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Abstract 

This paper investigates responses of household debt to COVID-19 related data like 

confirmed cases and confirmed deaths within a neural networks panel VAR for OECD 

countries. Our model also includes a plethora of non-pharmaceutical and pharmaceutical 

interventions. We opt for a global neural networks panel VAR (GVAR) methodology that 

nests all OECD countries in the sample. Because linear factor models are unable to capture 

the variability in our data set, the use an artificial neural network (ANN) method permits to 

capture this variability. The number of factors, as well as the number of intermediate layers, 

are determined using the marginal likelihood criterion and we estimate the GVAR with 

MCMC techniques. We also report δ-values that capture the dominance of each individual 

country in the network. In terms of dominant countries, UK, USA, and Japan dominate 

interconnections within the network, but also countries like Belgium, Netherlands, and 

Brazil. Results reveal that household debt positively responds to COVID-19 infections and 

deaths. Lockdown measures such as stay-at-home advice, and closing schools, all have a 

positive impact on household debt, though they are of transitory nature. However, 

vaccinations and testing appear to negatively affect household debt.  
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1. Introduction 

The paper sheds light on household financial behaviour in relation to household debt 

during the pandemic to inform policy making interventions and economic recovery. We 

investigate the responses of household debt in OECD countries to shocks in COVID-

19 related data like confirmed cases and confirmed deaths within a neural networks 

panel VAR. We provide evidence that disentangles the impact of the pandemic and 

government interventions on household debt in the OECD.  

The importance of household debt for macroeconomic and financial stability is 

unequivocal. Zabai (2020) and OECD (2020) report recent data that show that 

household consumption is about 60 percent of GDP in OECD whereas household debt, 

mostly in the form of mortgages, captures up to 40 percent of banks’ asset. Franklin et 

al. (2021) presented descriptive analysis to argue that many UK households have 

managed to weather the crisis of COVID-19, though the Authors also argue that 

households with unsecured loans could face financial difficulties. Georgarakos, and 

Kenny (2022), using a new consumer expectations survey data for EU, show that policy 

makers by clearly communicating their COVID-19 interventions (see Christelis, et al. 

2020), i.e., fiscal measures, would enhance consumers perception about the adequacy 

of these interventions and thereby they would incentivise household spending, 

including debt payment.1 Kubota et al. (2021) employ a natural experiment in Japan to 

show that household would increase their spending as response to COVID-19 pandemic 

governments interventions that take the form of cash transfers (see also Chetty et al. 

2020 for US; and Carvalho, et al. 2020 for UK). 

This paper builds on the above empirical studies to provide evidence of responses of 

household debt, in particular, to shocks due to the pandemic within a unique panel 

global Vector Autoregressive model that nests neural networks and postulates forecasts 

over 24 months period under various COVID-19 scenarios while controlling for non-

pharmaceutical and pharmaceutical interventions as shocks in the GVAR. For example, 

 
1 Identifying consumer perceptions is beyond the scope of the current paper due to data availability issues 

but it is worth noting recent research of Roth and Wohlfart (2020) and Roth et al. (2021) that show most 

households in US underestimate the federal debt to GDP and once they are informed their perceptions 

change against raising government spending. This is of some significance as the COVID-19 crisis poses 

further challenges to governments interventions and fiscal imbalances. 
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government interventions in the form of lockdowns play a prominent role in our 

modelling. Because linear factor models may be unable to capture the variability in the 

data, we use an artificial neural network (ANN) method. The number of factors as well 

as the number of intermediate layers are determined using the marginal likelihood 

criterion and we estimate the GVAR with MCMC techniques. We also employ Mixed 

Data Sampling (MIDAS) that allows the use of data of different frequencies and 

identifies household debt responses under different COVID-19 scenarios. Note that 

household and macroeconomic data in OECD are country specific on annual frequency 

while COVID-19 related data are on a daily frequency. Also, we provide a detailed map 

of interconnectedness of the underlying causal nodes of various contributing factors to 

household finances as well as interactions between household debt repayment, relating 

comparisons between UK and advanced countries. We, therefore, follow Pesaran and 

Yang (2016) to identify ‘strong’ and ‘weak’ dominant countries in the network based 

in measures of eigenvector degrees and centrality of Acemoglu et al. (2012). To this 

end, we estimate pervasiveness scores to identify the dominant countries in OECD. 

Last, we rank the principal contributing factors to household debt repayment so to 

inform policy makers to prioritise actions on specific factors.  

 

Results reveal that household debt positively responds to COVID-19 infections and 

death. Lock down measures such as stay at home advise, closing schools, all have a 

positive impact on household debt repayments in GVAR, though of transitory nature. 

However, pharmaceutical interventions like vaccinations and testing appear to 

negatively affect household debt. In terms of dominant countries, UK, USA, and Japan 

dominate interconnections within the network, but also countries like Belgium, 

Netherlands, and Brazil. 

 

In what follows Section 2 presents the global VAR model. Section 3 reports the data 

set and provides descriptive statistics. Section 4 discusses results. The last section 

presents some concluding remarks.  

 

2. The global VAR model 

Suppose 𝑌𝑡 = [𝑦1,𝑡, 𝑦2,𝑡, . . . , 𝑦𝑛,𝑡]′  is an 𝑛 × 1  vector time series which can be 
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described by a vector autoregression (VAR):  

 

 𝑌𝑡 = 𝐵𝑌𝑡−1 + 𝜀𝑡 , 𝑡 = 1, . . . , 𝑇, (1) 

 

where 𝜀𝑡 ∼ 𝒩𝑛(𝟎, Ω) . Following previous contributions (Koop, Korobilis and 

Pettenuzzo, 2017; Primiceri, 2005; Eisenstat, et al., 2016; and Carriero, et al., 2015) we 

use a triangular decomposition of Ω as follows:  

 

 𝐴Ω𝐴′ = ΣΣ, (2) 

 

where Σ = diag[𝜎1, . . . , 𝜎𝑛], and 𝐴 is a lower triangular matrix with ones on the main 

diagonal. Define 𝐴 = 𝐼𝑛 + �̃�, where �̃� is a lower triangular matrix with zeros on the 

main diagonal. Therefore, we can write the VAR as follows:  

 

 𝑌𝑡 = 𝐵𝑌𝑡−1 + 𝐴−1Σ𝜉𝑡, (3) 

 

where 𝜉𝑡 ∼ 𝒩𝑛(0, 𝐼𝑛).  

