensions. In four dimensions we have that the
transformation on the Ricci scalar is

R̃ = 1
Ω2

[
R− 6

Ω∂µ∂
µΩ
]
. (3.14)
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The integration measure transforms as

√
−g →

√
−g̃

Ω4 , (3.15)

and the derivatives on the kinetic term transform as

∂µΦ†∂µΦ = gµν∂
νΦ†∂µΦ → g̃µν∂

νΦ†∂µΦ = gµνΩ2∂νΦ†∂µΦ = Ω2∂µΦ†∂µΦ. (3.16)

It is also instructive at this stage to rewrite the complex field as

Φ = ϕ√
2
eiθ. (3.17)

Assuming θ is constant throughout inflation such that the dynamical evolution of
the inflaton is purely radial, (3.14) - (3.17) can be used to transform (3.8) and the
Einstein frame action is

SE =
∫
d4x

√
−g̃

Ω4

[
1
2M

2
plΩ2

[
Ω2R̃+ 6

Ω∂µ∂
µΩ
]

− Ω2

2 ∂µϕ∂
µϕ−V (ϕ)

]
. (3.18)

Integrating the Ω kinetic term by parts, this becomes

SE =
∫
d4x

√
−g̃

[
1
2M

2
pl

[
R̃− 6

Ω2 g̃
µν∂µΩ∂νΩ

]
− 1

2Ω2∂µϕ∂
µϕ− V (ϕ)

Ω4

]
, (3.19)

and the Ω kinetic term can be written in terms of Ω2 such that

SE =
∫
d4x

√
−g̃

1
2M

2
plR̃−

3M2
pl

4Ω4 ∂µΩ2∂µΩ2 − 1
2Ω2∂µϕ∂

µϕ− V (ϕ)
Ω4

 . (3.20)

Rewriting the
(
∂µΩ2

)2
term in terms of ϕ, the Einstein frame action is

SE =
∫
d4x

√
−g̃

1
2M

2
plR̃−

3M2
pl

4Ω4

2ξϕ
M2
pl

2

∂µϕ∂
µϕ− 1

2Ω2∂µϕ∂
µϕ−VE (ϕ)

 ,
(3.21)

where

VE (ϕ) = V (ϕ)
Ω4 , (3.22)

is the Einstein frame potential. The kinetic terms can be rewritten
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 1
2Ω2 + 6ξ2ϕ2

2Ω4M2
pl

∂µϕ∂µϕ= 1
2

Ω2 +6ξ2ϕ2/M2
pl

Ω4

∂µϕ∂µϕ. (3.23)

In order to rewrite the inflaton kinetic terms into canonical form, we perform a field
rescaling [35]

dχ

dϕ
= ±

√√√√Ω2 +6ξ2ϕ2/M2
pl

Ω4 = ±

√√√√√1+ ξ (1+6ξ)ϕ2/M2
pl(

1+ ξϕ2/M2
pl

)2 . (3.24)

Choosing the positive solution, and integrating we find that [35]

√
ξ

Mpl
χ(ϕ) =

√
1+6ξ sinh−1

(√
1+6ξu

)
−
√

6ξ sinh−1
(√

6ξ u√
1+u2

)
, (3.25)

where u=
√
ξϕ/Mpl.

To have successful inflation, we require that ξ >> 1, and therefore 1 + 6ξ ≈ 6ξ.
Using this, and the fact that

sinh−1x= ln
(
x+

√
x2 +1

)
, (3.26)

we can approximate (3.25) as
√
ξ

Mpl
χ(ϕ) ≈

√
6ξ ln

(√
1+u2

)
. (3.27)

The canonically normalised scalar χ as a function of the inflaton ϕ is then

χ(ϕ) =
√

6Mpl ln
√√√√1+ ξϕ2

M2
pl

 , (3.28)

and the inverse relation is

ϕ(χ) = Mpl√
ξ

√√√√√exp
√2

3
χ

Mpl

−1. (3.29)

Since the inflaton field is large during inflation we can approximate

ϕ2 (χ) =
M2
pl

ξ
exp

√2
3
χ

Mpl

 . (3.30)

The Einstein frame action in terms of the canonical field χ is then

S =
∫
d4x

√
−g̃

[1
2M

2
plR̃− 1

2∂µχ∂
µχ−VE (χ)

]
. (3.31)
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For the purposes of this discussion we choose the Jordan frame potential to be a
purely quartic potential, as is the conventional choice for non-minimally coupled
metric inflation

V (ϕ) = λ

4ϕ
4, (3.32)

and the Einstein frame potential from (3.22) is therefore

VE (ϕ) = λϕ4

4
(

1+ ξϕ2

M2
pl

)2 = λϕ4

4
(
ξϕ2

M2
pl

)2(
1+ M2

pl

ξϕ2

)2 . (3.33)

During inflation, while the inflaton is well on the plateau of its potential, we have
ξϕ2/M2

pl >> 1, therefore we can expand the potential (3.33) as

VE (ϕ) = λϕ4

4

M2
pl

ξϕ2

21−
2M2

pl

ξϕ2

 , (3.34)

and the Einstein frame potential is therefore

VE (ϕ) =
λM4

pl

4ξ2

1−
2M2

pl

ξϕ2

 . (3.35)

Using (3.30) we can write the Einstein frame potential in terms of the canonical
scalar field χ

VE (ϕ) =
λM4

pl

4ξ2

1−2exp
−

√
2
3
χ

Mpl

 . (3.36)

In order to calculate the slow-roll parameters and the inflationary observables,
we require the first and second derivatives of the Einstein frame potential (3.36)

V ′
E (ϕ) =

λM3
pl

2ξ2

√
2
3 exp

−
√

2
3
χ

Mpl

 , (3.37)

V ′′
E (ϕ) = −

λM2
pl

3ξ2 exp
−

√
2
3
χ

Mpl

 , (3.38)

which gives the slow-roll parameters to be

ϵ=
M2
pl

2

(
V ′
E

VE

)2
= 4

3 exp
−2

√
2
3
χ

Mpl

 , (3.39)

η =M2
pl
V ′′
E

VE
= −4

3 exp
−

√
2
3
χ

Mpl

 . (3.40)
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The number of e-folds of inflation is given by (from 2.124)

N = − 1
M2
pl

∫ χend

χ

VE
V ′
E

dχ. (3.41)

Approximating VE ≈ λM4
pl/4ξ2 on the plateau, this integrates to

N = −3
4 exp

√2
3
χ

Mpl

∣∣∣∣∣∣
χend

χ

. (3.42)

Assuming that the field is much smaller at the end of inflation, χend << χ, the
number of e-folds of inflation is given by

N (χ) = 3
4 exp

√2
3
χ

Mpl

 , (3.43)

and the canonically normalised scalar as a function of the number of e-folds N is
therefore

χ(N) =Mpl

√
3
2 ln

(4N
3

)
. (3.44)

Substituting this into (3.39) and (3.40) we find that the slow-roll parameters are

ϵ= 3
4N2 , (3.45)

η = − 1
N
. (3.46)

From (2.180) the scalar spectral index is

ns ≃ 1+2η = 1− 2
N
, (3.47)

and the tensor-to-scalar ratio (2.182) is

r ≈ 16ϵ= 12
N2 . (3.48)

The primordial curvature power spectrum from (2.177) is given by

PR = VE
24π2ϵM4

pl

, (3.49)

substituting in (3.45) and working to the plateau approximation we can write this
in terms of the number of e-folds

PR = λN2

72π2ξ2 . (3.50)
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The amplitude of the power spectrum is As = 2.1×10−9 [36]. For N = 60 this gives
the value of the non-minimal coupling to be ξ = 1.6 × 104 (as opposed to ξ ∼ 109

in the Palatini formalism as we will demonstrate in later chapters). The scalar
spectral index at N = 60 is ns = 0.9667, which is in good agreement with the 2018
Planck result of ns = 0.9649 ± 0.0042 (1 −σ) [36], and the tensor-to-scalar ratio is
r= 3.3×10−3 which is in good agreement with the result from the BICEP-2/KECK
array of r < 0.036 at 95% confidence [37], and will be within the detectable range
of future CMB experiments [38], such as LiteBIRD [39], as opposed to the typical
Palatini result r ∼ 10−13, as we will show later.

3.2 Unitarity

In this section we discuss the concept of unitarity, how specifically this relates to
non-minimally coupled inflation, and why it is important when building or studying
non-minimally coupled inflation models.
Unitarity is defined as the requirement that the probabilities of an event happening
must be equal to one. The condition for the conservation of probability can be
derived using the S-matrix. The S-matrix is an operator which maps an initial
state i to a final state f

| i⟩ → Ŝ | i⟩ =| f⟩, (3.51)

where the matrix elements of the Ŝ operator ⟨f | Ŝ | i⟩ are the scattering amplitudes
of all possible processes resulting in the final state f from the initial state i. If the
initial state | i⟩ is normalised such that ⟨i | i⟩ = 1, then for a complete set of states
| n⟩ the probability that | i⟩ evolves into | n⟩ summed over all | n⟩ must be equal to
unity

∑
n

∣∣∣⟨n ∣∣∣Ŝ∣∣∣ i⟩∣∣∣2 = 1. (3.52)

Since | n⟩ forms a complete set of states we have that

∑
n

|n⟩⟨n| = 1, (3.53)

and we can write

∑
n

⟨i|Ŝ†|n⟩⟨n|Ŝ|i⟩ = ⟨i|ŜŜ†|i⟩ = 1. (3.54)

We therefore have that
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ŜŜ† = Ŝ†Ŝ = 1, (3.55)

which means that the S−matrix operator is manifestly unitary, and this is an ex-
pression of the conservation of probabilities in scattering experiments.
The S-matrix can be written in terms of the transition matrix, or T -matrix

Ŝ = 1+ iT̂ , (3.56)

where the first term is unity because the only non-zero amplitude in the first term
of the expansion corresponds to a process for which the initial and final states are
identical. In terms of the T -matrix the unitarity condition of the S-matrix becomes
[40]

−i
(
T̂ − T̂ †

)
= T̂ T̂ †. (3.57)

Writing the matrix element ⟨f
∣∣∣T̂ ∣∣∣ i⟩ by Tfi and inserting a complete set of states we

can write (3.57) as

−i
(
Tfi−T ∗

if

)
=
∑
n
TfnT

∗
in, (3.58)

where for i= f this can be written as [40]

2ImTii =
∑
n

|Tin|2 . (3.59)

This is the requirement for unitarity conservation in scattering processes.
The T -matrix can be written in terms of an invariant amplitude M. For a 2 → 2

scattering process this is given by [41]

⟨p1fp2f
∣∣∣iT̂ ∣∣∣p2ip1i⟩ = (2π)4 δ(4)

(
p1f +p2f −p2i−p1i

)
iM, (3.60)

where (p1f ,p2f ), (p1i,p2i) are the final and initial momenta of the particles involved
in the scattering. The invariant amplitude can be defined in terms of the differential
scattering cross-section, which for a 2 → 2 scattering process is [41]

dσ

dΩ = |M|2

64π2E2
CM

, (3.61)

where ECM is the energy of the interaction in the centre-of-mass frame, and this
cross section can be measured in scattering experiments.

We have that (3.59) can be rewritten (see e.g [42])

|Re(al)| ≤ 1
2 , (3.62)
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as an alternative formulation of the condition for unitarity conservation in elastic
2 → 2 scattering. The partial wave amplitudes, al, are defined by expanding the
scattering amplitude M in terms of the scattering angle θ

−iM = 16π
∞∑
l=0

(2l+1)Pl (cosθ)al, (3.63)

where Pl (cosθ) are the Legendre polynomials. Generally from this expansion, M ∼
a0, and so the condition for unitarity to be conserved in elastic 2 → 2 scattering
from this is, M ≃ 1. We will make use of this expression of the unitarity condition
in Chapter 4.

Perturbative unitarity can be violated in scattering processes at a given energy
scale, E, if the requirement (3.59) is not met. This would indicate that there is either
new physics entering around the unitarity cutoff scale, Λ, which would suppress any
large contributions to the imaginary scattering amplitudes of the T -matrix, or it
means that the process becomes non-perturbative at the energy scale, Λ, and that
the perturbative treatment of the process is no longer valid. The latter may not
signal a breakdown of the theory if the unitarity violating contributions at tree level
are cancelled at higher loop orders [43], or the theory becomes strongly coupled close
to the cutoff scale [44, 45].

Unitarity violation is particularly relevant to non-minimally coupled inflation
because the interaction of scalars with gravitons (mediated by the non-minimal
coupling to the Ricci scalar in (3.2) violates unitarity at tree level, so in any non-
minimally coupled inflation theory there will be unitarity violation from the scatter-
ing of inflaton scalars via graviton exchange [46]. A full investigation of unitarity in
non-minimally coupled inflation is not discussed in this thesis, however it is an im-
portant issue when embedding non-minimally coupled inflation models into a theory
of particle physics.

3.3 The Effective Potential and Coleman-Weinberg
Corrections

Internal loops in Feynman diagrams result in quantum corrections to the Lagrangian
of a theory, arising both for interactions explicit in the Lagrangian and new interac-
tions created as a result of the corrections themselves [47]. These quantum correc-
tions can affect the nature of the vacuum of the theory, and so must be considered
in order to ensure that we are working in a theory where the minima of the potential
describe the ground state of the theory.

In order to arrive at this potential - referred to as the effective potential [47] -
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we must first define the effective action. We first consider the ϕ4−theory of a single
scalar field ϕ, described by a Lagrangian density L(ϕ,∂µϕ), and add a coupling to
an external source, J (x)

L = 1
2∂µϕ∂

µϕ− λ

4!ϕ
4 +J (x)ϕ(x) . (3.64)

The generating functional, W [J ], is defined using

eiW [J ] = ⟨0+ | 0−⟩J , (3.65)

where the right hand side is the transition amplitude between the vacuum in the
far past and the vacuum in the far future in the presence of the source, J . The
generating functional can be expanded as

W =
∑
n

1
n!

∫
d4x1...d

4xn G
(n) (x1...xn)J (x1) ...J (xn) , (3.66)

where Gn are the connected Green’s functions, a sum of the connected Feynman
diagrams of the theory with n external lines.

The effective action is defined by

Γ(ϕc) =W [J ]−
∫
d4xJ (x)ϕc (x) , (3.67)

where ϕc is defined by

ϕc (x) = δW

δJ (x) = ⟨0+ |ϕ(x)|0−⟩J
⟨0+ | 0−⟩J

, (3.68)

and represents the classical state of the field in the theory. The effective action can
be expanded in a functional Taylor series in powers of ϕc

Γ =
∑
n

1
n!

∫
d4x1...d

4xn Γ(n) (x1...xn)ϕc (x1) ...ϕc (xn) , (3.69)

where Γ(n) is a sum of the one-particle irreducible (1PI - connected diagrams that
cannot be disconnected by cutting a single internal line) Feynman diagrams with n
external lines. Alternatively, expanding the effective action in powers of momentum
gives [47]

Γ =
∫
d4x

[
−V (ϕc)+ 1

2 (∂µϕc)2Z (ϕc)+ ...
]
, (3.70)

where Z is a function used in the wavefunction renormalisation and V is the effective
potential, whose nth derivative is the sum of all 1PI diagrams with n zero-momentum
external lines.

The following renormalisation conditions on the mass squared m2 and the scalar
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self-coupling λ are imposed [47]

m2 = d2V

dϕ2
c

∣∣∣∣∣
ϕc=0

= 0, (3.71)

λ= d4V

dϕ4
c

∣∣∣∣∣
ϕc=µ

, (3.72)

where µ is some arbitrary mass scale, later used as a renormalisation scale.
Following the renormalisation procedure [47], we find that the effective potential in
the scalar ϕ4 theory (3.64) is [47]

V = λ

4!ϕ
4
c + λ2ϕ4

c

256π2

[
ln
(
ϕ2
c

µ2 − 25
6

)]
. (3.73)

The complete one-loop correction to the effective potential can be written as [48]

∆V (1)
CW (ϕc) =

∑
i

(−1)F ni
m4
i (ϕc)

64π2 ln
(
m2
i (ϕc)
µ2

)
, (3.74)

where the sum of i is over all the fields of the theory, ni is the number of degrees of
freedom of the field i, F is even (odd) for bosons (fermions), and mi are the masses
of the fields i in the vacuum where ϕ = ϕc. µ is the renormalisation scale of the
theory, which is chosen to minimise the logarithmic terms in the potential at a given
scale.

This expression of the corrections to the effective potential (3.74) will be used
in Chapter 4 when the effects of reheating on the inflation model presented therein
are discussed.

3.4 Noether’s Theorem for a Scalar Field Theory

In this section we introduce Noether’s theorem for a scalar field theory and derive
the energy-momentum tensor. Noether’s theorem can be taken as the statement
that every continuous symmetry of the Lagrangian of a field theory gives rise to an
associated conserved quantity (current and charge). We will outline the theorem
here for a scalar field theory in flat space as an illustrative example.

We begin this discussion with the action of a scalar field theory in Minkowski
space

S =
∫
d4x L [ϕa (x) ,∂µϕa (x)] , (3.75)

where ϕa (x) are the scalar matter fields of the theory and the square root of the
negative determinant is not shown explicitly in this calculation since in Minkowski
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space √
−g = √

−η = 1. If ϕa (x) are solutions to the equations of motion of the
theory, then the action (3.75) will be extremised under variation with respect to
ϕa (x) and their derivatives. The action (3.75) can also be written in terms of the
spacetime coordinates, x≡ xµ, by substituting the solutions ϕa (x)

S =
∫
d4x L [x] , (3.76)

where the two expressions of the action are equivalent. To illustrate the proof of
Noether’s theorem, we consider an infinitesimal symmetry transformation in the
spacetime coordinates

xµ → x′µ = xµ+ δxµ ≡ x+ δx, (3.77)

where for the purposes of this discussion we restrict the spacetime symmetry trans-
formation to constant coordinate shifts, i.e. δxµ represents a constant shift in the
coordinates and is not a function of xµ. We also consider an infinitesimal internal
symmetry transformation on the fields, ϕa (x), and we define

ϕa (x) → ϕ′
a

(
x′
)

= ϕa (x)+ δϕa (x) , (3.78)

as being the total symmetry transformation (both internal and spacetime symme-
tries) of the Lagrangian. For a purely spacetime transformation, ϕ′

a (x′) = ϕa (x′).
A symmetry transformation means that the transformed fields ϕ′

a (x′) satisfy
equations of motion of the same form as those satisfied by ϕa (x). This will be true
if the Lagrangian L′ [ϕ′

a (x′)] which gives the equations of motion for ϕ′
a (x′) is of the

form

L′
[
ϕ′
a

(
x′
)]

= L
[
ϕ′
a

(
x′
)]
, (3.79)

where L [ϕa (x)] is the original Lagrangian, and if

S′ =
∫
d4x′ L

[
ϕ′
a

(
x′
)]

=
∫
d4x [L [ϕa (x)]+∂µF

µ] ≡ S+ δS, (3.80)

where Fµ = Fµ [ϕa (x)]. The total derivative is a surface term so δS gives zero under
variations, therefore when ϕa (x) extremises S, ϕ′

a (x′) extremises S′.
For an internal symmetry transformation we have

L′ [x] = L
[
ϕ′
a (x)

]
= L [ϕa (x)] = L [x] . (3.81)

We therefore have

δL = L′ [x]−L [x] = 0, (3.82)
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and the change of the action due to the internal symmetry transformation is thus

δS =
∫
d4x δL =

∫
d4x L′ [x]−L [x] = 0, (3.83)

when ϕ′
a (x) is a solution to the equations of motion which extremises the transformed

action S′, meaning that ϕa (x) must be a solution to the equations of motion of the
untransformed action which extremises the action S.

The change of the action due to the spacetime transformation is

δS =
∫
d4x′ L′

[
x′
]
−
∫
d4x L [x] . (3.84)

Since we are only considering constant coordinate shifts in this discussion, we have
that d4x′ = d4x, and given (3.81) we have that, since ϕ′

a (x′) = ϕa (x′), in this case,

L′
[
x′
]

= L
[
ϕ′
a

(
x′
)]

= L [ϕa (x+ δx)] = L [x+ δx] , (3.85)

if ϕa (x) is a solution to the equations of motion of the untransformed action. The
change of the action under a spacetime symmetry transformation (3.84) is therefore

δS =
∫
d4x L [x+ δx]−L [x] =

∫
d4x

∂L
∂xµ

δxµ. (3.86)

Since the coordinate shifts are constant, we can write (3.86) as a total derivative

δS =
∫
d4x ∂µ (Lδxµ) , (3.87)

where due to the fact that the transformed Lagrangian density has the same form as
the original Lagrangian density, we can say that (3.87) represents the total change
of the action (3.75) under internal and spacetime symmetry transformations.

Equivalently, writing the total change of the action in terms of the corresponding
changes of the fields, we have

δS =
∫
d4x′ L′

[
x′
]
−
∫
d4x L [x] , (3.88)

⇒ δS =
∫
d4x L

[
ϕ′
a

(
x′
)
,∂µϕ

′
a

(
x′
)]

−L [ϕa (x) ,∂µϕa (x)] , (3.89)

where we have used L′ [ϕ′
a (x′) ,∂µϕ′

a (x′)] = L [ϕ′
a (x′) ,∂µϕ′

a (x′)] since we are assuming
a symmetry. Therefore

δS =
∫
d4x L [ϕa (x)+ δϕa (x) ,∂µϕa (x)+ δ (∂µϕa (x))]

−L [ϕa (x) ,∂µϕa (x)] ,
(3.90)
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⇒ δS =
∫
d4x

∂L
∂ϕa

δϕa+ ∂L
∂ (∂µϕa)

δ (∂µϕa) . (3.91)

We now have that (3.87) and (3.91) are both expressions of the total change of
the action under internal and spacetime symmetry transformations, and they must
therefore be equal

∫
d4x ∂µ (Lδxµ) =

∫
d4x

∂L
∂ϕa

δϕa+ ∂L
∂ (∂µϕa)

δ (∂µϕa) , (3.92)

such that

∫
d4x

∂L
∂ϕa

δϕa+ ∂L
∂ (∂µϕa)

δ (∂µϕa)−∂µ (Lδxµ) = 0. (3.93)

Rewriting the second term in the integrand of (3.93) as half of a product rule, and
rewriting the infinitesimal change in the derivative of the fields, δ (∂µϕa), we can
write

∂L
∂ (∂µϕa)

δ (∂µϕa) = ∂L
∂ (∂µϕa)

∂µ (δϕa) , (3.94)

∂L
∂ (∂µϕa)

∂µ (δϕa) = ∂µ

[
∂L

∂ (∂µϕa)
δϕa

]
−∂µ

(
∂L

∂ (∂µϕa)

)
δϕa. (3.95)

Thus (3.93) becomes

∫
d4x

[
∂L
∂ϕa

−∂µ

(
∂L

∂ (∂µϕa)

)]
δϕa+∂µ

[
∂L

∂ (∂µϕa)
δϕa−Lδxµ

]
= 0. (3.96)

We have

∂L
∂ϕa

−∂µ

(
∂L

∂ (∂µϕa)

)
= 0, (3.97)

for ϕa (x) being a solution to the equations of motion. Therefore, if ϕa (x) is a
solution to the field equations, then due to the symmetry transformation it follows
that

∂µ

[
∂L

∂ (∂µϕa)
δϕa−Lδxµ

]
= 0, (3.98)

Thus, ∂µjµ = 0, where we define

jµ = ∂L
∂ (∂µϕa)

δϕa−Lδxµ, (3.99)

as the conserved Noether currents arising from the symmetry transformations (3.77)
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and (3.78).
The conserved four-current jµ is given by

jµ =
(
ρQ,−j

)
, (3.100)

where the 0-component of the Noether current corresponds to a charge density. This
means that every conserved Noether current has an associated charge

Q=
∫
d3x j0 =

∫
d3x ρQ, (3.101)

where the charge can be shown to be globally conserved by taking a time derivative
of (3.101)

dQ

dt
=
∫
d3x

dj0

dt
= −

∫
d3x

−→
∇ · j = 0. (3.102)

The Energy-Momentum Tensor

As a specific and relevant example of the application of Noether’s theorem, we can
consider the case of energy and momentum conservation in a scalar field theory in
flat space. Conservation of energy and momentum requires that the Lagrangian of
the theory be invariant under spacetime translations, xµ → xµ+ δxµ = x+ δx, and
the variation of the fields is therefore

δϕa = ϕa (x+ δx)−ϕa (x) = ∂ϕa
∂xν

δxν , (3.103)

so the conserved current jµ in this case is

jµ = ∂L
∂ (∂µϕa)

∂ϕa
∂xν

δxν −Lδxνδµν , (3.104)

jµ =
(

∂L
∂ (∂µϕa)

∂ϕa
∂xν

−Lδµν

)
δxν . (3.105)

The energy-momentum tensor is then defined as

Tµν = ∂L
∂ (∂µϕa)

∂ϕa
∂xν

−Lδµν , (3.106)

where

∂µj
µ = 0 ⇒ ∂µT

µ
ν = 0, (3.107)

and this is the statement of energy and momentum conservation.
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3.4.1 Noether’s Theorem for a Complex Scalar Field Theory
Charged Under a U(1) Symmetry.

Chapters 5 and 6 both deal with complex scalar field theories charged under a U(1)
symmetry, so it is pertinent here to address the general treatment of a U(1) complex
scalar field theory. For consistency, we will continue with this example in flat space.

A U(1) field transformation for a complex field is given by

Φ → eiαΦ, Φ† → e−iαΦ†, (3.108)

where a Lagrangian is U(1)-symmetric if it is invariant under these transformations.
The general U(1)-symmetric Lagrangian density we will address in this work is

L = ∂µΦ†∂µΦ−V (|Φ|) . (3.109)

For small α, the U(1) transformation (3.108) is

Φ → (1+ iα)Φ = Φ+ δΦ, Φ† → (1− iα)Φ† = Φ† + δΦ†, (3.110)

and in the case of a U(1) symmetry, δxµ = 0, so there are no spacetime symmetries
and we only need to deal with the variation in the fields when extremising the action
of the theory.

In order to extremise the action, we must vary the action with respect to the
fields undergoing the transformations, in this case Φ and Φ†, so the variation of the
action with Lagrangian density (3.109) should then be

δS =
∫
d4x

δL
δΦδΦ+ δL

δΦ† δΦ
† + δL

δ (∂µΦ)δ (∂µΦ)+ δL
δ
(
∂µΦ†

)δ(∂µΦ†
)
. (3.111)

However, Φ and Φ† cannot be varied independently because they are conjugates of
the same field. The issue can be expressed more clearly if we write the fields as

Φ = 1√
2

(ϕ1 + iϕ2) , Φ† = 1√
2

(ϕ1 − iϕ2) . (3.112)

Intuitively, it would seem that these fields cannot be varied independently of each
other. In order to verify the method of variation for a scalar field theory we will
first demonstrate Coleman’s proof for the variation of complex fields [49] to confirm
this.

The third and fourth terms of the integrand in (3.111) can be rewritten

∂L
∂ (∂µΦ)∂µ (δΦ) = ∂µ

(
∂L

∂ (∂µΦ)δΦ
)

−∂µ

(
∂L

∂ (∂µΦ)

)
δΦ, (3.113)
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∂L
∂
(
∂µΦ†

)∂µ (δΦ†
)

= ∂µ

 ∂L
∂
(
∂µΦ†

)δΦ†

−∂µ

 ∂L
∂
(
∂µΦ†

)
δΦ†. (3.114)

The Lagrangian density can therefore be written as a sum of a Φ variation and a Φ†

variation

δS =
∫
d4x

[
BδΦ+B†δΦ†

]
, (3.115)

where B and B† are expressions to be determined. As aforementioned, Φ and Φ†

are Hermitian conjugates, so the variations of each field are not independent of each
other, and the fields cannot be varied as though they are independent.

Instead, we can use the forms of the field (3.112) and vary the action in terms
of the real and imaginary parts of the complex fields

δΦ = 1√
2

(δϕ1 + iδϕ2) , δΦ† = 1√
2

(δϕ1 − iδϕ2) , (3.116)

Re [δΦ] = δϕ1√
2

=Re
[
δΦ†

]
, (3.117)

Im [δΦ] = δϕ2√
2

= −
(

−δϕ2√
2

)
= −Im

[
δΦ†

]
. (3.118)

Writing the variation of the action in terms of ϕ1 and ϕ2, we have

δS =
∫
d4x

[
B√

2
(δϕ1 + iδϕ2)+ B†

√
2

(δϕ1 − iδϕ2)
]

=
∫
d4x

[
δϕ1√

2
(
B+B†

)
+ iδϕ2√

2
(
B−B†

)]
.

(3.119)

The variations of the field are non-zero, so we need that

δϕ1√
2

̸= 0 ⇒B+B† = 0 ⇒B = −B†, (3.120)

iδϕ2√
2

̸= 0 ⇒B−B† = 0 ⇒B =B†, (3.121)

in order for δS = 0, as well as the total derivative terms in (3.113) and (3.114) being
equal to zero. In order for (3.120) and (3.121) to be true, we must have

B =B† = 0. (3.122)
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This gives independent Euler-Lagrange equations for Φ and Φ†

B = ∂L
∂Φ −∂µ

(
∂L

∂ (∂µΦ)

)
= 0, (3.123)

B† = ∂L
∂Φ† −∂µ

 ∂L
∂
(
∂µΦ†

)
= 0, (3.124)

which gives independent field equations for Φ and Φ†. This shows that, although
technically the fields Φ and Φ† cannot be varied independently of each other, it is
acceptable to treat them as independent fields when deriving the field equations for
the U(1) complex scalar field theory because the end result gives independent field
equations for Φ and Φ†.

Substituting (3.123) and (3.124) into (3.115) we find that the remaining terms
in the extremised action are the total derivatives

∂µ

 ∂L
∂ (∂µΦ)δΦ+ ∂L

∂
(
∂µΦ†

)δΦ†

= 0. (3.125)

The terms inside the bracket correspond to a conserved current

jµ = ∂L
∂ (∂µΦ)δΦ+ ∂L

∂
(
∂µΦ†

)δΦ†, (3.126)

which for δS = 0 gives conservation of the U(1) current ∂µj
µ = 0. This is the

conserved Noether current associated with the U(1) symmetry of the action.
The 0-component of the conserved current is equal to the charge density ρQ of

the conserved U(1) current,

j0 = ∂L
∂ (∂tΦ)iαΦ− ∂L

∂
(
∂tΦ†

)iαΦ†, (3.127)

where the transformation (3.110) has been substituted. For a general U(1) La-
grangian of a complex scalar field theory

L = ∂µΦ†∂µΦ−V (|Φ|) , (3.128)

(3.127) is then

j0 = ρQ = iα
(
Φ∂tΦ† −Φ†∂tΦ

)
, (3.129)

and the global U(1) charge of the scalar field is given by

Q= iα
∫
d3x

(
Φ∂tΦ† −Φ†∂tΦ

)
. (3.130)
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3.5 Global U(1) Charge as the charge asymmetry

In this section we derive the charge of a complex scalar field charged under a U(1)
symmetry. In order to do this we must correctly normalise the U(1) charge, Q, so
that each complex scalar has charge ±1. Non-boldfaced coordinate arguments (with
the exception of time) denote four-vectors.

For a canonically quantised scalar field theory, we upgrade the fields, ϕ, to op-
erators, ϕ̂, and define the canonical conjugate momentum, Π(t,x)

Π̂(t,x) = ∂L
∂
(
∂µΦ̂

) = ˆ̇Φ(t,x) . (3.131)

We impose the equal time canonical commutation rule

[
Φ̂ (t,x) , Π̂(t,y)

]
= iδ(3) (x−y) , (3.132)

where at equal time we also have

[
Φ̂ (t,x) , Φ̂ (t,y)

]
=
[
Π̂(t,x) , Π̂(t,y)

]
= 0. (3.133)

We can write the scalar field operator Φ̂ (t,x) as a mode expansion of time-independent
creation and annihilation operators, â†

p and âp [40]

Φ̂ (x) =
∫ d3p

(2π)3√2Ep

[
âpe

−ip·x+ b̂†pe
ip·x

]
, (3.134)

Φ̂† (x) =
∫ d3q

(2π)3√2Eq

[
â†

qe
iq·x+ b̂qe

−iq·x
]
, (3.135)

where the â operators correspond to particles and the b̂ operators correspond to an-
tiparticles, and p and q are the four momenta of the Φ and Φ† particles respectively.
The annihilation operator defines the vacuum by

â | 0⟩ = 0, (3.136)

and excited particle states are produced by repeat application of the creation oper-
ator

| n⟩ = 1√
n

(
â†
)n

| 0⟩. (3.137)

Substituting (3.134) and (3.135) into (3.131) and (3.132) we find that the commu-
tation relation in terms of the creation and annihilation operators is

[
âp, â

†
q
]

=
[
b̂p, b̂

†
q
]

= (2π)3 δ(3) (p−q) , (3.138)
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and commutators of all other combinations of creation and annihilation operators
are zero.

The U(1) charge Q is given by (3.130). Substituting in (3.134) and (3.135) the
charge operator can be defined as

Q̂= iα
∫
d3x

d3p

(2π)3√2Ep

d3q

(2π)3√2Eq

[(
â†

qe
iq·x− b̂qe

−iq·x
)
∂t
(
âpe

−ip·x+ b̂†pe
ip·x

)
−∂t

(
â†

qe
iq·x+ b̂qe

−iq·x
)(
âpe

−ip·x− b̂†pe
ip·x

)]
. (3.139)

The four-momenta p,q are given by p = (Ep,−p) , q = (Eq,−q) so the time deriva-
tives of the exponentials give

∂te
ip·x = iEpe

ip·x, (3.140)

and the charge operator is then

Q̂= α
∫
d3x

d3p

(2π)3√2Ep

d3q

(2π)3√2Eq

[
Eq

(
â†

qe
iq·x+ b̂qe

−iq·x
)(
âpe

−ip·x+ b̂†pe
ip·x

)
−Ep

(
â†

qe
iq·x+ b̂qe

−iq·x
)(
âpe

−ip·x+ b̂†pe
ip·x

)]
. (3.141)

Expanding this and integrating over x, the âb̂ terms acquire delta functions of the
type (2π)3 δ3 (p+q). For |p| = |q|, we have Ep = Eq and these terms cancel upon
performing the integration over q. The remaining terms (â†â, b̂b̂†) acquire delta
functions of the form (2π)3 δ3 (p−q) from the integration of the exponential factors.
The remaining terms are then

Q̂= α
∫ d3p

(2π)3√2Ep

1
(2π)3√2Ep

Ep
[
2â†

pâp (2π)3 −2b̂pb̂†p (2π)3] , (3.142)

⇒ Q̂= α
∫ d3p

(2π)3

[
â†

pâp − b̂pb̂
†
p
]
. (3.143)

Normally ordering this expression we find

Q̂= α
∫ d3p

(2π)3

[
â†

pâp − b̂†pb̂p
]
. (3.144)

Since â†â is the number operator for a harmonic oscillator
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N̂a =
∫ d3p

(2π)3 â
†
pâp, (3.145)

where

N̂ | p1, ...,pn⟩ = n | p1, ...,pn⟩ ⇒ N̂ | n⟩ = n | n⟩, (3.146)

we find that

Q̂= α
(
N̂a− N̂b

)
. (3.147)

We have that the U (1) charge is given by the difference between the number of
particles produced by the creation operator â†

p and the number of antiparticles
created by b̂†p integrated over all momenta p, multiplied by α.
Therefore, for α= 1, (3.130) gives the correctly normalised charge for particles with
Q= ±1. This will be used in Chapter 5 in order to calculate the charge asymmetry
present in a condensate of U(1) charged scalars.

3.6 Q-balls

A Q-ball is a non-topological soliton which minimises the energy of the field for a
fixed global charge. The derivation for conventional Q-balls in flat space as originally
derived in [50] will be outlined here to allow a comparison to the derivation presented
in Chapter 6 of a new class of Q-ball obtained as part of the original work of this
thesis.

In order to derive the Q-ball equation we begin by using the method of Lagrange
multipliers to minimise the energy of the scalar field Φ for a fixed conserved U(1)
charge Q carried by the scalar field. This is expressed as

EQ = E+ω
(
Q−

∫
d3x ρQ

)
, (3.148)

where ω is the Lagrange parameter, whose physical interpretation will be revisited
later. From (3.101) the global charge Q is

Q=
∫
d3x j0 =

∫
d3x ρQ, (3.149)

and the global energy is given by the temporal component of the energy-momentum
tensor integrated over all space

E =
∫
d3x T 00 =

∫
d3x ρE , (3.150)

The energy-momentum tensor is given by
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Tµν = ∂L
∂ (∂µϕa)

ηνρ∂ρϕa− δµρ η
νρL (3.151)

where ηνρ is the Minkowski metric. The energy density is therefore

ρE = T 00 = ∂tΦ†∂tΦ+∂iΦ†∂iΦ+V (| Φ |). (3.152)

The conserved U(1) current is given by

jµ = ∂L
∂ (∂µϕa)

δϕa, (3.153)

where ∂µjµ = 0 is the condition for the current conservation. The 0 component of
the conserved current is

j0 = ∂L
∂ (∂tΦ)iΦ− ∂L

∂
(
∂tΦ†

)iΦ†, (3.154)

and the charge density is therefore

ρQ = i
(
Φ∂tΦ† −Φ†∂tΦ

)
. (3.155)

Substituting (3.152) and (3.155) into (3.148) we obtain

EQ =
∫
d3x

[
∂tΦ†∂tΦ+∂iΦ†∂iΦ+V (| Φ |)− iω

(
Φ∂tΦ† −Φ†∂tΦ

)]
+ωQ. (3.156)

Expanding the time derivatives, we can write

|∂tΦ− iωΦ|2 = ∂tΦ∂tΦ† + iωΦ†∂tΦ− iωΦ∂tΦ† −ω2Φ†Φ. (3.157)

Let

I = ∂tΦ†∂tΦ+ iωΦ†∂tΦ− iωΦ∂tΦ† =| ∂tΦ− iωΦ |2 −ω2 | Φ |2, (3.158)

and substitute into (3.156) to give the Q-ball energy functional

EQ =
∫
d3x

[
| ∂tΦ− iωΦ |2 −ω2 | Φ |2 +∂iΦ†∂iΦ+V (| Φ |)

]
+ωQ. (3.159)

In order to extremise EQ we write

Φ(x,t) = Φ(x)eiωt −→ ∂tΦ = iωΦ. (3.160)
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Imposing this condition on (3.159) we have

EQ =
∫
d3x

[
|
−→
∇Φ |2 +V (|Φ|)−ω2 |Φ|2

]
, (3.161)

and henceforth define

Vω (| Φ |) = V (| Φ |)−ω2 | Φ |2, (3.162)

to be the Q-ball potential. Assuming that the Q-balls are spherically symmetric, we
make the ansatz

Φ(x) = ϕ(r)√
2
eiωt = ϕ(r) r̂√

2
eiωt, (3.163)

and the gradient operator is reduced to

−→
∇Φ = ∂Φ

∂r
r̂ −→|

−→
∇Φ |=

∣∣∣∣∣ 1√
2
∂ϕ

∂r
r̂

∣∣∣∣∣
2

= 1
2

(
∂ϕ

∂r

)2
. (3.164)

since the coordinate dependence of the field is purely radial. Recasting the integral
(3.161) into spherical polar coordinates, we have

EQ =
∫
dr 4πr2

1
2

(
∂ϕ

∂r

)2
+Vω (ϕ)

+ωQ. (3.165)

The function LQ to be extremised is then

LQ = 4πr2

1
2

(
∂ϕ

∂r

)2
+Vω (ϕ)

 . (3.166)

This can be realised through the application of the Euler-Lagrange equations

∂LQ
∂ϕ

− d

dr

(
∂LQ
∂ (∂rϕ)

)
= 0. (3.167)

Where we find that the second term is

d

dr

(
∂LQ
∂ (∂rϕ)

)
= 4πr2∂ϕ

∂r

d

dr

(
∂LQ
∂ (∂rϕ)

)
= 8πr∂ϕ

∂r
+4πr2∂

2ϕ

∂r2 , (3.168)

and the first term is

∂LQ
∂ϕ

= 4πr2∂Vω
∂ϕ

. (3.169)

Substituting these in to (3.167) and dividing through by a factor of 4πr2 gives the
field equation
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∂2ϕ

∂r2 + 2
r

∂ϕ

∂r
= ∂Vω

∂ϕ
. (3.170)

This is the field equation which produces Q-balls in a canonical complex scalar
U(1) theory, as derived in [50]. We will generalise this to the case of Q-balls with
non-canonical kinetic terms in Chapter 6.
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Chapter 4

Sub-Planckian Φ2 Inflation with an
R2 Term in Palatini gravity

In this chapter we present a study of a ϕ2 inflation model in the Palatini formalism
with an R2 term. This model allows inflation based on a minimal ϕ2 potential to be
compatible with observations, in contrast to the case of conventional ϕ2 inflation,
which predicts a too large tensor-to-scalar ratio. Our aims are to test if Palatini ϕ2

chaotic inflation can also be compatible with a sub-Planckian inflaton and with the
Planck scale suppressed potential corrections expected from a complete quantum
gravity theory, as well as to show that a viable transition to conventional Big Bang
cosmology following inflation is achievable. We first calculate the slow roll parame-
ters and the inflationary observables for this model in the Einstein frame, and verify
that it is possible to successfully inflate this model with a sub-Planckian inflaton.
We test the robustness of the predictions of this model against Planck-suppressed
potential corrections, in the general case and in the case of an approximate shift
symmetry, and present the constraints this places on the model parameter α by
considering the η-shift due to these corrections, and its contributions to the scalar
spectral index. We consider two possibilities of the dominant reheating channel in
this model: reheating via annihilation of inflaton scalars through the Higgs portal
interaction, and reheating via the decay to right-handed neutrinos. We investigate
the constraints that the shift in the scalar spectral index places on the couplings of
these interactions, and also explore the predictions of the R2 Palatini model with a
ϕ2 potential in each reheating scenario in relation to the different constraints on the
α parameter. We also show that fragmentation of the inflaton condensate is likely
in this model and comment on the possible observable signatures from this model,
as well as present and future observability.
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4.1 Chaotic Inflation and Starobinsky Inflation

First let us mention some important precursors to the Palatini quadratic inflation
model we investigate here. Quadratic inflation was first proposed in Andrei Linde’s
theory of Chaotic Inflation in 1983 [51]. This theory does not just apply to quadratic
or even polynomial potentials, V (ϕ) ∼ ϕn, however the quadratic potential is the
simplest and only has one model parameter, the mass parameter m, so it is straight-
forward to calculate the inflationary observables and make predictions in the model.
The general idea of chaotic inflation is that the Universe begins during the Planck
epoch of size, l ∼ M−1

pl , with energy density, ρ ∼ Mpl/M
−3
pl ∼ M4

pl [52]. From the
stage when the energy density begins to fall below this point, ρ≤M4

pl, the Universe
can be treated as classical. We can infer from this idea that a basic initial condition
for the Universe is [52]

1
2 ϕ̇

2 + 1
2 (∂iϕ)2 +V (ϕ) ∼M4

pl, (4.1)

from which we can say that inflation may proceed when 1
2 ϕ̇

2 + 1
2 (∂iϕ)2 ≤ V (ϕ), and

continue if the derivative terms of the inflaton field continue to decrease below the
potential, assuming as a starting point V (ϕ) ∼M4

pl [52]. The chaotic inflation setup
is therefore compatible with any inflation model with a potential which can increase
to at least V (ϕ) ∼M4

pl.
In general, we expect that the inflation model should be treated as an effective

theory, and this introduces non-renormalisable Planck scale-suppressed potential
corrections - which can modify the predictions of the inflationary observables and
move the model away from observational compatibility.

Although chaotic inflation is a widely compatible setup which provides a straight-
forward approach to the problem of initial conditions in inflation, it does raise some
questions regarding the predictive power of an inflation model which follows this
approach. We can assume V (ϕ) ∼ M4

pl as a reasonable starting point in order for
the inflation to proceed, however this does also assume that the inflaton field itself
must start from ϕ ≳Mpl in a chaotic inflation scenario. In this case we need a
quantum theory of gravity to allow us to make any meaningful physical predictions
about what may happen above the Planck scale.

Indeed, simple chaotic inflation models require a super-Planckian inflaton in
order to explain inflation. The ϕ2 chaotic inflation model also predicts a tensor-to-
scalar ratio of r∼ 0.13 which is above the limit set by the 2018 Planck satellite results
and of the BICEP-2/KECK array of r < 0.06 at a pivot scale of k = 0.002 Mpc−1

[36]. However, by considering inflation in the Palatini formalism and the addition of
the R2 term, it is possible to suppress the tensor-to-scalar ratio of a ϕ2 model and
bring it into the observational parameter space.
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It is also befitting to mention Starobinsky inflation here, on account of the simi-
larity of the inflaton action in the Starobinsky model compared to the Jordan frame
action in the R2 Palatini model with a ϕ2 potential. Starobinsky inflation was
proposed in 1980 by Alexei Starobinsky [53], which considers the action

S = 1
2

∫
d4x

√
−g

[
M2
plR+ R2

6M2

]
. (4.2)

This result emerges from considering quantum corrections to the Einstein-Hilbert
action. The presence of R2 corrections in the Einstein equations, given large curva-
ture, produces an effective cosmological constant, interpreted as an era of de-Sitter
inflationary expansion. The predictions from Starobinsky-type inflation models are
in good agreement with observations [54], and it is interesting to consider a similar
model in the Palatini formalism [55] [56] to compare the differences in predicted
observables as well as the underlying physical mechanism producing the expansion.

4.1.1 R2 Palatini Inflation

A number of studies have been done for R2 inflation in the Palatini formalism
[55]-[67]. In particular, Enckell et al (2018) [55] consider the case for an unspecified
potential and inflaton, and demonstrate that the presence of an R2 term can suppress
the height of the inflaton potential irrespective of its nature, such that any scalar
potential will be transformed into a plateau - or hilltop-type - potential and the
tensor-to-scalar ratio will be suppressed accordingly (see [55]-[67]). In our research
we are interested to study this effect on a simple quadratic potential, in particular
whether the R2 Palatini model with a ϕ2 potential could inflate successfully with a
sub-Planckian inflaton field while maintaining its good agreement with observations;
whether the model is robust against Planck-suppressed potential corrections from
a quantum gravity completion; whether the model can reheat successfully, and the
implications of this for the calculated spectral index; and what constraints these
requirements would put on the model parameters.

4.2 The Model

We begin by introducing the model. For the purposes of these calculations, the ex-
plicit factors of the reduced Planck mass have been left in and we use the (−,+,+,+)
signature for the metric. The inflaton action in the Jordan frame is

SJ =
∫
d4x

√
−g

M2
pl

2 R+ α

4R
2 − 1

2∂µϕ∂
µϕ−V (ϕ)

 . (4.3)
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It is instructive to rewrite the action in terms of an auxiliary field χ, which gives
the action as [56]

SJ =
∫
d4x

√
−g

[1
2
(
M2
pl+αχ2

)
R− α

4χ
4 − 1

2∂µϕ∂
µϕ−V (ϕ)

]
. (4.4)

4.2.1 Conformal Transformation

We now perform a conformal transformation on our spacetime metric and proceed
with all of our calculations in the Einstein frame unless explicitly stated otherwise.
The conformal transformation serves the purpose of reparameterising the R2 term
and its effects, such that we can undertake the inflationary calculations and interpret
the results in a framework that we have a good understanding of. In this work the
Jordan and Einstein frames are defined such that the Jordan frame is the "particle
physics" frame, in the sense that it is the frame in which the model and its symmetries
are defined, and the Einstein frame is then the "physics" frame in which the treatment
of gravity can be considered equivalent to conventional General Relativity.