 

In turn, we can write:  

 

 𝑌𝑡 = Θ𝑍𝑡 + Σ𝜉𝑡, (4) 

 

where Θ = [Γ, �̃�] and Γ = 𝐴𝐵. The advantage of the representation is that this is a 

recursive system. The first equation involves only 𝑌𝑡−1, the second equation includes 

(𝑌′
𝑡−1, −𝑦1,𝑡) , the third equation includes (𝑌′

𝑡−1, −𝑦1,𝑡, −𝑦2,𝑡)  etc. Moreover, �̃� 

controls for the error covariances.  

 

2.1. The artificial neural network (ANN)  

In GVARs it is typical that various VARs are connected through some observed 

variables like exchange rate converted to lie between zero and one. Here, we connect 

the different VARs through several common dynamic factors (an 𝑀 × 1 vector, 𝑓𝑡). 

The VAR model for each country, is as follows.  
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 𝑌𝑡
(𝑐)

= 𝐵(𝑐)𝑌𝑡−1
(𝑐)

+ Δ(𝑐)𝑍𝑡
(𝑐)

+ 𝜀𝑡
(𝑐)

, 𝑡 = 1, . . . , 𝑇, (5) 

 

where 𝜀𝑡
(𝑐)

∼ 𝒩𝑛(𝟎, Ω(𝑐)) , for country 𝑐 ∈ {1, . . . , 𝐶}, and 𝑍𝑡  is a 𝐾 × 1  vector of 

covariates whose coefficients are given in the 𝑛 × 𝐾 matrix Δ.  

 

We suppose that the dynamic factors are given as:  

 

 𝑓𝑡 = Λ𝑓𝑡−1 + 𝑢𝑡 , (6) 

 

where Λ is an 𝑀 × 𝑀 matrix of unknown coefficients, and 𝑢𝑡 ∼ 𝒩𝑀(0, 𝑉), where 𝑉 

is an unknown covariance matrix, assumed to be diagonal with different elements along 

the main diagonal.  

 

As linear factor models may be unable to capture the variability in the data, we use an 

artificial neural network (ANN): 

 

 𝑓𝑡 = Λ𝑓𝑡−1 + ∑ 𝑎𝑔

𝐺

𝑔=1

𝜑(𝑏𝑔𝑓𝑡−1) + 𝜀𝑡 , (7) 

 

where 𝑎𝑔  and 𝑏𝑔  are unknown parameters, 𝜑(𝑧) =
1

1+𝑒−𝑧  is the logistic activation 

function, and 𝐺 is the unknown number of components in the ANN. The number of 

factors 𝑓 as well as the number of intermediate layers (𝐺) are determined using the 

marginal likelihood criterion (Diccio et al., 1997).  

 

In the next section where we discuss our dataset and the factors 𝑓 that are in line with 

the household finance literature (Georgarakos, and Kenny 2022; Christelis, et al. 2020; 

Kubota et al. 2021). 

 

In terms of estimation of the ANN, we use the MCMC technique in (see Appendix A.1). 

In detail, we use 150,000 iterations, the first 50,000 of which are discarded to mitigate 

possible start up effects. In addition, we use a flat prior for the coefficients in (7). We 

shall discuss the robustness of priors in the empirical Section.   
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In turn, we modify (5) as follows: 

 

 𝑌𝑡
(𝑐)

= 𝐵(𝑐)𝑌𝑡−1
(𝑐)

+ Δ(𝑐)𝑍𝑡
(𝑐)

+ Φ(𝑐)𝑓𝑡 + 𝜀𝑡
(𝑐)

, 𝑡 = 1, . . . , 𝑇, (8) 

 

where 𝜀𝑡
(𝑐)

∼ 𝒩𝑛(𝟎, Ω(𝑐)), and Φ(𝑐) is an 𝑛 × 𝑀 matrix of unknown coefficients. So, 

we couple the dynamic factor model in (7) with the VAR models in (5). In our case, the 

vector 𝑌𝑡 contains household debt, household savings, household spending, GDP, real 

exchange rate, government deficit, share prices, and the long-term interest rate (𝑛=11). 

The dynamic factors in (6) are computed beforehand to simplify computations so, for 

all equations of the GVAR as well as different countries.  

 

For the diagonal elements of 𝐴(𝑐) we assume that they are normally distributed with 

mean 1 and standard deviation 0.2. The non-diagonal elements have a normal prior with 

mean zero and standard deviation 0.2. For the elements of Δ(𝑐) and Φ(𝑐) we assume 

that they have a standard normal distribution. Suppose that the 𝑗th typical equation of 

(8) has the form  

 

 
𝑌𝑡,𝑗

(𝑐)
= 𝐵𝑗

(𝑐)′
𝑌𝑡−1

(𝑐)
+ Δ𝑗

(𝑐)′
𝑍𝑡

(𝑐)
+ Φ𝑗

(𝑐)′
𝑓𝑡 + 𝜀𝑡,𝑗

(𝑐)
, 𝑡

= 1, . . . , 𝑇, 𝑗 = 1, . . . ,8, 
(9) 

 

where 𝐵𝑗
(𝑐)′

, Δ𝑗
(𝑐)

, Φ𝑗
(𝑐)

 denotes the jth row of matrices 𝐵(𝑐), Δ(𝑐), Φ(𝑐)  respectively. 

We keep in mind that (9) is estimated in the form of (4) so, in fact, the indices are 𝑗 ∈

{1, . . . ,8} and 𝑐 ∈ {1, . . . , 𝐶}. As the GVAR can be estimated now for each country and 

VAR variable on an equation-by-equation basis, implementation of Markov Chain 

Monte Carlo (MCMC, Geweke, 1999).  

2.2. The pervasiveness scores within the ANN  

Following from Pesaran and Yang (2016) that identify ‘strong’ and ‘weak’ dominant 

countries in the network based in measures of eigenvector degrees and centrality of 

Acemoglu et al. (2012), we also estimate δ-values per country in equation (9) (see 

Pesaran and Yang 2016 and Tsionas et al. 2016). The δ-values captures the dominance 
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of each individual country in the network of Equation (9) whereby if a country has δ-

value close to one then that country would be the most dominant in the network. So low 

δ-values for imply low dominance in the network. Pesaran and Yang (2016) call these 

δ-values pervasiveness scores. 