Henceforth, we define

Ω2 = 1+ αχ2

M2
pl

, (4.5)

as the conformal factor, and the conformal transformation of the spacetime metric
is

gµν −→ g̃µν = Ω2gµν , (4.6)

and

gµν −→ g̃µν = 1
Ω2 g

µν , (4.7)

where Einstein frame quantities will be denoted with a tilde. The negative determi-
nant of the metric must then be transformed

√
−g =

√
−detgµν −→

√
−det

(
g̃µν
Ω2

)
. (4.8)

To do this, we use the fact that

det(cM) = cDdet(M), (4.9)

where c is a scalar, M is a matrix and D is the number of spacetime dimensions.
We consider D = 4 in this work, and so the transformation is
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√
−det

(
g̃µν
Ω2

)
=
√

− 1
Ω8det(g̃µν) = 1

Ω4

√
−detg̃µν =

√
−g̃

Ω4 . (4.10)

As aforementioned, the conformal transformation acts upon the metric, including
any implicit factors of the metric used in index contractions, so while the derivatives
of the ∂µϕ term themselves are unaffected, the term itself still needs to be considered.
The inflaton derivative term is

1
2∂µϕ∂

µϕ= 1
2gµν∂

νϕ∂µϕ, (4.11)

and in the Einstein frame this becomes

1
2 g̃µν∂

νϕ∂µϕ= 1
2gµνΩ

2∂νϕ∂µϕ= 1
2Ω2∂µϕ∂

µϕ. (4.12)

4.2.2 Transforming the Ricci Scalar

In the Palatini formalism, the spacetime connection Γ is defined independently of
the spacetime metric g. This means that Γ and anything built from it, namely the
Riemann tensor and its contractions, are treated as having no intrinsic dependence
on the metric. In the Einstein frame this means

R̃γµδν =Rγµδν , (4.13)

This can then be contracted on its first and third indices to the Ricci tensor, Rµν ,

Rγµδν →Rγµγν =Rµν , (4.14)

which can then be contracted to the Ricci scalar, R,

Rµν −→ gµνRµν =Rµµ ≡R. (4.15)

We must transform the factor of the metric used to make the contraction, and thus

gµνRµν −→ g̃µνRµν = 1
Ω2 g

µνRµν = 1
Ω2R. (4.16)

The transformation on the Ricci scalar in the Palatini formulation is therefore

R −→ R̃ = 1
Ω2R. (4.17)

This is in contrast to the transformation in the metric formalism, where the space-
time connection is assumed to be the Levi-Civita connection, which is built from
derivatives of the spacetime metric, resulting in the transformation (3.14).
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4.2.3 Eliminating the Auxiliary field

Substituting (4.10), (4.12) and (4.17) into (4.4), we find that the Einstein frame
action in terms of the auxiliary field χ in the Palatini formalism is

SE =
∫
d4x

√
−g̃

Ω4

[
1
2M

2
plR̃Ω2Ω2 − αχ4

4 − 1
2Ω2∂µϕ∂

µϕ−V (ϕ)
]

=
∫
d4x

√
−g̃

[
1
2M

2
plR̃− αχ4

4Ω4 − 1
2Ω2∂µϕ∂

µϕ− V (ϕ)
Ω4

]
. (4.18)

The auxiliary field must be eliminated from the action in order to have the model
represented in terms of the inflaton ϕ again. The first step is to extremise the action
in terms of χ2 to find an equation of motion for χ2 in terms of the inflaton. This
procedure was demonstrated in [56].

Varying (4.18) with respect to χ2, we have

δSE =
∫
d4x

√
−g̃

[
−1

2
∂

∂χ2

( 1
Ω2

)
∂µϕ∂

µϕδχ2 − αχ4

4
∂

∂χ2

( 1
Ω4

)
δχ2

− α

4Ω4
∂χ4

∂χ2 δχ
2 −V (ϕ) ∂

∂χ2

( 1
Ω4

)
δχ2

]
. (4.19)

Since δSE
δχ2 = 0, and the Einstein frame Lagrangian only depends on χ2, then it must

be true that

∂LE
∂χ2 = 0. (4.20)

Taking the derivative in (4.20) we have

∂LE
∂χ2 = −2αχ2

4Ω4 − αχ4

4
∂

∂χ2

( 1
Ω4

)
− 1

2
∂

∂χ2

( 1
Ω2

)
∂µϕ∂

µϕ− ∂

∂χ2

( 1
Ω4

)
V (ϕ) , (4.21)

where

∂

∂χ2

( 1
Ω2

)
= − α

M2
plΩ4 , (4.22)

and

∂

∂χ2

( 1
Ω4

)
= − 2α

M2
plΩ6 . (4.23)

Therefore (4.21) is
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∂LE
∂χ2 = 1

Ω6

−αχ2

2 Ω2 + αχ4

2
α

M2
pl

+ α

M2
pl

Ω2

2 ∂µϕ∂
µϕ+2V (ϕ) α

M2
pl

 . (4.24)

and from (4.20) we can write

−αχ2

2 Ω2 + αχ4

2
α

M2
pl

+ α

M2
pl

Ω2

2 ∂µϕ∂
µϕ+2V (ϕ) α

M2
pl

= 0. (4.25)

Expanding the conformal factors explicitly and rearranging gives

χ2 = ∂µϕ∂
µϕ+4V[

M2
pl−

α
M2

pl
∂µϕ∂µϕ

] . (4.26)

For the remainder of this calculation we will use the shorthand D = ∂µϕ∂
µϕ for

brevity. χ2 is then

χ2 = D+4V[
M2
pl−

αD
M2

pl

] . (4.27)

Substituting this back into the Einstein frame Lagrangian (subscript ’E’ dropped
for the remainder of the calculation) we have

L = − 1
Ω4

α4 (D+4V )2[
M2
pl−

αD
M2

pl

]2 + Ω2

2 D+V (ϕ)

 . (4.28)

Let I = [...], such that (4.28) is L = I/Ω4. Substituting (4.5) and (4.27) into the
second term in I and expanding gives

Ω2

2 D = D

2

1+ α

M2
pl

(4V +D)[
M2
pl−

αD
M2

pl

]
= D

2


(
M2
pl−

αD
M2

pl

)
+ α
M2

pl
(4V +D)(

M2
pl−

αD
M2

pl

)
 . (4.29)

Expanding the numerator of (4.29) gives

Ω2

2 D = D

2
1(

M2
pl−

αD
M2

pl

)
M2

pl−
αD

M2
pl

+ 4αV
M2
pl

+ αD

M2
pl



= D

2
1(

M2
pl−

αD
M2

pl

)
M2

pl+
4αV
M2
pl

 .
(4.30)
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I can therefore be written

I = 1(
M2
pl−

αD
M2

pl

)2

V (ϕ)
M2

pl−
αD

M2
pl

2

+ α

4 (4V +D)2

+D2

M2
pl−

αD

M2
pl

M2
pl+

4αV
M2
pl

 . (4.31)

Expanding all terms in the square brackets gives

I = 1(
M2
pl−

αD
M2

pl

)2

V
M4

pl+2αD− α2D2

M4
pl

+4αV 2 + D

2 M
4
pl−

αD2

4

 , (4.32)

where the terms inside the square brackets can be written

I2 =
M4

pl

2 D− αD2

4

1+ 4αV
M4
pl

+M2
plV

M2
pl+

4αV
M2
pl

 . (4.33)

Substituting (4.27) into (4.5), the conformal factor is

Ω2 = 1+ α

M2
pl

(D+4V )(
M2
pl−

αD
M2

pl

) , (4.34)

and can be written as

Ω2 = 1(
M2
pl−

αD
M2

pl

)
M2

pl−
αD

M2
pl

+ α

M2
pl

(D+4V )
= 1(

M2
pl−

αD
M2

pl

)
M2

pl+
4αV
M2
pl

 .
(4.35)

Substituting (4.32) back into (4.28) and using (4.35), the Einstein frame La-
grangian is

L = − 1[
M2
pl+ 4αV

M2
pl

]2

V
M4

pl+2αD− α2D2

M4
pl

+4αV 2 + D

2 M
4
pl−

αD2

4

 . (4.36)

Using (4.33) this can be written as
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L = − 1[
M2
pl+ 4αV

M2
pl

]2

M4
pl

2 D− αD2

4

1+ 4αV
M4
pl

+M2
plV

M2
pl+

4αV
M2
pl

 ,
(4.37)

and pulling out a factor of
(
M2
pl+4αV/M2

pl

)
and simplifying we obtain

L = − D

2
(

1+ 4αV
M4

pl

) + α

4M4
pl

D2(
1+ 4αV

M4
pl

) − V (ϕ)(
1+ 4αV

M4
pl

) . (4.38)

Substituting back for D = ∂µϕ∂
µϕ, the Einstein frame Lagrangian is

L = −1
2

∂µϕ∂
µϕ(

1+ 4αV
M4

pl

) + α

4M4
pl

(∂µϕ∂µϕ)2(
1+ 4αV

M4
pl

) − V (ϕ)(
1+ 4αV

M4
pl

) , (4.39)

and the Einstein frame inflaton action of the R2 Palatini model is then

S =
∫
d4x

√
−g̃

1
2M

2
plR̃− 1

2
∂µϕ∂

µϕ(
1+ 4αV

M4
pl

) + α

4M4
pl

(∂µϕ∂µϕ)2(
1+ 4αV

M4
pl

) − V (ϕ)(
1+ 4αV

M4
pl

)
 . (4.40)

The effect of the non-canonical kinetic terms is that - when recast using a canon-
ical variable - the inflaton potential is flattened and stretched into a plateau. The
effect is similar in principle to that of the non-canonical kinetic terms in α-attractor
inflation (see e.g. [68] for a review of α-attractor inflation and its predictions), al-
though the bases of the two models are fundamentally different. Roughly speaking,
the effect in α-attractor models comes from directly modifying the kinetic term with
the purpose of turning the inflaton potential into a plateau, which is possible for the
majority of potentials V (ϕ), provided that they are non-singular. In the Palatini
model, the effect of flattening and stretching the inflaton potential is a side-effect
of the inclusion of the R2 term in the gravitational action - it can be interpreted as
an effect due to a gravitational interaction in the model recast as a non-canonical
inflaton interaction.

4.3 Canonical Rescaling of the Inflaton Field

Before we can calculate any of the inflationary observables we must canonically
normalise the inflaton kinetic term. The conformal factor is now, from (4.5) and
(4.35)
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Ω2 =
1+ 4αV

M4
pl

1− α
M4

pl
∂µϕ∂µϕ

. (4.41)

In the limit where the slow-roll approximation is valid, when the field is high on the
inflationary plateau, we will show later that the derivatives are negligible and we
can say for now

Ω2 = 1+ 4αV
M4
pl

= 1+ 2αm2ϕ2

M4
pl

. (4.42)

We define a canonically normalised scalar field σ as follows

(
dσ

dϕ

)2
= 1

1+ 4αV
M4

pl

= 1
1+ 2αm2ϕ2

M4
pl

⇒ dσ

dϕ
= ± 1√

1+ 2αm2ϕ2

M4
pl

. (4.43)

We choose the positive solution and integrate

σ (ϕ) =
∫ dϕ√

1+Kϕ2
= 1√

K
sinh−1

(√
Kϕ

)
+C = 1√

K
log

(√
1+Kϕ2 +

√
Kϕ

)
+C,

(4.44)
where C is a constant of integration and K = 2αm2

ϕ/M
4
pl.

The ∂µϕ terms in (4.40) - referred to henceforth as kinetic terms - can be rewritten

−1
2
∂µϕ∂

µϕ

1+ 4αV
M4

pl

+ α

4M4
pl

(∂µϕ∂µϕ)2

1+ 4αV
M4

pl

= −1
2∂µσ∂

µσ+ α

4M4
pl

1+ 4αV
M4
pl

(∂µσ∂µσ)2 ,

(4.45)
in terms of the canonically normalised scalar σ. If we are well up on the inflationary
plateau, then we can safely assume

4αV
M4
pl

>> 1, (4.46)

and we can write the canonical kinetic terms from (4.45) as

−1
2∂µσ∂

µσ+ α

4M4
pl

1+ 4αV
M4
pl

(∂µσ∂µσ)2 . (4.47)

We will show later that the (∂σ)4 term will make a negligible contribution during
slow roll, so it is safe to ignore for this discussion. It may be that this four-point
inflaton interaction will become significant after inflation, and we will discuss this
in the context of unitarity violation in a later section.
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We therefore proceed with the Einstein frame action

SE =
∫
d4x

√
−g̃

1
2M

2
plR̃− 1

2∂µσ∂
µσ− V (ϕ)(

1+ 4αV
M4

pl

)
 . (4.48)

where ϕ = ϕ(σ). From here the "inflaton" in the Einstein frame can be taken to
mean the σ field unless stated otherwise. Our Einstein frame potential is henceforth
defined to be

VE (ϕ) = V (ϕ)
1+ 4αV

M4
pl

, (4.49)

where the Jordan frame potential is the simple quadratic potential

V (ϕ) = 1
2m

2ϕ2. (4.50)

We define Ω ≈ 1 as the informal end of the plateau region of the potential and the
beginning of the small field region. If

Ω ≈

√√√√2αm2
ϕϕ

2

M4
pl

≈ 1, (4.51)

using (4.46) then

2αm2
ϕϕ

2

M4
pl

≈ 1. (4.52)

Using this, we define a threshold in the Einstein frame potential which approximately
separates the large and small field regions of the potential

ϕ0 =
M2
pl√

2αmϕ

. (4.53)

From (4.44) the canonical field is

σ (ϕ) =
M2
pl√

2αmϕ

ln

√√√√1+

2αm2
ϕ

M4
pl

ϕ2 +
√

2αmϕ

M2
pl

ϕ

= ϕ0 ln

√√√√1+ ϕ2

ϕ2
0

+ ϕ

ϕ0

 , (4.54)

where for ϕ << ϕ0, we have that

σ ≈ ϕ0 ln
(√

1+ ϕ

ϕ0

)
≈ ϕ0 · ϕ

ϕ0
= ϕ, (4.55)

using ln(1+x) ≈ x for | x |<< 1. In the large field limit, ϕ >> ϕ0, we have
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σ ≈ ϕ0 ln

√√√√ϕ2

ϕ2
0

+ ϕ

ϕ0

≈ ϕ0 ln
(

2ϕ
ϕ0

)
=

M2
pl√

2αmϕ

ln
2

√
2αmϕ

M2
pl

ϕ

 . (4.56)

This shows that there are two distinct regimes of the potential in terms of the
canonical field

σ ≈ ϕ; ϕ < ϕ0, (4.57)

σ ≈
M2
pl√

2αmϕ

ln
2

√
2αmϕ

M2
pl

ϕ

 ; ϕ > ϕ0, (4.58)

and this approximation will be used throughout this exposition in order to study
the dynamics of the model in the large and small field limits.

The Einstein frame potential is

VE (ϕ) = V (ϕ)
1+ 4αV

M4
pl

, (4.59)

which can be rewritten

VE = V (ϕ)
4αV
M4

pl

(
1+ M4

pl

4αV

) =
M4
pl

4α

1+
M4
pl

4αV

−1

. (4.60)

In the small field limit, ϕ << ϕ0, we have 4αV
M4

pl
<< 1 and

VE ≈ V (ϕ) = 1
2m

2
ϕϕ

2. (4.61)

So at small σ = ϕ, the Einstein frame potential is approximately the Jordan frame
potential, and in the quadratic regime of the potential we therefore have m2

σ ≈m2
ϕ.

In the large field limit, ϕ >> ϕ0 we have M4
pl

4αV << 1, and so

VE ≈
M4
pl

4α

1−
M4
pl

4αV

=
M4
pl

4α

(
1− ϕ2

0
ϕ2

)
. (4.62)

From (4.56) we have that

σ (ϕ) =
M2
pl√

2αmϕ

ln
2

√
2αmϕ

M2
pl

ϕ

= ϕ0 ln
(

2ϕ
ϕ0

)
, (4.63)

⇒ ϕ(σ) = ϕ0
2 exp

(
σ

ϕ0

)
=

M2
pl

2
√

2αmϕ

exp
√

2αmϕ

M2
pl

σ

 , (4.64)
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and therefore

1
ϕ2 =

4(2α)m2
ϕ

M4
pl

exp
−

2
√

2αmϕ

M2
pl

σ

 . (4.65)

Substituting (4.65) into the Einstein frame potential (4.62) we obtain

VE (σ) ≈
M4
pl

4α

1−
M4
pl

2αm2
ϕϕ

2

≈
M4
pl

4α

1−4exp
−

2
√

2αmϕ

M2
pl

σ

 , (4.66)

where the inflaton potential in relation to the threshold approximation is shown in
Figure 4.1.

Figure 4.1: Schematic of the inflaton potential in the Einstein frame illustrating the
threshold approximation used to distinguish the large and small field limits in this
model.

The number of e-folds of inflation is given by

N (σ) = − 1
M2
pl

∫ σend

σ

VE
V ′
E

dσ, (4.67)

where σend is the value of the field at the end of slow-roll inflation. On the inflation-
ary plateau the Einstein frame potential is approximately flat, so we can say that
at these high field values

VE ≈
M4
pl

4α , (4.68)
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from (4.62) and

V ′
E = ∂VE

∂σ
= 2

√
2
α
M2
plmϕ exp

−
2
√

2αmϕ

M2
pl

σ

 . (4.69)

Substituting (4.68) and (4.69) into (4.67) we have

N (σ) = − 1
M2
pl

∫ σend

σ

M4
pl

4α
1
2

√
α

2
1

M2
plmϕ

exp
2

√
2αmϕ

M2
pl

σ

dσ. (4.70)

Performing the integration of (4.70) gives

N (σ) =
M2
pl

32αm2
ϕ

exp
2

√
2αmϕ

M2
pl

σ

−
M2
pl

32αm2
ϕ

exp
2

√
2αmϕ

M2
pl

σend

 . (4.71)

If we make the assumption that the inflationary plateau is long, such that σend<<σ,
then the number of e-folds in terms of the canonical inflaton is

N (σ) ≈
M2
pl

32αm2
ϕ

exp
2

√
2αmϕ

M2
pl

σ

 , (4.72)

and so

σ (N) =
M2
pl

2
√

2αmϕ

ln
32αm2

ϕ

M2
pl

N

 . (4.73)

Substituting (4.73) into (4.64), we find that the corresponding ϕ(N) is

ϕ(N) = 2
√
NMpl. (4.74)

We are now ready to calculate the quantities which will allow us to assess how viable
this inflation model is.

4.4 Slow-Roll Parameters and Observables

There are a number of quantities which are useful in assessing the viability of an
inflation model (see Section 2.12), namely the scalar spectral index ns, the tensor-to-
scalar ratio, r, and the running of the spectral index αs. These observable quantities
are calculated in terms of the slow-roll parameters ϵ and η, which are given in the
Einstein frame by

ϵ=
M2
pl

2

(
V ′
E

VE

)2
, (4.75)
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η =M2
pl
V ′′
E

VE
, (4.76)

where the primes denote a derivative with respect to the inflaton field, σ, in the
Einstein frame. We have from (4.69) that

∂VE
∂σ

= (−4)
M4
pl

4α

−
2
√

2αmϕ

M2
pl

exp
−

2
√

2αmϕ

M2
pl

σ

 , (4.77)

and differentiating again gives

∂2VE
∂σ2 = (−4)

M4
pl

4α

−
2
√

2αmϕ

M2
pl

2

exp
−

2
√

2αmϕ

M2
pl

σ

 . (4.78)

Using VE ≈M4
pl/4α, ϵ then is given by

ϵ=
64αm2

ϕ

M2
pl

exp
−

4
√

2αmϕ

M2
pl

σ

 , (4.79)

and η is

η = −
32αm2

ϕ

M2
pl

exp
−

2
√

2αmϕ

M2
pl

σ

 . (4.80)

We can substitute in the expression for σ (N) (4.73) to (4.79) and (4.80) to give the
slow-roll parameters in terms of the number of e-folds of inflation

ϵ=
M2
pl

16αm2
ϕ

1
N2 , (4.81)

and

η = − 1
N
. (4.82)

The scalar spectral index is given by

ns = 1+2η−6ϵ≈ 1− 2
N
, (4.83)

where we assume that the contribution from the ϵ term is negligible compared to
the η term. This is sensible if we note that

ϵ=
M2
pl

16αm2
ϕ

1
N2 = 1

2N
M2
pl

8αm2
ϕ

1
N

= 1
2N

M4
pl

2αm2
ϕ

1
4NM2

pl

= 1
2N

ϕ2
0

ϕ(N)2 , (4.84)

and ϕ2
0 << ϕ2 (N) during slow-roll inflation. The tensor to scalar ratio is then
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r = 16ϵ≈
M2
pl

αm2
ϕ

1
N2 , (4.85)

and running of the spectral index is given by

αs = −dns
dN

≈ − 2
N2 . (4.86)

The end of slow-roll inflation is determined by the condition

|η (σ)| ≈ 1, (4.87)

where

|η (σ)| =
∣∣∣∣∣∣−32αm2

ϕ

M2
pl

exp
−

2
√

2αmϕ

M2
pl

σ

∣∣∣∣∣∣ . (4.88)

The condition for slow-roll inflation to end is thus

32αm2
ϕ

M2
pl

exp
−

2
√

2αmϕ

M2
pl

σ

≈ 1, (4.89)

and the inflaton field at the end of slow-roll inflation is therefore

σend ≈
M2
pl

2
√

2αmϕ

ln
32αm2

ϕ

M2
pl

 . (4.90)

Using (4.64), the Jordan frame inflaton at the end of slow-roll inflation is then

ϕend =
M2
pl

2
√

2αmϕ

exp
√

2αmϕ

M2
pl

σend


=

M2
pl

2
√

2αmϕ

exp
√

2αmϕ

M2
pl

M2
pl

2
√

2αmϕ

ln
32αm2

ϕ

M2
pl

 , (4.91)

which gives a value of the inflaton at the end of slow-roll inflation in the Jordan
frame to be

ϕend = 2Mpl. (4.92)

The primordial curvature power spectrum is given by

PR = VE
24π2ϵM4

pl

=
m2
ϕN

2

6π2M2
pl

, (4.93)

using (4.68) and (4.81). This can be used to find an estimate for the inflaton mass
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mϕ. Using N = 60 as an estimate for the pivot scale (this will be discussed in more
detail later), and the amplitude of the primordial curvature power spectrum from
the Planck satellite results, As = 2.1×10−9 [36], we find that

mϕ =
√

6πMpl

√
2.1×10−9

N
= 1.4×1013 GeV, (4.94)

which provides an estimate of the inflaton mass which we will utilise throughout
this work.

4.4.1 Equivalence of ns and PR in Palatini R2 Quadratic
Inflation and Conventional ϕ2 Chaotic Inflation

In this section we demonstrate the equivalence of the scalar spectral index, ns, and
the curvature power spectrum, PR, between those calculated in the Einstein frame
in the Palatini ϕ2 inflation model with an R2 term and conventional chaotic ϕ2

inflation. This equivalence was first derived by Enckell et al in [55].
We have that the Einstein frame potential VE in the Palatini ϕ2 inflation model

with an R2 term in terms of the Jordan frame potential V is given by

VE (ϕ) = V (ϕ)
1+ 4αV

M4
pl

, (4.95)

differentiated with respect to ϕ this is

∂VE
∂ϕ

= V ′(
1+ 4αV

M4
pl

)2 . (4.96)

This can be converted to a derivative in terms of the canonical scalar σ using the
fact that

∂VE
∂σ

= ∂VE
∂ϕ

∂ϕ

∂σ
=
√√√√1+ 4αV

M4
pl

∂VE
∂ϕ

, (4.97)

from (4.43). This gives

∂VE
∂σ

= V ′(
1+ 4αV

M4
pl

) 3
2
, (4.98)

and differentiating again gives

∂2VE
∂σ2 = ∂

∂σ

√√√√1+ 4αV
M4
pl

∂VE
∂ϕ

=
√√√√1+ 4αV

M4
pl

∂

∂ϕ

√√√√1+ 4αV
M4
pl

∂VE
∂ϕ

 , (4.99)
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using (4.97). Evaluating (4.99) gives

∂2VE
∂σ2 = V ′′(

1+ 4αV
M4

pl

) − 6αV ′2

M4
pl

(
1+ 4αV

M4
pl

)2 . (4.100)

From (4.76), the η parameter using (4.100) and (4.95) is

η =
M2
pl

V

1+ 4αV
M4
pl


 V ′′(

1+ 4αV
M4

pl

) − 6αV ′2

M4
pl

(
1+ 4αV

M4
pl

)2

 , (4.101)

⇒ η =M2
pl
V ′′

V
− 12αV

M4
pl

(
1+ 4αV

M4
pl

)M2
pl

2

(
V ′

V

)2
. (4.102)

Defining η̄ and ϵ̄ as the slow-roll parameters for the Jordan frame potential V (ϕ),
we have that the η parameter in the Einstein frame is

η = η̄− 12αV

M4
pl

(
1+ 4αV

M4
pl

) ϵ̄. (4.103)

The ϵ parameter in the Einstein frame from (4.75), using (4.95) and (4.98), is

ϵ=
M2
pl

2

(
1+ 4αV

M4
pl

)2

V 2
V ′2(

1+ 4αV
M4

pl

)3 , (4.104)

⇒ ϵ=
M2
pl

2
V ′2

V 2
1(

1+ 4αV
M4

pl

) = ϵ̄(
1+ 4αV

M4
pl

) . (4.105)

The scalar spectral index in the Einstein frame is

ns = 1+2η−6ϵ, (4.106)

and substituting (4.103) and (4.105) into (4.106) ns is

ns = 1+2

η̄− 12αV

M4
pl

(
1+ 4αV

M4
pl

) ϵ̄
− 6ϵ̄(

1+ 4αV
M4

pl

) , (4.107)

⇒ ns = 1+2η̄− 4αV
M4
pl

6ϵ̄(
1+ 4αV

M4
pl

) − 6ϵ̄(
1+ 4αV

M4
pl

) , (4.108)

⇒ ns = ns ≡ 1+2η̄−6ϵ̄. (4.109)
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We therefore have that the scalar spectral index in the Einstein frame for Palatini
R2 quadratic inflation, provided that the quartic derivative terms are negligible
during slow-roll inflation, is equal to the scalar spectral index in the Jordan frame
for conventional chaotic ϕ2 inflation, despite the fact that the slow-roll parameters
(4.103), (4.105) and the resulting tensor-to-scalar ratio, r, are different.

The primordial curvature power spectrum in the Einstein frame (4.93) is

PR = VE
24π2ϵM4

pl

, (4.110)

substituting (4.95) and (4.105) into the expression gives

PR = V(
1+ 4αV

M4
pl

)
(

1+ 4αV
M4

pl

)
24π2ϵ̄M4

pl

≡ V

24π2ϵ̄M4
pl

, (4.111)

and we have that the primordial curvature power spectrum for ϕ2 Palatini inflation
with an R2 term is equal to the primordial curvature power spectrum for conven-
tional chaotic ϕ2 inflation in this case.

The Jordan frame potential using (4.74) is

V (ϕ) = 2m2
ϕNM

2
pl, (4.112)

and using (4.75) and (4.76), the slow-roll parameters in the Jordan frame are

η̄ = ϵ̄= 1
2N . (4.113)

The scalar spectral index in the Jordan frame as a function of N is then

ns = 1− 2
N
, (4.114)

as it is in the Einstein frame (4.83) for |ϵ| << |η| during slow-roll. The primordial
curvature power spectrum (4.111) as a function of N using (4.112) and (4.113) is
then

PR =
m2
ϕN

2

6π2M2
pl

, (4.115)

the same as (4.93) in the Einstein frame.
It is now instructive to check the equivalence of the number of e-folds in the two

frames. In the Einstein frame the expression for the number of e-folds N (σ) is

N = − 1
M2
pl

∫ σend

σ

VE
V ′
E

dσ. (4.116)
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Using (4.95), (4.98) and the fact that

dσ = dσ

dϕ
dϕ= dϕ√

1+ 4αV
M4

pl

, (4.117)

we have

N = − 1
M2
pl

∫ ϕ(σend)

ϕ

V(
1+ 4αV

M4
pl

)
(

1+ 4αV
M4

pl

) 3
2

V ′
dϕ√

1+ 4αV
M4

pl

, (4.118)

⇒N = − 1
M2
pl

∫ ϕ(σend)

ϕ

V

V ′dϕ, (4.119)

which is equivalent to the expression for the number of e-folds in conventional chaotic
ϕ2 inflation provided that the field at the end of slow-roll inflation is very small
ϕ(σend) << ϕ(N), since ϕ(Nend) will be different depending on which frame the
number of e-folds is calculated in, |η (Nend)| = 1 will generally occur at a different
ϕ(Nend) to |η̄ (Nend)| = 1.

4.5 Sub-Planckian Inflaton

As discussed in Section 4.1; one of the issues with traditional chaotic ϕ2 inflation
is the size of the inflaton field needed in order to account for inflation, ϕ ∼ 15Mpl

at N ≈ 50. In the Einstein frame, Mpl is the scale of quantum gravity, since in
the Einstein frame the description of gravity corresponds to the General Relativity
description (in the Jordan frame the scale of quantum gravity is rescaled according
to the conformal factor Ω). A super-Planckian inflaton can be problematic when
the model is considered as part of a quantum gravity theory, which we assume that
the Standard Model of particle physics and the Standard Cosmological Model are
effective theory descriptions of. This is because extending inflation up to a complete
theory of gravity is expected to introduce Planck scale-suppressed corrections to the
inflaton potential, which can alter the predictions of the model. We will explore the
effects of this in greater depth later.

Firstly, we examine whether the ϕ2 Palatini inflation model with an R2 term can
produce successful inflation if the inflaton remains sub-Planckian for the duration
of inflation. This constraint looks like

σ (N)<Mpl. (4.120)

The inflaton field in terms of the number of e-folds is given by
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σ (N) =
M2
pl

2
√

2αmϕ

ln
32αm2

ϕ

M2
pl

N

 . (4.121)

Substituting (4.121) into (4.120) we find the condition for a sub-Planckian inflaton
to be

ln
32αm2

ϕN

M2
pl

< 2
√

2αmϕ

Mpl
, (4.122)

which can be expressed as

ln(α)+ ln(N)+ ln
32m2

ϕ

M2
pl

≲
2
√

2αmϕ

Mpl
. (4.123)

Using Mpl = 2.4 × 1018 GeV and mϕ = 1.4 × 1013 GeV the condition (4.123) be-
comes

ln(α)−16.5< 1.65×10−5√
α. (4.124)

We find that this constraint is satisfied for α ≳ 1.0 × 1012. Thus, we arrive at the
condition in order for the inflaton field to remain sub-Planckian throughout inflation
in this model is

α≳ 1012. (4.125)

Although it is well-defined only in the Einstein frame, it is interesting to note that a
similar (but not identical) condition can be derived in the Jordan frame by consid-
ering the size of the effective Planck mass during inflation, M2

pl,eff = Ω2M2
pl, where

the condition is then

ϕ <Mpl,eff . (4.126)

We can interpret M2
pl,eff = Ω2M2

pl as being due to the nature of the complete theory
of quantum gravity. It tells us that the scale of the UV complete theory of gravity
is ϕ dependent in the Jordan frame.

The plateau limit applies throughout the duration of inflation, so we can say

2αm2
ϕϕ

2

M4
pl

>> 1 ⇒ Ω2 ≈
2αm2

ϕϕ
2

M4
pl

, (4.127)

and the effective Planck mass is therefore

M2
pl,eff = Ω2M2

pl ≈
2αm2

ϕϕ
2

M2
pl

. (4.128)
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If we require that ϕ <Mpl,eff then we require the constraint on α to be

α >
M2
pl

2m2
ϕ

, (4.129)

then for mϕ = 1.4×1013 GeV this gives

α > 1.5×1010, (4.130)

which is automatically satisfied if the Einstein frame constraint (4.125) is satisfied.
This is a weaker constraint, and it is more appropriate in this context to consider
the sub-Planckian constraint in the Einstein frame where the scalar σ is canoni-
cally normalised and where the relationship between the Planck mass and scale of
quantum gravity is well-defined since gravity corresponds to conventional General
Relativity in the Einstein frame.

4.6 Effective Theory Corrections from Quantum
Gravity

4.6.1 Planck-Suppressed Potential Corrections and the η-
shift

It is at this point that we consider the robustness of the predictions of this inflation
model against Planck scale-suppressed corrections to the potential from quantum
gravity, and examine what kind of constraints these place on the model - namely the
size of the α parameter. Since the majority of the observable quantities calculated in
inflation models are directly derived from the inflaton potential, these quantities are
highly sensitive to any modifications which may be made to the potential, and there-
fore any corrections added to the potential may significantly alter the predictions of
the model. It is particularly important therefore to ensure that an inflation model
can maintain good predictions for the inflationary observables when embedded into
a theory of quantum gravity.

In this case we will consider the lowest order corrections arising due to the exis-
tence of a UV completion of gravity itself, both generally and in the presence of an
approximate shift symmetry in the model. The test of the ’tolerance’ of an inflation
model with respect to quantum corrections will be established by calculating what
we refer to as the η-shift. That is, the amount by which the η parameter is modified
by the potential corrections. This shift can be constrained by the bounds on the
scalar spectral index derived from experiments, and in order for the presence of such
corrections to not significantly affect the value of the scalar spectral index in this
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model, we will require that

|∆η|< 0.001, (4.131)

in order to respect the bounds on ns given in [12].
The η-shift will be calculated by considering Planck-suppressed corrections to the

Einstein frame potential. The effective Lagrangian of an inflation theory embedded
as an effective theory of a quantum gravity completion is expected to be of the form
[69]

Leff = L+
∑
n
kn

ϕn

Λn−4 , (4.132)

where Λ is the scale of quantum gravity, kn are dimensionless constants, and the
sum is over all operators consistent with the symmetries of the complete theory. In
the R2 Palatini inflation model with a ϕ2 potential in the Einstein frame, Λ = Mpl

is the scale at which perturbative quantum gravity breaks down, and the lowest
order correction we can consider, assuming the corrections in the Einstein frame
obey the existing ϕ → −ϕ symmetry of the Jordan frame potential, corresponding
to a σ → −σ symmetry in the Einstein frame, would be

∆VE = k6σ6

M2
pl

, (4.133)

where we assume that k6 is an order one number and we will drop the "6" subscript
from here. The Einstein frame potential is then

VTOT = VE +∆VE = VE + kσ6

M2
pl

+higher order corrections. (4.134)

Since ϵ << |η| during slow roll inflation, we can approximate the scalar spectral
index as ns ≈ 1+2η. With the shift in the potential we then have that

η =M2
pl
V ′′
TOT

VTOT
=M2

pl
V ′′
E +∆V ′′

E

VE +∆VE
. (4.135)

Extracting a factor of VE from the denominator gives

η =
M2
pl

VE

V ′′
E +∆V ′′

E(
1+ ∆VE

VE

) . (4.136)

Taking ∆VE << VE we can binomially expand the denominator as

(
1+ ∆VE

VE

)−1
≈ 1− ∆VE

VE
. (4.137)

η is then
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η =
M2
pl

VE

(
V ′′
E +∆V ′′

E

)(
1− ∆VE

VE

)
=M2

pl

(
V ′′
E

VE
+ ∆V ′′

E

VE

)(
1− ∆VE

VE

)
, (4.138)

expanding this gives

η =M2
pl

(
V ′′
E

VE
− ∆VE

V 2
E

V ′′
E + ∆V ′′

E

VE
+O

(
∆2
))
, (4.139)

and to leading order the modified η is therefore

η =M2
pl

(
V ′′
E

VE
− ∆VE

V 2
E

V ′′
E + ∆V ′′

E

VE

)
. (4.140)

To simplify this expression, we first want to show that
∣∣∣∣∣∆V ′′

E

VE

∣∣∣∣∣>>
∣∣∣∣∣V ′′
E

VE

∣∣∣∣∣
∣∣∣∣∣∆VEVE

∣∣∣∣∣ , (4.141)

where

∆V ′′
E = 30kσ4

M2
pl

, (4.142)

from (4.133). Substituting (4.142) into (4.141), we find

30kσ4

M2
pl

1
VE

>>

∣∣∣∣∣V ′′
E

VE

∣∣∣∣∣ 1
VE

kσ6

M2
pl

. (4.143)

Following some cancellations the condition (4.141) becomes

σ2

M2
pl

<<
30

M2
pl

∣∣∣∣V ′′
E
VE

∣∣∣∣ = 30
|η|
. (4.144)

For ns ≈ 0.966, we have 2η = 0.034 ⇒ η = 0.017. Substituting this into (4.144) gives

σ2

M2
pl

<< 1765. (4.145)

This is generally satisfied for σ <Mpl, and we can therefore safely ignore the second
term in (4.140). The shift in η due to the σ6 corrections is therefore

∆η ≈M2
pl

∆V ′′
E

VE
. (4.146)

The Einstein potential during slow roll can be approximated as

VE =
M4
pl

4α , (4.147)
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and using (4.142) the η-shift is then given by

∆η = 120kασ4

M4
pl

. (4.148)

Substituting the expression for σ(N), (4.73), into (4.148) to get the η-shift in terms
of the number of e-folds we have

∆η =
30kM4

pl

16αm4
ϕ

ln
32αm2

ϕ

M2
pl

N

4

, (4.149)

and using the properties of logarithms we can write this as

∆η =
30kM4

pl

αm4
ϕ

[
ln
(

4
√

2αmϕ

Mpl

√
N

)]4

. (4.150)

The condition for the σ6 potential corrections to not significantly affect the value of
the spectral index then becomes

30kM4
pl

αm4
ϕ

[
ln
(

4
√

2αmϕ

Mpl

√
N

)]4

< 0.001. (4.151)

This allows us to reframe the requirement that the Planck-suppressed potential
corrections do not significantly affect the model prediction of the spectral index as
a constraint on the α parameter. We find that at N = 60, using the inflaton mass
of mϕ = 1.4×1013 GeV, this constraint is satisfied for

α≳ 1.5×1031, (4.152)

assuming k ≃ 1.

This is however assuming that σ (N) itself doesn’t experience a correction from
theN integral, since the number of e-folds itself is calculated from the ratio VTOT /V ′

TOT

which should include the potential correction. We next consider this effect.
The number of e-folds including the potential corrections is given by

N = − 1
M2
pl

∫ σend

σ

VE +∆VE
V ′
E +∆V ′

E

dσ = − 1
M2
pl

∫ σend

σ

VE
(
1+ ∆VE

VE

)
V ′
E

(
1+ ∆V ′

E
V ′

E

)dσ. (4.153)

Assuming ∆V ′
E << V ′

E we can binomially expand the denominator of the integrand
to give
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N = − 1
M2
pl

∫ σend

σ

VE
V ′
E

(
1+ ∆VE

VE

)(
1− ∆V ′

E

V ′
E

)
dσ. (4.154)

Expanding the integrand I gives

I = VE
V ′
E

[
1− ∆V ′

E

V ′
E

+ ∆VE
VE

+O
(
∆2
)]
. (4.155)

We work to leading order in potential corrections, and in order to simplify the cal-
culation we first show that we can neglect the ∆VE/VE term. This can be neglected
if

∣∣∣∣∣∆VEV ′
E

∣∣∣∣∣<<
∣∣∣∣∣∆V ′

E

V ′
E

∣∣∣∣∣
∣∣∣∣∣VEV ′
E

∣∣∣∣∣ . (4.156)

Here ∆V ′
E = 6kσ5/M2

pl, and the condition (4.156) becomes

kσ6

M2
pl

<<
6kσ5

M2
pl

∣∣∣∣∣VEV ′
E

∣∣∣∣∣⇒ σ << 6
∣∣∣∣∣VEV ′
E

∣∣∣∣∣ . (4.157)

Using the expression for ϵ, (4.75), we can write

√
ϵ= Mpl√

2

∣∣∣∣∣V ′
E

VE

∣∣∣∣∣⇒
∣∣∣∣∣VEV ′
E

∣∣∣∣∣= Mpl√
2ϵ
, (4.158)

and the condition on σ for the ∆VE
VE

term being negligible is then

σ <<
6Mpl√

2ϵ
. (4.159)

Since ϵ << 1 during slow-roll this is generally satisfied, as we have σ < Mpl for
α≥ 1012.

We can therefore ignore the ∆VE
VE

term. The number of e-folds accounting for the
shift due to the potential correction is then

N = − 1
M2
pl

∫ σend

σ

VE
V ′
E

(
1− ∆V ′

E

V ′
E

)
dσ. (4.160)

This can be written as a relative shift in the number of e-folds of inflation due to
the potential correction, NTOT =N +∆N , where

∆N = 1
M2
pl

∫ σend

σ

VE
V ′
E

∆V ′
E

V ′
E

dσ. (4.161)

If there is a shift in the first derivative of
∣∣∣∣∣∆V ′

E

V ′
E

∣∣∣∣∣≈ 0.1, (4.162)

98



during inflation then N shifts by a factor of approximately 0.1 and |∆N/N | ≈ 0.1.
In this model, |η| ≈ |1/N | ⇒ |∆η| ≈ |∆(1/N)|. If ∆N <<N we can write

1
N

→ 1
N

(
1+ ∆N

N

)−1
= 1
N

(
1− ∆N

N

)
≡ 1
N

+∆
( 1
N

)
. (4.163)

The η-shift is then

|∆η| =
∣∣∣∣∆( 1

N

)∣∣∣∣= |∆N |
N2 . (4.164)

If |∆N/N | ≈ 0.1 and N = 60 then the η-shift is ≈ 0.002. In order for the N -shift to
make a small enough modification to the prediction of the scalar spectral index such
that it remains within the parameter space put forward in [36], the η-shift needs to
be 0.001 or less. The N -shift which fulfills this requirement on the η-shift is 0.06
or less. This means that the condition we will use to constrain α is that during
inflation

∣∣∣∣∣∆V ′
E

V ′
E

∣∣∣∣∣≲ 0.06. (4.165)

We have that ∆V ′
E = 6kσ5/M2

pl and using

V ′
E = 2

√
2√
α
mϕM

2
pl exp

−
2
√

2αmϕ

M2
pl

σ

 , (4.166)

we have

∆V ′
E

V ′
E

= 6kσ5

M2
pl

√
α

2
√

2mϕM
2
pl

exp
2

√
2αmϕ

M2
pl

σ

 . (4.167)

Substituting in σ (N) (4.73), we find

∆V ′
E

V ′
E

= 6kN
16α

M4
pl

m4
ϕ

ln
32αm2

ϕ

M2
pl

N

5

⇒ 3kN
8α

M4
pl

m4
ϕ

ln
32αm2

ϕ

M2
pl

N

5

≲ 0.06,

(4.168)
and the constraint on α from the shift in the number of e-folds due to Planck-
suppressed potential corrections is therefore

α≳
50kN

8
M4
pl

m4
ϕ

ln
32αm2

ϕ

M2
pl

N

5

. (4.169)

Taking N = 60 and k ≃ 1, as expected for the dimensionless constants, we find
that the lower bound on α needed for a sufficiently small η-shift due to Planck-
suppressed potential corrections is
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α≳ 2.2×1032. (4.170)

In general we therefore require that α ≳ 1032 for the observed scalar spectral
index to be consistent with the Planck results [12] if we want to treat this inflation
model as an effective model in a quantum gravity theory.

4.6.2 Planck-Suppressed Potential Corrections with a Bro-
ken Shift Symmetry

A shift symmetry is a global internal symmetry characterised by

ϕ→ ϕ+ constant, (4.171)

invariance within the theory. An exact shift symmetry forbids any potential terms
dependent on the scalar field, and only remains unbroken in the case of a constant or
zero potential. In this model the renormalisable part of the potential is an explicit
mass term, 1

2m
2
σσ

2 ≈ 1
2m

2
ϕϕ

2, which means that a shift symmetry in the R2 Palatini
inflation model with a ϕ2 potential would be an approximate symmetry which would
become significantly broken when the potential enters into the quadratic regime,
1
2m

2
σσ

2 ≈ 1
2m

2
ϕϕ

2. The symmetry is restored in the limit that m2
ϕ → 0. If we assume

that the shift symmetry-breaking parameter of the complete theory is the inflaton
mass squared, m2

ϕ, then this means that any corrections added to the potential must
be proportional to m2

ϕ in order to respect the symmetry.
This is significant, because in the absence of symmetries, scalar masses receive

corrections of the form [69]

∆m2 ∝ Λ2, (4.172)

where in the R2 Palatini model with a ϕ2 potential in the Einstein frame Λ =Mpl.
Corrections of this size would produce a large renormalisation of the η parameter,
and the model would not be able to inflate successfully. In the presence of an
approximate shift symmetry, the potential is protected from receiving corrections
of this size because all corrections must be proportional to the symmetry breaking
parameter. This means that the scalar mass corrections instead take the form

∆m2 ∝m2, (4.173)

which can protect the model from a large renormalisation of the inflaton mass.
In the case of a shift-symmetry broken by m2

ϕ, the Planck-suppressed correction
also acquires a factor of m2

ϕ, and is therefore of the form
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∆VE ≈
m2
ϕσ

6

M4
pl

, (4.174)

which corresponds to k ≈m2
ϕ/M

2
pl, in the previous analysis.

The η-shift is then

∆η =M2
pl

∆V ′′
E

VE
, (4.175)

where

∆V ′
E ≈

6m2
ϕσ

5

M4
pl

∆V ′′
E ≈

30m2
ϕσ

4

M4
pl

. (4.176)

Using the plateau approximation for VE ≈ M4
pl/4α and substituting in the ex-

pression for σ (N) (4.73), we find that the constraint on the η-shift (4.131) becomes

∆η =
30M2

pl

αm2
ϕ

ln
[

4
√

2αmϕ

Mpl

√
N

]4

≤ 0.001. (4.177)

This gives a bound on α

α≥

(
3.0×104

)
M2
pl

m2
ϕ

[
ln
(

4
√

2αmϕ

Mpl

√
N

)]4

, (4.178)

which is satisfied for α≳ 3.6×1019. Thus an approximate shift symmetry alleviates
the effect of Planck-suppressed corrections and allows for a much smaller value of α.

For completeness, we will also check the contribution from a shift in the number
of e-foldings for the case of Planck-suppressed potential corrections with a broken
shift symmetry. The constraint that the η-shift be kept to 0.001 or less, assuming
that the potential corrections cause a shift in the number of e-folds of inflation, is
given by (4.165). In the case of a broken shift symmetry this constraint is

∆V ′
E

V ′
E

=
3M2

plN

8αm2
ϕ

ln
32αm2

ϕ

M2
pl

N

5

≤ 0.06, (4.179)

⇒ α≥
50M2

plN

8m2
ϕ

ln
32αm2

ϕ

M2
pl

N

5

, (4.180)

and we find that this constraint is satisfied for

α≳ 3.0×1020. (4.181)

We therefore have three different constraints on the α parameter (α≳ 1012,1020,1032)
which could apply to this inflationary paradigm, depending on the form of the cor-
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rections due to the full quantum gravity completion, and what the minimum re-
quirements of the model are chosen to be.

4.6.3 Contribution of the ϵ-shift to the ns-shift

Before moving on it is worth clarifying that the shift of the η parameter due to the
inclusion of Planck-suppressed potential corrections is the dominant effect on the
scalar spectral index resulting from the inclusion of these corrections. In this section
we therefore demonstrate that the shift of the ϵ parameter is small enough to be
neglected in the shift of the scalar spectral index compared to the η-shift.

Using the expression of the scalar spectral index (4.83), we can write that the
shift on ns arising due to the ϵ parameter is

∆ns = −6∆ϵ, (4.182)

where in terms of the total potential ϵ is

ϵ=
M2
pl

2

(
V ′
E

VE

)2
=
M2
pl

2

(
V ′
E +∆V ′

E

VE +∆VE

)2
, (4.183)

⇒ ϵ= ϵ0

(
1+ ∆V ′

E
V ′

E

)2

(
1+ ∆VE

VE

)2 , (4.184)

where ϵ0 = M2
pl/2(V ′

E/VE)2. Assuming ∆V ′
E << V ′

E and ∆VE << VE , this can be
expanded as

ϵ= ϵ0

(
1+ 2∆V ′

E

V ′
E

)(
1− 2∆VE

VE

)
. (4.185)

To O (∆) this is

ϵ= ϵ0

(
1+ 2∆V ′

E

V ′
E

− 2∆VE
VE

)
, (4.186)

and the ϵ-shift is therefore

∆ϵ= 2ϵ0
(

∆V ′
E

V ′
E

− ∆VE
VE

)
. (4.187)

From (4.165) we can write the first term in (4.187) as

∆ϵ≲ 0.12ϵ0, (4.188)

and (4.156) can be rearranged to give
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∣∣∣∣∣∆VEVE

∣∣∣∣∣<<
∣∣∣∣∣∆V ′

E

V ′
E

∣∣∣∣∣ . (4.189)

It is therefore safe to neglect the second term in (4.187) relative to the first and we
are left with

∆ϵ≲ 0.12ϵ0, (4.190)

as the upper bound on the ϵ-shift due to the inclusion of Planck-suppressed potential
corrections. Using (4.81) as our expression for ϵ0 we can calculate the ϵ−shift for
each α derived in Sections 4.5 - 4.6. Using mϕ = 1.4 × 1013 GeV as an estimate of
the inflaton mass and measuring the shift at N = 60 we find that

α≥ 1012 ⇒ ∆ϵ≤ 6.1×10−8, (4.191)

as a minimum requirement if we impose that the inflaton is sub-Planckian (4.120),

α≥ 1020 ⇒ ∆ϵ≤ 6.1×10−16, (4.192)

in the case of Planck-suppressed corrections added to the potential with a broken
shift symmetry, and

α≥ 1032 ⇒ ∆ϵ≤ 6.1×10−28, (4.193)

for the case of general Planck-suppressed potential corrections. In every case the ϵ-
shift is extremely small compared to the η-shift ≤ 10−3, and it is therefore reasonable
to use the η-shift as a measure of the ns−shift due to any additional corrections to
the inflaton potential.

4.6.4 The End of Inflation and Reheating

We have demonstrated that in order for the ϕ2 Palatini inflation model with an R2

term to be compatible with Planck-scale suppressed potential corrections, very large
values of α are required. We must therefore investigate whether such models can
produce a post-inflation cosmology compatible with the Hot Big Bang model, and
thus we next consider the dynamics at the end of inflation and reheating. The first
question in order to examine this is to establish in which regime of the potential
slow-roll inflation ends: while the field is still on the plateau or as the field is entering
the σ2 regime. In order to do this we need to check the size of the field at the end of
slow-roll inflation, σend, against the size of the field at the point where the potential
transitions to a σ2 regime, σ0.