 

The covariates 𝑍𝑘,𝑡
(𝑐)

 in (9) are available monthly, whereas the variables in the VARs 

are annually observed. Khalaf et al. (2020) propose to follow Ghysels et al. (2004) and 

use the exponential Almon (1965) lag polynomial of length 𝐻 (Almon, 1965) defined 

for the 𝑘th variable, as:  

 

 𝑍𝑘,𝑡(𝜗) = ∑ 𝑍𝑘,𝑡,𝑗

𝑚

𝑗=1

𝑤𝑘,𝑗(𝜗𝑘), (10) 

 

so, the high-frequency data for a variable 𝑍𝑘,𝑡,𝑗  (variable 𝑘 , year 𝑡  and date 𝑗 =

1, . . . , 𝑚  are aggregated into the annual variable 𝑧𝑖,𝑡(𝜗) , where 𝜗  is a vector of 

parameters, and the weights 𝑤𝑗(𝜗)(omitting the variable index, 𝑘, for simplicity) are  

 

 𝑤𝑗(𝜗) =
∏ 𝑒𝑗ℎ𝜗ℎ𝐻

ℎ=1

∑ (∏ 𝑒𝑗ℎ𝜗ℎ𝐻
ℎ=1 )𝑚

𝑗=1

. (11) 

 

Khalaf et al. (2020) set 𝐻 = 2 on the basis that it can model a variety of patterns, see 

also Ghysels (2016). When 𝜗ℎ = 0 for all ℎ, then all weights are equal to 
1

𝑚
. In fact, 

we can choose the appropriate value of 𝐻 using the marginal likelihood of the model.  

The elements of 𝑍𝑡
(𝑐)

 are vaccine prioritisation, testing policy, confirmed cases, 

confirmed deaths, vaccination policy, school closing, workplace closing, cancel public 

events, restrictions on gatherings, close public transport, stay at home requirements, 

international restrictions, contact tracing, and stringency index. Therefore, instead of 

(9) we have:  

 𝑍𝑡,𝑘
(𝑐)

(𝜗) = ∑ 𝑍𝑘,𝑡,𝑗

𝑚

𝑗=1

𝑤𝑘,𝑗(𝜃), 𝑘 = 1, . . . ,14. (12) 

 

To simplify the computations, the weighting is performed before estimating the GVAR, 
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using the MCMC technique in Appendix A.1 and A.2. We use 150,000 iterations, the 

first of which are discarded to mitigate possible start up effects. In turn, we consider 

Generalized Impulse Response Functions (GIRFs; Koop et al., 1996; Pesaran and Shin, 

1998).  

 

3. The data set.  

We draw on three data sources. The non-pharmaceutical interventions data is from the 

Oxford COVID-19 Government Response Tracker (OxCGRT) (Hale et al., 2020). The 

daily COVID-19 case data are from the Johns Hopkins University’s Center for Civic 

Impact. OxCGRT collects publicly available information on 19 indicators of 

government responses related to containment and closure policies, economic policies, 

and health system policies, which are combined into four indices ranging from 0 to 100. 

The indices include the number and strictness of government policies and do not 

indicate appropriateness or effectiveness response.  

 

Data on government interventions concern three main areas of interventions: a) 

containment and closure, b) health system, and c) economic stimulus. All the indicators 

are available on a daily and monthly basis. The containment and closure interventions 

include eight sub-indicators: i) school closing, ii) workplace closing, iii) cancellation 

of public events, iv) restrictions on gatherings size, v) public transport closed, vi) stay 

at home requirements, vii) restrictions on internal movement, and viii) restrictions on 

international travel. The second area of interventions include health system: i) public 

information campaigns, ii) testing policy, and iii) contact tracing. Since these policies 

help to cope with the pandemic quicker, they may be also discounted in stock prices. 

The third area includes economic stimulus packages such as: income support, and debt 

or contract relief for households. These stimuluses affect the economy through various 

channels. For instance, stimulus supports consumption and spending in times of 

distress; hence, they may significantly affect local equity markets. Finally, besides the 

individual measures, we also consider the overall Stringency Index by Hale et al. 

(2020). The index aggregates the data pertaining is re-scaled to create a score between 

0 and 100. This index provides a synthetic measure of the intensity of different non-

medical government interventions during the pandemic. Table 1 reports the main 

descriptive statistics of our sample. 
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In some detail in term of the data, we measure exposure to the pandemic by computing 

the growth rate of the cumulative number of confirmed cases (and deaths) in each 

country on daily frequency starting from 1st of January 2020 to end of 2021 (see Table 

1 for COVID-19 related data). In some detail, COVID-19 and lock down variables 

include: vaccines; tests; confirmed deaths; hospitalisations; ICU data; school closing; 

workplace closing; cancel events; gatherings restrictions; transport closing; stay home 

restrictions; internal movement restrictions; international movement restrictions; 

information campaigns; testing policy; contact tracing; stringency index. All the 

changes in government policies are tracked daily and monthly. Therefore, when we 

perform the regressions based on weekly returns, we calculate the weekly averages for 

the considered period. 

Table 1: COVID-19 related data. 

 
Obs Mean Std. DEV Min. Max 

Vaccine Prioritisation 17,778 0.838227 0.8500284 0 2 

Testing Policy 17,760 2.185698 0.871997 0 3 

Confirmed Cases  17,388 2496793 7108942 0 7.80E+07 

Confirmed Deaths 17,388 51394.35 128410.3 0 925435 

MedicallyClinicallyVulner.  17,775 2.106723 2.19719 0 5 

VaccinationPolicy 17,775 1.613446 1.021128 0 3 

SchoolClosing 17,775 1.687539 0.9258727 0 3 

WorkPlaceClosing 17,775 1.510999 0.688261 0 2 

CancelPublicEvents 17,775 2.880675 1.419374 0 4 

RestrictionsonGatherings 17,775 0.5146554 0.608163 0 2 

ClosePublicTransport 17,775 1.008608 0.903268 0 3 

StayatHomeRequirements 17,774 2.648532 1.091632 0 4 

InternationalTravelControls 17,775 1.406526 0.6967446 0 2 

ContactTracing 17,775 53.77538 21.5958 0 100 

StringencyIndex 17,778 0.838227 0.8500284 0 2 

Source: Oxford COVID-19 Government Response Tracker (OxCGRT). 

 

In addition, we also control for health care and include health expenditures, both in per 

capita terms and as % of GDP, as well as number of hospital beds, nurses, and 

physicians per 1,000 people. We consider how healthy is the population with the life 

expectancy at birth in years and infant mortality rate per 1,000 births. As composite 

indexes of health care quality we employ Healthcare Access and Quality Index obtained 
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from Institute for Health Metrics and Evaluation and the UHC Service Coverage Index 

by WHO. 