At the point at which the potential moves from the plateau regime to the
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quadratic regime we can approximate that the ϕ field and the canonical inflaton
σ are equivalent, so at the transition the inflaton takes the value

ϕ0 =
M2
pl√

2αmϕ

= σ0. (4.194)

As established earlier, the canonical inflaton at the end of inflation is given by (4.90)

σend =
M2
pl

2
√

2αmϕ

ln
32αm2

ϕ

M2
pl

 , (4.195)

and we can take the ratio of these two values of σ to find

σend
σ0

= 1
2 ln

32αm2
ϕ

M2
pl

 . (4.196)

For α∼ 1012 −1032 using the mass estimate (4.94) we obtain

σend
σ0

= 3.5−26.5. (4.197)

It is clear then that σ0 < σend. This confirms that slow-roll inflation ends while the
field is still on the plateau. The Hubble parameter at σend can thus be calculated
using the slow-roll approximation on the plateau

H̃2 = VE
3M2

pl

, (4.198)

where the Einstein frame potential is VE =M4
pl/4α on the plateau and so

H̃ = Mpl√
12α

. (4.199)

During slow-roll inflation the energy density of the Universe is dominated by the
potential energy of the inflaton, ρ̃= VE . As we have established, slow-roll inflation
ends while the field is still on the plateau, and here the field subsequently enters
into oscillations about the potential minimum with a large oscillation amplitude.
We will initially assume that the inflaton field decays rapidly after it enters into
oscillations, and that the energy density which was previously dominated by the
inflaton potential decays completely to radiation with essentially no loss of energy
due to expansion before the inflaton condensate decays completely. This scenario
can be described as the approximation of instantaneous reheating, whereupon all of
the inflaton field completely decays within a few oscillations about the minimum of
its potential to radiation, and reheats the Universe within a few e-folds of expansion
after the end of inflation - which we approximate here as being equivalent to the end
of slow-roll. Specific reheating mechanisms will be discussed in Sections 4.8 - 4.10.
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We can use this approximation to provide an upper bound on the reheating
temperature of the model, and of the number of e-folds of expansion at the CMB
pivot scale. The energy density at the end of inflation is given by

ρ̃= VE = 3M2
plH̃

2, (4.200)

and the energy density of radiation - which ρ̃ is converted to - is given by

ρ̃r = π2

30g (T )T 4. (4.201)

At the end of inflation we have that the energy density of the inflaton potential is
all converted to radiation, so we can equate ρ̃= ρ̃r at the end of inflation, giving

3M2
plH̃

2 = π2

30g (TRmax)T 4
Rmax

, (4.202)

where we are defining TRmax as the reheating temperature in the case of instan-
taneous reheating, corresponding to the maximum possible reheating temperature.
g (TRmax) is the effective number of relativistic degrees of freedom contributing to
the total energy density; in the Standard Model this is given by g (TRmax) = 106.75.
Substituting H̃ from (4.199), the upper bound on the reheating temperature is given
by

TRmax =
(

15
2π2g (TRmax)

) 1
4 Mpl

α
1
4
, (4.203)

which is a function of the α parameter.
From here we can calculate the number of e-folds of inflation corresponding

to horizon exit of the CMB pivot scale. Using the fact that the entropy remains
constant during slow roll inflation,

a3gs (T )T 3 = constant, (4.204)

and since slow-roll inflation ends while the field is still on the plateau, we can write

a1
a2

=
(
gs (T2)
gs (T1)

) 1
3 T2
T1
. (4.205)

We have that, in an expanding spacetime, the wavelength of the perturbations varies
with scale factor as

λ= a

a0
λ0. (4.206)

Introducing the scale factor at the end of slow-roll inflation aend, this becomes
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λ= a

aend

aend
a0

λ0 ⇒ λ= e−N aend
a0

λ0, (4.207)

where a0 is the scale factor today. This means

aend
a0

= λ

λ0
eN =

[
gs (T0)
gs (Tend)

] 1
3 T0
Tend

, (4.208)

using (4.205). Using Tend = TRmax , with some rearrangement this becomes

eN =
[

gs (T0)
gs (TRmax)

] 1
3 T0
TRmax

λ0
λ
. (4.209)

Since slow-roll inflation ends while the field is solidly on the plateau, the mode
corresponding to the wavelength λ exits the horizon when λ ≈ H̃−1. This gives a
final expression for the number of e-folds of inflation at the pivot scale λ0 to be

N = ln

( gs (T0)
gs (TRmax)

) 1
3 T0λ0H̃

TRmax

 . (4.210)

Using the earlier derived expression for the maximum reheating temperature (4.203),
we can write this expression in terms of the α parameter

N = ln

( gs (T0)
gs (TRmax)

) 1
3
[

2π2g (TRmax)
15

] 1
4 α

1
4

Mpl
T0λ0H̃

 . (4.211)

Then, using the slow roll expression for H̃ (4.199), this can be written as

N = ln

( gs (T0)
gs (TRmax)

) 1
3
[
π2g (TRmax)

1080α

] 1
4
T0λ0

 , (4.212)

where T0 as the present day temperature of the CMB, given by T0 = 2.4×10−13 GeV,
and the Standard Model effective number of relativistic degrees of freedom in equilib-
rium at today’s temperature is gs (T0) = 3.91. At the end of inflation, T = TRmax and
the energy density of the Universe is contained within a plasma at equilibrium with
no relativistic species decoupled, so gs (TRmax) = g (TRmax), and we use the Standard
Model value of 106.75 as an estimate. λ0 is the wavelength of the mode which exits
the horizon at the pivot scale. For observations by the Planck experiment the pivot
scale is k0 = 0.05 Mpc−1 = 3.2 × 10−40 GeV, which gives λ0 = 1.96 × 1040 GeV−1.
Substituting these numbers into the expression for N (4.212) we get

N = 62.61− 1
4 ln(α) . (4.213)

We will use this to calculate the predicted number of e-folds at the pivot scale given
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each constraint on α, presenting the results in Section 4.7.

End of Slow-Roll Inflation

The end of slow-roll inflation corresponds to |η| = 1. From (4.82) we have that |η| = 1
corresponds to N = 1. In order to to check the validity of this inflation model it
is instructive to check the size of the ϵ parameter at the end of slow-roll inflation.
Using (4.81) at N = 1 we find that the value of ϵ at the end of slow-roll inflation for
each bound on α derived is

α = 1012 ⇒ ϵ= 1.84×10−3, (4.214)

α = 1020 ⇒ ϵ= 1.84×10−11, (4.215)

α = 1032 ⇒ ϵ= 1.84×10−23, (4.216)

and we have that ϵ << η consistently for each regime of α we consider. We therefore
have that the slow-roll treatment of the inflation model is consistent for all regimes
of α we consider.

4.6.5 Unitarity Violation and the Significance of the (∂σ)4

Term

As discussed in Section 3.2, unitarity violation is an ongoing issue in the field of
non-minimally coupled scalar field inflation, and is therefore worthy of discussion in
the context of this model. Here we examine the (∂µϕ)4 term in the inflaton action
(denoted I here)

I = α

4M4
pl

(∂µϕ∂µϕ)2

1+ 4αV (ϕ)
M4

pl

. (4.217)

This corresponds to a 2 → 2 scattering of particles. We express this in terms of the
canonically normalised scalar σ. Using the substitution (4.43), we find that

(∂µϕ∂µϕ)2 =
1+ 4αV (ϕ)

M4
pl

2

(∂µσ∂µσ)2 , (4.218)

which means that the (∂σ)4 term becomes

I = α

4M4
pl

1+ 4αV (ϕ)
M4
pl

(∂µσ∂µσ)2 . (4.219)
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Since we are studying the effects of this term in the inflationary regime, we expand
the canonical inflaton about its classical background

σ (x, t) = σ̄ (t)+ δσ (x, t) , (4.220)

where σ̄ corresponds to the constant classical background of the field and δσ are
the quantum fluctuations of the field about this background, corresponding to par-
ticles. Since the background can be regarded as varying slowly enough in time to
be constant during slow roll inflation, we can approximate ∂µσ = ∂µδσ, and write
the interaction term as

I = α

4M4
pl

(∂µδσ∂µδσ)2
1+

4αV
(
ϕ̄
)

M4
pl

 , (4.221)

where ϕ̄= ϕ(σ̄). This term describes the interaction of δσδσ → δσδσ, which we can
interpret as the scattering of inflaton particles during inflation.

In order to establish whether this interaction may cause any issues for unitarity
violation in the model, we must examine the amplitude of the process. Using the
Feynman rules for δσδσ → δσδσ scattering, we find that each derivative term in
momentum space contributes a four-momentum, ∂µ → kµ, and since these particles
are effectively massless during slow-roll we can write |k|2 = Ẽ2, where Ẽ is the
energy of the scattering particles calculated in the Einstein frame. Dimensionally,
we therefore have that the tree-level amplitude for δσδσ → δσδσ scattering is

|M| ≈ α

4
Ẽ4

M4
pl

1+
4αV

(
ϕ̄
)

M4
pl

 , (4.222)

where Ẽ corresponds to the energy scale of the perturbations of the inflaton during
slow roll.

This interaction violates unitarity when |M|≳ 1. This happens when the energy
of the interaction exceeds the unitarity cutoff of the model, Ẽ ≳ Λ̃, defined in the
Einstein frame. The unitarity cutoff is therefore given by

Λ̃ ≈
√

2Mpl

α
1
4

1+
4αV

(
ϕ̄
)

M4
pl

− 1
4

. (4.223)

We can write this in terms of the number of e-folds of inflation N . Substituting
ϕ(N) (4.74) into the Jordan frame potential V (ϕ) (4.50) gives

V
(
ϕ̄
)

= 2m2
ϕM

2
plN. (4.224)

Substituting this into Λ̃ and assuming 4αV (ϕ)/M4
pl >> 1 during inflation, the uni-
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tarity cutoff in the Einstein frame for δσδσ → δσδσ scattering is

Λ̃ =
M2
pl

√
α
(
2M2

plm
2
ϕN

) 1
4
. (4.225)

The minimum requirement for unitarity conservation in the context of this in-
teraction is that the energy scale of the quantum fluctuations does not exceed the
unitarity cutoff. During inflation we can say that the energy scale of the quantum
fluctuations are ∼ H̃ in the Einstein frame, so we can write this constraint as

H̃ ≲ Λ̃. (4.226)

Using the fact that H̃ =Mpl/
√

12α we can calculate the constraint

Mpl√
12α

≲
M2
pl

√
α
(
2M2

plm
2
ϕN

) 1
4

⇒

m2
ϕ

M2
pl

N ≲ 72. (4.227)

Since m2
ϕ/M

2
pl = 3.4 × 10−11 using (4.94), this constraint is easily satisfied for any

N in the range N ∼ O
(
1−1012

)
, and so for all α in this model this constraint is

easily satisfied. This means that as a tree-level estimate, unitarity is not violated in
non-minimally coupled R2 Palatini inflation with a ϕ2 potential for any regime of
α.

For interest we can also consider the unitarity cutoff for this interaction in the
present vacuum. We calculate this by setting 4αV (ϕ)/M4

pl = 0,(Ω = 1), which gives

Λ =
√

2Mpl

α
1
4

. (4.228)

This can be interpreted as the cutoff of the R2 Palatini inflation model with a
ϕ2 potential as an effective theory. In order for this model to be consistent with
unitarity, there must either be some new physics that enters at a ϕ particle scattering
energy below Λ, or the scattering must become non-perturbative but unitary at this
energy.

4.6.6 The Effect of the (∂σ)4 Term on Slow-Roll Inflation

Before we move on to examining the predictions of the R2 Palatini model with a ϕ2

potential, we will first confirm that the (∂σ)4 term is not significant during slow-roll
inflation, which we have assumed in our analysis. From (4.40), the Einstein frame
kinetic terms are:
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D = − 1
2Ω2∂µϕ∂

µϕ+ α

4Ω2M4
pl

(∂µϕ∂µϕ)2

= −1
2

1− 2α
4M4

pl

1+ 4αV
M4
pl

∂µσ∂µσ
∂µσ∂µσ. (4.229)

In the plateau limit this is

D = −1
2

1− 2α2V

M8
pl

∂µσ∂
µσ

∂µσ∂µσ. (4.230)

The classical field depends only on time, so the term in the brackets B = [...] is

B = 1+ 2α2V

M8
pl

σ̇2, (4.231)

where σ = σ (N) is given by (4.73). We can write

σ̇ = dσ

dN

dN

dt
, (4.232)

where

dσ

dN
=

M2
pl

2
√

2αmϕ

1
N
, (4.233)

and

dN

dt
= H̃ = Mpl√

12α
. (4.234)

We then have

2α2V

M8
pl

σ̇2 = ϕ2

8M2
pl

1
12N2 , (4.235)

and using ϕ2 = 4NM2
pl (4.74), the kinetic terms are

D = −1
2

[
1+ 1

24N

]
∂µσ∂

µσ. (4.236)

The (∂σ)4 term can therefore be neglected relative to the (∂σ)2 term in (4.40) during
slow-roll, as it will make a negligible contribution to the dynamics and does not need
to be factored into the calculation of the observables. It is however still important
to consider this term in relation to unitarity violation, and it may also be that the
(∂σ)4 interaction could become significant after inflation and alter the treatment of
reheating in the R2 quadratic Palatini inflation model.
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The condition (4.236) is also the condition for the derivative term in (4.41) to
be negligible during inflation as this is the condition for the quartic terms in ∂µϕ to
be negligible in the action (4.40).

4.7 Observational Compatibility: A first pass

At this point we will examine the predictions of the R2 quadratic inflation model
in the different regimes of α so far, before we consider possible reheating channels.
Table 4.7 shows the values of the scalar spectral index, the tensor-to-scalar ratio,
the number of e-folds corresponding to pivot scale horizon exit, the estimate of
instantaneous reheating temperature, the value of the field, the Hubble parameter
in the Einstein frame, the unitarity cutoff in the Einstein frame, calculated using
the pivot scale k = 0.05 Mpc−1 (in accordance with the 2018 Planck results [12]),
as well as the effective theory cutoff in the present vacuum, for each regime of α we
have examined.

α ns r N TRMAX
/ GeV σ (N)/ GeV H̃/ GeV Λ̃/ GeV Λ/ GeV

1012 0.9641 9.5×10−6 55.7 7.0×1014 1.5×1018 6.9×1011 3.1×1014 3.4×1015

1020 0.9609 1.1×10−13 51.1 7.0×1012 4.3×1014 6.9×107 3.1×1010 3.4×1013

1032 0.9548 1.5×10−25 44.2 7.0×109 8.0×108 70.0 3.3×104 3.4×1010

Table 4.1: Table showing the scalar spectral index, ns, the tensor-to-scalar ratio, r,
the number of e-folds corresponding to pivot scale horizon exit, N , the temperature
for instantaneous reheating, TRMAX

, the value of the inflaton at the pivot scale,
σ (N), the Hubble parameter in the Einstein frame, H̃, the unitarity cutoff scale in
the Einstein frame, Λ̃, and the unitarity cutoff in the present vacuum, Λ, for the
different regimes of α derived in Sections 4.5 - 4.6.

111



0.945

0.95

0.955

0.96

0.965

0.97

0.975

10 15 20 25 30 35 40

Figure 4.2: Plot showing the scalar spectral index ns as a function of α. The thick
central line shows the 2018 Planck result for ns and the dotted lines indicate the
1−σ and 2−σ bounds on the Planck result.

From (4.213), we have that the number of e-folds at the pivot scale is a function
of α, and that for each α, the pivot scale N is different, as shown in Table 4.7.
This means that for each pivot scale N (α), by (4.94) the pivot scale inflaton mass
will technically also be modified for each α. For the values of α considered in this
work we find that the modification is very small, such that the inflaton mass is
mϕ ≃ 1013 GeV for all values of N (α) considered here. For this reason, we use the
N = 60 pivot scale mass estimate mϕ = 1.4 × 1013 GeV when calculating all mass-
dependent quantities listed in Table 4.7, with the understanding that if the pivot
scale masses were used for each α, these quantities would be modified within their
present order of magnitude.

Using the results from the Planck satellite [36], the scalar spectral index is given
by ns = 0.9649 ± 0.0042 (1 −σ), assuming ΛCDM and no running of the spectral
index. We can see from Table 4.7, and from Figure 4.2, that the scalar spectral
index in the case of a sub-Planckian inflaton, α ≳ 1012, and for Planck-suppressed
potential corrections with a broken shift-symmetry, α≳ 1020, are in good agreement
with the Planck result. The case of Planck-suppressed potential corrections without
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a shift symmetry, α≳ 1032 sits slightly outside of the 2−σ lower bound on ns (ns >
0.9565). An additional correction to the potential could bring the α≳ 1032 case into
agreement with ns observations. For example, it is possible that quantum corrections
resulting from couplings to Standard Model particles arising from reheating could
serve this purpose, and we will explore the possibility of this in the next section.
Alternatively, the assumption k ≈ 1 could be an overestimate since k ≈ 1/6! ≈ 10−3

is expected if the strength of the σ6 interactions corresponding to the Feynman rule
is ≈ 1/M2

pl. We find that the bound on α is then modified to α ≳ 1029, and the
scalar spectral index is within the 2−σ Planck bound on ns, and it is also possible
that Planck-suppressed corrections at α≈ 1032 could themselves modify ns.

The R2 quadratic Palatini inflation model predicts a highly suppressed tensor-to-
scalar ratio, with r≲ 10−5 for α≳ 1012, all of which are below the observational limit
of r∼ 10−3 in the next generation of CMB experiments [38, 39]. This can distinguish
Palatini ϕ2 inflation from metric Higgs Inflation, which predicts r ≈ 0.004 [70].

The maximum possible reheating temperatures range from 109 −1014 GeV, which
are quite conventional. In practice, the reheating temperatures could be lower than
this if we consider reheating mechanisms beyond the instantaneous approximation,
and we explore this in the next Sections 4.8 - 4.10.

The Hubble parameter predictions are quite low, although the minimum condi-
tion for unitarity conservation (4.227) is satisfied for each α regime we consider. A
stronger condition would be that the field at the pivot scale be less than the unitarity
cutoff, σ(N)< Λ̃, in order that new physics corrections due to a unitarity conserving
completion can be neglected, however this is not satisfied in this model. Therefore,
we need the potential corrections due to new physics at Λ̃ to be suppressed, either
because the new physics does not introduce corrections to the inflaton potential, or
because unitarity is conserved non-perturbatively at energies greater than Λ̃, thereby
not requiring any new physics.

4.8 Specific Reheating Mechanisms

So far we have considered R2 quadratic Palatini inflation in the context of instan-
taneous reheating, which means that the inflaton condensate immediately decays to
radiation at the end of (slow-roll) inflation. This is a useful case to consider as it
gives an upper estimate on the reheating temperature. However, if we are interested
in considering R2 quadratic Palatini inflation in the broader context of cosmology
and particle physics, it is useful to consider some possible reheating mechanisms
and how the inclusion of these interactions of other particles with the inflaton could
affect the predictions of the model.

With the inclusion of a defined reheating channel come quantum corrections to
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the inflaton potential, and in turn these can alter the predicted value of the scalar
spectral index and the reheating temperature. These quantum corrections come in
the form of Coleman-Weinberg (CW) corrections (Section 3.3)

∆VCW (ϕ) =
∑
i

±m4
i (ϕ)

64π2 ln
(
m2
i (ϕ)
µ2

)
, (4.237)

which gives the 1-loop CW effective potential. The sum i is over the number of parti-
cle degrees of freedom, and the plus (minus) sign corresponds to bosonic (fermionic)
degrees of freedom. mi are the masses of these degrees of freedom and µ is the
chosen renormalisation scale for each mass scale.

The possible reheating channels we consider in this model are reheating via decay
to right handed (RH) neutrinos,

VN (ϕ) = λϕN
2 ϕN̄ c

RNR+h.c., (4.238)

and reheating via the Higgs portal coupling

VH (ϕ) = λϕH
2 ϕ2 |H|2 . (4.239)

The inflaton effective potential in the Jordan frame can be written as

VTOT (ϕ) = V (ϕ)+∆VCW (ϕ) , (4.240)

where ∆VCW (ϕ) is the correction corresponding to the chosen reheating mechanism:
either decay to RH neutrinos or annihilation through the Higgs portal coupling. Up
until this point we have done all of the inflationary calculations in the Einstein frame,
but here we calculate the CW corrections and the effective potential in the Jordan
frame. We can use the CW corrections due to the reheating channels to calculate
the shift in the scalar spectral index, ns, from these corrections in a similar manner
to the shift in the spectral index due to the Planck-suppressed corrections in Section
4.6. To do this, we will use the equivalence between ns computed with the Jordan
frame potential in terms of η̄ and ϵ̄, and ns computed in the Einstein frame with η

and ϵ, outlined in Section 4.4.1. The spectral index in the Jordan frame is given by

ns = 1+2η̄−6ϵ̄, (4.241)

so we must first consider the corrections to the slow-roll parameters from the Jordan
frame effective potential. η̄ is given by

η̄ =M2
pl
V ′′
TOT

VTOT
=M2

pl
V ′′ +∆V ′′

CW

V +∆VCW
, (4.242)

where VTOT (ϕ) is the Jordan frame potential. Taking out a factor of V ′′/V gives
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η̄ =M2
pl
V ′′

V

(
1+ ∆V ′′

CW
V ′′

)
(
1+ ∆VCW

V

) . (4.243)

Assume that |∆VCW |/V << 1, and |∆V ′′
CW /V

′′|<< 1. In this case, we then expand

(
1+ ∆VCW

V

)−1
≈ 1− ∆VCW

V
, (4.244)

⇒ η̄ =M2
pl
V ′′

V

(
1+ ∆V ′′

CW

V ′′

)(
1− ∆VCW

V

)
. (4.245)

To O (∆), η̄ is then

η̄ =M2
pl
V ′′

V

[
1− ∆VCW

V
+ ∆V ′′

CW

V ′′

]
. (4.246)

We can write this as

η̄TOT = η̄+∆η̄, (4.247)

and thus define the shift on the η̄ parameter as

∆η̄ =M2
pl
V ′′

V

[
∆V ′′

CW

V ′′ − ∆VCW
V

]
= η

[
∆V ′′

CW

V ′′ − ∆VCW
V

]
. (4.248)

The ϵ̄ parameter can be treated similarly

ϵ̄=
M2
pl

2
(V ′ +∆V ′

CW )2

(V +∆VCW )2 , (4.249)

⇒ ϵ̄=
M2
pl

2

(
V ′

V

)2
(

1+ ∆V ′
CW
V ′

)2

(
1+ ∆VCW

V

)2 . (4.250)

Both the numerator and the denominator can be expanded as follows, using
|∆VCW |/V << 1 and |∆V ′

CW /V
′|<< 1

(
1+ ∆VCW

V

)−2
≈ 1− 2∆VCW

V
, (4.251)

(
1+ ∆V ′

CW

V ′

)2
≈ 1+ 2∆V ′

CW

V ′ , (4.252)

so ϵ̄ can be written as

ϵ̄≈
M2
pl

2

(
V ′

V

)2(
1+ 2∆V ′

CW

V ′

)(
1− 2∆VCW

V

)
. (4.253)
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Expanded to O (∆) this is

ϵ̄=
M2
pl

2

(
V ′

V

)2 [
1− 2∆VCW

V
+ 2∆V ′

CW

V ′

]
= ϵ̄+∆ϵ̄, (4.254)

with the ϵ̄-shift given by

∆ϵ=
M2
pl

2

(
V ′

V

)2 [2∆V ′
CW

V ′ − 2∆VCW
V

]
= ϵ

(
2∆V ′

CW

V ′ − 2∆VCW
V

)
. (4.255)

Using these, we can write that the shift on the scalar spectral index is then

∆ns = 2∆η̄−6∆ϵ̄, (4.256)

⇒ ∆ns = 2η̄
(

∆V ′′
CW

V ′′ − ∆VCW
V

)
−6ϵ̄

(
2∆V ′

CW

V ′ − 2∆VCW
V

)
. (4.257)

In the Jordan frame we have

V = 1
2m

2
ϕϕ

2, V ′ =m2
ϕϕ, V

′′ =m2
ϕ. (4.258)

The bare slow-roll parameters are then

η̄ =
2M2

pl

ϕ2 , ϵ̄=
2M2

pl

ϕ2 . (4.259)

Using the fact that ϕ(N) = 2
√
NMpl, we have that

ϵ̄= η̄ = 1
2N . (4.260)

The ns-shift (4.257) is thus

∆ns = 2
2N

(
∆V ′′

CW

V ′′ − ∆VCW
V

)
− 6

2N

(
2∆V ′

CW

V ′ − 2∆VCW
V

)
. (4.261)

Fully expanded, the shift on the scalar spectral index to leading order is therefore

∆ns = 1
N

[
∆V ′′

CW

V ′′ − 6∆V ′
CW

V ′ + 5∆VCW
V

]
, (4.262)

and we are now ready to calculate the shift in the spectral index in the case of a
specific reheating channel in R2 quadratic Palatini inflation.
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4.8.1 Reheating via Decay to Right-Handed Neutrinos

Firstly we want to examine the shift in the scalar spectral index which would occur
if the R2 quadratic Palatini inflation model were to reheat via the decay of the
inflaton to RH neutrinos. The general 1-loop CW corrections are given by

∆VCW (ϕ) =
∑
i

±m4
i (ϕ)

64π2 ln
(
m2
i (ϕ)
µ2

)
. (4.263)

The inflaton coupling to RH neutrinos contributes two fermionic degrees of freedom
to the 1-loop CW corrections, which appear in the effective potential as

∆VCWN
= − m4

N

32π2 ln
(
m2
N

µ2

)
. (4.264)

Examining the effective potential RH neutrino coupling term (4.238), we can define

mN = λϕNϕ, (4.265)

and this can be substituted into ∆VCWN
(4.264) to give

∆VCWN
= −

λ4
ϕNϕ

4

32π2 ln
λ2

ϕNϕ
2

µ2

 . (4.266)

The first and second derivatives with respect to ϕ are

∆V ′
CWN

= −
4λ4

ϕNϕ
3

32π2 ln
λ2

ϕNϕ
2

µ2

−
2λ4

ϕNϕ
3

32π2 , (4.267)

∆V ′′
CWN

= −
12λ4

ϕNϕ
2

32π2 ln
λ2

ϕNϕ
2

µ2

−
14λ4

ϕNϕ
2

32π2 . (4.268)

Substituting (4.264), (4.267) and (4.268) into the expression for the ns-shift (4.262)
we have

∆nsN = −
λ4
ϕNϕ

2

16π2m2
ϕN

1− ln
λ2

ϕNϕ
2

µ2

 . (4.269)

Using (4.74), ϕ2 = 4NM2
pl, ∆nsN can be rewritten as

∆nsN = −
λ4
ϕNM

2
pl

4π2m2
ϕ

1− ln
4λ2

ϕNNM
2
pl

µ2

 . (4.270)

Given that we know the shift on the scalar spectral index due to the quantum
corrections to the potential from the decay of the inflaton to RH neutrinos, we can
use this to constrain the size of the coupling of the inflaton to RH neutrinos, λϕN .
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4.8.2 Reheating via the Higgs Portal

We now consider the treatment of reheating in the R2 quadratic Palatini inflation
via a Higgs portal coupling. The Higgs portal coupling to the inflaton contributes
four bosonic degrees of freedom to the 1-loop CW effective potential, and these
corrections are given by

∆VCWH
= m4

H

16π2 ln
(
m2
H

µ2

)
. (4.271)

Examining the portal coupling term in the inflaton potential (4.239), we can define

m2
H = λϕHϕ

2, (4.272)

and rewrite ∆VCWH
(4.271) as

∆VCWH
=
λ2
ϕHϕ

4

16π2 ln
(
λϕHϕ

2

µ2

)
. (4.273)

The first and second derivatives of ∆VCWH
are given by

∆V ′
CWH

=
4λ2

ϕHϕ
3

16π2 ln
(
λϕHϕ

2

µ2

)
+

2λ2
ϕHϕ

3

16π2 , (4.274)

∆V ′′
CWH

= 12λϕHϕ2

16π2 ln
(
λϕHϕ

2

µ2

)
+

14λ2
ϕHϕ

2

16π2 . (4.275)

Substituting (4.273), (4.274) and (4.275) into the expression for the ns-shift
(4.262) we have

∆nsH =
λ2
ϕHϕ

2

8π2m2
ϕN

[
1− ln

(
λϕHϕ

2

µ2

)]
. (4.276)

Replacing ϕ by ϕ(N) (4.74) we obtain

∆nsH =
λ2
ϕHM

2
pl

2π2m2
ϕ

1− ln
4λϕHNM2

pl

µ2

 . (4.277)

We are now able to examine the constraints on the size of the coupling of the Higgs
to the inflaton in a similar way to its coupling to RH neutrinos.

4.8.3 Choice of the Renormalisation Scale µ

Before we proceed with calculating the effects of these reheating interactions on
the predictions of the model, we must eliminate the logarithms in each of the CW
corrections ∆VCW . In order to do so we will choose an appropriate renormalisation
scale µ, such that the logarithmic terms in each case must be equal to zero.
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In each reheating scenario, we therefore choose the renormalisation scale to be
equal to the effective mass parameter of the particle interacting with the inflaton,
i.e.

µ2
H ≡m2

H = λϕHϕ
2 ⇒ ln

(
λϕHϕ

2

µ2
H

)
= 0, (4.278)

for the case of the Higgs portal coupling and

µ2
N ≡m2

N = λ2
ϕNϕ

2 ⇒ ln
λ2

ϕNϕ
2

µ2
N

= 0, (4.279)

for the case of a coupling to RH neutrinos, where in both cases µ is defined at
ϕ = ϕ(N) with N being the pivot scale. mϕ is also defined as its pivot scale value
(4.94) in the next stage of these calculations. Setting µ2

i =m2
i in each scenario gives

the respective ∆nsi to be

∆nsH =
λ2
ϕHM

2
pl

2π2m2
ϕ

, (4.280)

∆nsN = −
λ4
ϕNM

2
pl

4π2m2
ϕ

. (4.281)

4.8.4 Constraints on λϕN and λϕH from the ns-shift

We will now calculate the constraints on the couplings between the inflaton and the
Higgs and RH neutrinos arising from the requirement that the shift of the scalar
spectral index resulting from the quantum corrections due to these couplings not be
too large, as to not spoil the predictions of the model. Using |∆ns| < 0.001 as the
upper bound on the shift of the spectral index, we can write

∣∣∣∣∣∣λ
2
ϕHM

2
pl

2π2m2
ϕ

∣∣∣∣∣∣< 0.001, (4.282)

∣∣∣∣∣∣−λ4
ϕNM

2
pl

4π2m2
ϕ

∣∣∣∣∣∣< 0.001. (4.283)

These can be rearranged to give the following constraints on the couplings

λ2
ϕH <

0.001×2π2m2
ϕ

M2
pl

, (4.284)

λ4
ϕN <

0.001×4π2m2
ϕ

M2
pl

. (4.285)
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Using mϕ = 1.4×1013 GeV as an estimate, the upper bounds on the couplings are

λϕH < 8.2×10−7, (4.286)

λϕN < 1.1×10−3. (4.287)

4.9 Reheating via Higgs Portal Annihilation and
Fragmentation of the Inflationary Condensate

Reheating via the Higgs portal involves the process of the annihilation of two ϕ

scalars to two Higgs particles. There are two main possibilities for how reheating can
proceed through this channel: rapid preheating and fragmentation of the inflationary
condensate.

Rapid preheating corresponds to the case where the condensate scalars annihilate
to relativistic Higgs particles with momentum p=mϕ [71] [72]. This causes further
annihilation events to be Bose-enhanced, and preheating can then proceed very
quickly. This mechanism can only occur if the inflaton condensate does not fragment,
and is only viable if the Bose-enhancement is strong and the condensate annihilates
very rapidly.

Condensate fragmentation occurs when the inflaton condensate breaks apart into
a number of discrete clumps of scalars. This phenomenon can lead to the formation
of oscillons or other breather states in the case of a real inflaton [73], [74],[75], and
can lead to the formation of non-topological solitons (NTS) such as Q-balls if the
scalar field is complex and carries a conserved Noether charge (a discussion of Q-balls
is presented in Chapter 6). We will not speculate too much on the precise nature of
what exactly these condensate fragments are here, beyond the fact that the inflaton
field in this case is real. It is however common practice in inflationary cosmology
that the objects formed from the fragmentation of a real inflaton condensate are
referred to as oscillons, whether or not the corresponding field solution is an oscillon
solution. We adopt this convention here, with the statement that the nature of
these objects is an ongoing area of study in cosmology and a possibility for future
investigation in the case of quadratic R2 Palatini inflation specifically.

An inflaton condensate will fragment when there is sufficient growth of the in-
flaton perturbations within the condensate, and if a field solution corresponding to
the objects the condensate will fragment into is present in the theory1. In this case,

1This is by no means a complete checklist, condensate fragmentation is a non-trivial and highly
non-linear process, which is an active area of study in inflationary cosmology. This is a simplified
picture for the purpose of discussion here.
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supposing the theory admits an oscillon solution, the condensate will fragment into
oscillons of typical diameter ∼ m−1

ϕ [76]. This means that the inflaton scalars will
be bound into objects in their zero-momentum state, and upon annihilation within
the oscillon the Higgs particles created will quickly escape from the volume of the
oscillon. The annihilation cannot, therefore, be Bose-enhanced if the condensate
fragments, and preheating cannot proceed as it would if the inflaton condensate
were to remain intact.

Another consequence of fragmentation is that, assuming the oscillons are in
a stable (or at least metastable) state while the annihilation is occurring and not
decaying themselves, the number density of the scalars, nϕ, within the volume of the
oscillons is constant [73]. This is in contrast to the case of a coherent condensate,
where the number density nϕ = ρϕ/mϕ, decays away as matter with expansion,
nϕ ∝ 1/a3. In order for the annihilation process to reheat the Universe, it must
occur faster than the rate of expansion, a condition which can be expressed by

Γ ≳ H̃, (4.288)

which will eventually be satisfied if the scalars are bound up in oscillons (fragmenta-
tion occurs), as the Hubble rate decreases with expansion while the annihilation rate
does not. On the other hand, in the case of a coherent condensate (no fragmentation)
we have that

ΓϕH ∝ nϕ ∝ 1
a3 , (4.289)

while the Hubble rate changes with expansion as

H̃ ∝ ρ
1
2
ϕ ∝ 1

a
3
2
. (4.290)

This means that it is not possible for the annihilation rate to exceed the Hubble
rate, unless it does so immediately after inflation ends, as it will decrease faster with
expansion throughout. As a result, we find that in our analysis of R2 quadratic Pala-
tini inflation, annihilation via the Higgs portal is not a viable reheating mechanism
unless the condensate undergoes fragmentation, or proceeds fast enough to reheat
immediately.

In order to provide a revised estimate of the reheating temperature given anni-
hilation to Higgs particles as the reheating mechanism, we must check whether or
not the condensate undergoes fragmentation. There is a simple way to check this,
and the results used here were first presented in [77] and built upon in [78].

We remark that this check provides a general estimate of fragmentation and does
not rely on a particular underlying mechanism. It is possible in R2 quadratic Palatini
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inflation that the condensate could fragment as a result of tachyonic preheating
[79], since inflation ends while the inflaton is still on the inflationary plateau and
begins rapidly rolling towards the minimum of its potential. This would result
in faster fragmentation than this method estimates for, since we assume here that
fragmentation will occur after the formation of the coherently oscillating condensate.
This will mean that the bound obtained on α using this method will be a sufficient
condition for fragmentation in this model.

The renormalisable potential at small ϕ in a general inflation model with a
ϕ→ −ϕ symmetry will have the form

V (ϕ) = 1
2m

2
ϕϕ

2 −Aϕ4, (4.291)

where the potential is dominated by the ϕ2 term. At ϕ< ϕ0, we are in the quadratic
dominated regime of the potential where σ ≈ ϕ and the Einstein frame is given by

VE = V (ϕ)(
1+ 4αV (ϕ)

M4
pl

) ≈ V (ϕ)
1− 4αV (ϕ)

M4
pl

 , (4.292)

VE ≈ V (ϕ)− 4αV (ϕ)2

M4
pl

= 1
2m

2
ϕϕ

2 −
αm4

ϕϕ
4

M4
pl

. (4.293)

We therefore have that

A=
αm4

ϕ

M4
pl

, (4.294)

comparing (4.293) to (4.291). From [77], [78] we have that the sufficient condition
for the fragmentation of the condensate is

A>
100
rv

m2
ϕ

M2
pl

, (4.295)

where rv is a number less than one which corresponds to the ratio of the quartic
part of the potential to the quadratic part at the point where the oscillations begin.
Since we are assuming that fragmentation occurs when the quadratic part of the
potential dominates we can set rv = 0.1, and this gives

αm2
ϕ

M2
pl

> 1000. (4.296)

Using mϕ = 1.4×1013 GeV (4.94), this gives

α > 2.9×1013, (4.297)
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as the sufficient condition for fragmentation in R2 quadratic Palatini inflation. This
is essentially the same as the bound on α which was later derived in [79] for fragmen-
tation from tachyonic preheating in Palatini R2 inflation. This is strongly satisfied
for the larger values of α from Planck-suppressed potential corrections but not for
α= 1012, which is our minimal constraint that the inflaton field σ be sub-Planckian.
The cases where there are Planck-suppressed potential corrections strongly favour
fragmentation of the inflaton condensate.

If the fragmentation is rapid, then we can approximate that all of the energy
density from the inflaton potential is transferred to the oscillons such that

ρϕ ≈ 3H̃2M2
pl ≈ VE ≈

M4
pl

4α . (4.298)

The number density of ϕ scalars in the oscillons is then

nϕ = ρϕ
mϕ

=
M4
pl

4αmϕ
, (4.299)

which we take to be constant. The zero momentum scalars annihilate to the real
Higgs scalars, ϕϕ→ hihi (i= 1, ...,4), with a cross section times relative velocity of
[80]

< σϕHvrel >=
λ2
ϕH

16πm2
ϕ

, (4.300)

giving the perturbative annihilation rate to be

ΓϕH = nϕ < σϕHvrel >=
λ2
ϕHM

4
pl

64παm3
ϕ

. (4.301)

The reheating temperature is then obtained by

ΓϕH = H̃ = kTT
2
R

Mpl
, k2

T = π2g (T )
90 , (4.302)

with the assumption that all of the energy density bound up in the oscillons goes into
the relativistic Higgs particles upon annihilation. Taking g (T ) ≈ 100 gives kT = 3.3,
and we can write the reheating temperature as

TR = 3.46×1028λϕH

 1032

αm3
ϕ


1
2

GeV, (4.303)

or by setting mϕ = 1.4×1013 GeV,

TR ≤ 6.61×108λϕH

(
1032

α

) 1
2

GeV. (4.304)
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Using (4.304) we find, with λϕH < 8.2 × 10−7 from (4.286), an upper bound on the
reheating temperature from decay of the inflaton via the Higgs portal is

TR ≤ 541.6
(

1032

α

) 1
2

GeV. (4.305)

The upper bounds on TR for the cases of interest are then

TR ≤ 5.42×1012 GeV, α≃ 1012; (4.306)

TR ≤ 5.42×108 GeV, α≃ 1020; (4.307)

TR ≤ 541.6 GeV α≃ 1032. (4.308)

Successful reheating can therefore proceed via the Higgs portal annihilation channel,
assuming that fragmentation occurs. All the reheating temperatures predicted in
this case are lower than those for the case of instantaneous reheating described in
Section 4.6.4 and presented in Section 4.7. In practice, a lower reheating temperature
would likely result in a lower value of the scalar spectral index, ns, in each case.
Given that the value of the ns for the case of α≳ 1032 is already in tension with the
2 −σ lower bound from the Planck results [36], this would suggest that reheating
via annihilation of inflaton scalars to Higgs particles is observationally disfavoured
in this case.

These estimates rely on the assumption that the condensate fragments are stable,
or at least metastable throughout the duration of reheating, such that the number
density of the inflaton scalars within the oscillons in constant. In practice oscillons
may decay or disperse, leading to a decrease in nϕ over the lifetime of the oscillon,
which would reduce the annihilation rate and so decrease TR. The assumption that
the oscillons are stable therefore favours the annihilation process, and means that
we can treat the calculated reheating temperatures for this reheating channel in
each regime of α as being the maximum estimate for each case given reheating via
the Higgs portal. There is also the possibility that after slow roll inflation, during
reheating, the (∂σ)4 term may become significant and scattering of the inflaton
scalars may contribute to the post-inflation dynamics. Although we do not consider
this case here, it is possible that these interactions could become significant and
could modify the fragmentation analysis.

The inflaton mass in this model in the present electroweak vacuum is O
(
1013 GeV

)
,

and as such there are no direct particle physics constraints on the Higgs portal cou-
pling to the inflaton which are useful in this model. For scalars with a mass less
than half of the Higgs boson mass, it is possible to pair produce such scalars through

124



Higgs boson decay, which can provide a general constraint on the portal coupling
of the Higgs to an inflaton in the case of light scalars. The strongest constraint on
this interaction comes from the branching ratio of Higgs decay to invisible parti-
cles. The strongest present LHC bounds require that the portal coupling to such
scalars is less than approximately 0.05 (see Figure 2 of [81]), which is larger than the
upper bound calculated for the Higgs-inflaton coupling in the Palatini ϕ2R2 model
using the shift on the scalar spectral index, λϕH <O

(
10−7

)
. This is a small value,

which is not unusual when coupling the inflaton to Standard Model particles since
weakly coupling the inflaton to the Standard Model naturally protects the inflaton
potential from quantum corrections which could affect the ability of the model to
inflate successfully. While it may be possible, therefore, to constrain the reheating
via the Higgs portal of a model with a light inflaton using collider bounds on the
Higgs-portal coupling, it is not possible in this model since the inflaton mass is too
large for any present particle physics constraints to be meaningful.

4.10 Reheating via Decay to Right-Handed Neu-
trinos

We will now consider results from the decay of the inflaton to right-handed neutrinos.
Assuming the mass of the neutrinos is small compared to the inflaton mass, the decay
rate of the scalars to right-handed neutrinos is given by [82]

Γϕ→NN =
λ2
ϕNmϕ

16π . (4.309)

In order for reheating to proceed instantaneously via this channel we require that

Γϕ→NN > H̃ ⇒
λ2
ϕNmϕ

16π >
Mpl√
12α

. (4.310)

This gives the constraint on λϕN

λϕN >

64π2M2
pl

3m2
ϕα


1
4

, (4.311)

which gives

λϕN >
1
α

1
4

(
3.48×1019 GeV

mϕ

)
. (4.312)

From considering the shift on the scalar spectral index due to the presence of the
right-handed neutrino interaction term in the inflaton potential we have that λϕN <

1.1 × 10−3 in order to not significantly alter the observational predictions of the
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Palatini R2 quadratic inflation model. This is useful here as it allows us to examine
for which values of α reheating through decay to right-handed neutrinos can proceed.
From (4.312) we find

α = 1012, λϕN > 1.58; (4.313)

α = 1020, λϕN > 0.016; (4.314)

α = 1032 λϕN > 1.6×10−5. (4.315)

using (4.94) as the mass estimate of the inflaton. It is clear from this that only
the case of α = 1032, corresponding to R2 quadratic Palatini inflation with general
Planck-suppressed potential corrections, can instantaneously reheat via the decay
to right-handed neutrinos without introducing corrections to the potential too large
to maintain the prediction of ns.

If the decay were not instantaneous, then reheating will proceed at a lower re-
heating temperature, and a consequently lower value of the scalar spectral index.
As long as α is small compared to 1032 this is fine, as for these smaller values of α
the scalar spectral index is still well within the 2−σ bounds from the results of the
Planck satellite (2018). Reheating via decay to RH neutrinos at a lower tempera-
ture is therefore possible for the case of sub-Planckian inflaton, requiring α ≥ 1012,
and Planck-suppressed corrections with a broken shift symmetry, requiring α≥ 1020.
It would however rule out the case of R2 quadratic Palatini inflation with general
Planck-suppressed potential corrections observationally, as for α > 1032, the scalar
spectral index is already on the 2−σ boundary of the Planck bounds in the case of
instantaneous reheating.

4.11 Summary

In this chapter we have presented an analysis of the R2 Palatini inflation model
with a simple ϕ2 Jordan frame potential. We derived three different constraints on
the α parameter, depending upon the form of the quantum gravity corrections. We
find that in order for the canonical inflaton field to be sub-Planckian, we require
that α ≳ 1012; if there are Planck-suppressed potential corrections arising from a
quantum gravity completion with an approximate shift symmetry then we require
α ≳ 1020, and if there are general Planck-suppressed potential corrections arising
from a quantum gravity completion then we require α ≳ 1032. The constraints
arising from the cases where there are Planck-suppressed potential corrections were
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derived using the fact that in order for the model to maintain good agreement
with the observations of the inflationary observables, these potential corrections
must not cause a shift in the η parameter larger than 0.001. These values of α
are very large, however it is typical for R2 models to require large values of the
dimensionless coupling in order to inflate successfully. Conventional Starobinsky-
type models typically require α ≈ 1010 [54], and α ≳ 108 for R2 quadratic Palatini
inflation to occur at all [57].

The large coefficient on the R2 term in the gravitational action raises the question
of the UV-compatibility of the model in the case of higher order Rn,n > 2 terms, if
the gravitational action contained some function F (R) expanded as a Taylor series
in the Ricci scalar for example, or if higher order in R terms were to arise due to
quantum corrections to the model. If the first case applies, and we are allowing the
coefficient of the R2 - presumably a low-order - term to be very large then we are
opening the model to the possibility that there could be higher-order R terms in
the action with comparably large coefficients - rendering them non-negligible, and
introducing the possibility of an infinite series of R terms with large coefficients
in the gravitational action. On a superficial level, any additional higher-order R
terms have the potential to spoil the predictions of the inflation2, and an infinite
series of non-negligible Rn,n > 2 terms would render the model UV-incompatible
and therefore not useful as a gravity theory. While it is possible that there could be
higher order R terms present in a model like this, either from a series expansion in
the underlying gravity theory or arising due to quantum corrections, the model we
consider in this work is defined as an Einstein-Hilbert plus αR2 gravitational action,
and we find that the model can produce successful inflation in this framework for
certain values of the α parameter.

We initially considered the R2 quadratic Palatini model in the case of instanta-
neous reheating, and we use this as an estimate on the upper bound of the reheating
temperature for the model. The instantaneous reheating temperature is in the range
109 −1014 GeV for the three constraints of α we consider, and in all cases the model
reheats to a temperature sufficient for Big Bang Nucleosynthesis and common mod-
els of baryogenesis. However, the reheating temperature decreases as α increases,
which also means that there are fewer e-folds of expansion after inflation as α gets
larger, which also means a decrease in scalar spectral index ns.

The prediction of the scalar spectral index in the cases of a sub-Planckian in-
flaton, α ≳ 1012, and Planck-suppressed potential corrections in the presence of an
approximate shift symmetry, α ≳ 1020, are in agreement with the observations of

2see e.g. [83] for a recent study of the effects of these terms in the Jordan frame, the effects
in the Einstein frame would depend on the transformation used to recast the Rn terms and how
these would manifest in the inflaton sector of the action.
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the scalar spectral index from the 2018 Planck results to within 1 −σ [36], while
the ns prediction for the case of general Planck-suppressed potential corrections in
a completion of quantum gravity, α ≳ 1032, sits below but very close to the 2 −σ

bound on ns from the 2018 Planck results. In order to bring the model into agree-
ment with the observed value of ns, an additional small correction would need to be
added to the potential in order to raise the predicted value of ns into the observa-
tional bounds, or a smaller coefficient of the non-renormalisable Planck-suppressed
correction would be needed. It is possible that the quantum corrections arising from
the interactions with particles during reheating can serve this purpose. Neverthe-
less, if the model is consistent with Planck-suppressed corrections with no additional
symmetry suppression, then we expect ns to be close to the 2−σ lower bound.

The R2 quadratic Palatini inflation model predicts a highly suppressed tensor-
to-scalar ratio r∼ 10−25 −10−6 which is a general prediction of R2 Palatini inflation.
All of these predictions for all α in this study are below the observational limit of
r ∼ 10−3 in the next generation of CMB experiments [38, 39].

We also investigated the tree level unitarity in the model and found that in
each constraint of α, the minimum requirement for unitarity conservation, H̃ < Λ̃
is satisfied in every case, although the stronger constraint of σ < Λ̃ is not. Either
the introduction of new physics at a scale before or at the unitarity cutoff Λ̃ which
does not introduce non-renormalisable corrections to the potential at σ > Λ̃, or
interactions that are non-perturbative but unitary at scales above Λ̃ and do not
modify the potential at σ > Λ̃, would be necessary to satisfy this constraint.

We considered two specific reheating mechanisms: reheating via annihilation of
inflaton scalars to Higgs bosons, and reheating via decay of inflaton scalars to right-
handed neutrinos. We use the constraint on the η-shift in order to constrain the
size of the Coleman-Weinberg corrections to the potential which arise as a result of
the reheating interactions, and in doing so we calculate the upper bounds on the
couplings of these interactions. We find that λϕH < 8.2×10−7 and λϕN < 1.1×10−3.

We find that the inflaton condensate is likely to fragment in this model, either
after the condensate has begun coherent oscillations, or earlier if tachyonic preheat-
ing occurs, provided that α > 2.9 × 1013. Fragmentation can therefore occur in the
model in the presence of Planck-suppressed potential corrections from a quantum
gravity completion, but may not do so if we consider a purely sub-Planckian inflaton.