 

In terms of household finance related data and macroeconomic data (see Table 2), we 

follow the household finance literature (Georgarakos, and Kenny 2022; Christelis, et 

al. 2020; Kubota et al. 2021) and include in the GVAR: household debt as percentage 

of household disposable income; household savings; household spending; GDP; the 

real exchange rate with dollar; government deficit; share price of country’s i stock 

exchange, and long-term interest rate (below we define the data in detail). The OECD 

countries that we include in the analysis are: Australia (AUS), Austria (AUT), Belgium 

(BEL), Brazil (BRA), Canada (CAN), Switzerland (CHE), Chile (CHL), Check 

Republic (CZE), Germany (DEU), Denmark (DNK), Spain (ESP), Estonia (EST), 

Finland (FIN), France (FRA), United Kingdom (UK), Greece (GRC), Hungary (HUN), 

Ireland (IRL), Italy (ITA), Japan (JPN), South Korea (KOR), Lithuania (LTU), 

Luxemburg (LUX), Latvia (LVA), Mexico (MEX), Netherland (NLD), Norway 

(NOR), New Zealand (NZL), Poland (POL), Portugal (PRT), Russia (RUS), Slovakia 

(SVK), Slovenia (SVN), Sweden (SWE), and USA. The period of the sample is from 

1981 to 2021 (for 2021 data are provisional). 

 

Table 2: Household and Macroeconomic Data in OECD. 

 Obs Mean Std.Dev. Min Max 

Household Debt 690 104.4129 66.4372 -21.78213 339.7779 

Household Savings 784 5.284331 7.17107 -39.7524 38.98613 

Household Spending 564 544646.2 1496173 572.452 1.40E+07 

GDP 1,512 2215284 6428188 3571.07 6.30E+07 

Real Exchange Rate 1,459 146.1827 925.0038 0 13380.8 

Gov. Deficit 892 -1.860764 3.80538 -32.1242 17.9505 

Share Price 849 58.43929 61.51603 2.70E-09 657.822 

Long Term Interest 784 7.706988 13.45292 -0.523833 87.3758 

 Source: OECD Statistics. 

 

It is worth noting that other variables could be introduced in the ANN such as trade and 

financial flows. Preliminary testing shows that the maximal rank correlation between 

such variables and factors we include was low at 0.057. Although, there is a plethora 
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of potential variables, we follow the literature (Georgarakos, and Kenny 2022; 

Christelis, et al. 2020; Kubota et al. 2021) and include variables like GDP and 

government deficit that capture the macroeconomic conditions, share prices, reflecting 

financial markets, and real exchange rate and interest rate for monetary policy.  

 

Figure 1 presents household debt in OECD countries in 2020. It is defined as all 

liabilities of households (including non-profit institutions serving households) that 

require payments of interest or principal by households to the creditors at a fixed dates 

in the future. Debt is calculated as the sum of the following liability categories: loans 

(primarily mortgage loans and consumer credit) and other accounts payable. The 

indicator is measured as a percentage of net household disposable income. Denmark 

has the highest debt with Mexico the lowest. The UK household debt is at 148% and 

comes second highest among G7 countries where Canada reports household debt at 

177%. Most OECD countries are above 100%, insinuating the indebtedness of 

households should be a concern at a global level. 

 

Figure 1: Household debt as percentage of disposable income. 

 

Source: OECD. 

 

In Figure 2 we show the household debt in G7 countries over time. For most countries 
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but USA and Canada, household debt was following an upwards trend as COVID-19 

pandemic hit the world economy. As this figure is percentage of disposable income the 

latter could also explain the upwards trajectory of household debt.  

 

Figure 2: Household debt as percentage of disposable income over time. 

 

Source: OECD. 

 

Figure 3 reports the household disposable income change from previous year. It reports 

household disposable income gross, per capita, percentage change, previous period, Q3 

2021 or latest available.2 Note that Figure 3 reports ‘real’ growth rates adjusted to 

remove the effects of price changes. It is worth noticing that for US and G7 the real 

 
2 OECD data defines household disposable income as income available to households such as wages and 

salaries, income from self-employment and unincorporated enterprises, income from pensions and other 

social benefits, and income from financial investments (less any payments of tax, social insurance 

contributions and interest on financial liabilities) (see OECD, National Accounts). The income is ‘gross’ 

and it implies that depreciation costs are not subtracted. Information is also presented for gross household 

disposable income including social transfers in kind, such as health or education provided for free or at 

reduced prices by governments and not-for-profit organisations. This indicator is in US dollars per capita 

at current prices and PPPs. In the System of National Accounts, household disposable income including 

social transfers in kind is referred to as ‘adjusted household disposable income’. All OECD countries 

compile their data according to the 2008 System of National Accounts (SNA 2008). 
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growth of disposable income is negative, while for OECD total is at low levels of 0.17. 

For UK the real growth rate is low at 0.36, in particular, if compared with Germany’s 

1.12. The negative real growth rate of disposable income shows that ceteris paribus of 

the effects COVID-19 households in G7 would face challenges to serve their household 

debt. The impact of COVID-19 on household debt came at a time that the latter posed 

uncertainties for the economy. Early indications showed that household debt 

repayments increase as the pandemic shocked countries across the world. In this paper, 

we model the impact of shocks related to the pandemic on household debt.  

 

Figure 3: Disposable income, percentage change from previous period. 

 

Source: OECD, National Accounts. 

 

In our analysis we employ, net household saving, defined as household net disposable 

income plus the adjustment for the change in pension entitlements less household final 

consumption expenditure (households also include non-profit institutions serving 

households). The adjustment item concerns (mandatory) saving of households, by 

building up funds in employment-related pension schemes. Household saving is the 

main domestic source of funds to finance capital investments, a major impetus for long-

term economic growth. The net household saving rate represents the total amount of 

net saving as a percentage of net household disposable income. It thus shows how much 
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households are saving out of current income and how much income they have added to 

their net wealth. All OECD countries compile their data according to the 2008 System 

of National Accounts (SNA). 

Household spending is also a variable in GVAR and it is defined as the amount of final 

consumption expenditure made by resident households to meet their everyday needs, 

such as food, clothing, housing (rent), energy, transport, durable goods (notably cars), 

health costs, leisure, and miscellaneous services. It is typically around 60% of gross 

domestic product (GDP) and is therefore an essential variable for economic analysis of 

demand. Household spending including government transfers (referred to as "actual 

individual consumption" in national accounts) is equal to households' consumption 

expenditure plus those expenditures of general government and non-profit institutions 

serving households (NPISHs) that directly benefit households, such as health care and 

education. "Housing, water, electricity, gas, and other fuels", one out of the twelve 

categories distinguished, consist of both actual rentals (for tenants) and imputed rentals 

(for owner-occupied housing), housing maintenance, as well as costs for water, 

electricity, gas. Total household spending is measured in million USD (in current prices 

and Private consumption PPPs), as a percentage of GDP, and in annual growth rates. 

Household spending including government transfers is measured as a percentage of 

GDP. Spending in housing is presented as a percentage of household disposable 

income. All OECD countries compile their data according to the 2008 System of 

National Accounts (SNA 2008). 