In the case of annihilation via the Higgs portal, unless the annihilation proceeds
very quickly there is unlikely to be preheating in this scenario, and the reheating will
be slower. This results in a lower reheating temperature than in the case of instanta-
neous reheating, TR = 102 −1012 GeV, where TR ∼ 102 GeV corresponds to α≈ 1032.
This very low reheating temperature will likely result in a very low value of the scalar
spectral index, and so it appears that the case of general Planck-suppressed poten-
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tial corrections from a quantum gravity completion is observationally disfavoured
for reheating via the Higgs portal.

For reheating through the decay to right-handed neutrinos, we use the fact that
in order to reheat the Universe instantaneously we must have ΓϕNN > H̃ at the end
of inflation to derive a lower bound on the coupling of the inflaton to right-handed
neutrinos, λϕN . We then compare this for each α regime in order to determine a
range for λϕN which successfully reheats the model without causing an unaccept-
ably large shift in the scalar spectral index. We find that instantaneous reheating
via decay to right-handed neutrinos disfavours α ≈ 1012,1020. The model cannot
reheat instantaneously through this channel for these values of α without causing
an unacceptably large ns-shift. The case of general Planck-suppressed potential
corrections with larger values of α can reheat instantaneously through this channel
without creating too large of an ns-shift. Reheating could proceed for smaller α
if the decay is not instantaneous but this would lower the reheating temperature,
and consequently the predicted value of ns. This could cause some tension with the
observed value if this smaller α is still close to 1032, but could likely maintain good
predictions for α << 1032.

Although it is a small part of this chapter, it is worth coming back to the pos-
sibility of oscillon formation from fragmentation of the inflaton condensate, which
is an active field of research ( see e.g. [74], [75], [84] - [88]) and could have observ-
able consequences, including gravitational waves [89], [90]. Indeed an interesting
consideration for observability in the R2 quadratic Palatini inflation model is the
potential for gravitational wave sources. Many studies have been done which illus-
trate that phases of non-linear dynamics in the early Universe can generate their own
stochastic gravitational wave background (see e.g. [91] - [93]), as can increasingly
non-linear interactions between perturbations during a preheating phase (e.g. [94] -
[97]). There is also the possibility that an early epoch of oscillon domination after
inflation could leave a gravitational wave signature [98]. These are very speculative
ideas, however it may be that these signatures could be observable in the future [99],
and could help to differentiate R2 quadratic Palatini inflation observationally.

In conclusion, we have shown that the R2 quadratic Palatini model can inflate
successfully with a sub-Planckian inflaton, and its predictions for the scalar spectral
index can be robust against Planck-suppressed potential corrections from a quantum
gravity completion for sufficiently large α, while predicting a much smaller tensor-
to-scalar ratio than conventional chaotic ϕ2 inflation. In addition, it can reheat to a
sufficiently high temperature to produce a viable post-inflation cosmology and can
serve as a basis for the formation of oscillons after inflation. Therefore, the Pala-
tini R2 framework allows a minimal quadratic potential to overcome the obstacles
encountered by conventional quadratic chaotic inflation and to serve as a consistent
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basis for standard Hot Big Bang cosmological evolution following inflation.
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Chapter 5

Quadratic Term Affleck-Dine
Inflation and Non-Minimally
Coupled Inflation Models

In this work we present an application of the Affleck-Dine mechanism via U(1)-
violating quadratic potential terms in a simple non-minimally coupled inflation
model with a complex inflaton. We present a detailed description of the dynam-
ics of the generation of the asymmetry, and perform an analytical calculation of its
evolution from the inflaton condensate through its transfer to the Standard Model
particles. We illustrate that this model can produce the observed baryon-to-entropy
ratio, confirm the validity of the analytical approximation, and determine the limits
of its validity using a numerical computation. We examine the compatibility of this
model with the dynamics of a non-minimally coupled inflation model, and we also
consider the baryon isocurvature fraction produced in this model as compared to the
observational limit. We address the possibility of washout of the generated baryon
asymmetry for the general case of the decay of the inflaton condensate to fermions,
and we also discuss the validity of the classical treatment of the baryon asymmetry
given the quantum nature of the scalar fields.

5.1 Affleck-Dine Mechanism

The underlying mechanism for generating the baryon asymmetry in this model is
based on Affleck-Dine baryogenesis [100]. Affleck-Dine baryogenesis is often em-
ployed as part of a supersymmetric model of particle physics [101, 102], where the
Affleck-Dine field is one of the flat directions of the potential of a supersymmetric
theory (SUSY). This can also occur in conjunction with the formation of Q-balls and
the generation of dark matter [103] - [113] . These ’flat directions’ of the potential
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are a common feature of supersymmetric models. The breaking of underlying sym-
metries that the flat direction scalars - commonly known as Affleck-Dine (AD) fields
- are charged under sets the scale of the potential and generates non-zero vacuum ex-
pectation values for the scalar fields which may be away from the potential minima.
When the effective mass of the AD field in a given direction becomes comparable
to the Hubble rate, mAD ∼ H, the field begins to oscillate about the minimum of
its lifted potential. The AD fields therefore form a zero-momentum coherently os-
cillating condensate which decays away with expansion like non-relativistic matter,
ρAD ∼ a−3.

Affleck-Dine baryogenesis has also been considered beyond SUSY models, in the
context of chaotic inflation [114] - [119]1, and non-minimally coupled inflation with
quartic symmetry-breaking potential terms [120, 121], with the inflaton being the
AD field. This is the basis of the new model we consider in this chapter, where the
inflaton field is a complex scalar charged under a global U(1) symmetry. Specifically,
we consider a renormalisable U(1)-symmetric inflaton potential with quadratic U(1)
symmetry-breaking terms. This differs from the more conventional cubic and quar-
tic U(1)-breaking terms considered previously in inflaton AD models. The baryon
asymmetry is generated when the inflaton field rolls down its potential and begins
to oscillate about its minimum, forming a coherent scalar condensate, which sub-
sequently decays. Oscillations of the field, Φ ↔ Φ†, as it is decaying means that
a symmetry-conserving decay of the Affleck-Dine field can lead to an asymmetry
being produced in the decay products, and subsequently in the baryon asymmetry
of the Universe. This mechanism initially produces a much larger asymmetry in the
inflaton condensate than that needed to produce the observed baryon-to-entropy
ratio. This overproduction can be suppressed by averaging over the oscillations of
the asymmetry as it is transferred to the particle content of the Standard Model,
in order for the resulting asymmetry in baryon number to produce the observed
baryon-to-entropy ratio. For Affleck-Dine baryogenesis in general, it may be that
this asymmetry is then transferred to the baryon content of the Universe via some
other process, e.g. sphalerons in the case where the asymmetry initially generated
through the decay of the Affleck-Dine condensate is lepton number (leptogenesis)
[122] [123]. As we are concerned with the quadratic term AD mechanism in general
in this discussion, we do not consider a specific decay route or mechanism for the
transfer of the U(1) asymmetry in this work, however we assume that the inflaton

1The authors in [118, 119] consider a chaotic inflation model where a second complex scalar
field carrying U(1) charge is coupled to a function of the inflaton field, which explicitly breaks
the U(1) symmetry in the later stages of inflation and generates a baryon number asymmetry. In
[118], the authors consider the possibility of a non-minimal coupling of the complex scalar in the
context of the suppression of isocurvature perturbations, and in [119] the complex scalar potential
uses quadratic U(1)-violating terms leading to subsequent AD baryogenesis alongside the inflation.
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condensate decays to unspecified Majorana fermions ψ,ψ̄. An interesting applica-
tion would be leptogenesis via the decay of the inflaton to right-handed neutrinos.
The quadratic AD mechanism presented here as part of work published in [124]
was subsequently applied by Mohapatra and Okada to a model producing neutron -
antineutron oscillations [125], and the generation of neutrino mass and Dark Matter
[126] - [128]. When discussing the underlying symmetry, and referring to the trans-
ferred asymmetry after the formation of the coherent condensate in this work, we
will refer to the quantum number in question as "B", with the understanding that
the eventual resulting asymmetry will be in baryon number, irrespective of the exact
mechanism leading to the formation of the B-asymmetry from the U(1) asymmetry.

5.2 The Model

The starting point for this Affleck-Dine model is to consider the U(1) symmetric
inflaton potential

V (|Φ|) =m2
Φ |Φ|2 +λΦ |Φ|4 , (5.1)

where the inflaton field Φ is also the Affleck-Dine field in this model. The renormal-
isable U(1)-violating terms of the AD field potential in general are given by

VHHHU(1) = A
(

Φ2 +Φ†2
)

+B
(

Φ3 +Φ†3
)

+C
(

Φ4 +Φ†4
)
, (5.2)

where A = B = C = 0 conserves the U(1) symmetry. This potential is naturally
compatible with non-minimally coupled inflation models based on ϕ4 potentials.
The presence of the U(1)-breaking terms change the trajectory of the field in the
complex plane by introducing a dependence on the phase θ, moving the field into an
elliptical orbit away from the purely symmetric motion of the field. We impose the
Φ ↔ −Φ symmetry respected by the U(1)−symmetric potential, which eliminates
the B term. Previous studies of Affleck-Dine baryogenesis with a non-minimally
coupled inflaton as the AD field [119, 120] consider symmetry breaking terms of
cubic order or higher so here we will also set C = 0 in order to exclusively study
the effects of the quadratic U(1)−violating A term and the asymmetry subsequently
generated.

5.2.1 The Potential

The full U(1)-violating potential we consider is therefore

V (Φ) =m2
Φ |Φ|2 +λΦ |Φ|4 −A

(
Φ2 +Φ†2

)
, (5.3)
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where we can assume without loss of generality that A is real. We can write the
scalar field as the sum of two real fields

Φ = 1√
2

(ϕ1 + iϕ2) ; Φ† = 1√
2

(ϕ1 − iϕ2) , (5.4)

which gives the potential in terms of the components ϕ1 and ϕ2 to be

V (ϕ1,ϕ2) = 1
2m

2
Φ
(
ϕ2

1 +ϕ2
2
)

+ 1
4λΦ

(
ϕ2

1 +ϕ2
2
)2

−A
(
ϕ2

1 −ϕ2
2
)
. (5.5)

This leads to the following field equations

ϕ̈1 +3Hϕ̇1 = −m2
1ϕ1 −λΦ

(
ϕ2

1 +ϕ2
2
)
ϕ1, (5.6)

ϕ̈2 +3Hϕ̇2 = −m2
2ϕ2 −λΦ

(
ϕ2

1 +ϕ2
2
)
ϕ2, (5.7)

where we have absorbed the symmetry-breaking mass term into the mass term for
Φ by defining

m2
1 =m2

Φ −2A; m2
2 =m2

Φ +2A. (5.8)

In the limit that λΦ → 0, the equations for ϕ1 and ϕ2 are completely decoupled
from each other, and their field equations will have solutions corresponding to two
coherently oscillating fields with angular frequencies m1 and m2 respectively.

5.2.2 Threshold Approximation of the Asymmetry

In order to solve the field equations (5.6) and (5.7) analytically we use a threshold
approximation for the potential, such that

V (Φ) = λΦ |Φ|4 ; ϕ > ϕ∗, (5.9)

V (Φ) =m2
Φ |Φ|2 −A

(
Φ2 +Φ†2

)
; ϕ < ϕ∗, (5.10)

where we write the field as Φ = ϕeiθ/
√

2. The threshold ϕ∗ =mΦ/
√
λΦ is the value

of ϕ at which the quartic term dominates the gradient of the potential ∂Vϕ/∂ϕ, and
we have assumed when calculating the threshold that the A term can be neglected
against the scalar mass term as an estimate of the dominant dynamics in the ϕ< ϕ∗

region of the potential.
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Figure 5.1: Schematic of the inflaton potential illustrating the threshold approxi-
mation.

The potential is initially dominated strongly by the |Φ|4 term (see Figure 5.1),
and the energy density of the coherent oscillations in the |Φ|4 potential during
this phase is decaying away as ρ ∝ a−4 [129]. Since ρ = V (ϕ) during slow-roll
when ϕ equals the amplitude of the oscillations, we have that the amplitude decays
as ϕ ∝ 1/a as it oscillates in the |Φ|4 part of the potential [129]. Let the initial
amplitudes of ϕ1 and ϕ2 be ϕ1i and ϕ2i respectively, and let ϕ1∗ and ϕ2∗ be the
respective values of the fields at the threshold. We also assume that initially the ϕ1

and ϕ2 fields are oscillating in phase such that there is no initial asymmetry. Using
the inverse proportionality of the field to the scale factor, we can write the threshold
values as

ϕ1∗ =
(
ai
a∗

)
ϕ1i =

(
ϕ∗
ϕi

)
ϕ1i, (5.11)

ϕ2∗ =
(
ai
a∗

)
ϕ2i =

(
ϕ∗
ϕi

)
ϕ2i, (5.12)

where ϕi =
(
ϕ2

1i+ϕ2
2i
) 1

2 , and the field evolves purely due to the mass-squared terms
once a > a∗.

We assume that upon crossing the threshold the field enters into rapid Φ2 co-
herent oscillations, and that m1,m2 >> H, such that we can neglect the effects of
expansion during these oscillations. We also assume that the asymmetry will be
generated during the Φ2 oscillations of the field, and therefore we need to consider
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solutions to the equations

ϕ̈1 +m2
1ϕ1 = 0, (5.13)

ϕ̈2 +m2
2ϕ2 = 0, (5.14)

when ϕ < ϕ∗, in order to calculate the asymmetry. The solutions of these equations
are of the form

ϕ(t) =D cos(ωt+ δ) , (5.15)

where the phase δ and the amplitude D are determined by the initial conditions of
the field. In our case ω = m1,m2 for ϕ1 and ϕ2 respectively, and the initial phase
can be set to zero, since there is no initial asymmetry.
Since we are interested in the asymmetry produced by the oscillations once the
potential has crossed the threshold ϕ∗ into the quadratic regime, we can set t→ t−t∗

as the time variable in the cosine function (5.15). This means that at t= t∗ we need

ϕ1,2 (t∗) → ϕ1,2 (0) = ϕ1∗,2∗. (5.16)

In the region of the potential dominated by the mass-squared terms, the energy
density is decaying with the scale factor like non-relativistic matter [129], ρ ∝ a−3,
which means that the field is expected to decay as ϕ ∝ a−3/2. This means that for
any a > a∗, the amplitude of the field will be

ϕ1,2 =
(
a∗
a

) 3
2
ϕ1∗,2∗, (5.17)

and the solutions to the field equations (5.13) and (5.14) at t > t∗ are therefore, to
a good approximation (as we will confirm later),

ϕ1 (t) = ϕ1∗

(
a∗
a

) 3
2

cos(m1 (t− t∗)) , (5.18)

ϕ2 (t) = ϕ2∗

(
a∗
a

) 3
2

cos(m2 (t− t∗)) . (5.19)

5.3 Analytical Derivation of the Asymmetry

We are now ready to calculate the U(1) asymmetry. We will write ϕ1,2 (t) = ϕ1,2 in
this calculation for brevity.
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5.3.1 Noether’s Theorem for a Scalar U(1) Theory

We first derive the expression for the charge density. The U(1)− invariant action of
the theory in Minkowski space is

S =
∫
d4x

[
∂µΦ†∂µΦ−V (|Φ|)

]
, (5.20)

where we use the flat space approximation to calculate the form of the asymmetry
here since we are assuming for the purposes of the analytical calculation that the
effects of expansion will be negligible on the dynamics of the asymmetry. The effects
of expansion on the formation and evolution of the asymmetry are examined in the
numerical calculation of the asymmetry discussed in Section 5.6. We follow the
procedure for the variation of the action in a U(1)-symmetric theory outlined in
Chapter 3, and vary the action while treating Φ and Φ† as independent fields (see
Section 3.4.1)

δS =
∫
d4x

∂L
∂ΦδΦ+ ∂L

∂ (∂µΦ)δ (∂µΦ)+ ∂L
∂Φ† δΦ

† + ∂L
∂
(
∂µΦ†

)δ(∂µΦ†
) , (5.21)

where we can rewrite the second and fourth terms of the Lagrangian density as half
of the product rule for total derivatives to give

δS =
∫
d4x

[(
∂L
∂Φ −∂µ

(
∂L

∂ (∂µΦ)

))
δΦ+∂µ

(
∂L

∂ (∂µΦ)δΦ
)

+
(
∂L
∂Φ† −∂µ

(
∂L
∂ (∂µ)

))
δΦ† +∂µ

 ∂L
∂
(
∂µΦ†

)δΦ†

+ ∂L
∂
(
∂µΦ†

)δ(∂µΦ†
) . (5.22)

The first and third terms are zero from (3.123) and (3.124), and this leaves

δS =
∫
d4x ∂µ

 ∂L
∂ (∂µΦ)δΦ+ ∂L

∂
(
∂µΦ†

)δΦ†

 , (5.23)

which must be equal to zero in order for δS = 0. This means that ∂µjµ = 0, where

jµ = ∂L
∂ (∂µΦ)δΦ+ ∂L

∂
(
∂µΦ†

)δΦ† (5.24)

is the conserved U(1) current of the theory. Evaluating this gives

jµ = ∂µΦ†δνµη
µνδΦ+ δµµ∂

µΦδΦ†. (5.25)

We have from (3.129), that the timelike component of the conserved current
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jµ =
(
ρ,

−→
j
)

is equal to the charge density of a theory with a conserved Noether
charge

Q=
∫
d3x ρQ =

∫
d3x j0, (5.26)

and so the charge density of the U(1) theory is

j0 = Φ̇†δΦ+Φ̇δΦ†. (5.27)

From the U(1) transformation (3.110), we have

δΦ = iαΦ, δΦ† = −iαΦ†, (5.28)

which gives the charge density to be

ρQ = iα
[
ΦΦ̇† −Φ†Φ̇

]
. (5.29)

In a U(1) theory where the charge of each particle is normalised to Q [Φ] = +1
and Q

[
Φ†
]

= −1, we normalise α = 1 to give

ρQ = i
[
ΦΦ̇† −Φ†Φ̇

]
. (5.30)

Evaluating the global charge upon quantising the fields (see Section 3.5) reveals that
the total U(1) charge is determined by difference of the number density of particles
to the number density of antiparticles in the system. The charge density of the
system is therefore also determined by the difference in the number of particles and
antiparticles in the system. We can therefore say that the number asymmetry of Φ
and Φ† particles in the system is given by

n(t) = i
(
ΦΦ̇† −Φ†Φ̇

)
. (5.31)

5.3.2 Analytical Expression of the Asymmetry

Using (5.4), (5.31) can be written in terms of ϕ1 and ϕ2 as

n(t) = ϕ̇1ϕ2 − ϕ̇2ϕ1. (5.32)

In order to evaluate the dynamics of the asymmetry, we must evaluate (5.32) in
terms of the solutions for ϕ1 and ϕ2, (5.18) and (5.19) respectively. Differentiating
these solutions with respect to time we find
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ϕ̇1,2 = ϕ1∗,2∗

(
a∗
a

) 3
2
[
−3

2H cos(m1,2 (t− t∗))−m1,2 sin(m1,2 (t− t∗))
]
. (5.33)

Since the frequency of oscillation of the fields is much faster than the rate of expan-
sion, m1,2 >>H, we can approximate (5.33) by the sine term and use

ϕ̇1,2 = −ϕ1,2∗

(
a∗
a

) 3
2
m1,2 sin(m1,2 (t− t∗)) . (5.34)

Substituting (5.18), (5.19) and (5.34) into the asymmetry (5.32) we have

n(t) = ϕ1∗ϕ2∗

(
a∗
a

)3
[m2 sin(m2 (t− t∗))cos(m1 (t− t∗))

−m1 sin(m1 (t− t∗))cos(m2 (t− t∗))] . (5.35)

Using the definitions of the field masses squared (5.8), and assuming that 2A<<m2
Φ,

we can write

m1 =
(
m2

Φ −2A
) 1

2 =mΦ

(
1− 2A

m2
Φ

) 1
2

≈mΦ

(
1− A

m2
Φ

)
, (5.36)

m2 =
(
m2

Φ +2A
) 1

2 =mΦ

(
1+ 2A

m2
Φ

) 1
2

≈mΦ

(
1+ A

m2
Φ

)
, (5.37)

and the asymmetry can then be written as

n(t) = ϕ1∗ϕ2∗

(
a∗
a

)3 [(
mΦ + A

mΦ

)
sin(m2 (t− t∗))cos(m1 (t− t∗))

−
(
mΦ − A

mΦ

)
sin(m1 (t− t∗))cos(m2 (t− t∗))

]
. (5.38)

Separating the mΦ and the A/mΦ terms this is

n(t) =ϕ1∗ϕ2∗

(
a∗
a

)3
[mΦ [sin(m2 (t− t∗))cos(m1 (t− t∗))

−sin(m1 (t− t∗))cos(m2 (t− t∗))]+ A

mϕ
[sin(m2 (t− t∗))cos(m1 (t− t∗))

+sin(m1 (t− t∗))cos(m2 (t− t∗))]] .
(5.39)

These terms can be condensed using the trigonometric identities

139



sin(m2 (t− t∗))cos(m1 (t− t∗))− sin(m1 (t− t∗))cos(m2 (t− t∗))
= sin [m2 (t− t∗)−m1 (t− t∗)] , (5.40)

and

sin(m2 (t− t∗))cos(m1 (t− t∗))+sin(m1 (t− t∗))cos(m2 (t− t∗))
= sin [m2 (t− t∗)+m1 (t− t∗)] , (5.41)

which means that the asymmetry is

n(t) = ϕ1∗ϕ2∗

(
a∗
a

)3
[mΦ sin [m2 (t− t∗)−m1 (t− t∗)]+

A

mΦ
sin [m2 (t− t∗)+m1 (t− t∗)]

]
. (5.42)

From (5.8) we have that

m2 −m1 = 2A
mΦ

, m2 +m1 = 2mΦ (5.43)

and approximating m1 ≈ m2 ≈ mΦ to work to first order in A, the asymmetry in
the inflaton condensate becomes

n(t) = ϕ1∗ϕ2∗

(
a∗
a

)3 [
mΦ sin

( 2A
mΦ

(t− t∗)
)

+ A

mΦ
sin(2mΦ (t− t∗))

]
. (5.44)

Since mΦ >> H, the oscillation period m−1
Φ is much smaller than the timescale of

expansion, so we can treat the scale factor a as a constant when examining the
asymmetry averaged over a large number of coherent oscillations. In the same limit,
the second term in (5.44) averages to zero and the final expression for the condensate
asymmetry is then

n(t) = ϕ1∗ϕ2∗

(
a∗
a

)3
mΦ sin

( 2A
mΦ

(t− t∗)
)
. (5.45)

The condensate asymmetry for t > t∗ can then be written in terms of the initial field
values using (5.11), (5.12) as follows

n(t) = ϕ1iϕ2i

(
ϕi
ϕ∗

)(
ai
a

)3
mΦ sin

( 2A
mΦ

(t− t∗)
)
. (5.46)
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We will later confirm numerically that this expression gives the asymmetry of the
inflaton condensate due to the potential (5.3).

5.3.3 Condensate Asymmetry & Dynamics

We now define the comoving inflaton condensate asymmetry as

nc (t) =
(
a(t)
ai

)3
n(t) , (5.47)

which is constant when there is no production or decay of the asymmetry. For t > t∗

we therefore have

nc (t) = ϕ1iϕ2i

(
ϕi
ϕ∗

)
mΦ sin

(
2A(t− t∗)

mΦ

)
, (5.48)

where we define nc (t) = 0 at t = t∗. Since the symmetry-breaking term in (5.3)
is small during the regime when the potential is |Φ|4 dominated, we assume that
any asymmetry generated for t < t∗ is negligibly small, and only study the threshold
asymmetry generated in the Φ2 regime. We will later determine numerically the con-
dition under which this assumption is valid, and consider the effect of the symmetry
breaking dynamics becoming significant during |Φ|4 dominated oscillations.

The asymmetry is initially zero and then evolves as an oscillating function. As
the inflaton scalars decay away and reheat the Universe, they periodically undergo a
phase rotation between the Φ

(
QU(1) = +1

)
and Φ†

(
QU(1) = −1

)
states. The reason

that this can generate a net asymmetry when the inflaton condensate decays is that
as the condensate is decaying, scalars are leaving the system continuously while the
phase of the inflaton field oscillates between its Φ and Φ† states. This means that
the number of scalars present in the condensate will decrease, and therefore the
maximum amount of + or − charge that can be present will also decrease with each
phase oscillation the field undergoes. This means that there is no longer an exact
cancellation between the amount of + or − charge present in the condensate during
each half-cycle in the phase oscillation. This leaves a residual amount of non-zero
asymmetry transferred via decays to the Standard Model sector for each cycle.

The condensate decays away completely after a time τΦ ≈ Γ−1
Φ , where this time

period corresponds to the lifetime of the Φ scalars, and the point where the conden-
sate has completely decayed is denoted tR, corresponding to the end of reheating.
During this decay process the asymmetry generated within the condensate is trans-
ferred to the Standard Model particle content of the Universe through the continuous
B-conserving decays of the inflaton particles from t∗ to tR, until the condensate has
completely decayed.
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5.3.4 Transferred Asymmetry & Dynamics

We now consider the asymmetry as it appears in the particle plasma from the onset
of the condensate decay - referred to as the "transferred asymmetry". To illustrate
the process, we ignore for now any decay of the condensate itself which may have
occurred for t < t∗. We then have that the comoving asymmetry transferred to the
particle plasma is

n̂c (t) =
∫ t

t∗
ΓΦnc (t)dt. (5.49)

Using (5.48) we find that the comoving asymmetry transferred to the Standard
Model particle content is

n̂c (t) = ΓΦϕ1iϕ2im2
Φ

2A

(
ϕi
ϕ∗

)[
1− cos

(
2A(t− t∗)

mΦ

)]
. (5.50)

At t = t∗, n̂c (t) = 0 since the condensate has not begun to decay yet. The trans-
ferred asymmetry increases quadratically with t− t∗ until t− t∗ ≈ πmΦ/4A, and
then over time oscillates between a minimum and maximum value, n̂c (t) = 0 at
t− t∗ = nπmΦ/2A, and n̂c (t) = ΓΦϕ1iϕ2im

2
Φ

A

(
ϕi
ϕ∗

)
at t− t∗ = nπmΦ/4A for integer n,

respectively. We denote the period of oscillation by Tasy = πmΦ/A.
The transferred asymmetry is periodically zero but never crosses zero (see right

panel of Figure 5.2). Physically, this is because as the condensate oscillates between
its Φ and Φ† states, any asymmetry generated by the decay of the condensate exactly
cancels the asymmetry generated in the previous half-cycle. This means that the
asymmetry is conserved as it is transferred to the Standard Model particles from
the decay of the condensate, and averages to a non-zero value over long periods of
time.

A more accurate examination of the evolution of the transferred asymmetry re-
quires including an exponential decay factor in (5.49) to account for theB-conserving
decay of the condensate asymmetry

n̂c (t) =
∫ t

t∗
ΓΦe

−ΓΦ(t−t∗)nc (t)dt. (5.51)

Substituting (5.48), we have

n̂c (t) = ΓΦϕ1iϕ2i

(
ϕi
ϕ∗

)
mΦ

∫ t

t∗
e−ΓΦ(t−t∗) sin

(
2A(t− t∗)

mΦ

)
dt. (5.52)

For a general integral of the form (5.52) we have that
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∫ x

0
e−ax sin(bx)dx=

[
−e−ax [asin(bx)+ bcos(bx)]

a2 + b2

]x
0

= −e−ax [asin(bx)+ bcos(bx)]
a2 + b2

+ b2

a2 + b2
. (5.53)

Averaging over many oscillations gives the limit x→ ∞, and we have

∫ x

0
e−ax sin(bx)dx→ b2

a2 + b2
. (5.54)

Figure 5.2: Plot showing the condensate asymmetry (left) and the transferred asymmetry
(right) for mΦ = 1016 GeV, λΦ = 0.1 and TR = 108 GeV. In this case A

1
2
th/mΦ = 0.003, and

the threshold asymmetry in each case is given by the solid line on each plot ((5.48) and
(5.50) respectively) and the numerical results for A

1
2 /mΦ = 0.001,0.005,0.007,0.01 and

0.05 are shown. We find that the numerical result for A
1
2 /mΦ = 0.001 is exactly the result

from the threshold asymmetry, as expected from (5.100).

In (5.53) in our case we have x= t− t∗, a= ΓΦ and b= 2A/mΦ, and the integral is

∫ t

t∗
e−ΓΦ(t−t∗) sin

(
2A(t− t∗)

mΦ

)
dt=

2A
mΦ(

Γ2
Φ + 4A2

m2
Φ

) = mΦ

2A
[
1+

(
mΦΓΦ

2A

)2] . (5.55)

We have therefore that the comoving transferred asymmetry averaged over many
oscillations is

n̂c (t) = ΓΦϕ1iϕ2im2
Φ

2A

(
ϕi
ϕ∗

)1+
(
mΦΓΦ

2A

)2−1

. (5.56)

We will later confirm the validity of this result both analytically and numerically by
solving the field equations.

143



Thus, for t > tR, the condensate has completely decayed, and the transferred
comoving asymmetry is constant. This means that all of the asymmetry from the
oscillating condensate has been transferred by the decay of the inflaton scalars, and
that the particle plasma is left carrying a finite non-zero asymmetry as a result. This
is a promising result, and it demonstrates clearly that this method of asymmetry
generation in the Standard Model by the transfer of an asymmetry due to inflaton
mass terms through the decay of the inflaton condensate is a viable method for gen-
erating the observed baryon asymmetry. We now consider whether this mechanism
can produce the observed baryon-to-entropy ratio.

5.4 Generating the Present Day Baryon Asym-
metry from the Decay of the Affleck-Dine Con-
densate

We consider two scenarios here when examining the ability of the Affleck-Dine baryo-
genesis model with a quadratic symmetry breaking term to produce the observed
baryon asymmetry. We firstly consider the case where the lifetime of the inflaton
condensate, τΦ, is much larger than the oscillation period of the asymmetry, Tasy,
such that 2A/mΦΓΦ >> 1. Physically this means that the asymmetry oscillates a
large number of times before the condensate decays away, and that the final asym-
metry transferred to the Standard Model particles will be averaged over a large
number of oscillations. In this case, the comoving transferred asymmetry (5.56) can
be approximated

n̂c (t) = ϕ1iϕ2iΓΦm
2
Φ

2A

(
ϕi
ϕ∗

)1−
(

ΓΦmΦ
2A

)2≈ ϕ1iϕ2iΓΦm
2
Φ

2A

(
ϕi
ϕ∗

)
. (5.57)

At t= ti we have that

Φ = ϕie
iθ

√
2

= 1√
2

(ϕ1i+ iϕ2i) , (5.58)

Φ† = ϕie
−iθ

√
2

= 1√
2

(ϕ1i− iϕ2i) , (5.59)

which gives the relations

ϕ1i = ϕi
2
(
eiθ + e−iθ

)
= ϕi cosθ, (5.60)
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ϕ2i = ϕi
2i
(
eiθ − e−iθ

)
= ϕi sinθ, (5.61)

and we can write

ϕ1iϕ2i = ϕ2
i sinθ cosθ = ϕ2

i

2 sin2θ, (5.62)

where θ is the initial angle of the oscillating Φ field. Substituting (5.62) into (5.57),
the comoving transferred asymmetry for τΦ > Tasy is therefore

n̂c,tot = ϕ2
i sin2θΓΦm

2
Φ

4A

(
ϕi
ϕ∗

)
. (5.63)

We assume that by the end of reheating all of the condensate has decayed away,
and all of the asymmetry has been transferred to the Standard Model particles. This
means that the asymmetry at a = aR, assuming the asymmetry is not washed out
by B-violating interactions of the inflaton or its decay products, will be the value of
the asymmetry that we measure today. It is therefore the value of the transferred
asymmetry at reheating that we need to calculate. This value is

n̂tot =
(
ai
aR

)3
n̂c,tot =

(
ai
aR

)3 ϕ2
i sin2θΓΦm

2
Φ

4A

(
ϕi
ϕ∗

)
, (5.64)

where n̂tot is the physical transferred asymmetry at tR, obtained by rescaling the
comoving transferred asymmetry according to (5.47).
For ai = a < a∗,a∝ 1/ϕ, and for aR = a > a∗,a∝ ϕ− 2

3 , therefore

(
ai
aR

)3
=
(
ai
a∗

· a∗
aR

)3
=
(
ϕ∗
ϕi

)3
ϕ2
R

ϕ2
∗
, (5.65)

the physical transferred asymmetry is then

n̂tot = ϕ2
R sin2θΓΦm

2
Φ

4A . (5.66)

At reheating we have that V = m2
Φϕ

2
R/2 = 3M2

plH
2
R, and HR = ΓΦ, which means

that the final asymmetry at reheating is then

n̂tot =
3M2

pl sin2θΓ3
Φm

2
Φ

2A . (5.67)

Assuming that all of the U(1) asymmetry is transferred to the Standard Model
particles upon decay of the inflaton condensate, and that the asymmetry is not
washed out by later-time B-violating processes, then the transferred asymmetry at
reheating will become the baryon asymmetry today. We can then say that
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nB
s

= n̂tot
s
, (5.68)

where s is the entropy density, and in calculation here we will take this to be the
entropy density at reheating. The entropy density is (2.137)

s= 2π2

45 g (T )T 3, (5.69)

and at TR we have that

s= 4k2
TR
T 3
R; k2

TR
= π2g (TR)

90 , (5.70)

where g (T ) is the total number of relativistic degrees of freedom. Since ΓΦ =HR =
kTR

T 2
R/Mpl [130], we can write the predicted baryon to entropy ratio using (5.67)

and (5.70) as

nB
s

= n̂tot
s

= 3sin2θkTR
T 3
R

8AMpl
. (5.71)

Normalising the inflaton mass and the reheating temperature using TR = 108 GeV
(this value of the reheating temperature is within the range which may be calcu-
lable from the detectable spectrum of primordial gravitational waves [131]), mΦ =
1013 GeV, and g (T ) = 106.75 for the Standard Model degrees of freedom, we have
kTR

= 3.42, and substituting into (5.71), nB/s can be expressed as

nB
s

= 5.35×10−21m
2
Φ
A

(
TR

108 GeV

)3(1013 GeV
mΦ

)2
sin2θ. (5.72)

The observed baryon-to-entropy ratio is [12]

(
nB
s

)
obs

= (0.861±0.005)×10−10. (5.73)

Therefore we find from (5.72) that

A
1
2

mΦ
= 7.88×10−6 sin

1
2 2θ

(
1013 GeV
mΦ

)(
TR

108 GeV

) 3
2
, (5.74)

is needed in order to produce the observed asymmetry today using the threshold
estimate (5.72) of the asymmetry transferred to the Standard Model.

It is useful to check the size of the maximum predicted baryon-to-entropy ratio
which can be produced from the generation of an asymmetry through quadratic
symmetry breaking terms in an Affleck-Dine condensate. We do this by considering
(5.56) in the case A=Amax = ΓΦmΦ/2, which corresponds to a maximum comoving
transferred asymmetry,
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n̂c,max = ϕ1iϕ2imΦ
2

(
ϕi
ϕ∗

)
= ϕ2

i sin2θmΦ
4

(
ϕi
ϕ∗

)
, (5.75)

where (5.62) is used in the second equality. The maximum transferred asymmetry
is then

n̂max =
(
ai
aR

)3 ϕ2
i sin2θmΦ

4

(
ϕi
ϕ∗

)
=
(
ai
a∗

· a∗
aR

)3(ϕi
ϕ∗

)
ϕ2
i sin2θmΦ

4

=
(
ϕ∗
ϕi

)3(
ϕR
ϕ∗

)2(
ϕi
ϕ∗

)
ϕ2
i sin2θmΦ

4 . (5.76)

Using again the fact that at reheating V = m2
Φϕ

2
R/2 = 3M2

plH
2
R, and HR = ΓΦ, we

have that the maximum asymmetry which could be transferred is
(
n̂B
s

)
max

=
3M2

plΓ2
Φ sin2θ

2mΦ
. (5.77)

Taking Γ2
Φ = k2

TR
T 4
R/M

2
pl, the maximum predicted baryon-to-entropy ratio is then

(
nB
s

)
max

= 3TR sin2θ
8mΦ

. (5.78)

Using the earlier normalisation of scalar mass, mΦ = 1013 GeV, and reheating tem-
perature, TR = 108 GeV, we can write this as

n̂Bmax
s

=
(
3.75×10−6

)
sin2θ

(
TR

108 GeV

)(1013 GeV
mΦ

)
. (5.79)

This can easily be larger than the observed baryon-to-entropy ratio (5.73), which im-
plies that the suppression of the asymmetry arising from averaging over asymmetry
oscillations can play an important role in this model when τΦ > Tasy.

We also want to consider whether it would be possible to generate the required
present-day baryon asymmetry in the case where the condensate decays away very
quickly, before the asymmetry can undergo many oscillations, i.e. τΦ < Tasy. This
corresponds to the limit ΓΦmΦ/2A>> 1, which when applied to the comoving trans-
ferred asymmetry over large times (5.56) gives

n̂c,tot = ΓΦϕ1iϕ2im2
Φ

2A

(
ϕi
ϕ∗

)( 2A
ΓΦmΦ

)2
= Aϕ2

i sin2θ
ΓΦ

(
ϕi
ϕ∗

)
. (5.80)

The total physical transferred asymmetry at reheating is then
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n̂tot =
(
ai
aR

)3 Aϕ2
i sin2θ
ΓΦ

(
ϕi
ϕ∗

)
=
(
ai
a∗

· a∗
aR

)3(ϕi
ϕ∗

)
Aϕ2

i sin2θ
ΓΦ

=
(
ϕ∗
ϕi

)3(
ϕR
ϕ∗

)2(
ϕi
ϕ∗

)
Aϕ2

i sin2θ
ΓΦ

=
(
ϕR
ϕi

)2
Aϕ2

i sin2θ
ΓΦ

. (5.81)

Using V = m2
Φϕ

2
R/2 = 3M2

plH
2
R, and HR = ΓΦ, we can rewrite the total transferred

asymmetry at reheating as

n̂tot =
6M2

plAsin2θΓΦ

m2
Φ

. (5.82)

For τΦ < Tasy, dividing by (5.70) we find the predicted baryon-to-entropy ratio to
be

nB
s

= 3AMpl sin2θ
2kTR

TRm
2
Φ
. (5.83)

Equating this to (nB/s)obs, (5.73), we find

A
1
2

mΦ
= 9.05×10−11

(
TR

108 GeV

) 1
2 ( 1

sin2θ

) 1
2
, (5.84)

is needed in order to account for the observed value of the baryon-to-entropy ratio
in the case τΦ < Tasy.

This value is typically much smaller than (5.74), where we considered a conden-
sate lifetime much larger than the oscillation period of the asymmetry. Physically
this makes sense because for τΦ <Tasy, the condensate decays before any oscillations
of the inflaton condensate asymmetry take place, therefore there is no additional sup-
pression of the final baryon asymmetry due to averaging over inflaton condensate
oscillations. Therefore a greater suppression of A 1

2/mΦ is required in this case to
account for the observed baryon asymmetry.

We can conclude that it is possible to produce the baryon-to-entropy ratio ob-
served today from the model of Affleck-Dine baryogenesis via quadratic inflaton
symmetry-breaking terms.

Dynamically this version of Affleck-Dine baryogenesis is quite different from con-
ventional Affleck-Dine baryogenesis based on cubic or higher order terms, where
a constant asymmetry is generated in the condensate, with the higher order B-
violating potential terms becoming negligible relative to the Φ2 terms at late times.
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5.5 Validity of the Threshold Approximation

Thus far we have used a threshold approximation in order to derive the B-asymmetry
generated in this model, and to predict the baryon-to-entropy ratio which could be
produced as a result. This assumes that there is no significant asymmetry generated
for ϕ > ϕ∗, which in turn assumes that the A terms in the inflaton potential are not
dynamically significant in the generation of the condensate asymmetry during the
|Φ|4 dominated evolution.

To study this we need to consider the dynamics of the angular field, θ. If the
inflaton phase oscillates at a frequency greater than the Hubble rate when the po-
tential is |Φ|4 dominated then the angular field becomes dynamical and could affect
the validity of the threshold approximation. We therefore need to examine the phase
dynamics of the inflaton field to establish whether they could significantly impact
the evolution of the asymmetry. We will first consider this analytically and then
check the condition numerically.

The potential of the theory is

V (Φ) =m2
Φ |Φ|2 +λΦ |Φ|4 −A

(
Φ2 +Φ†2

)
. (5.85)

Rewriting the field as Φ = ϕeiθ/
√

2, this becomes

V (ϕ) = 1
2m

2
Φϕ

2 + λΦ
4 ϕ4 − Aϕ2

2
[
ei2θ + e−i2θ

]
= 1

2m
2
Φϕ

2 + λΦ
4 ϕ4 −Aϕ2 cos2θ, (5.86)

where θ = 0 corresponds to no asymmetry, and the potential has a minimum at
θ = 0. This shows that the symmetry breaking term introduces an oscillating phase
to the inflaton field, and this can cause the Affleck-Dine field to undergo damped
oscillations along an elliptical path in field space, which can affect the evolution of
the asymmetry. If the field has zero phase, then the field evolves exclusively in the
radial direction towards the minimum of its potential.

Since the field naturally evolves along its minimum, we can treat the phase θ as
a perturbation about zero. If θ is small then we can write

cos2θ ≈ 1− 1
2 (2θ)2 = 1−2θ2, (5.87)

making the potential (5.86)

V (ϕ) = 1
2m

2
Φϕ

2 + λΦ
4 ϕ4 −Aϕ2

(
1−2θ2

)
, (5.88)

which enables us to define the θ-potential as
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Vθ = 2Aϕ2θ2. (5.89)

The derivative term in the inflaton Lagrangian density in terms of the radial and
angular fields is

LK = ∂µΦ†∂µΦ = 1
2
[
∂µϕ∂

µϕ+ϕ2∂µθ∂
µθ
]
, (5.90)

and it is therefore possible to write a θ Lagrangian density which describes the
dynamics of the angular component of the complex field

Lθ = ϕ2

2 ∂µθ∂
µθ−2Aϕ2θ2. (5.91)

It is difficult to discern the effect of the θ field on its own, since the dynamics of the
angular component are coupled to the radial field. A way to approximately remedy
this is to average over the ϕ oscillations such that

ϕ2 −→ ⟨ϕ2⟩, (5.92)

⇒ Lθ = ⟨ϕ2⟩
2 ∂µθ∂

µθ−2A⟨ϕ2⟩θ2. (5.93)

This is a reasonable approximation to make if θ doesn’t change very much during
one ϕ oscillation. Assuming this is satisfied, we can treat ⟨ϕ2⟩ as a constant, where
we neglect the effects of the expansion for now. We then define the perturbations
of the angular field about the minimum as

δθ = ⟨ϕ2⟩
1
2 θ. (5.94)

The Lagrangian density describing the perturbations of the angular field is then

Lδθ = 1
2∂µδθ∂

µδθ−2Aδθ2, (5.95)

where the second term is a mass term of the θ-perturbations, and the mass of these
perturbations is given by

mδθ = 2
√
A. (5.96)

mδθ gives the angular frequency of the oscillation of the phase field. For mδθ ≳H

the phase field becomes dynamical when the radial Φ oscillations are |Φ|4 dominated.
Below this threshold the angular component does not contribute significantly to the
evolution of the field. Therefore 2

√
A<H gives the condition for the |Φ|4-dominated

regime to not become significant in the generation of the asymmetry, such that the
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phase θ does not evolve until the potential is solidly in the Φ2 regime.
Assuming A/m2

Φ << 1, the potential at the threshold
(
ϕ= ϕ∗ =mΦ/

√
λΦ
)

can
be written as

V (ϕ∗) = 1
2m

2
Φϕ

2
∗ + λΦ

4 ϕ4
∗ = 3m4

Φ
4λΦ

, (5.97)

and the Hubble parameter at the threshold is

H2
∗ = V∗

3M2
pl

= m4
Φ

4M2
plλΦ

. (5.98)

In order for the θ field to not become dynamical until ϕ < ϕ∗ we therefore require

mδθ = 2
√
A<H = m2

Φ
2Mpl

√
λΦ
, (5.99)

which can be rewritten as the constraint on the ratio A 1
2/mΦ

A
1
2

mΦ
<
A

1
2
th

mΦ
= mΦ

4Mpl

√
λΦ
. (5.100)

The value of this ratio at the threshold, A
1
2
th/mΦ, can be normalised with respect to

the inflaton mass. Using mΦ = 1013 GeV for consistency we have

A
1
2

mΦ
<
A

1
2
th

mΦ
= 1.04×10−6λ

− 1
2

Φ

(
mΦ

1013 GeV

)
. (5.101)

This gives the condition for the analytic threshold approximation for the baryon
asymmetry to be valid. This can easily be compatible with the established con-
straints on the ratio A 1

2/mΦ, (5.74) and (5.84), in order for the quadratic symmetry-
breaking term to produce an asymmetry sufficient enough to result in the ob-
served baryon-to-entropy ratio. This Affleck-Dine model with quadratic symmetry-
breaking terms can therefore produce a sufficient baryon asymmetry - both in the
case of averaging the generated asymmetry over many oscillations and in the case
of rapid condensate decay - which is well described by a threshold approximation
within the parameter space of A 1

2/mΦ required by the observed baryon-to-entropy
ratio today.

In Figure 5.2 we show the results of a comparison between the threshold approx-
imation without decay for the condensate asymmetry (5.48) (left panel) and the
transferred asymmetry (5.50) (right panel) and numerical calculations at different
values of A 1

2/mΦ for the condensate and transferred asymmetries in the limit that
ΓΦ (t− t∗) << 1, such that the time elapsed studying the asymmetries is less than
the lifetime of the scalars and there is no significant decay of the condensate itself.
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The numerical condensate asymmetry oscillates about zero, as the threshold ap-
proximation corresponding to (5.48) does, which corresponds to the phase rotation
of the Φ scalars within the condensate.

From the right panel of Figure 5.2 we can see that the threshold transferred
asymmetry oscillates with minima at zero without crossing zero, as outlined in Sec-
tion 5.3.4 for (5.50). We can see that for increasing A 1

2/mΦ, the amplitude of the
transferred asymmetry, An̂c, decreases in amplitude with an increasing A > Ath,
down to about A 1

2/mΦ ≈ 0.01 where the amplitude becomes constant at a value
about a factor of ten smaller than the amplitude of the threshold approximation
of the transferred asymmetry. For mΦ = 1016 GeV and λΦ = 0.1, from (5.100) we
find that A

1
2
th/mΦ = 0.003, and that for A 1

2/mΦ = 0.001 the numerical solutions
are, as expected, in perfect agreement with the threshold approximation for both
the condensate and the transferred asymmetries, which confirms that the threshold
approximation of the asymmetries is valid within the constraint of (5.100). This
shows that for larger A 1

2/mΦ, the asymmetries are modified by the dynamics of the
|Φ|4 dominated era of the potential, and we can see from the right panel of Fig-
ure 5.2 that for larger A 1

2/mΦ the transferred asymmetry does cross zero while it
oscillates. However, since the transferred asymmetry corresponds to the total asym-
metry transferred to the Standard Model averaged over the decay of the condensate
asymmetry, this shouldn’t have an effect on the size of the baryon asymmetry trans-
ferred to the Standard Model, similar to the case of the transferred asymmetry in
the threshold approximation. This is because the asymmetry will average to a small
but finite number over many oscillations as the excess particle and antiparticle decay
products will annihilate, leaving a small excess of baryons.

5.6 Numerical Test and Results

We numerically tested the analytical prediction of the generation of the asymmetry
and the resulting baryon-to-entropy ratio, in order to confirm the analytical results,
and test the validity of the approximations used in deriving the asymmetry analyti-
cally. The numerical computations were done using a Fortran code which solves the
field equations including terms corresponding to the decay of the fields ϕ1,2

ϕ̈1 +3Hϕ̇1 +ΓΦϕ̇1 = −m2
1ϕ1, (5.102)

ϕ̈2 +3Hϕ̇2 +ΓΦϕ̇2 = −m2
2ϕ2. (5.103)

The asymmetry is calculated using n(t) = ϕ̇1ϕ2 − ϕ̇2ϕ1 directly from the field equa-
tions, rather than by substituting the analytic solutions for ϕ1,2 (5.18), (5.19) and
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using the threshold approximation.
The main physical assumption made in the analytical calculation of the asymme-

try, which is treated differently in the numerical computation, is in the calculation
of the reheating temperature, TR, from the approximation of instantaneous reheat-
ing. When deriving the baryon-to-entropy ratio from the transferred asymmetry,
n̂, analytically, the working assumption is that the condensate decays instantly to
radiation at t = tR, at which point ΓΦ = H (TR), and the reheating temperature
is calculated using this assumption. The final comoving transferred asymmetry is
therefore assumed to originate at ΓΦ = H (TR), and the baryon-to-entropy ratio is
calculated using the entropy density at reheating (5.70). In actuality, the condensate
will decay over a time ∆t ∼ Γ−1

Φ , and in the numerical computation the reheating
temperature is calculated exactly from the radiation density from the inflaton decay.
We find that this has a small impact on the final nB/s.

5.6.1 Numerical Treatment of Radiation Density

In the numerical treatment of the asymmetry we take into account the loss of the
energy density of radiation due to the decay of the condensate asymmetry. In this
section, we demonstrate how to do this.