 

 

4. Empirical results.  

4.1 The ANN network: dominant countries. 

As a first step in our empirical estimations, we present the OECD weighted network as 

in Equation (9). Figure 4 shows this OECD network. To facilitate the presentation of 

all OECD countries we note countries with numbers by first reporting G7 countries so 

that: 1 notes the USA, 2 notes the United Kingdom, 3 notes Japan, 4 Germany, 5 France, 

6 Italy and 7 Canada. Then the remaining countries are 8 Austria, 9 Australia, 10 

Belgium, 11 Brazil (not a member but affiliated), 12 Chile, 13 notes Colombia, 14 notes 

Czech Republic, 15 Denmark, 16 Estonia, 17 Finland, 18 Greece, 19 notes Hungary, 

20 notes Iceland, 21 Ireland, 22 notes Israel, 23 Korea, 24 notes Latvia, 25 notes 
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Lithuania, 26 notes Luxembourg, 27 notes Mexico, 28 notes the Netherlands, 29 notes 

New Zealand, 30 notes Norway, 31 notes Poland, 32 notes Portugal, 33 notes Slovak 

Republic, 34 notes Slovenia, 35 notes Spain, 36 notes Sweden, 37 notes Switzerland, 

38 notes Turkey. It is worth noting at the outset that the network has a cyclical shape 

as all nodes are interconnected with each other. Clearly the large economies of OECD 

like USA, UK, Japan, Germany, France, and Italy are the most important ones in terms 

of their underlying weight in the network. However, other countries also carry a 

substantial weight like Belgium, Netherlands and to less degree Brazil. The Figure 4 

reveals that the global network is a complex synthesis of multiple interconnections and 

when it comes to impact of the pandemic the whole world is interconnected without 

borders.  

Figure 4: Network of OECD countries. 

 
Source: Authors’ estimations. 

 

As in Pesaran and Yang (2016), we also report the pervasiveness based on its δ-value 

of each country’s node in the network, see Equation (9). Pesaran and Yang (2016) call 

these δ-values pervasiveness scores. Table 3 reports δ-values pervasiveness scores for 

each country. Note that according to Pesaran and Yang (2016) a score below 0.5 will 
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imply very low to none network effect (see also Acemoglou et al. 2012).  

 

Table 3: Degree of pervasiveness. 

 Pervasiveness Degree Centrality Eigenvector Centrality 

USA 0.8405 0.9791 0.9753 

UK 0.9783 0.9822 0.9443 

Japan 0.904 0.8196 0.7359 

Germany 0.8696 0.8412 0.8462 

France 0.8653 0.9119 0.7905 

Italy 0.7532 0.7327 0.7561 

Canada 0.8317 0.5298 0.7025 

Austria 0.5853 0.1384 0.5545 

Australia 0.5182 0.1436 0.0353 

Belgium 0.7546 0.1096 0.3872 

Brazil 0.6381 0.4591 0.4765 

Chile 0.1423 0.0027 0.1919 

Colombia 0.5337 0.3884 0.2515 

Czech Rep. 0.5283 0.2491 0.7231 

Denmark 0.3108 0.0416 0.1652 

Estonia 0.4425 0.537 0.5187 

Finland 0.1343 0.4519 0.464 

Greece 0.0251 0.1675 0.1926 

Hungary 0.4594 0.4867 0.0786 

Iceland 0.0041 0.4729 0.1994 

Ireland 0.574 0.8473 0.2631 

Israel 0.122 0.7339 0.4177 

Korea 0.535 0.2996 0.1056 

Latvia 0.3609 0.0839 0.5205 

Lithuania 0.4707 0.2682 0.5121 

Luxembourg 0.4891 0.118 0.0433 

Mexico 0.1385 0.6833 0.4022 

Netherlands 0.7942 0.1346 0.1394 

New Zealand 0.2222 0.1277 0.3456 

Norway 0.4556 0.5762 0.6884 

Poland 0.3257 0.256 0.0625 

Portugal 0.3323 0.6644 0.2217 

Slovak Rep. 0.3366 0.128 0.0973 

Slovenia 0.1292 0.4927 0.1727 

Spain 0.2789 0.6169 0.7228 

Note: Authors’ Estimations. 

 

Table 3 shows that there are several countries with δ-value above 0.8, see USA, UK, 
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Japan, Germany, France, Italy, Canada from G7 but also Belgium, Netherlands, and 

Brazil to less extent. These values confirmed the findings of the Figure 4 above that 

shows that there are multiple nodes of importance in the network and that the pandemic 

has been reaching across the globe. Results show that there are several countries that 

are dominant and would impact upon the global network. The remaining countries with 

low δ-value might not be dominant but can assert localised effects in the network. 

 

Table 3 also reports the eigenvector centrality and degree of centrality to identify the 

dominant country in the network. Note that values below 0.5 would imply that the 

corresponding country are of significance for the network, while the highest value will 

imply the dominant country. The results reveal that the USA, closely matched by the 

UK, are dominant in the network both in terms of degree of centrality and eigenvector 

centrality. These results may not come as a surprise given then importance of those 

countries in the global economy. 

 

4.2 Evidence of the impact of COVID-19 infections and COVID-19 deaths on 

household debt. 

 

It is worth noting that we test for the robustness of our priors. We have used Sampling 

– Importance – Resampling (SIR) to examine robustness of priors. The results were 

insensitive to 1,000 alternative priors chosen. In some detail, we change the prior of 

parameters to N(a,V) where α is a vector of means and V is a diagonal matrix. The 

elements of a are drawn randomly from a uniform distribution in (-100, 100). The 

diagonal elements of V are sampled uniformly from (0.0001, 100). The SIR technique 

produces new posteriors corresponding to the new priors. In the Figures 5 and 6 we 

report results from 1,000 different priors and posteriors drawn as above for the 

parameters and the GIRFs. Figures show that results are highly robust to the prior. 
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Figure 5: Prior sensitivity analysis of parameters. 

 

Note: Authors’ estimations. 

 

Figure 6: Prior sensitivity analysis of GIRFs. 

 

Note: Authors’ estimations. 

 

In what follows we report the Global Impulse Response Functions (GIRFs) of global 

panel VAR variables to shocks in COVID-19 confirmed cases and COVID-19 
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mortality. The first line of diagrams in Figure 7 shows that a shock in confirmed cases 

will increase household debt over the two months period before converging to zero by 

the fifth month. The response of household savings and household spending is positive 

but it last for one month. The case of household savings is of some interest as the 

response turns negative in month 2 and onwards, insinuating the underlying variability 

in dynamics. The remaining GIRFs are consistent with a positive response to infections 

shock that is of transitory nature.   

 

Figure 7: Impact of shocks in confirmed cases to global panel VAR variables. 

 
Source: Authors’ estimations. 

 

Interestingly, Figure 8 shows that a shock in deaths would reduce household debt up to 

the first month. This result confirms empirical evidence of the first wave of the 

pandemic in spring-summer 2020 when household debt repayments increased, in 

particular in UK. Our modelling reveals that deaths, not infections, would influence 

household preferences towards repaying their debt. Clearly, the mortality rate of 

COVID-19 pandemic has been detrimental. However, it is worth noting the response 

of household debt to a shock in deaths turns upwards beyond the first month and is 

positive beyond the fifth month. Higher mortality would reduce household debt, but 

this response is transitory and is reversed beyond the fifth month. The remaining GIRFs 

present positive responses of a bell type of shape that implies convergence towards the 

zero after a few periods. It is worth noting that when the GIRFs are crossing the zero 

line the statistical significance should be treated with some caution, though standard 
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errors bands provide some guidance.   

 

Figure 8: Impact of shocks in COVID-19 mortality. 

 
Source: Authors’ estimations. 
 

 

4.3 GIRFs of government interventions to control COVID-19. 

In the early stages of the pandemic, in spring 2020, governments across the world 

imposed draconian lock downs and restrictions in economic activity to control the 

exponential growth of COVID-19 infections. These lock downs scaled down during 

summer months before returning the following winter of 2020-2021 but also in the 

winter of 2021-2022 as new variants of the virous emerged.  

 

Lockdowns and economic restrictions would have influenced household debt. To 

examine the response of household debt to such measures we present GIRFs. First, we 

employ the stringency index, which is a function of nine restrictions and lockdowns 

such as school closures, workplace closures, and travel bans. The index is provided by 

Oxford COVID-19 Government Response Tracker (OxCGRT) and it is scaled from 0 

to 100 with 100 being the strictest restrictions.  

 

In Figure 9 we present the GIRFs of the response of household debt to the stringency 
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index (see first graph, in the first line from the left). The response of household debt to 

stringency is positive in the first month, though statistical significance is not high as the 

standard errors band is wide. The GIRFs show that a shock related to lockdowns will 

increase household debt while its impact on household saving is zero. Similarly, it is 

the picture for household spending. Interestingly a shock in lockdown measures would 

increase GDP in the first month but it turns negative thereafter.  

 

Figure 9: Impact of shocks in stringency index to global panel VAR variables. 

 
Source: Authors’ estimations. 

 

In Figure 10 we report the GIRFs of the response of household debt to cancelling of 

public events. The GIRFs show the response of GDP is zero. Standards errors bands 

are wide implying that there is strong statistical significance though cancelling public 

events assert a positive effect on household debt. 
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Figure 10: Impact of shocks in cancel public events to global panel VAR variables. 

 

 
Source: Authors’ estimations. 

 

 

 

Figures 11 the GIRFs of the response of household debt to school closing. These GIRFs 

confirm the above responses.  

 

Figure 11: Impact of shocks in school closing to global panel VAR variables. 
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Source: Authors’ estimations. 

 

 

Lastly, Figures 12 present the GIRFs of the response of household debt to stay at home 

advise respectively. These GIRFs confirm the above responses.  

 

Figure 12: Impact of shocks in stay at home to global panel VAR variables. 

 
Source: Authors’ estimations. 
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4.4 Evidence of the impact of pharmaceutical interventions: vaccination, testing, 

contact tracing. 

 

Next, we report the GIRFs from medical interventions to combat COVID-19 like 

testing, vaccination, and contact tracing. We begin by reporting the in Figure 13 

responses to vaccinations. Interestingly, vaccination programs would reduce household 

debt (though beyond one period significance bands are wide), suggesting that the rapid 

development of vaccines and their deployment would restore household confidence and 

assist in reducing household debt. Moreover, our evidence appears to confirm changes 

in behavioural perceptions of households in earlier studies that examine the 

effectiveness of government interventions. In a recent study, Georgarakos, and Kenny 

(2022) argue that policy makers by clearly communicating their COVID-19 

interventions would enhance households’ confidence because households would 

consider that government interventions are adequate to combat the pandemic.  Similar 

implications are reported by Kubota et al. (2021), Chetty et al. 2020 for US, and 

Carvalho, et al. 2020 for UK. Our GIRFs in Figure 13 provide evidence that higher 

levels of vaccinations prioritisations would restore household confidence that they are 

protected against the pandemic and contribute to reducing their debts.  

 

Note that the responses of household savings and household spending to vaccinations 

prioritisation are all positive. The cases of household savings and spending are of 

interest because they further demonstrate that vaccination prioritisation restore 

household confidence. Similarly, the reported remaining GIRFs in Figure 13 are 

consistent with positive responses to vaccination prioritisation. Moreover, vaccination 

prioritisation would increase GDP and positively affect the stock exchange. However, 

we also demonstrate that the real exchange rate will depreciate, and the government 

deficit will increase as well as the long-term interest rate. Recent macroeconomic 

developments confirm the evidence of our GIRFs as both government deficits and 

interest rates are on an upwards trend though other factors like the energy cost crisis 

have recently contributed to worsening the macroeconomic prospects.  
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Figure 13: Impact of shocks in vaccination to global panel VAR variables. 

 
Source: Authors’ estimations. 

 

 

 

Figures 14 present the GIRFs of the response of household debt to testing. These GIRFs 

in these Figures are broadly consistent with the GIRFs in Figure 13. It is worth noting 

though that in contrast with vaccinations, a shock in testing policy would increase 

household debt though the statistical band is quite wide, and it could imply low 

statistical significance. Existing evidence shows that test compared to the development 

of vaccinations have failed to restore household confidence that the pandemic is under 

control (see Georgarakos, and Kenny 2022; Christelis et al. 2020). Our evidence 

appears to confirm this evidence as the first plot of GIRFs shows that testing enhances 

household debt.     
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Figure 14: Impact of shocks in testing to global panel VAR variables. 

 
Source: Authors’ estimations. 

 

Figures 15 present the GIRFs of the response of household debt to contact tracing. 

These GIRFs in these Figures are broadly consistent with the GIRFs in Figure 14. Once 

more, out GIRFs show that a sock in tracing would increase households’ debt in line 

with existing literature that argue that test and trace policies could not be as effective 

as vaccinations in controlling the pandemic (see Georgarakos, and Kenny 2022; 

Christelis et al. 2020).   

 

Figure 15: Impact of shocks in contact tracing to global panel VAR variables. 
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Source: Authors’ estimations. 