For a general potential V (ϕ1,ϕ2), we have that the field equations for the scalars
ϕ1,2 are

ϕ̈1 +3Hϕ̇1 +ΓΦϕ̇1 = − ∂V

∂ϕ1
, (5.104)

ϕ̈2 +3Hϕ̇2 +ΓΦϕ̇2 = − ∂V

∂ϕ2
. (5.105)

The energy density of a field (5.4) is given by

ρΦ = 1
2 ϕ̇

2
1 + 1

2 ϕ̇
2
2 +V (ϕ1,ϕ2) , (5.106)

and the derivative of the energy density of the scalar field with respect to time is
thus

dρΦ
dt

= ϕ̇1ϕ̈1 + ϕ̇2ϕ̈2 + ∂V

∂ϕ1
ϕ̇1 + ∂V

∂ϕ2
ϕ̇2. (5.107)

Rearranging (5.104), (5.105) in terms of ϕ̈1,2 and substituting into the change in
energy density of the scalar field over time (5.107) we obtain

dρΦ
dt

= −3H
(
ϕ̇2

1 + ϕ̇2
2
)

−ΓΦ
(
ϕ̇2

1 + ϕ̇2
2
)
, (5.108)

where the first term on the right-hand side corresponds to the loss of energy density
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of the scalar field due to expansion of the Universe, and the second term gives the
loss of energy density due to the decay of the scalar condensate.

The change in the energy density of the condensate due to the decay of the
inflaton scalars in our model is therefore

dρΦ
dt

= −ΓΦ
(
ϕ̇2

1 + ϕ̇2
2
)
, (5.109)

which means that the increase in the energy density of radiation due to the decay
of the condensate to radiation is

dρr
dt

= ΓΦ
(
ϕ̇2

1 + ϕ̇2
2
)
, (5.110)

where the energy density of radiation decays away due to the expansion of the
Universe as

ρr ∝ 1
a4 ⇒ dρr

da
= −4

a
ρr ⇒ dρr

dt
= −4Hρr. (5.111)

The total change in the energy density of radiation, taking into account both the
increase due to the decay of the condensate and the dilution due to the expansion
of the Universe is therefore

dρr
dt

= ΓΦ
(
ϕ̇2

1 + ϕ̇2
2
)

−4Hρr. (5.112)

The energy density of radiation is thus computed exactly from the field equations,
and the temperature as a function of time can be obtained from this via (2.127)

ρr = π2

30g (T )T 4. (5.113)

As we did in the analytical calculation, the baryon asymmetry can be equated to
the total transferred asymmetry, and the baryon-to-entropy ratio can be calculated
as a function of time. In the next section we will compare the numerical calculations
of the baryon-to-entropy ratio with our analytical estimates in the limits τΦ = Tasy

and τΦ > Tasy.

5.6.2 Numerical Computation of the Baryon-to-Entropy Ra-
tio for Large and Small Condensate Lifetimes

In this section we present the results of the numerical computation of the baryon-
to-entropy ratio from the transferred asymmetry obtained directly from the field
equations, for both the case of the lifetime of the Φ scalars being equal to the
oscillation period of the asymmetry, and for the case of the lifetime of the Φ scalars
being larger than the oscillation period of the asymmetry.
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Numerical Test Case τΦ = Tasy

We first test the case where

τΦ = Tasy = πmΦ
A

, (5.114)

corresponding to the inflaton condensate decaying away completely within a single
oscillation of the field.
For values mΦ = 1016 GeV, A 1

2 = 1013 GeV, and sin2θ = 1, the predicted decay rate
is

ΓΦ = 1
τΦ

= 1
Tasy

= A

πmΦ
= 3.18×109 GeV, (5.115)

the predicted reheating temperature is

TR = k
− 1

2
TR

(
ΓΦMpl

) 1
2 = 4.72×1013 GeV, (5.116)

and using (5.71) the predicted baryon-to-entropy ratio is

nB
s

= 5.62×10−4. (5.117)

The numerical computation gives a baryon-to-entropy ratio for τΦ = Tasy with mΦ =
1016 GeV, A 1

2 = 1013 GeV, and sin2θ = 1 of

nB
s

= 5.28×10−4, (5.118)

which is a very good agreement with the analytical prediction.
Figures 5.3 - 5.5 show the evolution of the baryon-to-entropy ratio, the comoving

condensate asymmetry and the transferred asymmetry over time in the τΦ = Tasy

scenario.
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Figure 5.3: Numerically calculated comoving condensate asymmetry, nc, vs. At/mΦ

for τΦ = Tasy.

Figure 5.4: Numerically calculated comoving transferred asymmetry, n̂c, vs. At/mΦ

for τΦ = Tasy.
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Figure 5.5: Numerical baryon-to-entropy ratio vs. At/mΦ for τΦ = Tasy.

As we can see from Figure 5.3, the condensate asymmetry oscillates about zero
with decreasing amplitude - corresponding to the inflaton field undergoing a phase
oscillation between its Φ and Φ† states while the scalars themselves are decaying,
until the condensate has completely decayed and the condensate asymmetry is there-
fore zero. This occurs over a small number of phase oscillations of the field, and
therefore a small number of oscillations of the asymmetry.

From Figure 5.4 we can see that the transferred asymmetry increases as an asym-
metry is initially generated and then oscillates with the oscillation of the condensate
asymmetry while the inflaton scalars decay - transferring the asymmetry to the Stan-
dard Model - until all of the condensate has decayed, and the transferred asymmetry
settles at a small, positive, finite value, giving the baryon-to-entropy ratio shown in
Figure 5.5.
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Figure 5.6: Comparison of numerically calculated comoving condensate asymmetry
with the analytical estimate from (5.119), nc, vs. At/mΦ for τΦ = Tasy.

Figure 5.7: Comparison of numerically calculated comoving transferred asymmetry
with the analytical estimate from (5.51), n̂c, vs. At/mΦ for τΦ = Tasy.

From the analysis of Figures 5.6 and 5.7, we find that the numerical condensate
and transferred asymmetries are in perfect agreement with the analytical integral
(5.51) with the comoving condensate asymmetry including decay given by (5.48)
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multiplied by the decay factor exp(−ΓΦ(t− t∗)

nc (t) = ϕ1iϕ2i

(
ϕi
ϕ∗

)
mΦ exp(−ΓΦ(t− t∗))sin

(
2A(t− t∗)

mΦ

)
, (5.119)

when decay of the condensate is taken into account. We verify analytically that
this treatment of the decay of the condensate when calculating the asymmetries is
accurate in Section 5.6.3.

Numerical Test Case τΦ > Tasy

We also examine the case where

τΦ = 5Tasy = 5πmΦ
A

, (5.120)

corresponding to the condensate decaying over many oscillations of the inflaton
scalars.
For values mΦ = 1016 GeV, A 1

2 = 1013 GeV, and sin2θ = 1, the predicted decay rate
is

ΓΦ = 1
5Tasy

= A

5πmΦ
= 6.37×108 GeV, (5.121)

the predicted reheating temperature is

TR = 2.11×1013 GeV, (5.122)

and using (5.71) the predicted baryon-to-entropy ratio is

nB
s

= 5.05×10−5. (5.123)

The numerical computation gives a baryon-to-entropy ratio for τΦ = 5Tasy with
mΦ = 1016 GeV, A 1

2 = 1013 GeV, and sin2θ = 1 of

nB
s

= 4.84×10−5, (5.124)

which is in very good agreement with the analytical prediction.
Figures 5.8 - 5.10 show the evolution of the baryon-to-entropy ratio, the comoving

condensate asymmetry, and the transferred asymmetry over time in the τΦ = 5Tasy
scenario.
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Figure 5.8: Numerically calculated comoving condensate asymmetry, nc, vs. At/mΦ

for τΦ = 5Tasy.

Figure 5.9: Numerically calculated comoving transferred asymmetry, n̂c, vs. At/mΦ

for τΦ = 5Tasy.
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Figure 5.10: Numerical baryon-to-entropy ratio vs. At/mΦ for τΦ = 5Tasy.

Figure 5.11: Comparison of numerically calculated comoving condensate asymmetry
with the analytical estimate from (5.119), nc, vs. At/mΦ for τΦ = 5Tasy.
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Figure 5.12: Comparison of numerically calculated comoving transferred asymmetry
with the analytical estimate using (5.51), n̂c, vs. At/mΦ for τΦ = 5Tasy.

Figure 5.8 shows the condensate asymmetry oscillating about zero with decreas-
ing amplitude, until the condensate has completely decayed and the condensate
asymmetry is zero. Since in this case we are considering τΦ > Tasy, this occurs
over a large number of phase oscillations of the field, and therefore a large num-
ber of oscillations of the asymmetry. Similarly, Figure 5.9 shows the transferred
asymmetry increasing as an asymmetry is initially generated in the condensate and
transferred through the initial inflaton decays. The transferred asymmetry then
continues oscillating while the inflaton scalars continue decaying, transferring the
asymmetry to the Standard Model until the inflaton condensate has decayed com-
pletely. The transferred asymmetry then settles at a small, positive, finite value,
corresponding to the total asymmetry transferred to the Standard Model, and thus
the baryon-to-entropy ratio shown in Figure 5.10. As in the case of τΦ = Tasy, we
can see from Figures 5.11 and 5.12, that the numerically calculated comoving con-
densate and transferred asymmetries are in perfect agreement with the comoving
condensate and transferred asymmetries calculated analytically using the threshold
approximation for τΦ = 5Tasy, demonstrating that the threshold approximation ac-
curately models the behaviour of the condensate and transferred asymmetries, as
well as accurately predicting the baryon-to-entropy ratio, both in the case of rapid
decay of the inflaton condensate and decay over many oscillations of the asymmetry.
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5.6.3 Validity of the Analytical Approximation of the Decay
of the Condensate Asymmetry

In this section we examine the validity of the analytical approximation of the decay
of the condensate asymmetry, and thus the validity of the analytical treatment of
the threshold approximation. In our treatment thus far, we have assumed that the
condensate asymmetry decays as

nc (t) = n0 (t)e−ΓΦ(t−t∗), (5.125)

where n0 (t) is the condensate asymmetry without decay. We will show that this is
true if

ΓΦ <<m2
Φ, (5.126)

and

HΓΦ <<m2
Φ. (5.127)

We are considering rapid oscillations in the amplitude of the inflaton field, ϕ, in
this model, meaning that m2

Φ >>H2, and up to the complete decay of the inflaton
condensate we have that ΓΦ ≲H. From these two conditions, it follows that (5.126),
(5.127) are satisfied.

We can prove (5.125) is true under these conditions. As a starting point, we
assume that the field solutions in the case of condensate decay are

ϕi (t) = ϕi0 (t)e− ΓΦt
2 , i= 1,2 (5.128)

where ϕi0 (t) is the solution to the field equations without the decay terms. The full
field equations with the decay terms are

ϕ̈1 +3Hϕ̇1 +ΓΦϕ̇1 = −m2
1ϕ1, (5.129)

ϕ̈2 +3Hϕ̇2 +ΓΦϕ̇2 = −m2
2ϕ2, (5.130)

and in order to verify the analytical approximation of the decay of the condensate
asymmetry we need to substitute (5.128) into the field equations with the decay
terms. Using (5.128) we have that

ϕ̇i (t) =
[
ϕ̇i0 (t)− ΓΦ

2 ϕi0 (t)
]
e− ΓΦt

2 , (5.131)

and
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ϕ̈i (t) =
[
ϕ̈i0 (t)−ΓΦϕ̇i0 (t)+ Γ2

Φ
4

]
e− ΓΦt

2 . (5.132)

Substituting (5.131), (5.132) into the field equations (5.129), (5.130) we find that
both sides are proportional to e− ΓΦt

2 , and can therefore cancel the exponentials. The
field equations with decay terms in terms of the field solution (5.128) are then

ϕ̈i0 (t)+3Hϕ̇i0 (t) = −
[
m2
i − Γ2

Φ
4 − 3HΓΦ

2

]
ϕi0 (t) . (5.133)

These are the same as the field equations with no decay term if

Γ2
Φ
4 <<m2

i ,
3HΓΦ

2 <<m2
i , (5.134)

and if these conditions are satisfied then we can infer that (5.126) and (5.127) are
also satisfied, and are true for Γ2

Φ << m2
i and H2 << m2

i . These conditions are
generally satisfied for a rapidly oscillating field, which is a basic assumption of the
dynamics of this model.

The condensate asymmetry is given by

n(t) = ϕ̇1ϕ2 − ϕ̇2ϕ1. (5.135)

Substituting (5.128) and (5.131) into the condensate asymmetry (5.135) we find that

n(t) =
(
ϕ̇10ϕ20 − ϕ̇20ϕ10

)
e−ΓΦt, (5.136)

which is simply

n(t) = n0 (t)e−ΓΦt. (5.137)

The condensate asymmetry for a decaying condensate is therefore equal to the con-
densate asymmetry with no decay multiplied by e−ΓΦt, as put forward in (5.51) in
Section 5.3.4, and the analytical approximation of the decay of the condensate asym-
metry is therefore valid in the limit of rapid oscillations, as we assume throughout
this model.

5.7 Baryon Asymmetry Washout by Inflaton Ex-
change

So far we have assumed that the condensate decays via B-conserving processes, and
that the mean asymmetry formed in the inflaton condensate is transferred equally
to the Standard Model particles. This means that we assume there are no additional
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processes happening which could remove the asymmetry from the particle plasma.
In this section we will consider a B-violating process which follows the annihilation
of two anti-fermions ψ̄ to a virtual inflaton, which then decays to a pair of fermions
ψ, which can subtract baryon number from the Universe and potentially wipe out
the asymmetry. Such a process would arise from inflaton exchange combined with
the interaction λψψ̄cψΦ, responsible for inflaton condensate decay. The rate of this
process is given by

Γ∆B = nΦ⟨σv⟩, (5.138)

where we assume this process is relativistic, v = 1. At reheating t= tR, the number
density of the inflaton particles is nΦ ∼ T 3

R, and dimensionally the rate is given by

Γ∆B ∼
λ4
ψA

2T 5
R

m8
Φ

, (5.139)

where inflaton exchange implies an amplitude proportional to λ2
ψA. This process

will not be significant - and therefore washout due to inflaton exchange will not pose
a problem for Affleck-Dine baryogenesis with quadratic symmetry-breaking terms -
provided that Γ∆B <H (TR). Using H (TR) ∼ T 2

R/Mpl, this requires that

λ4
ψA

2T 5
R

m8
Φ

<H (TR) ∼ T 2
R

Mpl
. (5.140)

Rearranging (5.140) gives the following constraint on the coupling λψ

λ4
ψ ≲

m8
Φ

MplA2T 3
R

⇒ λ2
ψ ≲

m4
Φ

M
1
2
plAT

3
2
R

. (5.141)

Normalising the inflaton mass and the reheating temperature using mϕ = 1013 GeV
and TR = 108 GeV, this can be expressed as

λ2
ψ ≲

(
6.5×104

)(m2
Φ
A

)(
mΦ

1013 GeV

)2(108 GeV
TR

) 3
2
. (5.142)

Provided that this condition is satisfied, the asymmetry will not be washed out by
inflaton exchange. This can be rewritten as a constraint on the reheating tempera-
ture if we consider the fact that the inflaton decay rate is given by ΓΦ = λ2

ψmΦ/4π
[132], and ΓΦ =HR. The reheating temperature is then

TR ≈ λψ
√
mΦMpl, (5.143)

which allows the constraint (5.141) to be expressed as
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TR ≲

(
m2

Φ
A

) 2
7
(
Mpl

mΦ

) 1
7
mΦ. (5.144)

Provided this is satisfied, there is little risk of the asymmetry being washed out by
inflaton exchange. Since A<<m2

Φ and mΦ <Mpl, then this is generally satisfied for
Affleck-Dine baryogenesis with quadratic symmetry-breaking terms if TR <mΦ. A
more in-depth examination of washout would require a specific model of the inflaton
decay processes and the transfer of the baryon asymmetry.

5.8 Consistency with Non-Minimally Coupled In-
flation

In this section we consider the case of non-minimally coupled inflation with a quartic
potential, which is naturally compatible with the potential of the model (5.3). We
explore the conditions needed for the analytic expressions of the baryon asymmetry
we have derived in this work to be consistent with non-minimally coupled inflation.
To achieve this we need that the inflaton dynamics stop being dominated by the non-
minimal coupling before the Affleck-Dine dynamics become significant. This can be
stated as requiring that the point of non-minimal coupling domination, ϕc, must be
larger than the threshold point ϕ∗, ϕ∗ < ϕc. From Section 5.5, we have that once
H2 = 4A, at a point we denote as ϕAD, the phase field θ becomes dynamical, and
we need ϕAD < ϕ∗ in order for no asymmetry to be produced while the potential is
in its |Φ|4 dominated regime and for the threshold approximation of the asymmetry
to hold. We therefore require that ϕAD < ϕ∗ < ϕc (see Figure 5.13) in order for this
model of Affleck-Dine baryogenesis via quadratic B-violating terms as described
by the threshold approximation to be compatible with the AD field being a non-
minimally coupled inflaton.
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Figure 5.13: Schematic of the inflaton potential illustrating the relationship between
the different regimes of the potential as thresholds in the dominant dynamics of the
inflaton field, assuming ϕ is canonically normalised, producing the characteristic
plateau potential of non-minimally coupled models.

In the Palatini formalism, the point at which the non-minimal coupling ceases to
be the dominant contribution to the dynamics of the inflaton field is when Ω2 = 1.
This represents the point at which the canonical inflaton in the Einstein frame
becomes equivalent to the Jordan frame inflaton, and the potential is approximately
given by the Jordan frame potential. We have that

Ω2 = 1+ ξϕ2
c

M2
pl

≈ O (1) . (5.145)

Since this corresponds to the edge of the plateau, we have

ξϕ2
c

M2
pl

∼ 1 ⇒ ϕc = Mpl√
ξ
, (5.146)

in the Palatini formalism.
In the metric formalism, the condition for equivalence of the inflaton between

frames is (from the definition of the canonical field transformation in Section 3.1.1)

Ω2 +6ξ2ϕ2
c/M

2
pl

Ω4 = 1, (5.147)

for Ω2 = 1. Using the slow-roll inflation condition on the non-minimal coupling,
ξ >> 1, we have
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6ξ2ϕ2
c

M2
pl

= 1 ⇒ ϕc = Mpl√
6ξ
. (5.148)

Using the condition ϕ∗ = mΦ/
√
λΦ < ϕc, in the Palatini formalism (5.146) we

therefore require

mΦ√
λΦ

<
Mpl√
ξ
, (5.149)

which gives the condition on the inflaton mass for the model to be consistent with
non-minimally coupled dynamics as

mΦ <

√
λΦMpl√
ξ

. (5.150)

The comoving curvature power spectrum for a quartic potential in the Palatini
formalism is (from (6.46)2)

PR = λΦN
2

12π2ξ
, (5.151)

and using N = 55 as an estimate of the pivot scale and taking the amplitude of PR

to be As = 2.1×10−9 [12], ξ is

ξ = 1.22×1010λΦ. (5.152)

Using ξ normalised to the Palatini power spectrum PR given in (5.152), the con-
straint on the inflaton mass (5.150) becomes

mΦ < 2.2×1013 GeV. (5.153)

For the case of the metric formalism (5.148), for ϕ∗ < ϕc, we have that

mΦ√
λΦ

<
Mpl√

6ξ
, (5.154)

which gives

mΦ <

√
λΦMpl√

6ξ
. (5.155)

The comoving curvature power spectrum in the metric formalism is given by (from
(3.50))

2In Chapter 6 we derive the primordial curvature power spectrum and the inflation observables
in the Palatini formalism generalised to include an inflaton mass term. We find that the power
spectrum and observables are the same as those for conventional Palatini inflation with a quartic
inflaton potential. See e.g. [62] for a recent review of the calculation of the observables in quartic
Palatini inflation.
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PR = λΦ
72π2ξ2N

2, (5.156)

and using N = 55 and As = 2.1 × 10−9, this gives the value of the non-minimal
coupling to be

ξ = 4.5×104
√
λΦ. (5.157)

Using ξ normalised to the metric power spectrum PR given in (5.157) this gives

mΦ < 2.2×1013 GeV, (5.158)

in order for the model to be consistent with non-minimally coupled inflaton dynamics
in the metric formalism, which is the coincidentally the same numerical constraint
for the inflaton mass for the Palatini formalism. This means that this model is
compatible with an embedding into a non-minimally coupled inflation model within
a well defined upper bound on the inflaton mass.

5.9 Baryon Isocurvature Perturbations in Non-
Minimally Coupled Inflation

In this model, it is possible that the angular component of the inflaton field may
undergo quantum fluctuations during inflation which result in density perturba-
tions uncorrelated with the perturbations in the photon energy density. These are
isocurvature fluctuations, as defined in Section 2.12.1. In Affleck-Dine baryogenesis
models, the phase of the AD field can produce isocurvature fluctuations in the local
baryon density, and therefore in baryon number density [133] - [137]. These isocur-
vature fluctuations in baryon number density can be observable, and this can lead
to constraints on inflation models used in conjunction with the Affleck-Dine model
in order for the model to be compatible with observations. In this section, we ex-
plore the baryon isocurvature perturbations generated in this model of Affleck-Dine
inflation with quadratic B-violating terms, and examine whether this model is com-
patible with the bounds on the isocurvature fraction from the Planck experiment
(2018).

We define the isocurvature perturbations as

I =
(
δρi
ρi

)
iso

, (5.159)

for a given species i. In order to compare the isocurvature perturbations in baryon
energy density in this model to the isocurvature bounds defined using Planck data
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[36], which are normalised to cold dark matter isocurvature perturbations, we begin
with the isocurvature perturbations in cold dark matter density

I =
(
δρCDM
ρCDM

)
iso

, (5.160)

and then use the fact that δρCDM → δρB to find the effective cold dark matter
isocurvature perturbations due to baryon number perturbations

I = ρB
ρCDM

(
δρB
ρB

)
iso

= ΩB

ΩCDM

(
δρB
ρB

)
iso

, (5.161)

where the Ω here are the total energy densities as defined in Section 2.6.1. The
isocurvature fraction βiso defined in [36] is

βiso = PI
PR +PI

, (5.162)

assuming that the adiabatic and isocurvature fluctuations are uncorrelated. PR =As

is the primordial curvature power spectrum, and to calculate PI we need to calculate
the power spectrum of the baryon isocurvature fluctuations δρB/ρB due to the
fluctuations of the inflaton field, given by δθ.

For non-minimally coupled inflation with a complex field, we have that

Φ = ϕ√
2
eiθ = 1√

2
(ϕ1 + iϕ2) , (5.163)

where θ is an effectively massless field during inflation and the evolution of the
inflaton field is purely along the radial direction, corresponding to θ = 0 along the
ϕ1 direction. Writing the inflaton as an effectively constant background plus a
fluctuation in the field, we have that

Φ = ϕ̄√
2
eiδθ ≃ ϕ̄√

2
(1+ iδθ) = 1√

2
(
ϕ̄1 + iδϕ2

)
, (5.164)

for small δθ, where

ϕ̄1 = ϕ̄, δϕ2 = ϕ̄δθ. (5.165)

We have that the inflaton kinetic term in both the metric and Palatini formalisms
for a complex inflaton field is given by

1
Ω2∂µΦ†∂µΦ = 1

2
(

1+ ξϕ2
1

M2
pl

+ ξϕ2
2

M2
pl

) (∂µϕ1∂
µϕ1 +∂µϕ2∂

µϕ2) , (5.166)

and during slow-roll inflation we have that
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ξϕ̄2
1

M2
pl

>> 1, ξϕ
2
2

M2
pl

, (5.167)

and the kinetic term for the angular field can therefore be written

M2
pl

2ξϕ̄2
1
∂µϕ2∂

µϕ2. (5.168)

We define a canonical field χ2 such that

dχ2
dϕ2

= Mpl√
ξϕ̄1

⇒ χ2 = Mpl√
ξϕ̄1

ϕ2, (5.169)

and substituting this into (5.168) we find the canonical kinetic term to be

M2
pl

2ξϕ̄2
1
∂µϕ2∂

µϕ2 → 1
2∂µχ2∂

µχ2. (5.170)

In terms of fluctuations of the inflaton field we therefore have

δχ2 = Mpl√
ξϕ̄1

δϕ2 = Mpl√
ξϕ̄
ϕ̄δθ, (5.171)

⇒ δθ =
√
ξ

Mpl
δχ2. (5.172)

Since χ2 is a canonically normalised field, its power spectrum is the standard ex-
pression given in Section 2.12

Pδχ2 =
(
H

2π

)2
, (5.173)

and from (5.172) we have that the corresponding power spectrum in δθ is

Pδθ = ξ

M2
pl

Pδχ2 ⇒ Pδθ = ξH2

4π2M2
pl

. (5.174)

The fluctuations in the baryon energy density relate to fluctuations in baryon
number density through ρB = mBnB for a fixed mass of the baryonic species, and
we have

δρB
ρB

= δnB
nB

. (5.175)

In this model we have that

nB ∝ sin(2θ) , (5.176)

from (5.72), (5.79), (5.82), for an initial phase angle θ, and we can write the fluctu-
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ation in baryon number density as

δnB
nB

= dnB
dθ

δθ

nB
. (5.177)

Using (5.176), we have that

dnB
dθ

= 2cos(2θ) , (5.178)

and using (5.176) and (5.178) substituted into (5.177), the fluctuation in baryon
number density in terms of the fluctuation in θ is

δnB
nB

∝ 2δθ
tan(2θ) . (5.179)

The isocurvature fluctuation in baryon number density from (5.161) is then

I = ΩB

ΩCDM

δnB
nB

= ΩB

ΩCDM

2δθ
tan(2θ) , (5.180)

the power spectrum of the baryon isocurvature fluctuations is thus

PI =
(

ΩB

ΩCDM

)2 4
tan2 (2θ)

Pδθ, (5.181)

and using (5.174), we can write (5.181) as

PI =
(

ΩB

ΩCDM

)2
ξH2

tan2 (2θ)π2M2
pl

. (5.182)

The ratio PI/PR from (5.162) can be written in terms of the isocurvature fraction

PI
PR

= βiso
1−βiso

, (5.183)

and using the observational limit on the isocurvature fraction, βiso,lim, [36] we can
constrain this ratio

PI
PR

=
(

ΩB

ΩCDM

)2
ξH2

tan2 (2θ)π2M2
plPR

<
βiso,lim

1−βiso,lim
. (5.184)

With some rearrangement this can be recast as a constraint on the Hubble parameter
during inflation

Hinf <
ΩCDM

ΩB

MplπA
1
2
s√

ξ
tan(2θ)

(
βiso,lim

1−βiso,lim

) 1
2
. (5.185)

Using As = 2.1×10−9, ΩCDM/ΩB = 5.3 and βiso,lim = 0.038 from [36] this is
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Hinf < 3.6×1014
(

tan(2θ)√
ξ

)
GeV, (5.186)

which is the requirement in order to produce an isocurvature fraction consistent
with observations.

The Einstein frame potential on the plateau in both the metric and Palatini
formalisms for a quartic inflaton potential (see e.g. [62] for a review of the derivation
of (5.187) in both formalisms) is

VE =
λΦM

4
pl

4ξ2 , (5.187)

and from (4.198) we have that

Hinf =
(
λΦ
12

) 1
2 Mpl

ξ
. (5.188)

Using (5.188) and (5.186), we can write a constraint on the non-minimal coupling ξ
needed in order to produce an acceptable isocurvature fraction in this model,

(
λΦ
12

) 1
2 Mpl

ξ
< 3.6×1014

(
tan(2θ)√

ξ

)
GeV, (5.189)

therefore

ξ > 3.7×106 λΦ
tan2 (2θ)

. (5.190)

We can now examine ξ in the metric and Palatini formalisms and test whether the
non-minimal coupling in each formalism satisfies the constraint (5.190). The non-
minimal coupling ξ normalised from the comoving curvature power spectrum in the
Palatini formalism is ξ = 1.22 × 1010λΦ (5.152) which easily satisfies the constraint
(5.190) provided that tan(2θ) isn’t exceptionally small, and also shows that the
constraint on ξ ultimately does not depend on the size of the inflaton self-coupling
λΦ. This shows that this model in the Palatini formalism produces an isocurvature
perturbation in the baryon number density compatible with observations.

In the metric formalism we find ξ = 4.5×104√
λΦ (5.157), and therefore

λΦ < 1.5×10−4 tan4 (2θ) , (5.191)

is required in order for the constraint (5.190) to be satisfied and isocurvature per-
turbations to be compatible with observations in the metric formalism.

Therefore in metric non-minimally coupled inflation, isocurvature perturbations
place a significant constraint on the inflaton self-coupling. This also means that the
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baryon isocurvature fraction can be close to the present CMB bound if λΦ ∼ 10−4,
and so potentially observable as the bound improves, in contrast to the case of
Palatini inflation where it will generally be much smaller than the CMB bound.

5.10 Semi-Classical Treatment of the Coherently
Oscillating Condensate

Throughout our derivation and analysis of the Affleck-Dine baryogenesis model with
quadratic symmetry-breaking terms, we have assumed that ϕ1 and ϕ2 can be treated
as classical fields. However, we must consider whether the classical treatment of the
fields is valid in this context.

The inflaton field after inflation forms an oscillating coherent quantum conden-
sate. In a second quantised theory, a coherent condensate can be treated as a
classical field because the occupation number of the field states is much larger than
one [138] [139]. In order for this to be satisfied, we require in the general sense
that X >mX for the field X which we are considering. However, in our model the
condensate decays when ϕ < ϕ∗ =mΦ/

√
λΦ, and so ϕ <mΦ generally, meaning that

the condensate can no longer be considered classically. Nevertheless, we will show
that the classical calculation of the asymmetry is still correct.

The oscillating classical field corresponds to a coherent state of the field |ϕi (t)⟩.
In general, the expectation value of the field operator in the coherent state |ϕi (t)⟩
is given by its classical value,

⟨ϕi (t) |ϕ̂i|ϕi (t)⟩ = ϕi,cl (t) , (5.192)

where ϕi,cl is the classical value of the field ϕi which satisfies the classical equations of
motion. Since we are treating the components of the fields ϕ1 and ϕ2 as independent
scalar fields, the coherent state of the complex field is the product of the coherent
states of ϕ1 and ϕ2

|Φ(t)⟩ = |ϕ1 (t)⟩|ϕ2 (t)⟩. (5.193)

The baryon number density operator is given by

n̂= ˆ̇ϕ1ϕ̂2 − ˆ̇ϕ2ϕ̂1, (5.194)

and the expectation value of the baryon number density in the coherent state
|ϕ1 (t)⟩|ϕ2 (t)⟩ is given by
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⟨Φ(t) |n̂|Φ(t)⟩ = ⟨Φ(t) | ˆ̇ϕ1ϕ̂2 − ˆ̇ϕ2ϕ̂1|Φ(t)⟩ = ⟨ϕ1 (t) |⟨ϕ2 (t) | ˆ̇ϕ1ϕ̂2 − ˆ̇ϕ2ϕ̂1|ϕ1 (t)⟩|ϕ2 (t)⟩

= ⟨ϕ1

∣∣∣∣ ˆ̇ϕ1

∣∣∣∣ϕ1⟩⟨ϕ2
∣∣∣ϕ̂2
∣∣∣ϕ2⟩−⟨ϕ1

∣∣∣ϕ̂1
∣∣∣ϕ1⟩⟨ϕ2

∣∣∣∣ ˆ̇ϕ2

∣∣∣∣ϕ2⟩. (5.195)

Thus the expectation value of the baryon asymmetry operator in the coherent state
is given by

⟨Φ(t) |n̂|Φ(t)⟩ = ϕ̇1ϕ2 − ϕ̇2ϕ1 ≡ ncl. (5.196)

Therefore the expectation value of the baryon asymmetry operator in the coherent
state i is equal to the baryon number density, ncl, calculated using the classical
fields ϕ1 and ϕ2. This is true even if the classical oscillating field is no longer a good
approximation to the coherent state.

Since ϕi < mΦ in this model, the variance of the expectation value of the field
becomes large compared to the squared classical field, which means that the quantum
fluctuations of the fields around their expectation values will be large, and the fields
cannot be considered classical. However, the length scale of the field fluctuations at
the onset of inflaton decay must be smaller than the horizon. The present observed
Universe evolves from a spacetime volume much larger than the size of the horizon
at inflaton decay, therefore the observed baryon asymmetry today will be given
by its spatial average, which corresponds to the classical value of the asymmetry.
This means that the observed baryon-to-entropy ratio is equivalent to the baryon
asymmetry calculated using the classical fields, ncl, in this case, despite the fact that
the fields themselves cannot be considered classical. The classical calculation of the
baryon-to-entropy ratio is therefore still correct in the Affleck-Dine baryogenesis
model with quadratic symmetry-breaking terms.

5.11 Summary

In this chapter we have considered an Affleck-Dine baryogenesis scenario resulting
from a model of non-minimally coupled inflation with a complex inflaton charged
under a global U(1) symmetry, with the complex inflaton taking the role of the AD
field. We considered inflation from a renormalisable U(1)-symmetric |Φ|2 + |Φ|4-type
potential, with a quadratic U(1)-violating term A

(
Φ2 +Φ†2). This term introduces

a phase dependence, altering the field’s trajectory from being purely radial (along
the ϕ1 direction) into a varying elliptical orbit in the complex plane, corresponding
to an oscillating asymmetry.

At the end of slow-roll inflation, the inflaton is coherently oscillating. Initially
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these are |Φ|4 dominated oscillations, and then later becomes Φ2 oscillations as
the oscillations become damped and the inflaton field oscillates about its minimum
deep in the Φ2 region of the potential. At this stage the coherent condensate decays
in a B-conserving process and subsequently reheats the universe. While the field
undergoes coherent oscillations, it undergoes a periodic phase oscillation between
its eigenstates Φ ↔ Φ†. This means that while the condensate is decaying, it is also
periodically rotating between its Φ and Φ† states. So for each half-cycle in the phase
oscillation, either Φ or Φ† scalars will be dominantly decaying, and will therefore
produce either a baryon or anti-baryon number contribution to the particle plasma.
Due to the fact that the condensate is decaying away while this is happening, it
means that the produced baryon number and anti-baryon number of each oscillation
doesn’t exactly cancel with the charge produced in the previous half-cycle. This
results in an overall asymmetry in baryon number being transferred to the particle
content of the Standard Model, and this is how the observed small but finite baryon
asymmetry is generated.

We were interested in studying the baryon asymmetry generated in this Affleck-
Dine baryogenesis model from a quadratic symmetry-breaking term. In order to do
this we derived the U(1) asymmetry using a threshold approximation, wherein the
asymmetry is generated when the potential is strongly dominated by its quadratic
terms. We modelled the asymmetry of the condensate, and its evolution into the
asymmetry which is transferred to the Standard Model, both in the case where
the lifetime of the condensate is much larger than the oscillation period of the
inflaton phase, τΦ > Tasy, and in the case where the condensate decays away before
a phase rotation can occur, τΦ < Tasy. We find that in both cases the asymmetry
transferred to the Standard Model derived using the threshold approximation could
account for the observed baryon-to-entropy ratio. For τΦ < Tasy it is typically much
greater, and for τΦ > Tasy it can be much less, due to the effect of suppression of
the asymmetry due to averaging over a large number of oscillations. Given that
the typical baryon asymmetry generated is much larger than that observed, the
suppression due to oscillations is advantageous, requiring a smaller suppression of
the quadratic symmetry-breaking terms.

We examine the dynamics of the angular component of the inflaton field θ, and
determine that the perturbations of the θ field do not significantly evolve before
the potential becomes Φ2 dominated, provided that the constraint (5.100) is satis-
fied, which is easily compatible with the constraints on A

1
2/m2

Φ, (5.74) and (5.84),
derived in order to generate the observed baryon-to-entropy ratio from the trans-
ferred asymmetry. We numerically verified the constraint (5.100) and showed that
when this is violated there is an additional suppression of the asymmetry due to the
damping of the phase during Φ4 oscillations.
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We verify the validity of the threshold approximation in the derivation of the
asymmetry, and the calculation of the baryon-to-entropy ratio using a numerical
computation. In the numerical computation, we include decay terms in the field
equations to account for the decay of the condensate, and we also model the dilu-
tion of the radiation energy density due to the expansion of the Universe. In the
analytical calculation we assume that at time t= tR, the condensate instantly decays
to radiation and use this to calculate the reheating temperature. In the numerical
computation of Section 5.6, we model the condensate as decaying away over a time
period ∼ Γ−1

Φ , and then calculate the reheating temperature directly from the energy
density of radiation. We verify that the threshold approximation is reasonable for
the analytical calculation for cases of the asymmetry generated with τΦ = Tasy and
τΦ > Tasy, with the predictions of the baryon-to-entropy ratio obtained numerically
being within 10% of the analytical predictions and the behaviour of the comoving
condensate and transferred asymmetries in each case when modelled numerically is
in perfect agreement with the behaviour predicted analytically using the threshold
approximation. We also demonstrated that washout of the asymmetry through B-
violating inflaton exchange is unlikely to pose a problem in this model for the range
of reheating temperatures we would consider. This shows that this model provides
a robust general framework for studying Affleck-Dine baryogenesis due to quadratic
terms in models with a complex inflaton as the Affleck-Dine field.

In Section 5.8 we discuss the compatibility of the Affleck-Dine baryogenesis via
quadratic B-violating potential terms model with the dynamics of non-minimally
coupled inflation. We find that in order for this to be realised, we require the
non-minimally coupled dynamics of the inflaton to become insignificant before the
threshold of Φ2 domination, and before the Affleck-Dine dynamics become signifi-
cant. In both the metric and Palatini formalisms of non-minimally coupled inflation,
we find that the model presented in this chapter can fulfill this requirement if the
mass of the inflaton is smaller than 2.2×1013 GeV.

We discuss baryon isocurvature perturbations in Section 5.9 and we derive the
constraints needed to ensure that the isocurvature fraction generated by a non-
minimally coupled inflaton in this framework is not too large, and therefore con-
sistent with the isocurvature bounds given in the Planck results [36]. We find that
the isocurvature fraction predicted in this model can be consistent with the obser-
vational limit in both the metric and Palatini formalisms subject to constraints on
the non-minimal coupling, ξ, (5.152), (5.157) and the inflaton self-coupling in the
metric case (5.191). In particular, in the metric case there is a significant upper
bound on the size of the inflaton self-coupling, λΦ ∼ 10−4. This also means that
in the metric case, the baryon isocurvature perturbations could potentially become
observable with an improved CMB bound on the isocurvature fraction in the future.
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We also examine the validity of the classical treatment of the transfer of the
asymmetry to the Standard Model. Since the inflaton field initially forms a coher-
ently oscillating condensate with a large occupation number, the inflaton field can
be treated as a classical field. However, when the inflaton decays, its amplitude
ϕ is less than mΦ and the coherent state is no longer in the classical limit. This
raises the question of whether the classical treatment of the asymmetry in order to
generate the observed baryon-to-entropy ratio is necessarily correct. We find that
due to the spatial averaging of the baryon asymmetry, it is equal to the expectation
value of the transferred asymmetry operator, which is equal to its classical value.
Therefore, while it may not be true that the asymmetry can be considered strictly
classical, the baryon asymmetry calculated using the classical fields still gives the
correct value of the asymmetry.

While in this work we have considered a general Affleck-Dine scenario without
studying a specific decay path of the inflaton or resulting transfer route of the
U(1)-asymmetry to baryon number, it is possible that this work could be applied
to a leptogenesis scenario from the decay of the inflaton to right-handed neutrinos,
and then a subsequent transfer of the asymmetry to baryon number via sphaleron
processes. This would allow a more in-depth analysis of the possibility of baryon
asymmetry washout, and could also provide a framework for a model of inflation,
baryogenesis and dark matter. This study is in progress.

178



Chapter 6

Q-balls from Non-Minimally
Coupled Inflation in Palatini
gravity

In this chapter we discuss the formulation of Q-balls in the framework of a non-
minimally coupled Palatini inflation model. We present a study of the Palatini
inflation model for a |Φ|2 + |Φ|4-type potential in the Jordan frame (the first time an
inflaton mass term has been included in Palatini inflation) and present the values for
the inflationary observables. We derive the Q-ball field equation in a non-minimally
coupled Palatini framework, discuss the existence conditions of these Q-balls and
derive an inflaton mass range for which the model can both support inflation and
produce Q-balls. In doing so, we will, for the first time, derive Q-ball solutions for the
case of a complex scalar with a non-canonical kinetic term, corresponding to a new
class of Q-ball. We derive the zeroes of the Q-ball equation and use these to solve
the equation numerically. We verify the existence of Q-ball solutions over a range
of field values and present some important properties of these Q-balls, including
energy, charge and radius. We also present an analytical approximation of the Q-
ball solution and obtain expressions for the energy and charge using this calculation.
We show analytically that these Q-balls are stable and derive the energy-charge
relation, both of which are then confirmed numerically. We consider the effects of
curvature on these Q-balls and derive approximate relations between the inflaton
self-coupling, λ, and the size and global energy of the Q-balls in order to predict, as a
first approximation, the radius needed for one of these Q-balls to collapse to a black
hole following formation in the presence of curvature. We discuss reheating in the
case of Q-balls and Q-ball derived Black Holes, and speculate on the post-inflation
cosmology which could result from an early matter-dominated era of Q-balls or their
associated Black Holes. Finally the observability of the model is discussed, including
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the possibility of observable gravitational waves from Q-ball formation and/or decay
and Q-ball dark matter. We also comment on the implications for the case of a real
inflaton and oscillons.

6.1 Q-balls in the Context of Non-Minimally Cou-
pled Palatini Inflation

Q-balls are a subset of the class of field theory solutions known as non-topological
solitons. Solitons are extended objects which can be visualised as droplets composed
of many particles, held together by an attractive interaction between the particles.
Their stability arises due to a conserved quantity of the theory, if the solitons are
non-topological in nature.

In the case of Q-balls, the objects are composed of complex scalar particles
charged under a conserved Noether symmetry of the theory, and the objects them-
selves carry a large charge. Charged scalar field configurations stable against small
perturbations were originally theorised to exist by Rosen [140] in 1968. These ideas
were then explored further and non-topological solitons were formally described by
Friedberg, Lee et al [141, 142] later in the 20th century. The formulation of Q-balls
as we understand them today was developed by Coleman in 1985 [50].

Since then, Q-balls have been studied extensively in the context of supersym-
metry (SUSY) [105] - [113],[143, 144], generally forming from scalar condensates in
the flat directions of supersymmetric potentials. They are often incorporated into
supersymmetric theories in conjunction with Affleck-Dine baryogenesis [100] - [102]
as a dark matter candidate, either as complete Q-balls or as a source of particle
dark matter when the Q-balls decay [103] - [108]. The globally charged nature of
Q-balls makes them a good dark matter candidate [109] - [113], [143] - [145], [146] -
[152] both as compact objects or as the seeds of particle dark matter from decays.
The possibility of dark matter being accounted for by Primordial Black Holes seeded
from the collapse of supersymmetric Q-balls has also recently been considered [153].

Many numerical simulations have been performed to model the formation of Q-
balls from scalar condensates [154] - [161]. In [161], Hiramatsu et al showed that
the fragmentation of a neutral condensate in a model based on a complex scalar
first forms oscillons which then fragment to ± Q-ball pairs. Using Hiramatsu et al’s
results [161] as a benchmark, we will consider the possibility that the Q-balls in this
model may also form from the fragmentation of the inflaton condensate into neutral
lumps of scalars, which then decay into pairs of ± Q-balls.

The fragmentation of a scalar condensate is a complex process which depends
heavily on the underlying particle physics and requires detailed numerical simula-
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tions to model. As such, a quantitative description of the process is beyond the
scope of the research presented in this thesis. However, it is possible that the frag-
mentation of the inflaton condensate in this case could arise as a result of tachyonic
preheating [162] - [166].

Tachyonic preheating is the process by which an inflaton condensate becomes
unstable due to the amplified growth of specific wavelengths of perturbations aris-
ing due to a tachyonic instability of the inflaton potential. This can lead to the
formation of overdensities within a previously homogeneous condensate, which - if
soliton solutions are admissible in the underlying field theory - can lead to the con-
densate breaking apart to form solitons or other related objects [85, 86], the precise
nature of which depends on the nature of the inflaton field itself.

In the work this chapter is based on we were interested in exploring Q-balls
in a non-SUSY context. More specifically, we were interested in whether Q-balls
composed of inflaton scalars could be produced in a model of non-minimally coupled
Palatini inflation, possibly as a result of tachyonic preheating, whether the model
could inflate and reheat successfully in conjunction with the production of Q-balls,
what the properties of these Q-balls would be, how they would compare to the Q-
balls of Coleman’s solution, and what the broader implications for cosmology could
be from the presence of these Q-balls.

6.2 The Model

In this section we introduce the non-minimally coupled Palatini inflation model
within which we want to produce inflatonic Q-balls. This model describes inflation
driven by a complex scalar inflaton Φ charged under a global U(1) symmetry and
non-minimally coupled to gravity. In particular, it differs from existing analyses
of Palatini inflation by the inclusion of an inflaton mass term, which has not been
previously considered. We use the (+,−,−,−) convention for the metric and Mpl

should be taken to be the reduced Planck mass.
The Jordan frame inflaton action is given by

SJ =
∫
d4x

√
−g

−1
2M

2
pl

1+ 2ξ | Φ |2

M2
pl

R+∂µΦ†∂µΦ−V (| Φ |)
 , (6.1)

where the Jordan frame potential is

V (| Φ |) =m2 | Φ |2 +λ | Φ |4, (6.2)

where m is the inflaton mass and λ is the inflaton self-coupling. In order to recast
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the model in terms of conventional General Relativity, we perform a conformal
transformation on the spacetime metric, given by

gµν −→ g̃µν = Ω2gµν , (6.3)

where the conformal factor Ω2 (Φ) is

Ω2 = 1+ 2ξ |Φ|2

M2
pl

. (6.4)

In the Palatini formulation, the Ricci scalar transforms as (from (4.17))

R −→ R̃ = R

Ω2 , (6.5)

and the integration measure, √
−g in (6.1), transforms as

√
−det

(
g̃µν
Ω2

)
=
√

− 1
Ω8det(g̃µν) = 1

Ω4

√
−detg̃µν =

√
−g̃

Ω4 . (6.6)

The conformal transformation (6.3) acts purely on the metric of the theory. This
means that the transformation does not act on coordinates and the transformation
on the derivative term in (6.1) is due to the implicit factor of the metric used in the
contraction of the indices

∂µΦ†∂µΦ = gµν∂
νΦ†∂µΦ, (6.7)

⇒ g̃µν∂
νΦ†∂µΦ = gµνΩ2∂νΦ†∂µΦ = Ω2∂µΦ†∂µΦ. (6.8)

The transformed action is then

SE =
∫
d4x

√
−g̃

[
−1

2M
2
plR̃+ 1

Ω2∂µΦ†∂µΦ−VE (| Φ |)
]
, (6.9)

where we are henceforth working in the Einstein frame (denoted by a subscript ’E’
for the action or potential, or a tilde for geometric or other quantities). Our Einstein
frame potential is then defined as

VE (| Φ |) = V (| Φ |)
Ω4 . (6.10)

As in Chapter 4, all calculations are performed in the Einstein frame in this
chapter unless explicitly stated otherwise.
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6.3 Slow Roll Parameters and Inflationary Ob-
servables

In this section we calculate the observables for non-minimally coupled Palatini in-
flation for the potential (6.10) and check the compatibility of this model with the
observations from the Planck satellite experiment. For ease of calculation we write
the complex inflaton field in the form

Φ = ϕ√
2
eiθ, (6.11)

which means that the conformal factor (6.4) becomes

Ω2 = 1+ ξϕ2

M2
pl

, (6.12)

and the Jordan frame potential is

V (ϕ) = 1
2m

2ϕ2 + λ

4ϕ
4. (6.13)

The Einstein frame potential in terms of (6.11) is thus

VE (ϕ) = 1
2Ω4m

2ϕ2 + λ

4Ω4ϕ
4 = m2ϕ2

2
(

1+ ξϕ2

M2
pl

)2 + λϕ4

4
(

1+ ξϕ2

M2
pl

)2 , (6.14)

⇒ VE =
λM4

pl

4ξ2
(

1+ M2
pl

ξϕ2

)2

[
1+ 2m2

λϕ2

]
. (6.15)

Since we are assuming that inflation takes place upon the plateau of the potential,
and we expect the field to be very large in this regime, we define what we will refer
to as "the plateau limit", where

ξϕ2

M2
pl

>> 1. (6.16)

It is assumed throughout this chapter that this approximation is a reflection of the
dominant dynamics during and at the instantaneous end of slow-roll inflation, and
more generally while the inflaton is otherwise on its plateau.
From (6.16), we have that M2

pl/ξϕ
2 << 1, and can therefore approximate

1+
M2
pl

ξϕ2

−2

≈ 1−2
M2
pl

ξϕ2 , (6.17)
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⇒ VE =
λM4

pl

4ξ2

[
1+ 2m2

λϕ2

]1−
2M2

pl

ξϕ2

 . (6.18)

To leading order in small quantities, the Einstein frame potential is,

VE =
λM4

pl

4ξ2

1+ 2m2

λϕ2 −
2M2

pl

ξϕ2

 , (6.19)

which can be rewritten as

VE =
λM4

pl

4ξ2

1−
2M2

pl

ξϕ2 β

 , (6.20)

where β is defined as

β = 1− ξm2

λM2
pl

. (6.21)

To canonically normalise the inflaton field, we perform the field rescaling

dσ

dϕ
= 1√

1+ ξϕ2

M2
pl

, (6.22)

⇒
∫
dσ =

∫ dϕ√
1+ ξϕ2

M2
pl

. (6.23)

Writing a= ξ/M2
pl we can use

∫ dx√
1+ax2 = 1√

a
sinh−1

(√
ax
)

+C, (6.24)

and the rescaled scalar field is therefore

σ (ϕ) = Mpl√
ξ

sinh−1
( √

ξ

Mpl
ϕ

)
, (6.25)

where σ → ϕ as ϕ → 0. It is important to note that this is a field rescaling and
not a truly canonically normalised scalar field, due to the complex nature of the
field Φ. When discussing inflation in this model specifically, it can be regarded
as a "canonical inflaton" since the inflation dynamics are determined by the radial
component, ϕ, of the inflaton field. Elsewhere in this chapter, σ should be taken as a
field redefinition, and the rescaling (6.22) will be used multiple times in calculations
throughout this chapter.