 

 

5. Conclusions 

The reported δ-values that capture the dominance of each individual country in the 

network reveal that dominant countries are UK, USA, and Japan within the network, 

but Belgium, Netherlands and Brazil also have high dominance. The GVAR results 

show that household debt would decline as a response to COVID-19 mortality, though 

this response is valid in the short term. However, shocks in infections, test and trace 

programs would increase household debt. Lockdown measures such as stay-at-home 

advice, and closing schools, all have also a positive impact on household debt, though 

they are of transitory nature. 

 

In addition, the GIRFs show that household debt responses vary to COVID 19 shocks. 

For example, vaccinations prioritization reduces household debt while testing and 

tracing increases household debt. This evidence implies that key to controlling the 

COVID-19 pandemic and ensuring low household debt is to prioritize medical 

innovation that protects against COVID 19 rather than testing. Lock down restrictions 

alleviate the consequences of COVID 19 in terms of infections and mortality but come 

at economic and financial cost as fiscal deficits have been increasing and the stock 

markets have been negatively affected. As gradually the pandemic eases the economic 

and financial costs of COVID-19 seem to abide whilst supply chains have been severely 

disrupted and energy costs have been rising. Our findings suggest that caution is 

warranted when it comes to imposing draconian economic restrictions. The latter are 

not as effective as vaccinations. It is fortunate that new vaccination has been engineered 

and manufactured at a large scale in a record time. A main policy implication of our 
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findings that serves as a useful guide for future pandemics is the importance of medical 

innovation and fast drag discovery.  

Lastly, we show that the dominant countries in the underlying network of OECD 

countries are the USA, UK and the remaining G7 countries. Our results demonstrate 

that there are a plethora of nodes and interconnections across OECD countries. 

Therefore, when it comes to a pandemic the global economy is highly interconnected 

and no country is immune to a pandemic. Given the results of our network analysis, and 

in terms of policy implication, we argue that global coordinated action is required to 

deal effectively with the pandemic. Future research could further study issues related 

to vaccination policies and distribution of vaccines across the world.  
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Appendix 

A.1. The Creal and Tsay (2015) procedure 

We use a recent advance in sequential Monte Carlo methods known as the particle 

Gibbs (PG) sampler, see Andrieu et al. (2010). The algorithm allows us to draw paths 

of the state variables in large blocks. Particle filtering is a simulation-based algorithm 

that sequentially approximates continuous, marginal distributions using discrete 

distributions. This is performed by using a set of support points called ‘‘particles’’ and 

probability masses; see Creal (2012) for a review. The PG sampler draws a single path 

of the latent or state variables from this discrete approximation. As the number of 

particles M goes to infinity, the PG sampler draws from the exact full conditional 

distribution. As mentioned in Creal and Tsay (2015, p. 339): “The PG sampler is a 

standard Gibbs sampler but defined on an extended probability space that includes all 

the random variables that are generated by a particle filter. Implementation of the PG 

sampler is different than a standard particle filter due to the ‘‘conditional’’ resampling 

algorithm used in the last step. Specifically, for draws from the particle filter to be a 

valid Markov transition kernel on the extended probability space, Andrieu et al. (2010) 

note that there must be positive probability of sampling the existing path of the state 

variables that were drawn at the previous iteration. The pre-existing path must survive 

the resampling steps of the particle filter. The conditional resampling step within the 

algorithm forces this path to be resampled at least once. We use the conditional 

multinomial resampling algorithm from Andrieu et al. (2010), although other 

resampling algorithms exist, see Chopin and Singh (2013).” We follow Creal and Tsay 

(2015). Suppose the posterior is 𝑝(𝜃, Λ1:𝑇|𝒚1:𝑇)  where Λ1:𝑇  denotes the latent 

variables whose prior can be described by 𝑝(Λ𝑡|Λ𝑡−1, 𝜃). In the PG sampler we can 

draw the structural parameters 𝜃|Λ1:𝑇, 𝒚1:𝑇 as usual, from their posterior conditional 

distributions. This is important because, in this way, we can avoid mixture 

approximations or other Monte Carlo procedures that need considerable tuning and may 

not have good convergence properties. As such posterior conditional distributions, we 

omit the details and focus on drawing the latent variables. Suppose we have Λ1:𝑇
(1)

 from 

the previous iteration. The particle filtering procedure consists of two phases.  
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 Phase I: Forward filtering (Andrieu et al., 2010).  

• Draw a proposal Λ𝑖,𝑡
(𝑚)

 from an importance density 

𝑞(Λ𝑖,𝑡|Λ𝑖,𝑡−1
(𝑚)

, 𝜃), 𝑚 = 2, … , 𝑀.  

• Compute the importance weights:  

 𝑤𝑖,𝑡
(𝑚)

=
𝑝(𝑦𝑖,𝑡; 𝛬𝑖,𝑡

(𝑚)
, 𝜃)𝑝(𝛬𝑖,𝑡

(𝑚)
|𝛬𝑖,𝑡−1

(𝑚)
, 𝜃)

𝑞(𝛬𝑖,𝑡|𝛬𝑖,𝑡−1
(𝑚)

, 𝜃)
, 𝑚 = 1, … , 𝑀. (A.1) 

• Normalize the weights: �̃�𝑖,𝑡
(𝑚)

=
𝑤𝑖𝑡

(𝑚)

∑ 𝑤
𝑖𝑡
(𝑚′)𝑀

𝑚′=1

, 𝑚 = 1, … , 𝑀.  

• Resample the particles {Λ𝑖,𝑡
(𝑚)

, 𝑚 = 1, … , 𝑀}  with probabilities 

{�̃�𝑖,𝑡
(𝑚)

, 𝑚 = 1, … , 𝑀}.  

 

In the original PG sampler, the particles are stored for 𝑡 = 1, … , 𝑇  and a single 

trajectory is sampled using the probabilities from the last iteration. An improvement 

upon the original PG sampler was proposed by Whiteley (2010), who suggested 

drawing the path of the latent variables from the particle approximation using the 

backwards sampling algorithm of Godsill et al. (2004). In the forwards pass, we store 

the normalized weights and particles, and we draw a path of the latent variables as we 

detail below (the draws are from a discrete distribution).  

 

Phase II: Backward filtering (Chopin and Singh, 2013, Godsill et al., 2004).  

 

• At time 𝑡 = 𝑇 draw a particle Λ𝑖,𝑇
∗ = Λ𝑖,𝑇

(𝑚)
.  

• Compute the backward weights: 𝑤𝑡|𝑇
(𝑚)

∝ �̃�𝑡
(𝑚)

𝑝(Λ𝑖,𝑡+1
∗ |Λ𝑖,𝑡

(𝑚)
, 𝜃).  