It follows from (6.25) that

184



ϕ(σ) = Mpl√
ξ

sinh
( √

ξ

Mpl
σ

)
. (6.26)

The hyperbolic sine function is

sinh(x) = ex− e−x

2 , (6.27)

and we can therefore rewrite (6.26) as

ϕ(σ) = Mpl

2
√
ξ

e
√

ξ
Mpl

σ
− e

−
√

ξ
Mpl

σ

 . (6.28)

The rescaled field will be large in the same regime as the physical inflaton field.
From (6.16), we can say that the exponential arguments of (6.28) will be large
during inflation. This means that the decreasing exponential will be significantly
smaller than the increasing exponential while on the plateau. During inflation, we
can therefore say that the inflaton field in terms of the canonically normalised scalar
is

ϕ= Mpl

2
√
ξ
e

√
ξ

Mpl
σ
, (6.29)

to a good approximation. Substituting (6.29) into the Einstein frame potential
(6.20) gives

VE (σ) =
λM4

pl

4ξ2

1−8βe−2
√

ξ
Mpl

σ

 . (6.30)

This is the form of the inflaton potential in the Einstein frame which we will use in
deriving the expressions for the inflationary observables (see Figure 6.1). In existing
analyses of Palatini inflation, m = 0 and β = 1. Here we are generalising to m ̸= 0
and β ̸= 1.
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Figure 6.1: Schematic of the inflaton potential in terms of the quasi-canonical field
σ indicating the edge of the plateau, as used in defining the plateau limit used in
this research.

The slow roll parameters are given by

ϵ=
M2
pl

2

(
V ′
E

VE

)2
, (6.31)

η =Mpl
V ′′
E

VE
, (6.32)

where a prime ′ denotes a derivative with respect to a field, ϕ, in this case. Working
with the assumption that ϕ is large we approximate

VE ≈
λM4

pl

4ξ2 , (6.33)

while on the plateau. This is another approximation which will be used in this work
when the plateau limit is invoked. The first and second derivatives of (6.30) are

∂VE
∂σ

=
λM4

pl

4ξ2 · (−8β) ·
(

−2
√
ξ

Mpl

)
e

−2
√

ξ
Mpl

σ =
λM4

pl

4ξ2

(
16β

√
ξ

Mpl

)
e

−2
√

ξ
Mpl

σ
, (6.34)

∂2VE
∂σ2 =

λM4
pl

4ξ2

−32βξ
M2
pl

e−2
√

ξ
Mpl

σ
. (6.35)

Using (6.34), (6.35) the slow roll parameters are thus
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ϵ=
M2
pl

2

 4ξ2

λM4
pl

·
λM4

pl

4ξ2

(
16β

√
ξ

Mpl

)
e

−2
√

ξ
Mpl

σ

2

= 128β2ξe
−4

√
ξ

Mpl
σ
, (6.36)

η =M2
pl

4ξ2

λM4
pl

·
λM4

pl

4ξ2

−32βξ
M2
pl

e−2
√

ξ
Mpl

σ = −32βξe−2
√

ξ
Mpl

σ
. (6.37)

The number of e-folds of inflation is calculated using

N = − 1
M2
pl

∫ σend

σ

VE
V ′
E

dσ = − 1
M2
pl

∫ σend

σ

Mpl

12β
√
ξ

exp
(

2
√
ξ

Mpl
σ

)
dσ

= 1
32ξβ

[
exp

(
2
√
ξ

Mpl
σ

)
− exp

(
2
√
ξ

Mpl
σend

)]
.

(6.38)

Working with the assumption that σend << σ, the number of e-folds is given by

N = 1
32ξβ exp

(
2
√
ξ

Mpl
σ

)
. (6.39)

This can be rewritten to give an expression for σ (N)

σ (N) = Mpl

2
√
ξ

ln(32ξβN) . (6.40)

Substituting (6.40) into (6.36) and (6.37) to find η and ϵ in terms of the number of
e-folds of inflation, we find

ϵ= 128β2ξ exp
[
−4

√
ξ

Mpl

(
Mpl

2
√
ξ

ln(32ξβN)
)]

= 1
8ξN2 , (6.41)

η = −32βξ exp
[
−2

√
ξ

Mpl

(
Mpl

2
√
ξ

ln(32ξβN)
)]

= − 1
N
. (6.42)

These are the standard expressions for ϵ and η in Palatini inflation, and are indepen-
dent of the β parameter. This means that η and ϵ are not affected by the presence
of the mass term during inflation, provided that β > 0.

It is instructive to examine the size of the ϵ parameter relative to the η parameter
in this model to check the consistency of the slow-roll approximation in this inflation
model. From Section 2.8.2 we have that slow-roll inflation ends when |η| = 1, and
from (6.42) we can see that the end of slow-roll corresponds to N = 1. Using (6.41),
we find that the value at the end of slow-roll inflation is ϵ = 1.03 × 10−10, which is
significantly smaller than the η parameter. This shows that this model is consistent
with slow-roll inflation, and that ϵ << η throughout.
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The scalar spectral index, ns in terms of η and ϵ is

ns = 1+2η−6ϵ. (6.43)

Since ϵ << η in this case we approximate

ns ≈ 1− 2
N
. (6.44)

The tensor-to-scalar ratio r is

r ≈ 16ϵ= 16 · 1
8ξN2 = 2

ξN2 . (6.45)

and the primordial curvature power spectrum is

PR = VE
24π2ϵM4

pl

= λ

12ξπ2N
2. (6.46)

From the results of the Planck satellite experiment [12] (2018), the observed am-
plitude of the power spectrum is As = 2.1 × 10−9. Using λ = 0.1 and N = 55 as an
estimate of the self-coupling and the pivot scale, (6.46) gives a non-minimal cou-
pling of ξ = 1.2163×109. Using the same estimate, the inflationary observables are
ns = 0.9636 and r = 6.01×10−13. The scalar spectral index is within the bounds of
the 2018 results from the Planck satellite (assuming ΛCDM and no running of the
spectral index), ns = 0.9649 ± 0.0042 (1-σ) [12], whilst the tensor-to-scalar ratio is
heavily suppressed, as is typically the case in Palatini inflation models. These val-
ues of the observables are only an estimate of the predictions of the model since, as
we will discuss further in Section 6.9 - 6.10, the post-inflationary cosmology of this
model may have an effect on the number of e-folds of inflation needed for the model
to inflate successfully, and consequently the location of the pivot scale, leading to
an adjustment in ns and r.

The inflaton field can be expressed in terms of the number of e-folds as

ϕ(N) = Mpl

2
√
ξ

exp
( √

ξ

Mpl

(
Mpl

2
√
ξ

ln(32ξβN)
))

= 2
√

2Mpl

√
βN, (6.47)

so the mass term directly influences the amplitude of the field throughout inflation.
Defining the end of slow-roll inflation to be when |η| ≈ 1, giving Nend ≈ 1, the value
of the field at the end of slow-roll inflation is then

ϕend = 2
√

2Mpl

√
β. (6.48)

β will be in the range 0.1 − 1 for the values of inflaton mass relevant here. In the
following section we consider limits on the inflaton mass in this model needed to
produce successful inflation, and we consider how this governs the effect of the mass
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term on the value of the field at the end of slow-roll inflation.

6.3.1 The Upper Bound on the Inflaton Mass

For the purposes of the research presented here, we are primarily interested in Q-ball
solutions which are compatible with non-minimally coupled Palatini inflation. Since
the Q-balls will be formed from inflaton scalars, the effects of the inflaton mass from
the presence of the β parameter on the Einstein frame potential, and subsequently
on the existence of Q-ball solutions, must be established, including the range of
inflaton masses for which inflation is possible. It is important to ascertain the limits
placed on the inflaton mass by the necessity that the potential be compatible with
inflation first, in order to later establish the range of inflaton masses for which Q-ball
solutions are compatible with Palatini inflation.

We start from the Einstein frame potential

VE (ϕ) = m2ϕ2

2Ω4 + λϕ4

4Ω4 , (6.49)

and differentiate to give

∂VE
∂ϕ

= 1
Ω6

m2ϕ+
λ− ξm2

M2
pl

ϕ3

 . (6.50)

The inflaton potential must have a positive gradient with respect to the inflaton
for inflation to occur, we therefore require

∂VE
∂ϕ

> 0 ⇒ λ− ξm2

M2
pl

> 0. (6.51)

This means that, in order for inflation to occur in this non-minimally coupled Pala-
tini model, the inflaton mass must obey the upper bound

m2 <
λM2

pl

ξ
, (6.52)

where the upper limit on m2 corresponds to β = 0. For the purposes of studying
these Q-balls numerically, we will consider masses which give a value for β in the
range ∼ 0.1 − 1, which correspond to inflaton field values at the end of inflation
(approximated as the end of slow-roll) in the range ϕend ∼ (1−3)Mpl. The size
of this mass term directly affects the shape of the potential, but will only have a
significant effect on the value of the field at the end of inflation for inflation masses
squared close to the upper limit (6.52).
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6.4 Derivation of the Q-ball Equation

In this section we derive the Q-ball equation in non-minimally coupled Palatini
gravity. We work in the Einstein frame in flat space with the action

S =
∫
d4x

1
Ω2∂µΦ†∂µΦ− 1

Ω4V (|Φ|) . (6.53)

We will show that the flat space calculation is a valid approximation for the
Q-ball solutions that we will obtain. While it is true that gravitational effects can
affect the stability of Q-balls within certain limits, or alter the size of the Q-balls
(see e.g. [167], [168]), the attractive interaction between scalars dominates over any
gravitational effects for Q-balls of the size we are working with in this model. The
effects of gravity, and indeed the presence of a non-minimal coupling of gravity to
the scalar field in the Jordan frame are factors to consider in the post-inflationary
cosmology of this model and may affect the survival of any relic Q-balls to the
present day. We we will later consider a first-pass approximation of the effects
of curvature on these Q-ball solutions in Section 6.8 of this chapter, and proceed
with the understanding that the purpose of this work is to ascertain the flat space
properties of these Q-balls. Expansion could affect the formation of these Q-balls
and their subsequent evolution, and this is something we touch upon in Sections 6.7
- 6.11. For the purposes of establishing the existence of Q-balls made from scalars
with a non-minimal coupling to gravity without the cosmological considerations of
their existence we derive the Q-ball equation using the energy-momentum tensor
for a scalar field in a non-expanding spacetime, and compare these Q-balls to the
conventional flat space Q-balls as derived in [50].

In order to derive the Q-ball equation we begin by using the method of Lagrange
multipliers in order to minimise the energy of the inflaton field with respect to the
conserved U(1) charge of the field

EQ = E+ω
(
Q−

∫
d3xρQ

)
, (6.54)

which gives a "Q-ball action", EQ, which we will refer to as the Q-ball energy func-
tional. This can be extremised to obtain the field equations of the theory, the
solutions of which - subject to a number of conditions which we discuss in Sections
6.4.1 - 6.4.3 - correspond to Q-balls. The global energy, E, and charge, Q, are

Q=
∫
d3x j0 =

∫
d3xρQ, (6.55)

E =
∫
d3x T 00 =

∫
d3xρE , (6.56)
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where j0 is the temporal component of the conserved U(1) Noether current, jµ, and
T 00 is the temporal component of the energy-momentum tensor Tµν for a complex
scalar field, given by

Tµν = ∂L
∂ (∂µϕa)

ηνρ∂ρϕa− δµρ η
νρL, (6.57)

where ηνρ is the Minkowski metric. The energy density of the Φ field is therefore

ρE = T 00 = 1
Ω2∂tΦ

†∂tΦ+ 1
Ω2∂iΦ

†∂iΦ+ V (| Φ |)
Ω4 . (6.58)

This includes the effect of the non-canonical kinetic term of Φ, which has not been
previously studied in the context of Q-ball solutions.

The conserved Noether current jµ of the U(1) symmetry of the model is defined
by

∂µj
µ = 0, jµ = ∂L

∂ (∂µϕa)
δϕa. (6.59)

The temporal components of (6.59) are

j0 = ∂L
∂ (∂tΦ)iΦ− ∂L

∂
(
∂tΦ†

)iΦ†, (6.60)

which from (6.53) gives the charge density of the inflaton field to be

ρQ = i

Ω2

(
Φ∂tΦ† −Φ†∂tΦ

)
. (6.61)

Substituting (6.58) and (6.61) into the Q-ball energy functional (6.54) gives

EQ =
∫
d3x

[
1

Ω2∂tΦ
†∂tΦ+ 1

Ω2∂iΦ
†∂iΦ+ V (|Φ|)

Ω4 − ωi

Ω2

(
Φ∂tΦ† −Φ†∂tΦ

)]
+ωQ.

(6.62)
The temporal derivative terms in (6.62) can be rewritten as

(∂tΦ− iωΦ)
(
∂tΦ† + iωΦ†

)
= ∂tΦ∂tΦ† + iωΦ†∂tΦ− iωΦ∂tΦ† −ω2Φ†Φ

=| ∂tΦ− iωΦ |2,
(6.63)

in order to rewrite the Q-ball energy functional in a more insightful way. If we define
the time derivatives in the integrand of (6.62) as

I = 1
Ω2

[
∂tΦ†∂tΦ+ iωΦ†∂tΦ− iωΦ∂tΦ†

]
, (6.64)

these can be rewritten as in (6.63)
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I = 1
Ω2

[
| ∂tΦ− iωΦ |2 −ω2 | Φ |2

]
. (6.65)

Substituting (6.65) back into the Q-ball energy functional (6.62) we have that

EQ =
∫
d3x

[ 1
Ω2 | ∂tΦ− iωΦ |2 − 1

Ω2ω
2 | Φ |2 + 1

Ω2∂iΦ
†∂iΦ+ 1

Ω4V (| Φ |)
]

+ωQ,

(6.66)
whereupon it is clear that a solution which extremises EQ is

Φ(x,t) = Φ(x)eiωt −→ ∂tΦ = iωΦ. (6.67)

Applying (6.67), the Q-ball energy functional (6.62) becomes

EQ =
∫
d3x

[ 1
Ω2 |

−→
∇Φ |2 + 1

Ω4V (| Φ |)− 1
Ω2ω

2 | Φ |2
]
. (6.68)

Let

Vω (| Φ |) = 1
Ω4V (| Φ |)− 1

Ω2ω
2 | Φ |2, (6.69)

be defined as the Q-ball potential. Assuming that the Q-balls are spherically sym-
metric, we assume that the coordinate dependence of the inflaton field, when ex-
tremised with respect to its charge, is purely radial, which gives

Φ(x) = ϕ(r)√
2
eiωt = ϕ(r) r̂√

2
eiωt, (6.70)

as the field solution corresponding to Q-balls.
Since the coordinate dependence of the field is purely radial, the gradient oper-

ator is reduced to

−→
∇Φ = ∂Φ

∂r
r̂ −→ 1

Ω2

∣∣∣−→∇Φ
∣∣∣= 1

Ω2

∣∣∣∣∣ 1√
2
∂ϕ

∂r
r̂

∣∣∣∣∣
2

= 1
2Ω2

(
∂ϕ

∂r

)2
. (6.71)

Rewriting in spherical polar coordinates, we have that the Q-ball energy functional
is

EQ =
∫
dr 4πr2

 1
2Ω2

(
∂ϕ

∂r

)2
+Vω (ϕ)

+ωQ. (6.72)

We define the function LQ (which we refer to as the "Q-ball effective Lagrangian")
to be extremised as

LQ = 4πr2

 1
2Ω2

(
∂ϕ

∂r

)2
+Vω (ϕ)

 , (6.73)
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and apply the Euler-Lagrange equations (derived for a complex scalar field in flat
space in (3.97))

∂LQ
∂ϕ

− d

dr

(
∂LQ
∂ (∂rϕ)

)
= 0, (6.74)

in order to extremise (6.72).
Using (6.73), the second term of (6.74) is

d

dr

(
∂LQ
∂ (∂rϕ)

)
= 4πr2

Ω2
∂ϕ

∂r

d

dr

(
∂LQ
∂ (∂rϕ)

)

= 8πr
Ω2

∂ϕ

∂r
+ 4πr2

Ω2
∂2ϕ

∂r2 − 8πr2

M2
pl

ξϕ

Ω4

(
∂ϕ

∂r

)2
, (6.75)

and the first term of (6.74) is

∂LQ
∂ϕ

= 4πr2∂Vω
∂ϕ

− 4πr2

M2
pl

ξϕ

Ω4

(
∂ϕ

∂r

)2
. (6.76)

Substituting (6.75) and (6.76) into (6.74), dividing through by a factor of 4πr2 and
multiplying by Ω2 gives the Q-ball equation

∂2ϕ

∂r2 + 2
r

∂ϕ

∂r
−K (ϕ)

(
∂ϕ

∂r

)2
= Ω2∂Vω

∂ϕ
, (6.77)

where

K(ϕ) = ξϕ

M2
plΩ2 . (6.78)

Equation (6.77) corresponds to an entirely new and different form of the Q-ball
equation than that for a scalar theory with canonical kinetic terms, and therefore to
a new class of Q-ball. The result of the Q-ball equation for the minimally coupled
case [50] can be recovered by setting Ω2 = 1(ξ = 0)

∂2ϕ

∂r2 + 2
r

∂ϕ

∂r
= ∂Vω

∂ϕ
, (6.79)

where in this instance

Vω (ϕ) = 1
2m

2ϕ2 + λ

4ϕ
4 − 1

2ω
2ϕ2. (6.80)

Where we see that the difference the presence of the non-minimal coupling for (6.77)
makes as compared to (6.79) is in the additional gradient squared term, and the de-
pendence of the conformal factor in the Q-ball potential and on the right-hand side.
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This shows that, although the non-minimal coupling of the scalar field to gravity is
recast in the Einstein frame using the conformal transformation, its effects are still
manifest in the construction of the Q-balls in the mathematical sense, in that the
attractive interaction binding the scalars into Q-balls seems to contain an additional
component due to the non-minimal coupling. Physically, in the Jordan frame, this
would be gravitational in nature, whereas as the Q-balls are studied here in the Ein-
stein frame, it is merely a component of the regular attractive interaction between
the inflaton scalars.

6.4.1 Existence Conditions of Q-balls

The existence of Q-ball solutions in a given theory is heavily dependent on the form
of the potential, and the realisation of physical Q-balls relies on the ω parameter
being within an acceptable range. The physical reasons for this will be discussed in
later sections. In this section we explore the form of the potential in this model of
non-minimally coupled Palatini Q-balls, derive the constraints on the existence of
Q-balls in this model from the potential and compare the results to those derived
in the case of conventional Q-balls.

Rescaling the Non-Canonical Q-ball Equation in Terms of a Quasi-Canonical
Scalar

The Palatini Q-ball equation in terms of the rescaled field σ has a similar (but not
the same) form as the general form of the Q-ball equation for the conventional case
(6.79), and the dynamics can therefore be understood as being similar in this form.

To illustrate this, we begin with the non-canonical Q-ball equation derived at
the beginning of the section

∂2ϕ

∂r2 + 2
r

∂ϕ

∂r
− ξϕ

M2
plΩ2

(
∂ϕ

∂r

)2
= Ω2∂Vω

∂ϕ
, (6.81)

and apply the rescaling

dϕ

dr
−→ Ωdσ

dr
, (6.82)

such that

d2ϕ

dr2 = d

dr

(
dϕ

dr

)
= d

dr

(
Ωdσ
dr

)
= Ωd

2σ

dr2 + dΩ
dr

dσ

dr
, (6.83)
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dVω
dϕ

= dσ

dϕ

dVω
dϕ

= 1
Ω
dVω
dσ

. (6.84)

Substituting (6.82) - (6.84) into (6.81) gives the rescaled Q-ball equation

Ωd
2σ

dr2 + 2Ω
r

dσ

dr
+ dΩ
dr

dσ

dr
− ξϕΩ2

M2
plΩ2

(
dσ

dr

)2
= Ω2

Ω
dVω
dσ

. (6.85)

We can write

dΩ
dr

= dϕ

dr

dΩ
dϕ

= dσ

dr

dϕ

dσ

dΩ
dϕ
, (6.86)

and

dΩ
dϕ

= d

dϕ

√√√√1+ ξϕ2

M2
pl

= 1
2

2ξϕ
M2
pl

1+ ξϕ2

M2
pl

− 1
2

= ξϕ

M2
plΩ

. (6.87)

Therefore

dΩ
dr

= dσ

dr

dϕ

dσ

dΩ
dϕ

= dσ

dr
Ω ξϕ

M2
plΩ

= dσ

dr

ξϕ

M2
pl

. (6.88)

Using (6.88) on the third term of (6.85), the rescaled Q-ball equation becomes

Ωd
2σ

dr2 + 2Ω
r

dσ

dr
+ ξϕ

M2
pl

(
dσ

dr

)2
− ξϕ

M2
pl

(
dσ

dr

)2
= ΩdVω

dσ
. (6.89)

We can then cancel the gradient squared terms and divide through by Ω to obtain
the Q-ball equation in terms of the σ field

d2σ

dr2 + 2
r

dσ

dr
= dVω

dσ
, (6.90)

which is exactly the same form as the Q-ball equation for ϕ in the Ω → 1 limit (6.79),
but with Vω given by (6.69). This shows that this is not the same as the equation
for a canonically normalised field, as in that case we would have σ2 rather than
ϕ2(σ)/Ω2(σ) in (6.79). Therefore (6.90) will produce significantly different Q-ball
solutions compared to the conventional Q-ball solution, although it does suggest
that there are some broad similarities between the two solutions.

It is at this point that we highlight the fact that it is not in general possible to
transform a complex field such as Φ to a canonically normalised scalar in the strict
sense, and that the transformation used in this case to compare the dynamics of the
non-minimally coupled case to conventional Q-balls is quasi-canonical. The rescaled
field σ is therefore not interpreted as a physically meaningful field, but a function
of the radial component ϕ of the physical complex inflaton used to illustrate some
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of the properties of the non-canonical Q-ball solution.

Q-ball Existence and Coleman’s Mechanical Analogy in the Case of Non-
Minimally Coupled Palatini Q-balls

In this section we discuss the application of Coleman’s mechanical analogy [50],
originally used as a tool for understanding the precise nature of Q-ball solutions and
the dependence of their existence on the form of the scalar potential, to Q-balls in
the non-minimally coupled Palatini case. This analogy was originally derived for
Q-balls in the canonical scalar field case, and the underlying dynamics in this model
therefore look a little different, as we will discuss later.

We first introduce the analogy in the context of the conventional case of a canon-
ically normalised scalar, for which σ = ϕ. If we interpret the field σ (ϕ) as a position
coordinate, and r as a time coordinate, then (6.90) ((6.79)) looks like it is describ-
ing the damped motion of a particle moving in the potential −Vω. Figure 6.4.1
schematically shows the potential −Vω and the motion of the "particle" within it .

Figure 6.2: Schematic potential and particle motion as described by (6.79) and
(6.90).

The "particle" begins its motion at the black circle on the right, at a starting
point we will refer to as ϕ0. The local maximum at the origin of the potential ϕ= 0
corresponds to the field in the vacuum at r → ∞, and the idea of this analogy is
that in order to obtain a Q-ball solution in a given potential Vω, the conditions
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must be precisely right such that the particle rolling down from ϕ0 on the right
comes to rest exactly at the origin as illustrated in Figure 6.4.1. One such condition
is the initial placement, or starting location of the particle, ϕ0. If the particle is
initially placed too close to ϕ = 0 - ϕ0 is too small - then the particle will not gain
enough momentum to reach the top of the local maximum at ϕ= 0, and it will roll
backwards to oscillate about the local minimum to the right in Figure 6.4.1 (clear
circle on the right hand side). This is known as undershoot, and can also occur if
ϕ0 is sufficiently high but the gradient of the potential is too shallow. Conversely,
if ϕ0 is too large (starting placement is too far from ϕ = 0, or the potential itself
is too steep on the approach to the positive ϕ local minimum, the field will gather
too much momentum and will roll clear of the local maximum at ϕ= 0 and into the
negative ϕ regime, where it will oscillate about the negative ϕ local minimum on
the left in Figure 6.4.1 (clear circle on the left hand side). This is known as overshoot.

Plots of −Vω (ϕ) for ϕ > 0 are shown in Figure 6.3 and Figure 6.4. Interestingly,
the inverted potential before rescaling has the same form as the inverted potential in
the conventional case (comparing to the ϕ> 0 region of the schematic in Figure 6.4.1)
corresponding to (6.79). This demonstrates that the idea of Coleman’s mechanical
analogy can still be applied to explore the dependence of the existence of non-
canonical Q-balls on the form of the scalar field potential in the underlying theory,
although the underlying dynamics are different. As shown at the beginning of this
section, in the non-minimally coupled Palatini case, the Q-ball equation in terms
of ϕ, (6.77), has an additional gradient squared term with a negative sign and a
dependence on the conformal factor on the right-hand side, both explicitly and
in the form of the Q-ball potential, Vω, in the non-minimally coupled case. The
gradient squared term can be interpreted as some external energy input, which
makes the motion of the particle dynamically different from the simple Newtonian
motion described in (6.79), although the inverted potential looks very similar and
the general idea as an analogy for the precise conditions on the potential and the
field itself to produce Q-balls is still applicable. When considered in terms of the
rescaled field σ, the Q-ball equation, has the same form as in the conventional case
but with a modified potential Vω, (6.69). Equation (6.90) can therefore also be used
as a means for comparison to the conventional case when considering the mechanical
analogy with the understanding that, in our definition of the quasi-canonical field,
ϕ is a function of σ such that Vω (ϕ) = Vω (ϕ(σ)).
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Figure 6.3: −Vω(ϕ) for a non-minimally coupled Palatini Q-ball solution with large
ω .

Figure 6.4: −Vω(ϕ) for a non-minimally coupled Palatini Q-ball solution with small
ω.

We can now use the rules derived from this analogy [50] for conventional minimally-
coupled Q-balls to derive an analogous set of rules for the case of non-minimally cou-
pled Q-balls to ensure that the Q-ball potential is compatible with producing Q-ball
solutions. To avoid undershoot, the initial placement of the particle (ϕ0,−Vω (ϕ0)),
must sit at least at, or higher than zero in order for the particle to reach the local
maximum of the origin, otherwise the particle will not gather sufficient momentum.
This condition can be expressed as

max(−Vω) ≥ 0, (6.91)

as it is in the conventional model of Q-balls [50], and is significant because it implies
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that there is a lower bound on ω for which Q-balls can exist in a given potential. For
the Vω used in this model (6.69), this result does not appear to produce anything
meaningful analytically, which is not an unexpected result as the inflaton potential
in the Einstein frame corresponds to a plateau. It is possible that there is another
way to attain a lower bound on the value of ω for non-minimally coupled Palatini
Q-balls, and we will return to this possibility in Section 6.5 when numerical solutions
of the Q-balls are explored, although a definitive lower bound on ω in this model is
at the point of submitting this thesis unconfirmed.

To avoid overshoot we require that there is an extremum at ϕ= 0 which is a local
maximum, so that the particle can come to rest in the vacuum and not continue
rolling into the ϕ < 0 region

d2 (−Vω)
dϕ2

∣∣∣∣∣
ϕ=0

< 0, (6.92)

this condition may be satisfied if and only if

ω2 <
d2V

dϕ2

∣∣∣∣∣
ϕ=0

. (6.93)

Calculating the left-hand side of (6.92) we have

d2 (−Vω)
dϕ2 = ω2

Ω2 − m2

Ω4 − 3λϕ2

Ω4 . (6.94)

At ϕ= 0, Ω = 1 and (6.92) therefore gives the result

d2 (−Vω)
dϕ2

∣∣∣∣∣
ϕ=0

= ω2 −m2 < 0 ⇒ ω2 <m2, (6.95)

and from (6.93) we find

ω2 <
d2V

dϕ2

∣∣∣∣∣
ϕ=0

=m2. (6.96)

This means that

ω <m, (6.97)

is a hard constraint on the existence of non-minimally coupled Palatini Q-balls, and
is the same result as that on the existence of conventional minimally-coupled Q-balls
derived from the mechanical analogy in [50], as the condition to avoid overshoot.
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6.4.2 Q-ball Stability

Stability of Q-balls is an important property, particularly when discussing Q-balls
as cosmological objects. A Q-ball is said to be absolutely stable if [50]

E <mQ, (6.98)

holds. E is the energy of the Q-ball and mQ can be interpreted as the energy of Q
free quanta of scalar particles of mass m in the vacuum. This essentially means that
in order to be absolutely stable the energy of a Q-ball must be less than the sum of
the energies of the individual component scalars it is composed of when treated as
free quanta. This difference in energy corresponds to the binding energy of the Q-
ball. Classical stability implies a solution that is stable against small perturbations.
As an approximation, the classical stability of a Q-ball can be gauged by the sign
of the derivative of the charge with respect to ω, i.e. if ∂Q/∂ω < 0 then a Q-ball
is classically stable [141] [142]. The absolute stability of the numerically generated
non-minimally coupled Palatini Q-balls is discussed in Section 6.5.

6.4.3 Mass Range of the Inflaton from Inflation and the
Existence of Q-balls

In Section 6.3, we demonstrated that the form of the inflaton potential - and the
state of the inflaton field at the end of inflation - depends explicitly on the size of the
mass term (6.20), which means that the size of this mass term determines the initial
conditions for Q-balls in non-minimally coupled Palatini inflation. It is therefore
important that we establish the range of inflaton masses which are compatible with
the existence condition (6.97) of these Q-balls. In Section 6.3.1, we derived the
constraint (6.52) which gives an upper bound on the inflaton mass squared, from
the condition that the inflaton potential must be of positive gradient in order for
inflation to proceed. In this section, we use this, and the existence condition of
non-minimally coupled Palatini Q-balls derived in the previous section, (6.97), to
derive a range of inflaton masses for which both inflation can occur and inflatonic
Q-balls can exist. We will refer to this range of compatible inflaton masses which
produce both inflation and Q-balls as the "Q-ball window".

We begin with the non-canonical Q-ball potential

Vω (ϕ) = 1
Ω4

(
1
2m

2ϕ2 + λ

4ϕ
4
)

− ω2ϕ2

2Ω2 , (6.99)

and expand to leading order in M2
pl/ξϕ

2 to give
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Vω (ϕ) =
M4
pl

2ξ2ϕ2

m2 +ω2 −
2m2M2

pl

ξϕ2

−
λM6

pl

2ξ3ϕ2 +
λM4

pl

4ξ2 −
ω2M2

pl

2ξ . (6.100)

In other words,

Vω (ϕ) =
M4
pl

2ξ2ϕ2

m2 +ω2 −
λM2

pl

ξ

+ higher order and constant terms. (6.101)

For (6.77) to yield a Q-ball solution, the solution ϕ(r) must decrease as r increases
from zero. This is true if the ϕ dependent term on the right hand side of (6.101) is
positive. The existence condition for a Q-ball from the Q-ball potential (6.101) is
therefore

m2 +ω2 >
λM2

pl

ξ
. (6.102)

In Section 6.5.1 we will analytically demonstrate that if ω <m, as required in order
for Q-balls to exist, then the condition (6.102) must also be satisfied in order for
the right-hand side of the Q-ball equation to have zeroes for some ϕ ̸= 0. Both
interpretations of (6.102) correspond to a necessary condition on the Q-ball potential
for Q-ball solutions to exist in the model.
We define

ω2
c =

λM2
pl

ξ
, (6.103)

and use this to rewrite (6.102)

m2 +ω2 > ω2
c . (6.104)

If we combine (6.104) with the condition for the inflaton potential to be compatible
with inflation (6.52), which we can write as m2 < ω2

c , we find the condition for
inflation and the existence of Q-balls in terms of the ω parameter and the inflaton
mass to be

m2 < ω2
c <m2 +ω2. (6.105)

The existence of Q-balls also requires that ω <m (6.97), and the right-hand side of
the inequality (6.105) can be constrained

ω2 +m2 < 2m2. (6.106)
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(6.105) can therefore be stated as

m2 < ω2
c < 2m2, (6.107)

which may be equivalently written as an range of inflaton masses squared

ω2
c

2 <m2 < ω2
c . (6.108)

This gives the range in inflaton mass squared (the Q-ball window) for which the
inflaton potential is compatible with both inflation and with the existence of Q-
balls. It also provides a mass window within which we can numerically search for
Q-ball solutions which are compatible with inflation, the topic of the next section.
From (6.108), the Q-ball window seems to favour inflaton masses close to the upper
bound derived from inflation (6.52), and while Q-balls may form for inflaton masses
larger than the upper bound (6.52) in this model, inflation would not be possible in
conjunction with these Q-balls.

6.5 Numerical Solutions of the Q-ball Equation

In this section we discuss and present the results of the numerical analysis of non-
minimally coupled Palatini Q-balls. In this project we solved the non-canonical
Q-ball equation (6.77) numerically for a fixed mass within the range specified in
(6.108), over a range of ω for the following boundary conditions at r = 0

ϕ(r = 0) = ϕ0 ; ∂ϕ

∂r
(r = 0) = 0. (6.109)

For each ω we ran the code for trial values of the inflaton field, corresponding to
ϕ0, and scanned for Q-ball solutions. The details of this methodology are outlined
in the following subsection. When discussing numerical results, the inflaton mass m
and the parameter ω are listed in units of ωc.

6.5.1 Zeroes of the Q-ball Equation

In this section we discuss the zeroes of the right-hand side Q-ball equation (6.77), and
how they relate to the existence of Q-ball solutions. These zeroes are shown in Figure
6.5, and correspond to fixed points of the Q-ball equation, which in turn correspond
to the extrema of the Q-ball effective potential Vω (ϕ), shown schematically in Figure
6.4.1. The fixed points of the Q-ball equation can be related to the mechanical
analogy outlined in Section 6.4.1 and more importantly, used to constrain ϕ0 when
searching for Q-ball solutions numerically.
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The non-minimally coupled Q-ball equation derived in this work (6.77) has three
zeroes (shown in Figure 6.5). These correspond to two stable fixed points, which
are symmetric attractors about Ω2∂Vω/∂ϕ= 0, and one unstable fixed point.

Figure 6.5: Plot illustrating the zeroes of the Q-ball equation.

Figure 6.5 shows an example of the right hand side of the Q-ball equation as a
function of ϕ. The points where the function crosses zero are the zeroes or fixed
points of the Q-ball equation. The attractor fixed points are the furthest to the left
(denoted ϕ−) in the negative region of ϕ and the furthest to the right (denoted ϕ+)
in the positive regime of ϕ. These provide a reference for determining the value of
ϕ at r = 0, ϕ0, for which a Q-ball solution exists. If the field gets caught by - and
starts to oscillate around - the positive fixed point, ϕ+, as r increases, then ϕ0 is
too low to produce a Q-ball. The lowest ϕ0 which produces this result can then be
used as a lower bound for the range of ϕ0 which could generate a Q-ball solution
for a given ω. In the opposite limit, if ϕ0 is too high then the field can drop below
zero as r increases and begin to oscillate around the negative fixed point, ϕ−. The
lowest ϕ0 which produces this result can then act as an upper bound on the range of
ϕ0 for which there could exist a Q-ball solution for the chosen ω. The fixed points
of the Q-ball equation therefore produce behaviour in the function of the field over
distance, ϕ(r), which can be used to restrict the parameter space of ϕ0 used when
searching for Q-ball solutions numerically.

This can be understood in terms of the mechanical analogy of Q-balls outlined
in Section 6.4.1 by noting that the fixed points of the Q-ball equation correspond to
the extrema of the inverted Q-ball effective potential −Vω, in the analogy. The local
minimum in the ϕ > 0 region of Figure 6.4.1 corresponds to the positive attractor
fixed point ϕ+ (first zero from the right in Figure 6.5). The unstable fixed point
corresponds to the local maximum at ϕ= 0 in Figure 6.4.1, and is the central fixed
point in Figure 6.5. The local minimum in the ϕ< 0 region of the potential in Figure
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6.4.1 corresponds to the symmetric negative fixed point ϕ− (furthest zero from the
right in Figure 6.5).

This illustrates how precise the values of the parameters need to be to obtain a
Q-ball solution numerically, as well as how strict the conditions on the potential in
order to produce Q-balls are. The field profile for a Q-ball solution is represented
by ϕ(r) asymptoting to zero as r → ∞, corresponding to the field coming to rest
exactly at the top of the local maximum at ϕ = 0 in Figure 6.4.1 from its starting
point ϕ0 in the language of Coleman’s analogy. It is also important to emphasise
that the existence of the zeroes of the Q-ball equation determine the existence of
the Q-ball solutions themselves, without the fixed points there cannot be Q-ball
solutions.

We now derive the condition for the existence of zeroes of the Q-ball equation.
The requirement for extrema to exist is that ∂Vω/∂ϕ = 0 for some ϕ ̸= 0. Using
(6.99) and setting the first derivative to zero gives the location of the symmetric
ϕ ̸= 0 zeroes to be

ϕ= ±MPl√
ξ

√
m2 −ω2√

m2 +ω2 −ω2
c

. (6.110)

In order for the Q-ball solution to be stable we require that ω2 < m2. This will
be verified both numerically later in this section and analytically in Section 6.6.2.
The range of values of m2 for which relevant zeros of the Q-ball equation exist is
therefore

m2 +ω2 > ω2
c , (6.111)

which is exactly the condition (6.104) derived from the Q-ball equation. We confirm
numerically in Section 6.5.2 that zeroes with ϕ ̸= 0 exist over the range of ω satisfying
(6.104) and (6.111).

6.5.2 Numerical Results

In this section we present the results of solving the non-minimally coupled Palatini
Q-ball equation numerically, and discuss the properties of these Q-balls. We present
ten Q-ball solutions for the inflaton field of mass m = 0.9ωc, which is within the
Q-ball window (6.108), close to the upper bound of inflaton masses which inflate
the model (6.52), for a range of ω from 0.89ωc to 0.707155ωc. This produces Q-
balls with initial field values in the range ϕ0 ∼ 1013 − 1017 GeV, illustrating that
Q-balls could be produced from the kind of field values predicted at the end of non-
minimally coupled Palatini inflation in this model. We present the radii, charge and
energy of the Q-balls, in addition to some other parameters in relation to stability
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of the Q-balls which we define later in this section. The bounds on ω are chosen
because they lie close to the bounds for which a Q-ball solution can be obtained for
m = 0.9ωc. The upper bound, ω = 0.89ωc, lies close to the stability limit of ω = m

for Q-balls of the chosen mass, whereas the lower limit was discovered numerically
while searching for Q-ball solutions for m = 0.9ωc. It may be expected that there
are Q-balls with ϕ0 larger than this - of particular interest being a ϕ0 ∼ 1018 GeV
Q-ball, discussed in depth in Section 6.8 - but the precision on ω would need to be
even greater to find it. It is interesting to note that the lower limit is close to being
ω ∼ ωc/

√
2, which may have some kind of theoretical relevance to the existence of

Q-balls in this framework.
Since there is no fixed definition of the radius of the Q-ball, two different possibil-

ities are considered in this work for the purposes of evaluating the numerical Q-ball
solutions. One possibility considered is a definition we will call rX - referred to as
"the X point" when discussing the numerical procedure - and a second definition,
rZ - similarly "the Z point" - as two different possibilities for understanding the
concept of the Q-ball’s "edge" when evaluating the properties numerically. The X
point is defined as being at a distance r = rX from the centre of the Q-ball r = 0 at
which the field has decreased to 1% of its initial value ϕ0. This definition allows the
properties of the Q-ball solutions to be examined using a fixed definition of what
the radius is for all ϕ0. The Z point is defined as being the point at which the code
used to find a Q-ball solution for a given ϕ0 and ω cuts off having found a Q-ball
solution. This distance from the centre of the Q-ball appears in the Q-ball profile,
ϕ(r), as the point at which the field stops asymptoting towards zero and begins to
increase again, moving away from the expected behaviour of a Q-ball solution. This
occurs at r = rZ and this point corresponds to the maximum value of r for which
the Q-ball solution is valid for a given ϕ0 and ω. Although less well defined than
the X point, since it will be different for every Q-ball solution, the Z point cutoff is
the more useful definition for calculating the energy E and charge Q of the Q-balls
since the Z point corresponds to the upper value of r to which the Q-ball equation
is integrated.

Two tables of values for the Q-ball properties are therefore presented, corre-
sponding to those calculated at the X point and the Z point, as an exploration into
how the radius of the Q-ball should be interpreted numerically and whether it makes
any significant difference to the predicted properties of the Q-balls. Quantities with
a subscript X are calculated at the X point, and those with a Z are calculated at
the Z point.

Figures 6.6 - 6.9 show two Q-ball solutions, calculated numerically and using
an analytical approximation derived in Section 6.6, (6.125). Figures 6.6 and 6.7
show a Q-ball with ϕ0 ∼ 1016 GeV, and the Figures 6.8 and 6.9 show a Q-ball
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with ϕ0 ∼ 1013 GeV, with ω close to the upper bound of compatibility with the
existence of Q-balls, ω = m. The inflaton self-coupling is λ = 0.1 throughout and
the corresponding non-minimal coupling is ξ = 1.2163×109, using the estimate from
(6.46) derived in Section 6.3.

Figure 6.6: Q-ball solution for ω = 0.709ωc, m = 0.9ωc and ϕ0 = 1.3464098 ×
1016 GeV obtained by solving (6.77) numerically.

Figure 6.7: Q-ball solution for ω = 0.709ωc, m = 0.9ωc and ϕ0 = 1.3464098 ×
1016 GeV obtained using the analytical solution (6.125).
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Figure 6.8: Q-ball solution for ω = 0.89ωc, m = 0.9ωc and ϕ0 = 4.7918 × 1013 GeV
obtained by solving (6.77) numerically.

Figure 6.9: Q-ball solution for ω = 0.89ωc, m = 0.9ωc and ϕ0 = 4.7918 × 1013 GeV
obtained using the analytical approximation (6.125).

In Tables 6.1 and 6.2 we present the numerical properties of the Q-ball solu-
tions using the rZ and rX definitions of the Q-ball radius, respectively. Quantities
recorded are the ω parameter; the value of the field at r = 0, ϕ0; the radius of the
Q-ball, rZ or rX ; the value of the field at the defined edge of the Q-ball, and the
total energy, E, charge, Q, and the energy-charge ratio, E/Q of the Q-ball.
In order to assess whether the Q-balls found are stable, we introduce the quantities
∆ω and ∆m. ∆ω is defined by

∆ω = 1
ω

(
E

Q
−ω

)
. (6.112)
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This quantity measures the extent to which the ω parameter for each Q-ball solution
is equal to the energy-charge ratio. The relationship between ω and the energy-
charge ratio is established analytically for this model in Section 6.6.

∆m is defined by

∆m = 1
m

(
E

Q
−m

)
. (6.113)

This quantity provides a measure of absolute stability. As discussed in Section 6.4.2,
absolute stability is defined by the energy of a Q-ball in relation to the energy of
its component scalars if they were free particles, E <mQ. ∆m < 0 is therefore the
condition for a Q-ball is to be absolutely stable.

ω/ωc ϕ0/ GeV ϕZ/ GeV rZ/ GeV−1 QZ EZ/ GeV (E/Q)Z/ GeV ∆ω,Z ∆m,Z

0.707155 3.2217991×1017 1.61×1010 8.94×10−10 2.17×1014 3.34×1027 1.54×1013 −2.79×10−4 −0.21
0.709 1.3464098×1016 1.63×1010 3.79×10−11 1.56×1010 2.40×1023 1.54×1013 9.71×10−4 −0.21
0.71 8.855792×1015 2.05×1010 2.50×10−11 4.37×109 6.76×1022 1.55×1013 1.64×10−3 −0.21
0.72 1.960795×1015 9.76×109 6.09×10−12 4.43×107 6.99×1020 1.58×1013 7.71×10−3 −0.19
0.73 1.090258×1015 6.60×109 3.73×10−12 7.09×106 1.14×1020 1.61×1013 1.30×10−2 −0.18
0.74 7.45339×1014 1.61×1010 2.72×10−12 2.16×106 3.54×1019 1.64×1013 1.76×10−2 −0.16
0.75 5.61953×1014 1.14×1010 2.28×10−12 8.85×105 1.48×1019 1.67×1013 2.17×10−2 −0.15
0.80 2.29632×1014 1.96×1010 1.47×10−12 5.60×104 1.01×1018 1.80×1013 3.51×10−2 −8.00×10−2

0.85 1.16877×1014 1.57×1010 1.49×10−12 1.01×104 1.93×1017 1.91×1013 3.51×10−2 −2.24×10−2

0.89 4.7918×1013 8.82×109 2.70×10−12 3.98×103 7.82×1016 1.97×1013 1.50×10−2 3.74×10−3

Table 6.1: Table listing important properties of the m = 0.9ωc Q-balls, calculated
using the Z point definition of the Q-ball radius. ϕ0 denotes the value of the field
at r = 0. ϕZ , EZ , QZ , (E/Q)Z , ∆ω,Z and ∆m,Z are calculated numerically at the
point rZ .

ω/ωc ϕ0/ GeV ϕX/ GeV rX/ GeV−1 QX EX/ GeV (E/Q)X/ GeV ∆ω,X ∆m,X

0.707155 3.2217991×1017 3.22×1015 8.89×10−10 2.15×1014 3.30×1027 1.54×1013 −4.47×10−4 −0.22
0.709 1.3464098×1016 1.35×1014 3.70×10−11 1.54×1010 2.38×1023 1.54×1013 −1.27×10−3 −0.21
0.71 8.855792×1015 8.86×1013 2.43×10−11 4.34×109 6.70×1022 1.54×1013 −7.78×10−4 −0.21
0.72 1.960795×1015 1.96×1013 5.38×10−12 4.42×107 6.97×1020 1.58×1013 6.58×10−3 −0.19
0.73 1.090258×1015 1.09×1013 3.03×10−12 7.08×106 1.14×1020 1.61×1013 1.23×10−2 −0.18
0.74 7.45339×1014 7.45×1012 2.13×10−12 2.16×106 3.54×1019 1.64×1013 1.71×10−2 −0.16
0.75 5.61953×1014 5.62×1012 1.66×10−12 8.85×105 1.48×1019 1.67×1013 2.13×10−2 −0.15
0.80 2.29632×1014 2.30×1012 8.97×10−13 5.60×104 1.01×1018 1.80×1013 3.48×10−2 −8.02×10−2

0.85 1.16877×1014 1.17×1012 7.84×10−13 1.01×104 1.93×1017 1.91×1013 3.49×10−2 −2.26×10−2

0.89 4.7918×1013 4.79×1011 1.21×10−12 3.96×103 7.79×1016 1.97×1013 1.50×10−2 3.69×10−3

Table 6.2: Table listing important properties for the m = 0.9ωc Q-balls calculated
using the X point definition of the Q-ball radius. ϕ0 is the value of the scalar field
at r = 0. ϕX , EX , QX , (E/Q)X , ∆ω,X and ∆m,X are calculated numerically at the
point rX .

The energy-charge ratio increases by less than an order of magnitude from the
largest ϕ0 Q-ball to the smallest at ω = 0.89ωc. Comparing the data in Tables 6.1
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and 6.2 also shows that the calculated energy, E, charge Q, and energy-charge ratio,
E/Q, using the X point definition of radius are comparable to the values obtained
for these quantities calculated using the Z point definition for each Q-ball. The
radii for each Q-ball are similarly close in magnitude for each definition, with the
difference between r (X) and r (Z) becoming slightly more pronounced in the smaller
ϕ0 Q-balls.

The larger ϕ0 Q-balls have generally larger radii and the increase in radius is lin-
ear with ϕ0 to a good approximation for ϕ0>MPl/

√
ξ (∼ 6.9×1013 GeV). Increasing

ϕ0 also increases the Q-ball energy and charge, as expected since a physically larger
Q-ball (larger radius) will be composed of a larger number of scalars and will there-
fore carry a greater charge and energy. Figures 6.10 and 6.11 show the relationships
between the logarithm of the energy of the Q-balls and the logarithm of ϕ0, and the
logarithm of the charge of the Q-balls and the logarithm of ϕ0 respectively. We can
see from these plots that E and Q are proportional to ϕ3

0 to a good approximation
for the larger ϕ0 Q-balls, and that the approximate proportionality becomes less
representative for the smaller ϕ0 Q-balls. This proportionality is predicted by the
analytical approximation derived in Section 6.6, and is therefore a useful test of the
validity of the numerical Q-ball solutions.

Figure 6.10: Log-log plot of lnQz, vs. lnϕ0 for the m= 0.9ωc Q-balls.
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Figure 6.11: Log-log plot of lnEz, vs. lnϕ0 for the m= 0.9ωc Q-balls.

As we can see from Tables 6.1 and 6.2, |∆ω| ∼ 10−4 − 10−2 in general. This shows
that ω is close to the value of the energy-charge ratio, and therefore to a good
approximation can be equated to the chemical potential for the Q-ball solutions
considered in this work. |∆ω| increases as ϕ0 decreases, and from Figure 6.12 it is
clear that that ∆ω increases as Q-ball radius decreases in general. This is consistent
with the patterns seen in the other quantities considered, in that the behaviour
patterns of the properties for the smaller ϕ0 Q-balls are less well-defined than for
the larger ϕ0 Q-balls. It is possible that this is a reflection of the Q-balls becoming
unstable as the potential begins to deviate from the plateau (ϕ0 →MPl/

√
ξ).

Figure 6.12: ∆ω,X vs rX for the m= 0.9ωc Q-balls.

We can see from Tables 6.1 and 6.2, and clearly in Figure 6.13, that ∆m is
negative for all Q-ball solutions considered except the ω = 0.89ωc Q-ball, meaning
that all of the Q-balls considered are absolutely stable except for the ω = 0.89ωc
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case. Since the magnitude of ∆m for ω = 0.89ωc is still small although it is positive,
it is possible that ∆m is actually negative but smaller than the level of numerical
errors in the Q-ball calculation.

Figure 6.13: ∆m,X vs rX for the m= 0.9ωc Q-balls.

The most significant result of the numerical analysis is that absolutely stable
Q-balls of ϕ0 ≥ 1017 GeV can be generated in this model. This shows that the
Q-ball mass window allows for the formation of Q-balls from field values we ex-
pect at the end of non-minimally coupled Palatini inflation (see Section 6.3). It is
therefore possible that these Q-balls could form from the fragmentation of the infla-
ton condensate following tachyonic preheating at the end of non-minimally coupled
Palatini inflation [169]. The presence of these Q-balls could significantly affect the
post-inflation cosmology of the model, with consequences such as faster reheating
and the production of gravitational waves from the decay of these Q-balls, leading
to measurable effects. This is discussed further in Sections 6.7 - 6.10.

6.6 Analytical Approximation of the Q-ball Solu-
tion and Estimate of Q-ball Properties

In this section we derive an analytical approximation of the Q-ball solution, and
calculate the energy and charge in this approximation as an estimate of the Q-ball
properties. We compare these to the results obtained from the numerical solutions
in Section 6.5 and derive some important relations between energy and charge.

In this model we are assuming that inflation ends while the inflaton field is on
the inflationary plateau. Using the plateau limit (6.16), we can approximate the
right hand side of the Q-ball equation (6.77) to be
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Ω2∂Vω
∂ϕ

= −γ

ϕ
, (6.114)

to leading order in 1/ϕ2, where γ is defined as

γ =
M2
pl

ξ

m2 +ω2 −
λM2

pl

ξ

 . (6.115)

In the plateau limit we have that ϕ >>Mpl/
√
ξ, and we also assume that

∣∣∣∣∣∂2ϕ

∂r2 + 2
r

∂ϕ

∂r

∣∣∣∣∣>>K (ϕ)
(
∂ϕ

∂r

)2
, (6.116)

where K (ϕ) ∼ 1/ϕ on the plateau (we will confirm that (6.116) is consistent below).
Using (6.114) and (6.116), the Q-ball equation can be approximated as

∂2ϕ

∂r2 + 2
r

∂ϕ

∂r
= −γ

ϕ
, (6.117)

where γ > 0 for Q-ball solutions to exist.
We assume that ϕ does not deviate from its initial value ϕ0 too much, and also

that

∂ϕ

∂r
→ 0, (6.118)

as r → 0.
Setting ϕ= ϕ0 on the right hand side of (6.117), we make the following ansatz

ϕ(r) = ϕ0 −Ar2, (6.119)

where A is a coefficient to be determined. In order for the field profile to have the
typical Q-ball shape, we require that the right hand side of the equation is negative.
This means that

γ > 0 −→m2 +ω2 >
λM2

pl

ξ
. (6.120)

Substituting (6.119) into (6.117), we find that the left hand side becomes a constant,
−6A, and that the approximation (6.116) holds because

K (ϕ)
(
∂ϕ

∂r

)2
≈ 4A2r2

ϕ0
, (6.121)

is a very small number for ϕ >>Mpl/
√
ξ, and goes to zero as r → 0. This leaves

−6A= − γ

ϕ0
⇒ A= γ

6ϕ0
, (6.122)
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and approximation of the field profile (6.119) is therefore

ϕ(r) = ϕ0 − γ

6ϕ0
r2. (6.123)

The assumption that ϕ≈ ϕ0 holds to a good approximation if

r2 <
r2
Q

4 = 6ϕ2
0

4γ , (6.124)

since applying (6.119) at rQ/2 gives ϕ
(
rQ/2

)
= 3

4ϕ0.
To a good approximation, we can therefore say that the Q-ball solution follows

ϕ(r) = ϕ0

1−
(
r

rQ

)2 , (6.125)

for values of r < rQ/2, where the assumption (6.116) is consistent with this solution.
We can use this to estimate the Q-ball properties, such as energy and charge, which
can be used as a check on the numerical solution and also to determine the parameter
dependence of the numerical Q-ball solutions.

6.6.1 Analytical Estimate of Q-ball Energy and Charge

In this section we derive analytical expressions for the energy, E, and the global
charge, Q, of the non-minimally coupled Palatini Q-balls. Assuming ϕ ≈ ϕ0, and
working in the plateau limit, we have that the extremised Q-ball energy E is ap-
proximately (from (6.72))

E =
∫ rQ/2

0
4πr2 dr

 1
2Ω2

(
∂ϕ

∂r

)2
+ V (ϕ)

Ω4

 . (6.126)

For r < rQ/2, and assuming ϕ ≈ ϕ0 we approximate the Jordan frame potential to
be

V (ϕ) ≈ λ

4ϕ
4
0, (6.127)

since λϕ4
0 >> m2ϕ2

0 in the Jordan frame in this case, and the conformal factor is
Ω2 ≈ ξϕ2

0/M
2
pl. Using (6.125), we have that

∂ϕ

∂r
= −2rϕ0

r2
Q

. (6.128)

Using (6.127) and (6.128), we find that the Q-ball energy (6.126) becomes

E =
(
ω2ϕ2

0
2Ω2 + λϕ4

0
4Ω4

)∫ rQ/2

0
4πr2 dr+ 2ϕ2

0
r4
Q

∫ rQ/2

0
4πr4 dr. (6.129)
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Performing the integration gives

E =
(
ω2ϕ2

0
2Ω2 + λϕ4

0
4Ω4

)
4π
3

(
rQ
2

)3
+ 2ϕ2

0
r4
Q

4π
5

(
rQ
2

)5
, (6.130)

and with some rearrangement this is

E =
πM2

pl

2ξ

1
6

ω2 +
λM2

pl

2ξ

+ 1
10r2

Q

r3
Q. (6.131)

Using (6.115) and (6.124), we have that

1
r2
Q

= γ

6ϕ2
0

=
M2
pl

6ξϕ2
0

(
m2 +ω2 −ω2

c

)
, (6.132)

and since we are working in the plateau limit, M2
pl/ξϕ

2
0 << 1, we can say that

M2
pl

6ξϕ2
0

(
m2 +ω2 −ω2

c

)
<<

1
6
(
m2 +ω2 −ω2

c

)
. (6.133)

This means that the 1/r2
Q term is small compared to the 1/6 term in (6.131), and

the Q-ball energy can be approximated as

E =
πM2

pl

12ξ

ω2 +
λM2

pl

2ξ

r3
Q. (6.134)

Note that this expression holds for r < rQ/2 and is therefore a lower bound
estimate on the Q-ball energies calculated numerically. Similarly, the Q-ball charge
can be approximated analytically. The charge density of the Q-balls from (6.61)
using the Q-ball ansatz (6.70) is

ρQ = ωϕ2

Ω2 , (6.135)

where for ϕ≈ ϕ0 and Ω2 ≈ ξϕ2
0/M

2
pl this is

ρQ =
ωM2

pl

ξ
. (6.136)

The global charge from (6.55) using (6.136) is thus

Q=
∫ rQ/2

0
4πr2 dr

ωM2
pl

ξ
=

4πωM2
pl

ξ

(
rQ
2

)3
, (6.137)

and integrating for r < rQ/2 gives the Q-ball charge to be

Q=
πωM2

pl

6ξ r3
Q. (6.138)
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We can see from (6.134) and (6.138) that the energy and charge of the Q-balls are
both proportional to r3

Q, and therefore to the volume of the Q-ball. From (6.124),
we find that rQ ∝ ϕ0, and E,Q ∝ ϕ3

0 in the analytical approximation. From the
energy and charge calculated for the numerical solutions in Section 6.5.2, we find
that there is a proportionality between the Q-ball energy and charge and ϕ3

0, as
illustrated more clearly in Figures 6.10 and 6.11, and that the relationship is truest
and essentially exact for the large ϕ0 Q-balls. Figures 6.7 and 6.9 in Section 6.5.2
show the analytical approximate solution for ϕ, (6.125), as a function of r for large
and small ϕ0. Comparing these with the numerical solutions for the same ϕ0,ω

shown in Figures 6.6 and 6.8, it is clear that the analytical approximation closely
follows the numerical solution for small r. For r < rQ specifically, the analytical
approximation (6.125) is a good fit to the exact solution calculated by solving (6.77)
in the case of larger ϕ0 (ϕ0 >> Mpl/

√
ξ), but the agreement is less apparent for

smaller ϕ0 → MPl/
√
ξ. These results show that the analytical approximation of

the Q-ball solution, and therefore the analytical approximations of the energy and
charge, are a good approximation of the behaviour of the Q-ball solutions and the
properties of the Q-balls themselves in the limit that ϕ0 is large and r is small.

Taking the ratio of the analytical approximation of energy (6.134) and charge
(6.138) gives

E

Q
= 1

2

[
ω+ ω2

c

2ω

]
, (6.139)

as an estimate of the energy-charge ratio. In Section 6.5.2 we found that the nu-
merical results for the energy-charge ratio show that E/Q ≈ ω when ϕ0 is large,
with the deviation from E/Q= ω increasing for the smaller ϕ0 Q-balls. We see here
that the analytical approximation of the energy-charge ratio does not produce this
relation. It is likely that this is due to the fact that E and Q are only integrated
to r = rQ/2 in the analytical approximation. In Section 6.6.2 we derive an exact
expression for the energy-charge ratio in terms of ϕ(r), which will allow for a more
accurate determination of the energy-charge ratio.

Table 6.3 shows the estimates of the energy and charge calculated using the
analytical approximation expressions (6.134) and (6.138), for each of the ten Q-ball
solutions presented in Section 6.5.2.
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ω/ωc ϕ0/ GeV rQ/ GeV−1 Q E/ GeV
0.707155 3.2217991×1017 9.46×10−10 3.23×1013 4.97×1026

0.709 1.3464098×1016 3.94×10−11 2.34×109 3.60×1022

0.71 8.855792×1015 2.58×10−11 6.58×108 1.01×1022

0.72 1.960795×1015 5.60×10−12 6.82×106 1.05×1020

0.73 1.090258×1015 3.05×10−12 1.12×106 1.72×1019

0.74 7.45339×1014 2.04×10−12 3.39×105 5.22×1018

0.75 5.61953×1014 1.51×10−12 1.39×105 2.15×1018

0.80 2.29632×1014 5.60×10−13 7.58×103 1.18×1017

0.85 1.16877×1014 2.62×10−13 825 1.29×1016

0.89 4.7918×1013 1.01×10−13 50 7.82×1014

Table 6.3: Table showing rQ, E and Q as a function of ϕ0 from the analytical
approximation from (6.134) and (6.138) for the m= 0.9ωc Q-ball solutions presented
in Section 6.5.

Comparing these results to the numerically calculated values of energy and charge
in Tables 6.1 and 6.2 it is clear that the analytical estimates (6.134) and (6.138)
consistently underestimate the energy and charge by about an order of magnitude
for most of the Q-ball solutions. This makes sense when one considers the fact that
the analytical expressions are only integrated to r = rQ/2, as this is the limit at
which the analytical approximation ceases to be a valid description of the behaviour
of the Q-ball solution. The underestimate becomes greater as ϕ0 decreases, which
is consistent with the analytical Q-ball profile ϕ(r) becoming a poorer fit to the
numerical profile as ϕ0 approaches the edge of plateau, and therefore the limit of
plateau description of the inflaton field dynamics. However, since the analytical
approximation is a good approximation for the behaviour of the Q-ball solutions
with larger ϕ0, it can be used as an estimate of the properties of these Q-balls and
to examine the dependence of these quantities on the other parameters of the model.

6.6.2 Analytical Derivation of the Q-ball Chemical Poten-
tial Relation

In this section we derive the energy per unit charge for Palatini non-minimally
coupled Q-balls and demonstrate that this is can be equated to the ω parameter in
this model. This discussion follows very closely the derivation in Heeck et. al. [170]
for the case of conventional minimally coupled Q-balls.
As a starting point we consider the Q-ball energy functional (6.72)
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EQ =
∫

4πr2dr

ω2ϕ2

2Ω2 + 1
2Ω2

(
∂ϕ

∂r

)2
+ V

Ω4

+ωQ−ω
∫

4πr2drρQ, (6.140)

where

ρQ = ωϕ2

Ω2 . (6.141)

Absorbing the ρQ integral in (6.140) into the first integral and rewriting the ω term,
this becomes

EQ =
∫

4πr2dr

 1
2Ω2

(
∂ϕ

∂r

)2
+ ω2ϕ2

Ω2 − ω2ϕ2

2Ω2 − ω2ϕ2

Ω2 + V

Ω4

+ωQ. (6.142)

We now differentiate (6.142) with respect to ω,

dEQ
dω

=
∫

4πr2dr
∂

∂ω

 1
2Ω2

(
∂ϕ

∂r

)2
+ ω2ϕ2

Ω2 − ω2ϕ2

2Ω2 − ω2ϕ2

Ω2 + V

Ω4

+Q+ω
dQ

dω
,

(6.143)
and rewrite the integral using the field rescaling outlined in Section 6.4.1 to proceed
with this part of the calculation in terms of σ

dEQ
dω

=
∫

4πr2dr

1
2
∂

∂ω

(
∂σ

∂r

)2
+ ∂

∂ω

(
ω2ϕ2

Ω2

)
− ω2

2
∂

∂ω

(
ϕ2

Ω2

)

− ∂

∂ω

(
ω2ϕ2

Ω2

)
+ ∂

∂ω

(
V

Ω4

)]
+ω

dQ

dω
. (6.144)

Rescaling the Q-ball equation in terms of σ (6.90),we find that the left-hand side
can be written

d2σ

dr2 + 2
r

dσ

dr
= 1
r2

d

dr

(
r2dσ

dr

)
, (6.145)

which can then be substituted back into the Q-ball equation (6.90) and rearranged
to give

∂

∂σ

(
V

Ω4

)
= 1
r2

d

dr

(
r2dσ

dr

)
+ ∂

∂σ

(
ω2ϕ2

2Ω2

)
. (6.146)

We can write the left-hand side of (6.146)
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∂

∂ω

(
V

Ω4

)
= ∂

∂σ

(
V

Ω4

)
∂σ

∂ω
, (6.147)

⇒ ∂

∂ω

(
V

Ω4

)
= 1
r2

d

dr

(
r2dσ
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)
∂σ

∂ω
+ ∂

∂σ

(
ω2ϕ2

2Ω2

)
∂σ

∂ω
. (6.148)

Substituting (6.148) back into (6.144) gives

dEQ
dω

=
∫

4πr2dr

[
1
2
∂

∂ω

(
∂σ

∂r

)(
∂σ
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∂ω

]
+ω

dQ

dω
, (6.149)

after canceling the ± ∂
∂ω

(
ω2ϕ2

Ω2

)
terms. Rewriting the second term in (6.149)

ω2

2
∂

∂ω

(
ϕ2

Ω2

)
= ω2

2
∂

∂σ

(
ϕ2

Ω2

)
∂σ

∂ω
, (6.150)

and canceling with the fourth term in (6.149) leaves

dEQ
dω

=
∫

4πr2dr

[
1
2
∂

∂ω

(
∂σ

∂r

)(
∂σ

∂r

)
+ 1
r2

d
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(
r2dσ
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∂σ
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]
+ω

dQ

dω
. (6.151)

We then integrate the second term by parts

∫ 1
r2

d

dr

(
r2dσ

dr

)
∂σ

∂ω
dr = ∂σ

∂r

∂σ

∂ω

∣∣∣∣∣−
∫ ∂σ

∂r

∂2σ

∂r∂ω
, (6.152)

and obtain

dEQ
dω

=
∫

4πr2dr

[
1
2
∂

∂ω

(
∂σ

∂r

)(
∂σ

∂r

)
− ∂σ

∂r

∂2σ

∂r∂ω

]
+ω

dQ

dω
, (6.153)

where the boundary term from the integration is neglected due to the fact that the
gradient of the scalar field goes to zero at infinity. The remaining terms in the
integrand cancel and we are left with precisely

dEQ
dω

= ω
dQ

dω
. (6.154)

This is the same result as derived in [170] for the case of a conventional canonical
scalar, and shows that for Q-balls in non-minimally coupled Palatini gravity, the ω
parameter can be equated to the chemical potential of the system

dEQ
dQ

= ω, (6.155)
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and that EQ (ω) and Q(ω) increase and decrease together, as in the case of conven-
tional Q-balls [50].

This makes sense in terms of ω being the Lagrange multiplier, since for a given Q
there will be a value of ω which extremises the energy of the scalar field subject to the
constraint of constant charge. Hence Q is a function of ω, and extremising the scalar
field for a fixed Q(ω) will produce an energy configuration EQ(ω) corresponding to
a Q-ball.

It is also straightforward to show analytically that the ω parameter is approxi-
mately the ratio of the energy to the global charge. The following derivation closely
follows that of the derivation of Eq.12 in Heeck et al. [170] for the case of conven-
tional Q-balls.

From (6.72), the effective Q-ball action can be written

∫
dr LQ =

∫
4πr2 dr

1
2

(
dσ

dr

)2
− ω2ϕ2

2Ω2 + V

Ω4

 , (6.156)

where the inflaton is understood as being a function of the rescaled field σ in this
case. We then perform a coordinate rescaling r → χr̃, and write (6.156) in terms of
r̃

∫
dr̃ LQ =

∫
4π dr̃ r̃2 χ3

 1
2χ2

(
∂σ

∂r

)2
− ω2ϕ2

2Ω2 + V

Ω4

 . (6.157)

This (6.157) contains an explicit dependence on χ from the factors present in the
integrand, and an implicit dependence on χ, since the quasi-canonical field is a
function of r and transforms as σ (r) → σ (χr̃), meaning that a small variation in χ

will cause a small variation in σ. This means that we can write the variation of the
Q-ball effective Lagrangian with respect to χ as

dLQ
dχ

=
(
dLQ
dχ

)
explicit

+
(
dLQ
dχ

)
implicit

, (6.158)

where χ = 1 corresponds to a Q-ball solution which extremises the Q-ball effective
action. This means that

∫
dr̃
(
dLQ

dχ

)
implicit

= 0 at χ = 1. Since the value of (6.157)
is unchanged following the rescaling of the radial coordinate, we require that

∫
dr̃

(
dLQ
dχ

)
explicit

= 0, (6.159)

when χ= 1. The left-hand side of this expression is
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∫
dr̃

(
dLQ
dχ

)
explicit

= 4π
∫
dr̃

∂

∂χ

χ
2

(
dσ

dr

)2
− χ3ω2ϕ2

2Ω2 + χ3V

Ω4


= 4π

∫
dr̃ r̃2

1
2

(
dσ

dr̃

)2
+3χ2

(
V

Ω4 − ω2ϕ2

2Ω2

) , (6.160)

which means that for χ= 1, r̃→ r, and in order for (6.159) to be satisfied we require
that

4π
∫
dr r2

1
2

(
dσ

dr

)2
+3

(
V

Ω4 − ω2ϕ2

2Ω2

)= 0. (6.161)

This can be rewritten to obtain the condition

4π
∫
dr r2

1
2

(
dσ

dr

)2
+ 3V

Ω4

= 4π
∫
r2 dr

3ω2ϕ2

2Ω2

= 4π · 3
2

∫
r2 dr

ω2ϕ2

Ω2 = 3
2ωQ,

(6.162)

⇒ 4π
∫
dr r2

1
2

(
dσ

dr

)2
+3

(
V

Ω4

)= 3
2ωQ. (6.163)

The Q-ball energy functional (6.72) can be written

EQ = ωQ+4π
∫
dr r2

1
2

(
dσ

dr

)2
+ V

Ω4

−4π
∫
dr r2ω

2ϕ2

2Ω2 , (6.164)

where the last term is precisely

4π
∫
dr r2ω

2ϕ2

2Ω2 = 1
2ωQ. (6.165)

Using (6.163) we can write

1
2ωQ= 4π

∫
dr r2

1
6

(
dσ

dr

)2
+ V

Ω4

 , (6.166)

which, substituted into the Q-ball energy functional (6.164), gives

EQ = ωQ+4π
∫
dr r2

1
2

(
dσ

dr

)2
+ V

Ω4

−4π
∫
dr r2

1
6

(
dσ

dr

)2
+ V

Ω4

 , (6.167)

which is the expression for the energy of the field extremised with respect to the
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global charge Q

EQ = ωQ+ 4π
3

∫
dr r2

(
dσ

dr

)2
. (6.168)

Thus, the energy of the Q-ball is, in terms of ϕ,

EQ = ωQ+ 4π
3

∫
dr r2 1

Ω2

(
dϕ

dr

)2
, (6.169)

where the integral can be interpreted as a surface energy term. There are some
interesting things which can be said about this relation. Dividing through by the
charge gives

EQ
Q

= ω+ 4π
3Q

∫
dr r2 1

Ω2

(
dϕ

dr

)2
, (6.170)

which shows that the ω parameter is equal to the energy-charge ratio of the Q-ball
up to a small correction due to a contribution from the surface energy of the Q-ball.
In the limit Ω → 1, this expression is equal to that obtained for conventional Q-balls
in [170]. It also provides some analytical verification of the condition for absolute
stability. If the Q-ball is absolutely stable, EQ <mQ, then

EQ
Q

= ω+ 4π
3Q

∫
dr r2 1

Ω2

(
dϕ

dr

)2
<m. (6.171)

Provided that the surface term is significantly smaller than ω, we find that

ω <m, (6.172)

is an alternative formulation of the absolute stability condition for these Q-balls.
Since ω < m in order for Q-ball solutions to exist, it follows that if (6.172) holds
then all Q-ball solutions will be stable.

6.6.3 Application of the Energy-Charge Relation to the An-
alytical Approximate Q-ball Solution

In this section we use the analytical Q-ball solution to show that the energy to
charge ratio is close to ω for ϕ0 >> Mpl/

√
ξ, confirming the numerical results in

Figure 6.12. The analytical approximation for the scalar field is given by (6.125)
and the analytical expression for the Q-ball charge is given by (6.138). The analytical
approximation of ϕ is valid provided that the field does not deviate too far from its
initial value, ϕ ≈ ϕ0, which is true for r < rQ/2. The analytical expression for the
charge is calculated for r < rQ/2, so the integral in this expression must be taken as
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far as r = rQ/2.
Differentiating the inflaton field in the analytical approximation (6.125) gives

dϕ

dr
= −2rϕ0

r2
Q

⇒
(
dϕ

dr

)2
= 4r2ϕ2

0
r4
Q

. (6.173)

Substituting this into (6.171) in the plateau limit Ω2 ≈ ξϕ2
0/M

2
pl, and the charge Q

from (6.138) gives

E

Q
= ω+ 4π ·6ξ

πωM2
pl

1
r3
Q

∫ rQ/2

0
r2 dr

M2
pl

3ξϕ2
0

4r2ϕ2
0

r4
Q

= ω+ 32
ωr7

Q

∫ rQ/2

0
r4dr. (6.174)

Performing the integration in (6.174) we obtain

E

Q
= ω+ 1

5ω
1
r2
Q

. (6.175)

Substituting in the expression for r2
Q from (6.132) gives

E

Q
= ω+ 1

30ω
M2
pl

ξϕ2
0

(
m2 +ω2 −ω2

c

)
. (6.176)

For an inflaton mass within the Q-ball window (6.108), m2 +ω2 −ω2
c ≤m2, and we

have

E

Q
≤ ω+ ω

30
M2
pl

ξϕ2
0

[
1+ m2

ω2

]
. (6.177)

Taking m2 ≈ ω2, we have that, at most

E

Q
= ω

1+O

M2
pl

ξϕ2
0

 , (6.178)

and therefore

E

Q
≈ ω, (6.179)

for ϕ0 >>Mpl/
√
ξ. This means that we can safely say to a very good approximation

that the ω parameter in this model is the energy-charge ratio for ϕ0 >>Mpl/
√
ξ.

6.6.4 Analytical Dependence of Q-ball Energy and Radius
on the Inflaton Self-Coupling

The γ parameter as defined (6.115) is
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γ =
M2
pl

ξ

(
m2 +ω2 −ω2

c

)
, (6.180)

and ω2
c = λM2

pl/ξ. If we approximate m2 ≈ ω2 ≈ ω2
c , we have that

γ ≈
M2
pl

ξ
ω2
c =

λM4
pl

ξ2 ≈ 4VE , (6.181)

from (6.33) in the plateau approximation.
The primordial curvature power spectrum is given by

PR = λN2

12π2ξ
, (6.182)

and this can be rearranged to give an expression for the inflaton self-coupling, λ,

λ=
(

12π2PR
N2

)
ξ ⇒ λ∝ ξ. (6.183)

Using this, from (6.181), we have that

γ ∝ λ

λ2 ⇒ γ ∼ 1
λ
. (6.184)

This means that, taking the expression for rQ from (6.124), we can establish the
dependence of rQ on the inflaton self-coupling

rQ =
√

6ϕ0√
γ

⇒ rQ ∝
√
λϕ0. (6.185)

The analytical expression for the Q-ball energy is given by (6.134). Since in
general ω2 ≈ ω2

c , which follows from m2 ≃ ω2 and (6.108), the energy of the Q-ball
becomes

E ≈ 3
2
πM2

pl

12ξ ω
2
cr

3
Q ∝

ω2
cr

3
Q

ξ
∼ λ

ξ

r3
Q

ξ
, (6.186)

⇒ E ∝
√
λϕ3

0. (6.187)

These relations will become important in Section 6.8 when we consider the effects
of curvature on non-minimally coupled Palatini Q-balls.
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6.7 Formation of Non-Minimally Coupled Pala-
tini Q-balls Following Tachyonic Preheating

As discussed in Section 6.1, we will consider the possibility, indicated by the results
in [161], that the Q-balls in this model may arise as a result of the fragmentation of
the inflationary condensate, where the inflationary condensate breaks into smaller
compact lumps of scalars which subsequently decay into ± Q-ball pairs. If the in-
flationary potential is “flatter than ϕ2”, then this in general results in an attractive
interaction between the scalars which creates a negative pressure within the inflaton
condensate. This is one of the conditions which serves as a prerequisite for conden-
sate fragmentation.

A requirement is that there is a tachyonic instability in the inflationary poten-
tial (second derivative of the effective potential/effective mass squared term is less
than zero). This is satisfied on the plateau of the inflaton potential. When the
field passes the tachyonic instability, quantum fluctuations of the field will be am-
plified as the field rolls quickly down its effective potential from the top of the local
maximum. This tachyonic growth of certain modes during inflation can cause the
condensate to fragment, provided that the perturbations in the energy density of
the condensate are not diluted away by expansion before the tachyonic growth be-
comes significant. However, if there are no non-topological soliton solutions present
in the scalar field theory of the inflaton then the condensate will not fragment and
any large perturbations induced from tachyonic preheating will be smoothed out by
expansion.

It has been shown in [169] for Palatini inflation with a real scalar field that the
inflaton fluctuations grow rapidly due to tachyonic preheating at the end of slow-roll
inflation, where this tachyonic growth occurs within a single inflaton oscillation for
non-minimal couplings of the size relevant to this study. The non-linear fluctuations
generated then become the dominant contribution to the dynamics of the inflaton
field after growing very rapidly, and it is these amplified non-linear fluctuations
which may cause the inflaton condensate to become unstable and fragment. In
[169], the analysis is undertaken for a ϕ4 inflaton potential, which means that any
amplified perturbations will be smoothed out somewhat more than in our case due
to the repulsive interaction between the scalars dominating the dynamics of the
inflaton within the condensate.

This analysis from [169] can therefore be applied to our model to provide a
lower estimate on the range of perturbation wavelengths which undergo tachyonic
growth and become non-linear. This provides a useful check on whether tachyonic
preheating could be the underlying mechanism behind the formation of Q-balls in
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non-minimally coupled Palatini inflation, since if this is the case then the range of
wavelengths of the amplified non-linear perturbations in this model should overlap
with the radii of the relevant Q-balls generated in our numerical analysis (see Table
6.2). Namely, we consider the radius of the ϕ0 = 3.2217991×1017 GeV Q-ball, since
this is within the range of estimated field values at the end of Palatini inflation, in
order to estimate whether these Q-balls are likely to form from the fragmentation
of the inflaton condensate following tachyonic preheating.

The inflaton begins to undergo oscillations when slow-roll inflation ends. We
find that the value of the inflaton field at the onset of these oscillations in the model
outlined in Section 6.3 is

ϕend = 2
√

2Mpl

√
β, (6.188)

where β = 0.1−1, which gives ϕend ∼ (1−3)Mpl for the inflaton masses relevant to
this work. When the non-linear fragments form we can expect that the value of the
field will actually be less than this due to expansion taking place while tachyonic
preheating is occurring. Field values in the range 1017 − 1018 GeV are therefore a
reasonable estimate. For the purpose of this study we utilise a quantity introduced
in [169] defined as the perturbation wavenumber

κ=
√
ξ

λ

k

Mpl
, (6.189)

which is a rescaling of the physical wavenumber k. The range of perturbation
wavelengths for which strong tachyonic growth of the perturbations occurs is given
by κmin < κ < κmax, where the authors in [169] define κmax ≈ 0.4a [169], where
a is the scale factor. κmin corresponds to the size of the horizon. This range in
perturbation wavenumber corresponds to a range of physical wavelengths, λmin <
λ < λmax, for which the perturbations are expected to become non-linear. λmin is
determined by κmax and λmax = 2πH−1.
The maximum physical wavenumber k/a from (6.189) is

kmax
a

=
√
λ

ξ

κmax
a

MPl = 2π
λmin

, (6.190)

and using κmax = 0.4a, we find that the minimum physical wavelength of the per-
turbations which will become non-linear due to tachyonic preheating is

λmin = 2π
0.4

√
ξ

λ
M−1
pl ≡ 15.7

√
ξ

λ
M−1
pl . (6.191)

Normalising the non-minimal coupling and the inflaton self-coupling using ξ = 1.2×
109 and λ= 0.1 respectively, we can write this as
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λmin = 6.5×10−13
(0.1
λ

)1/2( ξ

109

) 1
2

GeV−1. (6.192)

Taking λ = 0.1 and ξ = 1.2 × 109 we find that the smallest physical wavelength
in this model which we expect to produce non-linear perturbations in the inflaton
condensate is λmin = 7.16×10−13 GeV−1.
The Hubble parameter at the end of slow roll inflation is

H2 = VE
3M2

pl

, (6.193)

where we take VE to be the plateau approximation of the potential in the Einstein
frame

VE =
λM4

pl

4ξ2 . (6.194)

Substituting (6.194) into (6.193) we find that

H2 = λ

12ξ2M
2
pl. (6.195)

This means that

H−1 =
(12
λ

) 1
2 ξ

Mpl
= 4.56×10−9

(0.1
λ

)1/2( ξ

109

)
GeV−1, (6.196)

using the normalisation of (6.192). Taking λ= 0.1 and ξ = 1.2×109, we find H−1 =
5.47×10−9 GeV−1, and the maximum physical perturbation wavelength is then

λmax = 2πH−1 = 2.87×10−8
(0.1
λ

)1/2( ξ

109

)
GeV−1. (6.197)

For λ = 0.1 and ξ = 1.2 × 109, this gives the maximum physical wavelength of
the perturbations which will become non-linear in this model to be λmax = 3.4 ×
10−8 GeV−1.

We find therefore that strong perturbation growth occurs for modes with wave-
lengths in the range 7.16×10−13 GeV−1 < λ< 3.4×10−8 GeV−1, using λ= 0.1 and
ξ = 1.2 × 109 as our parameter estimates for the non-minimally coupled Palatini
inflation model. The radii of all of the Q-ball solutions presented in Section 6.5
fall within this range. Most notably, the ϕ0 = 3.2217991 × 1017 GeV Q-ball has a
radius rX = 8.89 × 10−10 GeV−1, which is comfortably within the range of mode
wavelengths we expect to see undergoing tachyonic growth. It is therefore possible
that ϕ0 ∼ 1017 − 1018 GeV Q-balls could form in this model as a result of the frag-
mentation of the inflaton condensate due to tachyonic preheating, assuming that
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all other conditions for fragmentation are met, which means that non-minimally
coupled Palatini Q-balls are physically feasible for the model parameters consid-
ered here, although a numerical simulation of the dynamics and fragmentation of
the inflaton condensate in an expanding background would be needed in order to
establish tachyonic preheating as a formation mechanism for these non-minimally
coupled Palatini Q-balls properly.

6.8 The Effects of Curvature on Non-Minimally
Coupled Palatini Q-balls

In this analysis we have studied Q-balls in flat space, as they have been derived
historically. In this section we consider the possible effects of curvature on these
Q-ball solutions, in order to ascertain the validity of the flat space solutions. As a
first pass approximation, we conduct this analysis as though the Q-balls form in flat
space and then curvature is switched on. In this approximation we can consider the
Q-ball solution to have a spherically symmetric energy density. This means that the
spacetime outside of the Q-ball is described by the Schwarzschild metric

ds2 =
(

1− 2GM(r)
r

)
dt2 −

(
1− 2GM(r)

r

)−1
dr2 − r2dΩ2, (6.198)

where M(r) is the mass-energy contained within radius r. Let the radius of the Q-
ball in this scenario be R. If the radius of the Q-ball is smaller than its Schwarzschild
radius, rS = 2GM (r), then the Q-ball will collapse to form a black hole. The
condition to ensure that the Q-balls are not signifcantly affected by the curvature
of the surrounding spacetime is therefore

R > 2GM(R) ≡ rS , (6.199)

assuming that the mass-energy M (r) increases faster with r than r increases. Es-
sentially this means that the flat space Q-ball solutions are a good approximation
of non-minimally coupled Palatini Q-balls provided that the Q-balls are sufficiently
large compared to their Schwarzschild radii rS .
Setting R = rZ and M (r) = E from Table 6.1, we find that this condition is easily
satisfied for all of the Q-balls which have been generated numerically in this model
(see Table 6.4). This means that if curvature is switched on, all of the Q-ball
solutions presented in Table 6.1 remain as Q-balls and do not collapse to black holes.
As a first approximation, this means that the flat space description is reasonable. It
has been shown for conventional canonical scalar field theories that spatial curvature
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can affect the size of Q-balls [167], and the expression for the energy of the Q-
balls will be different in curved space, since the energy density is derived from the
energy-momentum tensor. In order to determine the full effects of gravity on these
Q-balls, the Q-ball equation and the energy and charge of the Q-balls would need
to be derived in a spherically symmetric spacetime. However, for the purposes of
this thesis the flat space Q-ball solutions can be used to approximate the effects of
curvature on Q-balls in a non-minimally coupled Palatini inflation framework.

ω/ωc ϕ0/ GeV rZ/ GeV−1 rS/ GeV−1 rS/rZ

0.707155 3.221799×1017 8.94×10−10 4.61×10−11 0.052
0.709 1.3464098×1016 3.79×10−11 3.31×10−15 8.74×10−5

0.71 8.855792×1015 2.5×10−11 9.33×10−16 3.73×10−5

0.72 1.960795×1015 6.09×10−12 9.65×10−18 1.58×10−6

0.73 1.090258×1015 3.73×10−12 1.57×10−18 4.22×10−7

0.74 7.45339×1014 2.72×10−12 4.89×10−19 1.80×10−7

0.75 5.61953×1014 2.28×10−12 2.04×10−19 8.96×10−8

0.80 2.29632×1014 1.47×10−12 1.39×10−20 9.48×10−9

0.85 1.16877×1014 1.49×10−12 2.66×10−21 1.79×10−9

0.89 4.7918×1013 2.70×10−12 1.08×10−21 4.00×10−10

Table 6.4: Table showing the radii rZ , Schwarzschild radii rS , and the ratio of the
two, rS/rZ , for all of the Q-ball solutions presented.

This analysis raises the question of whether a Q-ball which collapses to a black hole
could be produced in this model. In order to determine this we consider the ratio
of Schwarzschild radius to Q-ball radius, rS/rZ . The largest Q-ball presented in
Table 6.1 is the ω = 0.707155ωc Q-ball which has ϕ0 = 3.22 × 1017 GeV, a radius
of rZ = 8.94 × 10−10 GeV−1and a mass-energy M = EZ = 3.34 × 1027 GeV. Using
G= 6.9×10−39 GeV−2, its Schwarzschild radius is rS = 4.64×10−11 GeV−1 and the
curvature ratio is rS/rZ = 0.052. In order to form a black hole, the Q-ball would
thus need to be of larger ϕ0 than this. From Section 6.6 we know that E ∝

√
λϕ3

0
and rQ ∝

√
λϕ0, and we have confirmed that these relations approximately hold for

the numerically calculated values of EZ and rZ . Since rS ∼ M = EZ , rS ∝
√
λϕ3

0,
and we therefore have that rS/rZ ∝ ϕ2

0, independent of the inflaton self-coupling,
λ. We can normalise this proportionality using the ϕ0 = 3.22 × 1017 GeV Q-ball to
obtain

rS
rZ

= 0.052
(

ϕ0
3.22×1017 GeV

)2
. (6.200)

This is in good agreement with the results of Table 6.4.
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From this, a Q-ball would form a black hole once rS
rZ

= 1 if curvature is included.
Setting (6.200) equal to unity gives the value of ϕ0 which would result in a black
hole, which we denote by ϕ0,c, to be

ϕ0,c = 1.41×1018 GeV. (6.201)

This means that Q-balls of the ϕ0 we would expect from Q-balls formed from tachy-
onic preheating at the end of Palatini inflation could form black holes directly if the
effects of curvature are taken into account.

We can use the proportionality of EZ and rZ to ϕ0 to estimate the mass-energy
and radius of this Q-ball before it collapses to a black hole. We have that EZ ∝ ϕ3

0
and rZ ∝ ϕ0, and can write

EZ,c
EZ

=
ϕ3

0,c
ϕ3

0
, (6.202)

rZ,c
rZ

= ϕ0,c
ϕ0

. (6.203)

Normalising these using the ϕ0 = 3.22×1017 GeV Q-ball gives

EZ,c = 3.34×1027
(

1.41×1018

3.22×1017

)3
GeV ⇒ EZ,c = 2.80×1029 GeV, (6.204)

rZ,c = 8.94×10−10
(

1.41×1018

3.22×1017

)
GeV−1 ⇒ rZ,c = 3.91×10−9 GeV, (6.205)

where if calculated using a curved space Q-ball solution, ϕ0,c,EZ,c and rZ,c would
likely be slightly smaller.

We can therefore say that Q-balls of ϕ0 ∼ 1018 GeV could form black holes in
curved space in this model, and that these Q-balls could feasibly be produced from
the fragmentation of the inflaton condensate from tachyonic preheating at the end
of Palatini inflation.

As aforementioned, this analysis considers the effects on flat space Q-balls if
curvature is switched on once the Q-balls have formed, and the Q-ball equation
would need to be derived and solved in curved space to obtain an accurate picture
of how gravity affects the properties of non-minimally coupled Palatini Q-balls. We
expect however that the overall effect of curvature on the properties of the Q-balls
will be small since the deviation of the metric from the flat space metric is likely to be
small, and the estimate of ϕ0,c in the flat space case should therefore be reasonable.
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To illustrate this consider the fact that the ratio of the Schwarzschild radius to
the Q-ball radius is proportional to ϕ2

0 (6.200). If we reparameterise the metric of
the spacetime surrounding the Q-balls using this ratio we find that we can rewrite
(6.198) as

ds2 ∼
(

1− ϕ2
0

ϕ2
0,c

)
dt2 −

(
1− ϕ2

0
ϕ2

0,c

)−1
dr2 − r2dΩ2, (6.206)

which means that for a small patch of spacetime at the surface of the Q-ball, the
local deviation of the metric from the flat space metric is proportional to ϕ2

0. For
example, if ϕ0 = ϕ0,c/2, then the radius of the Q-ball is R = 4rS , and the local
deviation from the flat space metric is 25%. Since Q-balls are composed of a scalar
field it is not strictly correct to model them as solid spheres in curved space, and we
therefore cannot say that the metric inside the Q-balls automatically corresponds
to the flat space metric. The mass-energy of the Q-balls in Schwarzschild space falls
off as M (r) ∝ r3, and therefore the deviation of the metric from flat space inside
the Q-ball will be more like M (r)/r ∝ r2, therefore

ds2 ∼
(

1− 2Gr2

r2
S

)
dt2 −

(
1− 2Gr2

r2
S

)−1
dr2 − r2dΩ2, (6.207)

which means that the deviation from the flat space metric inside the Q-balls will
be small and will decrease further very rapidly as we get closer to the centre of the
Q-ball. For ϕ0 < ϕ0,c/2 we can therefore estimate that the presence of curvature
will not significantly affect the properties of the Q-balls, and that the flat space
approximation is a reasonable estimate for the properties of the Q-balls presented
in Section 6.5. We also estimate that the prediction of the ϕ0 at which the Q-
balls will start to collapse to black holes, ϕ0,c, will not be altered significantly when
curvature is taken into account. It is likely that the presence of curvature may make
the formation of black holes easier, since gravitational attraction may decrease the
radius at which the gravitational force is ceases to be balanced by the gradient
pressure of the scalar field inside the Q-ball. The formation of Q-ball derived black
holes would also be affected by the effects of curvature, requiring treatment in curved
spacetime, or Schwarzschild de-Sitter for considering the effects of expansion. We
do not consider these effects in this thesis, in order to investigate the quality of the
flat space Q-ball solutions as an approximation for the formation of Q-ball derived
black holes, however a numerical simulation of the tachyonic preheating dynamics in
this model of non-minimally coupled Palatini inflatonic Q-balls could be extended
to explore the effects of curvature and expansion on the formation of Q-ball derived
black holes.
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6.9 Reheating via Q-ball Evaporation

In the following sections we discuss some cosmological consequences which could
arise as a result of Q-ball formation at the end of inflation.

The formation of Q-balls at the end of non-minimally coupled Palatini inflation
could theoretically lead to an early period of matter domination in the form of
solitonic matter [84, 171]. This epoch of the energy density being largely composed of
solitonic matter would lead to a different reheating mechanism and post-inflationary
evolution in comparison to the usual decay of a homogeneous inflaton condensate.
This is due to fact that the inflaton scalars are bound in compact objects. In general,
the inflaton field decays throughout the volume of the inflationary condensate and
can be modelled as a volume effect. When the scalars are bound in solitons, reheating
occurs as a surface effect, with the scalars decaying perturbatively and the decay
products evaporating away [172] - [176] from the surface of the Q-ball. In this
scenario, the evaporation rate is initially suppressed by the surface area to volume
ratio of the object, therefore the larger the Q-ball the larger the suppression of the
evaporation rate from its surface. In the case of decay of the inflaton to fermion
pairs, the decay rate is further suppressed due to the effects of Pauli blocking [173,
174]. This effect is due to the fact that as the scalars decay to fermion pairs, the
energy levels of the fermions fill up. No more decays can then proceed until there
are energy levels available for the decay products to occupy, or fermion pairs have
evaporated away. This suppression of the decay rate leads to a lower reheating
temperature. This slower reheating also means that there are a greater number
of e-folds of expansion following inflation in these models, which in principle could
lead to a shorter duration of inflation depending on the precise nature of the decay
processes and the size of the Q-balls.

6.10 Reheating from Q-ball Derived Black Holes
and Associated Cosmological Implications

The black holes which could result from the gravitational collapse of non-minimally
coupled Palatini Q-balls in this model are generally light black holes. The ϕ0 of
the Q-balls which could evolve to black holes start at ϕ0 = 1.41 × 1018 GeV, and
this Q-ball has a mass-energy of M = EZ = 2.80 × 1029 GeV. Using the conversion
of 1 GeV = 1.79 × 10−27kg gives a mass for this Q-ball of MBH = 501.2kg. Black
holes of mass around 500kg have a very high temperature, which means that the
energy of the particles emitted by the black hole is also very high and thus the black
hole can energetically access a large range of evaporation channels. MBH ≈ 500kg
black holes can produce all the particles of the Standard Model as they decay. It is
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therefore possible that the Universe could be reheated via the decay of these Q-ball
black holes if a sufficient number could form such that they came to dominate the
energy density of the Universe. In this section we explore the possibility of reheating
through Q-ball black hole decay, and whether this is compatible with the observed
scalar spectral index.
The time taken for a black hole of mass M ≲ 108 kg, with a black hole temperature
is greater than O (100) GeV, to evaporate, tev, is given by [177]

tev = 40960π
27g∗BH

G2M3, (6.208)

where g∗BH = 108.5 is the number of spin degrees of freedom for the Standard
Model. We can equate this to the age for a matter-dominated Universe at reheating,
t = (2/3)H(TR)−1 (where the expansion rate at reheating is H(TR) = kTR

T 2
R/MPl,

kTR
≈ 3.3), to obtain the expression for the reheating temperature if the decay of

these black holes were to reheat the Universe. This is

TR ≈
(2

3

)1/2( 27g∗BH
40960πkT

)1/2 8πM5/2
Pl

M3/2 = 1.145×106
(

1kg
M

)3/2
GeV, (6.209)

where M =MBH is the mass-energy of the black hole.
In Section 6.8 we showed that the Q-ball with the smallest ϕ0 which could form a
black hole, once curvature is included, is a Q-ball with ϕ0 = 1.41×1018 GeV andM =
E = 2.80 × 1029 GeV. Taking λ = 0.1, we have that, using 1 kg = 5.62 × 1026 GeV,
the mass of this black hole is M = 498 kg, and substituting this into (6.209) we
obtain the reheating temperature

TR = 102.6 GeV, (6.210)

which is a very low reheating temperature. We now want to establish whether re-
heating temperatures this low can produce an acceptable value of the scalar spectral
index, in order to determine whether reheating via the decay of Q-ball black holes
is a viable reheating mechanism.

In order to calculate the scalar spectral index we need to find the number of
e-folds of inflation at the pivot scale, N∗. We use the pivot scale used by the Planck
satellite, k∗ = 0.05 Mpc−1, and the wavelength of the pivot scale is then

λ∗ = 2π
k∗

= 125.7 Mpc. (6.211)

We assume that there is sufficient formation of Q-ball black holes that they come
to dominate the energy density of the Universe, and that the Universe enters into
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a period of early matter domination after inflation until T = TR. At this point the
black holes evaporate and reheat the Universe, transitioning the energy density into
an era of radiation domination. During inflation, we have that (2.32)

λ(t) = a

a0
λ∗ = a

aend

aend
aR

aR
a0
λ∗, (6.212)

where the R subscripts correspond to the value of the quantity at reheating, "0"
subscripts correspond to present-day values and "end" refers to the end of slow-roll
inflation. We have that a/aend = e−N and

aend
aR

=
(
ρR
ρend

) 1
3
, (6.213)

during matter domination where

ρend = VE ≈
λM4

pl

4ξ2 , (6.214)

is the energy density at the end of inflation, dominated by the inflaton potential,
and

ρR = π2

30g (TR)T 4
R, (6.215)

is the energy density of radiation.
Using the fact that the entropy remains constant during slow roll inflation we

have that (from Section 2.10),

a3gs (T )T 3 = constant, (6.216)

we can write

aR
a0

=
(
gs (T0)
gs (TR)

) 1
3 T0
TR

. (6.217)

Substituting (6.217) into (6.212), the wavelength as a function of time is

λ(t) =
(
gs (T0)
gs (TR)

) 1
3 T0
TR

(
ρR
ρend

) 1
3
e−Nλ∗. (6.218)

At horizon exit during inflation, we have that

λ=H−1 =
 VE

3M2
pl

− 1
2

. (6.219)

At the pivot scale we therefore have
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 VE
3M2

pl

− 1
2

=
(
gs (T0)
gs (TR)

) 1
3 T0
TR

(
ρR
ρend

) 1
3
e−N∗λ∗, (6.220)

equating (6.218) and (6.219). Rearranging (6.220) gives the expression for the num-
ber of e-folds at the pivot scale

N∗ = ln

( gs (T0)
gs (TR)

) 1
3 T0
TR

(
π2g (TR)T 4

R

30VE

) 1
3
 VE

3M2
pl


1
2

λ∗

 . (6.221)

Here TR = 102.6 GeV is the reheating temperature, T0 = 2.4 × 10−13 GeV is the
temperature of the CMB, gs (TR) = g (TR) ≈ 100 and gs (T0) = 3.91. For λ = 0.1
and ξ = 1.2163 × 109, VE = 5.61 × 1053 GeV4, and using the conversion 1 Mpc =
1.56×1038 GeV−1 we have λ∗ = 1.96×1040 GeV−1.