• Normalize the weights: �̃�𝑡|𝑇
(𝑚)

=
𝑤𝑡|𝑇

(𝑚)

∑ 𝑤𝑡|𝑇
(𝑚′)𝑀

𝑚′=1

, 𝑚 = 1, … , 𝑀.  

• Draw a particle Λ𝑖,𝑡
∗ = Λ𝑖,𝑡

(𝑚)
 with probability �̃�𝑡|𝑇

(𝑚)
.  

 

Therefore, Λ𝑖,1:𝑇
∗ = {Λ𝑖1

∗ , … , Λ𝑖𝑇
∗ } is a draw from the full conditional distribution. The 

backwards step often results in dramatic improvements in computational efficiency. For 

example, Creal and Tsay (2015) find that 𝑀 = 100 particles is enough. There remains 

the problem of selecting an importance density 𝑞(Λ𝑖,𝑡|Λ𝑖,𝑡−1, 𝜃). We use an importance 
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density implicitly defined by Λ𝑖,𝑡 = 𝑎𝑖,𝑡 + ∑ 𝑏𝑖,𝑡
𝑃
𝑝=1 Λ𝑖,𝑡−1

𝑝
+ ℎ𝑖,𝑡𝜉𝑖,𝑡  where 𝜉𝑖,𝑡 

follows a standard (zero location and unit scale) Student-t distribution with 𝜈 = 5 

degrees of freedom. That is, we use polynomials in Λ𝑖,𝑡−1 of order 𝑃. We select the 

parameters 𝑎𝑖,𝑡, 𝑏𝑖,𝑡  and ℎ𝑖,𝑡  during the burn-in phase (using 𝑃 = 1 and 𝑃 = 2) so 

that the weights {�̃�𝑖,𝑡
(𝑚)

, 𝑚 = 1, … , 𝑀}  and {�̃�𝑡|𝑇
(𝑚)

, 𝑚 = 1, … , 𝑀}  are approximately 

not too far from a uniform distribution. Chopin and Singh (2013) have analyzed the 

theoretical properties of the PG sampler and proved that the sampler is uniformly 

ergodic. They also prove that the PG sampler with backwards sampling strictly 

dominates the original PG sampler in terms of asymptotic efficiency.  

 

Alternatively, when the dimension of the state vector is large, we can draw Λ𝑖,1:𝑇, 

conditional on all other paths Λ−𝑖,1:𝑇 that are not path 𝑖. Therefore, we can draw from 

the full conditional distribution 𝑝(Λ𝑖,1:𝑇|Λ−𝑖,1:𝑇, 𝒚1:𝑇, 𝜃).  

A.2. The Girolami and Calderhead (2011) procedure 

We use a Girolami and Calderhead (2012, GC) algorithm to update draws for a 

parameter 𝜽 which in our case is 𝜷. The algorithm uses local information about both 

the gradient and the Hessian of the log-posterior conditional of 𝜽 at the existing draw. 

A Metropolis test is again used for accepting the candidate so generated, but the GC 

algorithm moves considerably faster relative to our naive scheme previously described. 

The GC algorithm is started at the first stage GMM estimator and MCMC is run until 

convergence. It has been found that the GC algorithm performs vastly superior relative 

to the standard MH algorithm and autocorrelations are much smaller. Suppose 𝐿(𝜽) =

log 𝑝 (𝜽|𝑿) is used to denote for simplicity the log posterior of 𝜽.  

 

Moreover, define  

 𝑮(𝜽) = est. cov
𝜕

𝜕𝜽
log 𝑝 (𝑿|𝜽) (A.2) 

the empirical counterpart of  

 𝑮𝑜(𝜽) = −𝐸𝑌|𝜽

𝜕2

𝜕𝜽𝜕𝜽′
log 𝑝 (𝑿|𝜽) (A.3) 

The Langevin diffusion is given by the following stochastic differential equation:  
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 𝑑𝜽(𝑡) =
1

2
�̃�𝜽𝐿{𝜽(𝑡)}𝑑𝑡 + 𝑑𝑩(𝑡) (A.4) 

where  

 �̃�𝜽𝐿{𝜽(𝑡)} = −𝑮−1{𝜽(𝑡)} ⋅▽𝜽 𝐿{𝜽(𝑡)} (A.5) 

is the so called “natural gradient” of the Riemann manifold generated by the log 

posterior.  

 

The elements of the Brownian motion are  

 

𝑮−1{𝜽(𝑡)}𝑑𝑩𝑖(𝑡) = |𝑮{𝜽(𝑡)}|−1/2 ∑

𝐾𝛽

𝑗=1

𝜕

𝜕𝜽
[𝑚𝑏𝑜𝑙𝐺−1{𝜽(𝑡)}𝑖𝑗|𝑮{𝜽(𝑡)}|1/2]𝑑𝑡 

+ [√𝑮{𝜽(𝑡)}𝑑𝑩(𝑡)]
𝑖
                                (A.6) 

 

The discrete form of the stochastic differential equation provides a proposal as follows:  

�̃�𝑖 = 𝜽𝑖
𝑜 +

𝜀2

2
{𝑮−1(𝜽𝑜)𝛻𝜽𝐿(𝜽𝑜)}𝑖 − 𝜀2 ∑ {𝑮−1(𝜽𝑜)

𝜕𝑮(𝜽𝑜)

𝜕𝜽𝑗
𝑮−1(𝜽𝑜)}

𝑖𝑗

𝐾𝜃

𝑗=1
  

+
𝜀2

2
∑ {𝑮−1(𝜽𝑜)}𝑖𝑗

𝐾𝜃

𝑗=1
tr {𝑮−1(𝜽𝑜)

𝜕𝑮(𝒂𝑜)

𝜕𝜽𝑗
} + {𝜀√𝑮−1(𝜽𝑜)𝝃𝑜}

𝑖
 

= 𝝁(𝜽𝑜, 𝜀)𝑖 + {𝜀√𝑮−1(𝜽𝑜)𝝃𝑜}
𝑖
, 

 

where 𝜷𝑜 is the current draw.  

 

The proposal density is  

 

 

𝑞(�̃�|𝜽𝑜) = 𝒩𝐾𝜃
(�̃�, 𝜀2𝑮−1(𝜽𝑜)), 

(A.7) 

 

and convergence to the invariant distribution is ensured by using the standard form 

Metropolis-Hastings probability  

 min {1,
𝑝(�̃�| ⋅, 𝑌)𝑞(𝜽𝑜|�̃�)

𝑝(𝜽𝑜| ⋅, 𝑌)𝑞(�̃�|𝒂𝑜)
}. (A.8) 

 