Substituting these numbers into (6.221) gives the number of e-folds at the pivot
scale to be

N∗ = 43.1, (6.222)

which by (6.44) gives a value for the scalar spectral index of ns = 0.9536, which
is excluded by the 2 − σ lower bound from the Planck satellite ns > 0.9565 [36].
This means that reheating via the decay of Q-ball black holes in the case where
the Q-ball derived black holes dominate the energy density at early times is not a
viable reheating mechanism for non-minimally coupled Palatini inflation because it
predicts a scalar spectral index which is too small.

An alternative scenario for a Q-ball black hole post-inflation cosmology can be
realised if only a small fraction of the Q-balls collapse to black holes, leaving a
small initial fraction of energy density as Q-ball derived black holes while the rest is
converted to radiation as the remaining Q-balls decay. This results in a long period
of radiation domination before the Q-ball black holes come to dominate at a later
time. This means that there will be a greater number of e-folds of inflation at the
time the pivot scale exits the horizon, which would give a larger value for the scalar
spectral index, and could potentially bring the prediction for ns into the acceptable
bounds on the scalar spectral index from the Planck results.

In this scenario we use the assumption of instantaneous reheating, whereby the
energy density of the inflaton is all immediately converted to radiation at the end
of slow-roll inflation, such that

ρend = 3M2
plH

2 = VE = ρR = π2

30g (TR)T 4
R. (6.223)

Using VE = 5.61 × 1053 GeV4, for g (TR) ≈ 100, this equality gives a reheating tem-
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perature of

TR = 1.14×1013 GeV, (6.224)

which is significantly higher than the reheating temperature in the case of reheating
from Q-ball derived black hole evaporation after a period of matter domination from
these black holes.
The number of e-folds at the pivot scale k∗ = 0.05Mpc−1, λ∗ = 1.96 × 1040 GeV−1

is derived similarly to the case of Q-ball black hole domination. The wavelength of
the inflaton fluctuations as a function of time is (2.32)

λ(t) = a

a0
λ∗ = a

aend

aend
a0

λ∗, (6.225)

with a/aend = e−N and

aend
a0

=
(
ρ0
ρend

) 1
3
, (6.226)

we have that

λ(t) =
(
ρ0
ρend

) 1
3
e−Nλ∗. (6.227)

Using the fact that λ=H−1 at horizon exit, and (6.220) we have that

eN∗ =
(
gs (T0)
gs (Tend)

) 1
3 T0
Tend

 VE
3M2

pl


1
2

λ∗. (6.228)

Since we are assuming instantaneous reheating, this means that the Q-balls which
do not collapse to black holes decay instantly to radiation. So we can say Tend =
TR = 1.14×1013 GeV, and using T0 = 2.4×10−13 GeV, gs (TR) ≈ 100, gs (T0) = 3.91
and VE = 5.61×1053 GeV4 we find that

N∗ = 51.6, (6.229)

which using (6.44) gives a value for the scalar spectral index of ns = 0.9612, which
is within the 1 −σ bound of the Planck value of ns [36]. Thus in general, 43.1 <
N∗ < 51.6, when a density of black holes from Q-balls is included. This means that
although reheating via the evaporation of Q-ball black holes is not viable in the
case of complete black hole matter domination at early times, an acceptable value
of the scalar spectral index can be generated in the case where a small fraction
of Q-balls collapse to black holes and come to dominate the energy density of the
Universe at a later time once reheating has proceeded through the instant decay of
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the remaining Q-balls to radiation, and the radiation energy density has decayed
away with expansion. This provides a small insight into some of the rich implica-
tions that non-minimally coupled Palatini Q-balls could have for cosmology, since
we have demonstrated that for a certain mass range of the inflaton, (6.108), the
model can inflate successfully, may produce Q-balls, and could also seed Primordial
Black Holes from the collapse of Q-balls for sufficiently large ϕ0.

6.10.1 Q-ball Black Hole Mass Dependence on the Inflaton
Self-Coupling, and Contraints from Baryogenesis

Thus far we have explored a fairly minimal model of inflation and Q-balls which
has the potential to be a self-sufficient basis for a cosmological model. We are,
however, yet to discuss a possible mechanism for baryogenesis in the case of Q-balls
from non-minimally coupled Palatini inflation. A complete study of the generation
and transfer of the baryon asymmetry is beyond the scope of this thesis, however
there are important aspects of the model in relation to baryogenesis which can be
discussed.
Since these Q-ball black holes start at M ∼ 500kg, as discussed in Section 6.8 these
Q-balls can produce all the particles of the Standard Model upon evaporation. It
is therefore reasonable to think that there might be some decay channel accessi-
ble for these black holes which could seed a lepton number asymmetry, this could
then be the basis for baryogenesis via thermal leptogenesis in this model if the
asymmetry in lepton number could be transferred to a baryon number asymmetry
through sphaleron processes. Alternatively, electroweak baryogenesis could occur
if there is a first-order electroweak symmetry breaking transition. The issue with
this is that the temperature required for sphalerons to instigate baryogenesis, or for
a first-order phase transition to occur, must be at least equal to the temperature
of electroweak symmetry breaking TEW = 159.5 GeV [178]. Thus the case which
gives a reheating temperature of around TR ≈ 100 GeV is too low for electroweak
symmetry breaking, and therefore insufficient for the precipitation of the baryon
asymmetry by sphalerons. If there were a way to raise the reheating temperature
in the case of reheating via Q-ball derived black hole decay, then it would be more
feasible to embed non-minimally coupled Palatini Q-balls into a cosmological model
which includes the generation of the baryon asymmetry.

In order to explore this idea, we first note that, as found in Section 6.6, that
the mass-energy of the Q-ball derived black holes depends on the square root of the
inflaton self-coupling, M =EZ ∝

√
λϕ3

0, and we find that for the ϕ0 = 1.41×1018 GeV
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Q-ball derived black hole the reheating temperature is insufficient for baryogenesis
for λ= 0.1. From (6.187), we can write

M ∝
√
λϕ3

0, (6.230)

and for the same ϕ0 = 1.41 × 1018 GeV, for smaller inflaton self-coupling, say λ =
0.01, we therefore have

Mnew =
√

0.01 M√
0.1

=
√

0.1M. (6.231)

For M =E = 2.8×1029 GeV, this gives a mass energy for the ϕ0 = 1.41×1018 GeV
Q-ball derived black hole of

Mnew = 8.85×1028 GeV, (6.232)

for an inflaton self-coupling of λ= 0.01. Using the conversion 1 kg = 5.62×1026 GeV,
this gives a mass in kilograms of

Mnew = 158 kg. (6.233)

Using (6.209), we find that the reheating temperature in this case is

TR = 574 GeV. (6.234)

This shows that lowering the strength of the inflaton self-coupling results in a smaller
mass for the black holes and subsequently a higher reheating temperature. For
λ= 0.01, the reheating temperature is sufficiently high that a lepton number asym-
metry generated by interactions of the decay products of these black holes could be
transferred to the Standard Model particle content via sphalerons, or a first-order
electroweak transition and electroweak baryogenesis could occur. This shows that
the reheating temperature from Q-ball derived black hole evaporation can be ad-
justed using the inflaton self-coupling, and that if λ is small enough the model can
reheat to a TR > TEW sufficient for baryogenesis. This allows more scope to embed
this model of non-minimally coupled Palatini Q-balls with an early era of Q-ball de-
rived black hole domination and reheating into a more complete cosmological model
which can account for the observed baryon asymmetry today.

There is also the possibility of baryogenesis through the evaporation of the pri-
mordial black holes formed from collapsing Q-balls themselves, with a non-zero
baryon number being produced through Hawking radiation. The possibility of a
baryon asymmetry being produced through the evaporation of black holes was orig-
inally proposed by Hawking in 1974 [179] and has been explored in a number of
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particle physics models in conjunction with other aspects of early Universe cosmol-
ogy such as inflation, electroweak symmetry breaking and dark matter generation
(see for example [180] - [187]) through either an electroweak or gravitational [188]
baryogenesis mechanism. Baryogenesis from evaporation of Q-ball derived black
holes also allows for the possibility of extending the non-minimally coupled Palatini
inflation model with Q-balls into a more complete model of cosmology, with the
potential for embedding into Beyond the Standard Model particle models.

6.10.2 Gravitational Waves from Black Holes via the Poltergeist
Mechanism

It may also be possible to produce gravitational waves from the decay of primordial
black holes through a phenomenon known as the Poltergeist mechanism [189]. If
there is an early era of matter domination in the form of primordial black holes,
these primordial black holes can rapidly decay, converting sub-horizon density per-
turbations into sub-horizon perturbations in radiation density. These perturbations
in the radiation density can generate pressure waves within the thermal bath, which
in turn generate gravitational waves. These gravitational waves may be observable
in the next generation of detection experiments (DECIGO and LISA [190] - [194]),
for black holes in the mass range 2 − 400kg, provided that the spread of mass is in
the range σ (δM/M) ≲ 0.01 [189] .

The upper bound of this mass range is slightly smaller than the mass of the low-
est ϕ0 Q-ball black hole predicted in this model, which starts around M = 500kg.
It should be noted however that these mass predictions come from approximating
the effects of curvature on flat space Q-balls, rather than from the direct formation
of black holes - either directly from the collapse of overdensities within the inflaton
condensate or from mergers of Q-balls post-formation [195] - in a curved spacetime,
so it is likely that if the effects of gravity are taken into account, smaller Q-balls of
a lower mass could be formed, and the Schwarzschild limit for these Palatini Q-balls
may be lowered.

We also demonstrated in Section 6.10.1, that Q-ball black holes of a lower mass
can be generated for a smaller inflaton self-coupling, λ, in a regime where the Q-ball
black holes dominate the energy density at early times and then rapidly decay to
radiation later on, so it is possible in this scenario that the Poltergeist mechanism
could produce observable gravitational waves, although a numerical simulation of
Q-ball formation in this model would be necessary to determine this formally.
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6.11 Summary and Discussion

In this chapter we have presented a study of Q-balls within the framework of a
non-minimally coupled Palatini inflation model. The underlying scalar field theory
is comprised of a complex scalar field charged under a global U(1) symmetry with a
coupling to the Ricci scalar in a simple ϕ2 +ϕ4 potential in the Jordan frame which
fulfills the role of the inflaton. In the Einstein frame the non-minimal coupling of the
inflaton field to gravity is recast as a non-canonical kinetic term in the inflaton action.
The predictions for the inflationary observables match the standard predictions for
Palatini inflation, and the non-minimal coupling is calculated to be ξ = 1.2163×109.
We find that the presence of the inflaton mass term during inflation does not affect
the form of the slow-roll parameters, or the observables, but it does directly affect
the value of the inflaton field at the end of slow-roll inflation, where the inflaton at
the end of inflation in this model is predicted to be ϕ ∼ (1−3)Mpl. We also use
the fact that a positive gradient is a necessary condition on the inflaton potential
in order for inflation to proceed successfully to establish an upper bound on the
inflaton mass squared.

The Q-balls in this model correspond to a complex scalar with a non-canonical
kinetic term, which constitute a new type of Q-ball not previously studied. We
derived the Q-ball equation analytically in the Einstein frame, by extremising the
Q-ball action in flat space with respect to the conserved U (1) charge, and found
that the form of the Q-ball equation in non-minimally coupled Palatini gravity is
different from the conventional case in that there is an additional gradient squared
term and a dependence on the conformal factor on the right hand side, and we
find that this Q-ball equation (6.77) is in exact agreement with the equation for
non-canonical Q-balls presented in [196], which came out shortly after the article
detailing the research this chapter is based on was released [197]. This demonstrates
that non-minimally coupled Palatini Q-balls are a new class of Q-ball with different
underlying dynamics to that of conventional Q-balls.

Despite this, we find that the existence condition for these Q-balls is the same
as in the conventional case, ω <m, and that Coleman’s mechanical analogy for Q-
ball existence can still be applied, although the underlying dynamics are not the
same. We then used this to derive a range of inflaton masses squared for which the
inflaton potential is both compatible with the existence of Q-balls and can inflate
successfully, which we refer to as the Q-ball window. This is significant because it
can allow for suitable candidates for the inflaton field in order to produce Q-balls
to be distinguished.

We solved the Q-ball equation numerically for a fixed inflaton mass within the
Q-ball window for a range of ω < m. We then used the location of the zeroes of
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the Q-ball equation, corresponding to the minima of the effective scalar potential,
in order to narrow the range of field values for which Q-ball solutions can form for
each ω, these values being denoted by ϕ0. A code was then run between the upper
and lower bounds of ϕ0 for each ω until a Q-ball solution was found. We presented
ten Q-ball solutions in the range ω = (0.707155−0.89)ωc, and have calculated the
important properties of these Q-balls including the radii, the charge of the Q-balls
and the global energy of the Q-balls. We established that the radius of this type
of Q-ball is proportional to ϕ0, the energy of the Q-balls is proportional to ϕ3

0, and
that the ω parameter is approximately equal to the ratio of the Q-ball energy to
the Q-ball charge E/Q. We find that these relations hold very strongly for the
larger ϕ0 Q-balls and the relations become less well-defined for the smaller ϕ0 Q-
balls. We also confirm that the Q-balls are absolutely stable, E < mQ, with the
exception of the ω = 0.89ωc Q-ball, which is very close to the existence limit of
ω < m. This is a particularly significant result for the ϕ0 ∼ 1017 GeV Q-ball, since
this shows that Q-balls of the size we expect to form from the inflaton condensate
at the end of slow-roll inflation in non-minimally coupled Palatini gravity exist, and
could therefore survive long enough to affect the post-inflationary cosmology of this
model.

We derived an analytical approximation to the Q-ball equation for ϕ>>Mpl/
√
ξ≈

ϕ0 in the limit that r < rQ/2. We find that the field profiles generated from the an-
alytical approximations of the Q-ball solutions for large ϕ0 closely match the Q-ball
profiles from the numerical solutions up to about r = rQ/2, and become a decreas-
ingly good approximation as the ϕ0 of the Q-balls decreases. We also use this
approximation to derive analytical expressions for the energy and charge of the Q-
balls in the small r limit, and we use these as a test on the numerical calculation
of the Q-ball properties, including a confirmation using the analytical solution that
E ∝

√
λϕ3

0 and rQ ∝
√
λϕ0, as predicted by the approximate proportionality of the

numerical radii and energies. We closely followed a derivation presented in [170]
applied to the case of non-minimally coupled Palatini Q-balls to verify that the en-
ergy and charge vary with ω together, as is the case for conventional Q-balls. We
calculated that the energy-charge ratio is equal to ω plus an integral term which can
be interpreted as a contribution from the surface energy of the Q-ball, as opposed
to the exact prediction of E/Q = ω as the chemical potential of the theory in the
conventional case, although we later confirm that for ϕ >> Mpl/

√
ξ the contribu-

tion from this term is very small and that E/Q≈ ω, as confirmed by the numerical
calculations of the energy and charge. We also find that this provides an alternative
formulation of the absolute stability condition, ω <m.

We speculate that these Q-balls could form from the fragmentation of the in-
flaton condensate at the end of slow roll inflation, possibly as a result of tachyonic
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preheating. We confirm that this is possible by following a calculation presented in
[169] in order to determine the range of perturbation wavelengths which undergo
tachyonic growth, 7.16 × 10−13 GeV−1 < λ < 3.4 × 10−8 GeV−1. We find that the
largest perturbation length scale to undergo tachyonic amplification in this model
is within the horizon during inflation, and that the range of perturbation wave-
lengths encapsulates the radii of all the Q-balls produced numerically in this model.
This means that all of the Q-balls presented here could form from the growth of
the inflaton field perturbations due to tachyonic preheating at the end of slow-roll
inflation.

Due to the fact that at the end of inflation in this scenario the inflaton scalars are
bound into compact objects, reheating will proceed differently than in conventional
inflation when non-topological soliton solutions are not present. The production of
stable Q-balls at the end of inflation leads to an early era of matter domination,
where the energy density of the Universe is dominated by solitons for a period
after inflation before the Universe reheats via the evaporation of the Q-balls to
radiation. This can proceed very rapidly unless the decay of the Q-balls to fermions
is suppressed by Pauli blocking. This can mean that more e-folds of expansion are
required to reheat the model than in conventional inflation, which can alter the
prediction of the reheating temperature, and subsequently the scalar spectral index.

We explored the effects of curvature on these Q-balls by considering the flat
space Q-ball solutions in a Schwarzschild spacetime, and we find that these Q-balls
will collapse to black holes of mass ∼ 500kg for ϕ0 ≥ ϕ0,c = 1.41 × 1018 GeV when
λ = 0.1. This shows that Primordial Black Holes can form from the collapse of Q-
balls of the field values expected from tachyonic preheating after Palatini inflation,
making the proposed formation mechanism of these Q-balls and the resultant black
holes to be physically feasible. It also raises the question of whether, in curved space,
sufficiently large perturbations from tachyonic growth could directly seed primordial
black holes even if the underlying scalar field theory does not admit non-topological
soliton solutions. We also find that the flat space approximation of the curved space
properties of these Q-balls/Q-ball derived black holes are reasonable for ϕ0 <ϕ0,c/2,
since below this limit the local deviation of the metric is less than 25% from the
flat space metric. We also confirm that the mass of these Q-ball black holes scales
with

√
λ, and the ratio of the Schwarzschild and Q-ball radius is independent of the

inflaton self-coupling.
We examined the viability of reheating via the evaporation of Q-ball derived black
holes in the event that they come to dominate the energy density after inflation and
then decay to radiation at later times. We find that this reheats the Universe at a
very low temperature TR ≈ 100 GeV, which produces an insufficient value for the
scalar spectral index of ns = 0.9536, which is excluded by the 2 −σ Planck bound
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of ns = 0.9565 [36]. An alternative scenario is where only a small fraction of the
Q-balls produced collapse into black holes, and the remaining Q-balls rapidly decay
to radiation, instantly reheating the Universe. This means that the Universe enters
immediately into an era of radiation domination following inflation, and that the
Q-ball black holes come to dominate the energy density at a later time. By this
mechanism, reheating completes within a greater number of e-folds of expansion
than the case of early Q-ball derived black hole matter domination. It can give a
much large reheating temperature, up to TR = 1.14×1013 GeV, and a scalar spectral
index of ns = 0.9612 which is within the 1 − σ Planck bounds of ns = 0.9649 ±
0.0042 [36]. This shows that although reheating purely via the evaporation of Q-
ball derived black holes is not a viable reheating mechanism, the model can still
reheat successfully if a only small fraction of the Q-balls produced collapse to black
holes.
Adjusting the value of the inflaton self-coupling can also adjust the reheating tem-
perature. We found that, using the dependence of the black hole mass-energy on√
λ, if the inflaton self-coupling is λ= 0.01, the mass of the black hole resulting from

the ϕ0 = 1.41×1018 GeV Q-ball is M = 158kg, and this has a reheating temperature
of TR = 574 GeV. This is significant because it shows that altering the value of the
inflaton self-coupling for a given Q-ball of ϕ0 ≳ ϕ0,c can raise the reheating tem-
perature, bringing it to a scale TR > TEW = 159 GeV, greater than the electroweak
phase transition temperature. This is the temperature at which sphalerons can ex-
ist, and can therefore be considered the temperature at which baryogenesis becomes
viable in the model, which opens up the possibility of being able to generate the
baryon asymmetry in this model in addition to inflation, Q-balls and Primordial
Black Holes, forming a more complete cosmological model.
Altering the value of the inflaton self-coupling for a Q-ball of ϕ0 ≳ ϕ0,c also lowers
the mass of the black hole produced by the collapse of the Q-ball. This can be sig-
nificant because it has been shown that black holes in the mass range 2−400kg may
produce gravitational waves which are observable in the next generation of detection
experiments via the Poltergeist mechanism. We have shown for λ = 0.1, the black
holes produced from the Q-balls presented here start at M ≈ 500kg which is slightly
higher than the masses which can produce observable gravitational waves through
the Poltergeist mechanism. It may be therefore that these Q-balls could produce
lighter black holes in the 2 − 400kg range for smaller λ, which is an exciting pos-
sibility for the observability of a model of non-minimally coupled Palatini inflation
with Q-balls.
It should be noted that the post-inflationary cosmology of this model is rich with
other potential gravitational wave sources. It has previously been shown that non-
linear eras in the early Universe can generate their own stochastic gravitational
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wave background ([91] - [93]); and that the rescattering of amplified modes during
preheating ([94] - [97]); the inhomogeneous, anisotropic motions of the condensate
associated with Q-ball formation ([198, 199]); the fragmentation of an inflaton con-
densate [200]; and fluctuations in the numbers of ±Q-balls [201] - [204], can also
source gravitational waves. A sudden transition from an early matter dominated
era to a radiation dominated era can also cause an enhancement of the gravita-
tional waves induced at second order in the primordial curvature perturbations [98],
[205], [206]. This may be especially relevant in our case as a rapid decay of Q-balls
can cause such a sudden change in the equation of state of the Universe 1. Since
the frequency and energy density of these gravitational wave signatures are largely
model dependent and will be affected by subtleties in model evolution, it is difficult
to speculate at present as to the potential observability of any gravitational wave
signatures generated in this framework of Palatini Q-balls, however it is possible
that the signals produced could be observable in future experiments able to detect
higher frequencies of gravitational waves [99].

As mentioned in the Section 6.1, Q-balls and possibly their decay products can
be dark matter candidates. Although we do not address this possibility in depth in
this thesis, if the Q-balls form only a very small component of the energy density at
the end of inflation, then assuming that the Q-balls did not dissociate or dissipate
due to thermal effects, they could decay at a later time or survive to the present
day and contribute to the Dark Matter content of the Universe. Depending on the
interactions of the inflaton with the particle content of the Standard Model, these
objects could be observable with direct dark matter searches.

Beyond the case of a complex inflaton and Q-balls, an additional motivation for
this study of Q-ball solutions is the possible insights it may give into the case of
a real inflaton and oscillons. A non-minimally coupled Palatini model of this type
could also inflate successfully for the case of a real inflaton, and neutral oscillons
could be formed from the fragmentation of such a condensate. There have been
numerous works which explore the formation and existence of oscillons and related
objects from condensate fragmentation [74], [84] - [88]; the evolution of a subsequent
period of oscillon domination [171], and the observational signatures these objects
could leave [89],[90], and as such this is a many-faceted and active area of research in
cosmology. However, unlike the case of Q-balls, there are no analytical solutions for
oscillons. Given the similarity of the underlying physics of real and complex scalars,
it is possible that the Q-ball properties will be similar to those of the corresponding
oscillons and that an oscillon window for oscillon formation will exist, analogous to
the Q-ball window.

1A recent work [207] has demonstrated that the decay of Q-balls from the Affleck-Dine mecha-
nism may proceed in such a fashion and may result in an observable gravitational wave signature.
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We have demonstrated in this chapter that a model of non-minimally coupled
Palatini inflation with non-canonical Q-balls can produce a post-inflation cosmology
potentially very different from the standard post-inflation evolution in conventional
Palatini inflation, with possible consequences for observability and the arrival at
today’s cosmology which are broad and far-reaching. In order to determine the
precise implications, a numerical simulation detailing the tachyonic growth of the
inflaton perturbations, the fragmentation of the inflaton condensate, the formation
and possible decay of the Q-balls, and the formation and evaporation of any of the
Q-ball black holes in curved spacetime on a subsequent expanding background would
need to be performed.
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Chapter 7

Conclusion

The main focus of the research presented in this thesis has been the application of
non-minimally coupled, and R2 term, inflation models in the Palatini formalism to
other problems and phenomena in cosmology, as well as the compatibility of these
models with Big Bang cosmology and particle physics in the broader sense. The
non-minimal coupling of the inflaton to gravity, and any higher order curvature
terms in the gravitational action, modify the dynamics of the scalar field, and as
such the non-minimal coupling or higher order term is typically recast by performing
a conformal transformation on the metric of the theory, such that the gravitational
dynamics beyond the Einstein-Hilbert action manifest as non-canonical kinetic terms
and a rescaled inflaton potential when examined in the Einstein frame - a frame
defined such that the transformed gravitational action is Einstein-Hilbert, and the
gravitational dynamics can be considered as equivalent to General Relativity. Non-
minimally coupled and R2 inflation models are therefore typically considered in the
Einstein frame and we follow this approach in this thesis. The effect of these terms
is that the inflaton potential becomes a plateau in the Einstein frame, and they
therefore provide a very natural mechanism for producing a flat inflaton potential, as
is favoured by observations of the inflationary observables. Non-minimally coupled
and R2 inflation models are therefore very favourable observationally, and we find
that the results of the calculations of the predicted inflationary observables in the
inflation models considered in this thesis are in good agreement with observations.

We primarily consider inflation in the Palatini formalism in this thesis. In the
Palatini formalism, the conformal transformation of the Ricci scalar is much more
straightforward - owing to the treatment of the spacetime metric gµν and the affine
connection Γρµν as independent quantities - in comparison to the transformation in
the metric formalism, and no additional non-canonical inflaton kinetic terms arise in
the Einstein frame action as a result. This means that the canonical normalisation
of the inflaton field is different depending on the formalism used, which results in the
Einstein frame potential in terms of the canonically normalised inflaton being differ-
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ent, even if the Jordan frame inflaton potential is the same in both formalisms. Since
the slow-roll parameters - and hence the inflationary observables built from them -
depend explicitly on the inflaton potential, the expressions and the predictions for
these quantities will therefore be different depending on the formalism used. Most
notably, the Palatini formalism typically produces a heavily suppressed tensor-to-
scalar ratio compared to the metric formalism, and also typically requires a larger
value of the non-minimal coupling ξ in order to produce the observed primordial
curvature power spectrum PR.

In Chapter 4, we consider a ϕ2 Jordan frame inflaton potential in the Palatini
formalism in a framework where there is an R2 term in the gravitational action,
setting the non-minimal coupling to zero in order to exclusively study the effects
of the R2 term on the ϕ2 model in the Palatini formalism. We were interested
in whether the ϕ2 inflation model could be brought into observational favour - the
original ϕ2 chaotic inflation model having been ruled out observationally on the basis
of the tensor-to-scalar ratio being too large - by the addition of the R2 term and
the additional suppression of the tensor-to-scalar ratio by the Palatini formalism
treatment. Another issue with the original ϕ2 chaotic inflation model is the fact
that in order to complete inflation the inflaton must be super-Planckian, and we
wanted to examine the constraints which would be placed on the model from the
requirement that the inflaton be sub-Planckian for the duration of inflation.

The transformation of the inflaton action to the Einstein frame if there is an R2

term present is more involved that the case of a non-minimal coupling, requiring
a transformation of the action to include an auxiliary field χ, which must then be
eliminated via its equations of motion to define the conformal transformation and
recast the R2 term into non-canonical inflaton kinetic terms. We find that the
quartic kinetic term ∼ (∂µϕ∂µϕ)2 makes a negligible contribution to the dynamics
of the inflaton during slow-roll, and so we neglect this term and proceed in the same
way as for non-minimally coupled inflation. Canonically rescaling the inflaton field,
we find that the inflaton dynamics are well-described by a threshold approximation
utilising the dominant terms of the potential in the given regime of the field. Above
the threshold, the field is on the plateau of the potential and below we find that the
canonical scalar field is approximately the untransformed inflaton field, such that
the dynamics of the potential are equivalent to the quadratic dependence in the
Jordan frame, and we regard the frames to be dynamically equivalent below this
point.

Imposing the constraint that the canonically normalised inflaton remains sub-
Planckian during inflation places a constraint on the coefficient of the R2 term to
be α≳ 1012. We therefore find that the issue of the too-large inflaton in ϕ2 inflation
can be remedied in the Palatini formalism by adding an R2 term to the gravitational
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part of the action with a coefficient of α≳ 1012.
In addition to the constraint of a sub-Planckian inflaton, we also examined the

possible effects of embedding this inflation model into a UV completion of gravity.
An issue of inflation as an effective theory in quantum gravity is that higher-order
corrections scaled by the scale of quantum gravity - the Planck mass in the Ein-
stein frame - are introduced into the inflaton potential. As aforementioned, the
inflationary observables depend explicitly on the inflaton potential, therefore any
additional corrections to the inflaton potential will modify the predicted values of
the inflationary observables and could possibly move a theory out of observational
favour. If we want to embed inflation in a more complete cosmological model, and
embed Big Bang cosmology into a more complete theory of physics, it is impor-
tant to test the compatibility of inflation with a UV completed gravity framework.
We therefore tested the robustness of the model with respect to observations when
Planck-suppressed effective theory corrections are added to the inflaton potential.
We find that the model remains consistent with observations provided that the shift
on the η-parameter due to the introduction of the Planck-suppressed corrections
from the UV completion of gravity does not exceed |∆η| ≤ 0.001.

Placing this constraint on the potential shift due to these Planck-suppressed cor-
rections places the constraint on the coefficient of the R2 term that α≳ 1032 in order
for the model to remain in agreement with observations when Planck-suppressed
potential corrections from a UV completion of gravity are included. A similar con-
straint on the α parameter can be derived for the case of Planck-suppressed potential
corrections with a broken shift symmetry, and in this case we find that the require-
ment for the model to remain consistent with observations is that α≳ 1020. We note
from these results that the ϕ2 model of Palatini inflation with an R2 term is com-
patible with observations when embedded as an effective theory in quantum gravity
framework provided that the contribution of the R2 term to the inflaton action in
the Jordan frame is very large. In the Einstein frame this can be interpreted as the
conformal factor being very large, and the potential therefore being very flat and
the inflaton kinetic term being heavily suppressed.

Using the threshold approximation of the potential, we find that the number of
e-folds of inflation at the pivot scale in this model can be expressed as a function of
α, and that for larger α, the Planck pivot scale exits the horizon after fewer e-folds of
inflation. For each of the derived lower bounds on α we calculate the scalar spectral
index, the tensor-to-scalar ratio, the Hubble parameter, the number of e-folds at the
pivot scale, the reheating temperature, the value of the inflaton field at the end of
inflation, the unitarity cutoff in the Einstein frame, and the unitarity cutoff in the
present vacuum. For all of the regimes of α we find that unitarity is conserved in the
model, and that the scalar spectral index in each case is within the 1−σ bound on
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the scalar spectral index from the Planck observations (2018), with the exception of
the case of Planck-suppressed potential corrections (α ≳ 1032), whereby the scalar
spectral index is slightly outside of the 2−σ bounds on ns from the Planck results.
It is possible that this result could be modified by the addition of other corrections,
or by the combinatorial suppression factor in the σ6 term from the UV completion
of gravity.

In all cases the tensor-to-scalar ratio is heavily suppressed, with r∼ 10−25 −10−6,
as is typical for Palatini inflation. This shows that the presence of the R2 term in
the Palatini formalism can bring the tensor-to-scalar ratio of the ϕ2 inflation model
into observational favour in conjunction with a sub-Planckian inflaton, and possibly
with the case of Planck-suppressed corrections for a sufficiently large α. However,
the predicted values of r are below the observable limit of r ∼ 10−3 in the next
generation of CMB experiments.

We consider two possible reheating mechanisms in this model: reheating via the
decay to right-handed neutrinos and reheating via Higgs portal annihilation. In both
cases we use the Coleman-Weinberg corrections to the inflaton potential in order to
estimate the shift of the potential due to the couplings between the inflaton and
right-handed neutrinos, and the inflaton and the Higgs. For each case we choose the
mass scale of the decay channel as the renormalisation scale, and use the constraint
on the η-shift due to the potential corrections, |∆η| ≤ 0.001, in order to constrain the
size of the couplings. We find that for Higgs portal annihilation, λϕH < 8.2 × 10−7,
and for decay to right-handed neutrinos λϕN < 1.1×10−3.

In the case of reheating via Higgs portal annihilation, there are two different
possibilities for how reheating can proceed; through rapid preheating or through
fragmentation of the inflaton condensate. We find that Higgs portal annihilation is
not a viable reheating mechanism for ϕ2 Palatini inflation with an R2 term unless
the annihilation rate exceeds the Hubble rate quickly enough that the model reheats
immediately at the end of inflation, or the condensate fragments to oscillons. We find
that the condition for the inflaton condensate to fragment is that α > 2.9×1013 for
the ϕ2 Palatini inflation model with anR2 term, and this is therefore compatible with
the inclusion of Planck-suppressed potential corrections but may not be satisfied
for the minimum requirement of a sub-Planckian inflaton, α ≳ 1012, if α is close
to its lower bound. Considering the fact that the α parameter is generally very
large, we conclude that the condensate is likely to fragment, and that reheating
via the Higgs portal then proceeds through the decay of inflatonic oscillons, in
which case reheating is not instantaneous. Given that the condensate fragments, we
find that the model can reheat successfully through the annihilation of oscillons for
α≳ 1020,1032, although given that the scalar spectral index ns is in tension with the
2 −σ lower bound for the case of general Planck-suppressed corrections, α ≳ 1032,
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even for the case of instantaneous reheating, this suggests that reheating via Higgs
portal annihilation is observationally disfavoured for this case.

For the case of reheating via the decay to right-handed neutrinos we find this
can only reheat the model instantaneously for the case of general Planck-suppressed
potential corrections, α ≳ 1032. This is because the minimum value of λϕN needed
in order for the decay to proceed is only compatible with the upper bound on α for
the case of general Planck-suppressed potential corrections. If the reheating is not
instantaneous, then this reheating would proceed for a lower reheating temperature
and consequently a lower ns, which rules out this reheating mechanism for the case
of general Planck-suppressed potential corrections, since the scalar spectral index is
already in tension with the 2−σ Planck lower bound, but can allow the cases with
smaller values of α.

In Chapter 5 we consider an application of the Affleck-Dine mechanism to a scalar
field in the early Universe with a |Φ|2 + |Φ|4-type potential with U(1) symmetry-
breaking terms for a complex field. This form of the potential is naturally compatible
with non-minimally coupled inflation models. In this work we consider quadratic
U(1)-violating terms and set the cubic and quartic terms to zero in order to exclu-
sively study the effects of the quadratic term. We use a threshold approximation for
the potential and treat the model such that the Affleck-Dine dynamics of the field do
not become significant until the potential is deep into the quadratic regime. We use
this to derive an analytical approximation of the U(1) asymmetry generated in the
model. We then use this to derive expressions for the asymmetry generated within
the coherently oscillating condensate in the Φ2 part of the potential - the condensate
asymmetry - and the asymmetry transferred to the Standard Model by the decay of
the condensate - the transferred asymmetry. We check the transferred asymmetry
for both the case of no decay of the condensate and the condensate decaying. These
two scenarios can be treated as the limit of the condensate decaying on timescales
small and large compared to the scalar lifetime.

Dynamically the asymmetry is generated within the condensate as the inflaton
scalars oscillate between their Φ and Φ† states and the condensate decays. This
means that there is not an exact cancellation of the number density of Φ and Φ†

scalars within the condensate, and allows for the generation of an asymmetry in B

within the inflaton condensate. As the condensate decays this also means that there
isn’t an exact cancellation of the decay products with the antiparticles when the
scalars decay via a B-conserving interaction, resulting in an overall asymmetry in
the B number of the decay products of the inflaton field, which is then transferred
to the Standard Model.

We find that our analytical approximation of the transferred asymmetry can gen-
erate the observed baryon-to-entropy ratio today, subject to certain constraints on
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A
1
2/mΦ, where A is the U(1) violating mass squared term. In the case where the life-

time of the scalars τΦ is much larger than the oscillation time of the asymmetry Tasy,
the generated asymmetry can easily be larger than the observed baryon-to-entropy
ratio, and the suppression of the asymmetry over many oscillations is important in
this case, whereas in the case where the condensate decays before the asymmetry
can undergo many oscillations, the suppression of A 1

2/mΦ must be much stronger
to generate the observed baryon-to-entropy ratio.

We derive a constraint on A 1
2/mΦ for which the threshold approximation of the

asymmetry is valid from the fact that we require the quartic part of the potential to
not make a significant contribution to the dynamics. This suppresses the dynamics
of the angular component of the inflaton, and allows us to treat the Affleck-Dine
dynamics of the field as being purely in the quadratic regime of the potential. This
constraint on the validity of the threshold approximation is easily compatible with
the constraints on A

1
2/mΦ derived in order to produce the observed baryon-to-

entropy ratio.
We analyse the behaviour of the condensate and transferred asymmetries from

a numerical calculation, and we find that the analytical threshold approximation
of the condensate and transferred asymmetries are in exact agreement with the
numerically calculated asymmetries for A 1

2/mΦ = 0.001.
We find that the baryon-to-entropy ratio calculated numerically is the same order

of magnitude as the baryon-to-entropy ratio calculated using the analytical expres-
sions, for both τΦ = Tasy and τΦ > Tasy, and we demonstrate that the analytical
approximation of the decay of the condensate asymmetry is a valid approximation
of the behaviour of the asymmetry.

For a general inflaton decay process to a pair of fermions, we show that the
asymmetry is unlikely to be washed out by inflaton exchange, and express this
as a constraint on the reheating temperature. This is an estimate since a proper
calculation would require a specific decay model of the inflaton, however we find
that the constraint we have should be easily satisfied.

We verify that this model of Affleck-Dine baryogenesis with quadraticB-violating
potential terms is compatible with the dynamics of non-minimally coupled inflation
provided that the Affleck-Dine dynamics become dominant below the threshold,
well after the non-minimally coupled dynamics have ceased to dominate the inflaton
potential. We find that this requirement in both the metric and Palatini formalisms
leads to the same constraint on the inflaton mass of mΦ < 2.2 × 1013 GeV, and we
therefore find that this mechanism with quadratic B-violating terms is compatible
with a non-minimally coupled inflation model where the inflaton also acts as the
Affleck-Dine field.

We consider the baryon isocurvature perturbations generated in this model and
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use the limits on the observable baryon isocurvature fraction from the Planck satel-
lite in order to constrain the size of the non-minimal coupling ξ in both the metric
and the Palatini formalisms. We find that baryon isocurvature perturbations are
generally much smaller than the observational limit in Palatini inflation, whereas in
metric inflation they require that λΦ ≲ 10−4. This also means that baryon isocurva-
ture perturbations are close to the present CMB bound on the isocurvature fraction
in metric non-minimally coupled inflation if λΦ ∼ 10−4.

We also consider the validity of the classical treatment of the inflaton for the
calculation of the baryon asymmetry. We find that although the inflaton field is
inherently quantum in nature, the baryon asymmetry is equivalent to its classical
value due to spatial averaging, and therefore treating the inflaton field as classical
gives the correct expression for the asymmetry.

In Chapter 6 we present a model of non-minimally coupled Palatini inflation
with a |Φ|2 + |Φ|4-type potential with Q-balls. We begin by deriving the slow-roll
parameters and the inflationary observables in this model in the Einstein frame and
find that they are the same as the typical expressions for ϕ4 Palatini inflation. We
then derive an upper bound on the inflaton mass from the requirement that the
gradient of the inflaton potential must be positive in this case in order for inflation
to take place. This has not been previously considered.

We then derive the Q-ball equation in the Einstein frame for a scalar non-
minimally coupled to gravity, and we find that the Q-ball equation in this case has
an additional gradient squared term and an additional conformal factor dependence
on the right-hand side as compared to the equation for conventional Q-balls. This
shows that these non-minimally coupled Palatini Q-balls are dynamically different
to the conventional case of Q-balls and correspond to a new class of Q-ball.

We find that we can still apply Coleman’s mechanical analogy for the existence
of Q-balls to these non-minimally coupled Palatini Q-balls, due to the fact that
the inverted Q-ball potential is still compatible with the analogy despite the fact
that the underlying dynamics are different. We find that the resulting existence
condition for Q-balls in the non-minimally coupled Palatini case is the same as for
conventional Q-balls, ω <m.

From the form of the Q-ball potential, we derive a mass range for the inflaton
field within which the potential can produce Q-balls compatible with the upper
bound on the inflaton mass needed for inflation to occur. We refer to this as the
Q-ball window, and we then use this in order to narrow the parameter space within
which we search for Q-ball solutions numerically.

We obtain ten Q-ball solutions for an inflaton mass of m= 0.9ωc in the range of
ω = (0.707155 − 0.89)ωc, corresponding to ϕ0 in the range 1013 − 1017 GeV numeri-
cally. From here we numerically derive the key properties of these Q-balls, energy,
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charge and radius. We also derive an analytical solution of the Q-ball equation,
and compare the properties of these Q-balls as calculated using the analytical ap-
proximation to the results calculated numerically. We find that these Q-balls are
absolutely stable, with the exception of the ω = 0.89ωc Q-ball, and we also find that
E/Q≈ ω, in particular for the larger ϕ0 Q-balls.

The analytical approximation of the behaviour of the Q-ball solutions is a good
fit for the Q-ball solutions for larger ϕ0, corresponding to the limit ϕ0 >>Mpl/

√
ξ.

Since the analytical approximation is calculated in the plateau limit, the poor fit for
the smaller ϕ0 solutions makes sense as these Q-balls form close to the point where
the plateau approximation starts to break down. We also find that the approxima-
tion is a good estimate of the Q-ball properties for r < rQ/2, since this is the limit
the analytical approximations of energy and charge are taken to.

The analytical approximation predicts that E,Q∝ ϕ3
0 and r∝ ϕ0, which are both

confirmed numerically. Using the analytical approximation we confirm that the ω
parameter corresponds to the chemical potential of the system, as it does in the case
of conventional Q-balls, and we show that E/Q = ω up to a small correction from
the surface energy density of the Q-ball. Subsequently, we find that the existence
condition for Q-balls, ω <m, is also, to a good approximation, an expression of the
absolute stability requirement for Q-balls.

We discuss the possibility that these Q-balls could form as a result of the frag-
mentation of the inflaton condensate from tachyonic preheating. We apply the
analysis used in [169] to derive a range of perturbation wavelengths which would
experience tachyonic growth in this model during tachyonic preheating, and we find
that the radii of all the Q-ball solutions calculated in this model are contained within
this range, 7.16×10−13 GeV−1 < λ < 3.4×10−8 GeV−1. This means that it is pos-
sible that these non-minimally coupled Palatini Q-balls could be formed from the
fragmentation of the inflaton condensate as a result of tachyonic preheating.

It is possible that formation of Q-balls through this channel could result in an
early epoch of matter domination in the form of Q-balls, in which case reheating
in this model would occur via the evaporation of Q-balls. This perturbative decay
of the Q-balls could potentially result in a slower reheating than the usual decay
of a coherent inflaton condensate, due to the effects of Pauli blocking and also the
suppression of the evaporation rate of the scalars from the size of the surface area
of the Q-balls. This slower reheating could result in a lower reheating temperature,
and therefore a shorter duration of inflation owing to the fact that a greater number
of e-folds of expansion would be needed to complete reheating.

We also estimate the effects of curvature on these Q-balls. In order to do this,
we consider the flat space Q-ball solutions used in this work in a Schwarzschild
metric. We find that the radii of all of the Q-balls generated in this work are greater
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than their Schwarzschild radii, and that therefore all the Q-balls generated here
are consistent flat space Q-balls and will not collapse to black holes. We find that
the smallest ϕ0 which would be needed to generate a Q-ball which would collapse
to a black hole is ϕ0,c = 1.41 × 1018 GeV, which is typically of the size we would
expect the inflaton field to be at the end of non-minimally coupled Palatini inflation.
This Q-ball has a predicted radius of r = 3.91 × 10−9 GeV−1, which is within the
range of perturbation wavelengths in this model which could experience tachyonic
growth. We therefore have a model of non-minimally coupled Palatini inflation
which could feasibly produce Q-balls which could seed primordial black holes, and
that these Q-balls could form from the fragmentation of the inflaton condensate
following tachyonic preheating. Calculating the mass-energy contained within the
Schwarzschild radius of this Q-ball gives a black hole of mass M ∼ 500 kg.

We find that for ϕ0 < ϕ0,c/2, the effects of curvature in this approximation (on
the flat space solutions) are small, with a maximum of 25% local deviation from
flat space within the metric at the surface of the Q-balls. Therefore the estimated
value of ϕ0,c should be close to the true value. A derivation of the Q-ball equation
in curved space would be required in order to verify the effects of curvature on
non-minimally coupled Palatini Q-balls and their dynamics.

We also speculate on the possibility of reheating the model via the decay of
primordial black holes. Since the black holes which could form in this framework
start at a mass of M ∼ 500 kg, the temperature of these black holes is high enough
that the decay of these black holes could produce all of the particle content of the
Standard Model, and could provide a mechanism for reheating the Universe. We
consider this possibility both in the event of an early period of matter domination
of primordial black holes formed from collapsed Q-balls, and in the event that only
a few of the Q-balls in the early period of Q-ball matter domination collapse to form
black holes, with the primordial black holes making up a small fraction of the energy
density.

In the case of reheating from primordial black holes dominating the energy den-
sity after inflation, we find that the value of the scalar spectral index predicted in
this scenario is excluded by the 2−σ lower bound on ns from the Planck results, and
so is not a viable reheating mechanism for non-minimally coupled Palatini inflation
with Q-balls.

For the case where the dominant component of the energy density is still Q-ball
matter after inflation, and only a small fraction of the Q-balls collapse to black holes,
we expect that the reheating temperature can be much higher, with only a short
period of black hole domination at late times, and that the predicted scalar spectral
index therefore can be within the 1 −σ bounds of the Planck results, ns = 0.9612.
This means that an early period of radiation domination due to Q-ball decay with
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a small fraction of Q-ball derived black holes may be a viable reheating model for
non-minimally coupled Palatini inflation with Q-ball derived black holes. This is
one example of the potential broader cosmological implications which could result
from the presence of Q-balls in a non-minimally coupled Palatini inflation model.

We speculate on a possible channel of baryogenesis from this model, which could
result from the generation of an asymmetry through the interactions of the parti-
cles created from the decay of these Q-ball derived black holes. Black hole decay
in the case of an early era of primordial black hole domination gives a reheating
temperature of around TR ≈ 100 GeV, which is too low for either electroweak baryo-
genesis or the transfer of an asymmetry to baryon number by sphalerons, both of
which require T > 159.5 GeV. Using the proportionality of the Q-ball mass-energy
to ϕ0, M ∝

√
λϕ3

0, we find that for a smaller inflaton self-coupling, λ = 0.01, the
ϕ0,c = 1.41×1018 GeV Q-ball produces a black hole of mass M = 158 kg, which has
a reheating temperature of TR = 574 GeV and is sufficiently high for electroweak
baryogenesis or the generation of sphalerons. This shows that the reheating temper-
ature of this non-minimally coupled Palatini inflation with Q-balls can be adjusted
by adjusting the inflaton self-coupling. Therefore, reheating through the decay of
Q-ball derived black holes in the case where these black holes dominate the energy
density of the Universe after inflation can be consistent with baryogenesis for a
smaller inflaton self-coupling.

Finally, we discuss the possibility of observable gravitational wave signatures
from the model. Specifically, we find that the generation of gravitational waves
through the decay of primordial black holes via the Poltergeist mechanism [189] is a
possibility in this model. These gravitational waves would be observable in the next
generation of gravitational wave detection experiments, DECIGO and LISA, for
black holes in the mass range 2−400 kg. Although the upper bound here is slightly
lower than the black holes formed from the collapse of Q-balls in this model when
λ = 0.1, we have demonstrated that the mass of these black holes can be within
the observable range for a smaller inflaton self-coupling, so there is a possibility
of observable gravitational waves from black hole decay in this model for different
parameter values. There is also the fact that these estimates have been made using
the flat space Q-ball solutions, and it is therefore possible that the curved space
Q-ball solution could produce black holes of smaller masses, and the analysis would
need to be performed in curved space to assess this.

There is also the possibility that future-observable gravitational waves could be
generated from the decay of Q-balls themselves, mergers and interactions of Q-balls
and possibly from the formation of the Q-balls, although a full numerical simulation
of the formation and evolution of these Q-balls would need to be performed to
ascertain the precise dynamics of these Q-balls and the subsequent possibilities for
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gravitational wave production.
In this thesis, we have presented three pieces of original research which propose

solutions to problems in inflation or cosmology, or provide a basis for important
phenomena in cosmology, within the framework of non-minimally coupled or R2

inflation, primarily in the Palatini formulation of gravity. In every case we find
that the conjunction of inflation with these other phenomena is at least feasible
within a set of constraints on the model parameters. In addition to observational
compatibility, in each case we have discussed the observability of the model, the
compatibility of the model with the subsequent transition from the end of inflation
to the standard cosmological evolution, and some aspect of the implications of the
model or its place within cosmology in the broader sense. It is the hope of the author
that the research presented has shown that inflation beyond a minimal coupling of
the inflaton to gravity in the Palatini formalism is a strong candidate not just for
inflation itself, and the observationally favourable status of the inflation model, but
also as a basis for embedding inflation into the rest of cosmology, and indeed physics
as a whole, in order to search for a more complete description of the origin of the
Universe as we observe and understand it today.
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