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1 Introduction

Modelling and forecasting asset return volatility is central to asset pricing, portfolio op-

timization and risk management. The introduction and use of high-frequency data provide

a framework for directly measuring and capturing the main stylized facts of volatility. Re-

alized volatility (RV), a non-parametric measure calculated as the sum of intraday squared

returns, provides a consistent estimator of the quadratic variation when the price process

contains discontinuities or jumps.1

In relation to volatility forecasting, the seminal work of Andersen et al. (2007a) suggests

that the jump component is both highly important and distinctly less persistent than the

continuous component. Thus, treating rough jumps separately results in significant im-

provements in out-of-sample volatility forecasts, not least because many significant jumps

are associated with specific macroeconomic announcements. However, recent empirical

evidence that classifies jumps into finite and infinite activity jumps (e.g. Aı̈t-Sahalia and

Jacod, 2012), presents a new question as to whether such different types of jumps are

equally important in the prediction of future volatility.2

A large literature examines the role of jumps in volatility forecasting. However, much

of that literature focuses on signed jumps, and does not separate finite jumps from infinite

jumps. It also tends to use 300-second (5-minute) returns, rather than higher frequencies

such as 5- or 60-second returns, in order to mitigate the impact of the market microstruc-

ture noise. Whether for jumps or signed jumps, the literature provides mixed evidence

regarding their value added in forecasting. One side of the literature reports gains in fore-

casting from incorporating jumps. Andersen et al. (2007a) find that separating jumps from

the continuous volatility component improves out-of-sample forecasts. Corsi et al. (2010)

show that the use of a threshold bipower estimator to calculate the jump component af-

fords substantial out-of-sample gains. Patton and Sheppard (2015) argue that volatility is

strongly related to the volatility of past negative returns, and show that models incorpo-

1Early adoption of RV in modelling and forecasting featured in the work of Andersen and Bollerslev
(1998), Andersen et al. (2001, 2003, 2005), inter alios.

2Other research considering the role of finite jumps can be found in Huang and Tauchen (2005), Lee
and Mykland (2007), Aı̈t-Sahalia (2004), Aı̈t-Sahalia and Jacod (2009a), Dumitru and Urga (2012). For
infinite jumps see Todorov and Tauchen (2010), Aı̈t-Sahalia and Jacod (2009a, 2014), and the extensive
references therein.
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rating signed jumps lead to significantly better out-of-sample forecast performance. Duong

and Swanson (2015) identify large and small jumps using higher order power variations,

and find that small jumps are more important for forecasting volatility than large jumps.

More recently, Jawadi et al. (2020) show that jumps also play an important role for oil

and gas volatilities, which depend non-linearly on jumps.

Another side of the literature finds that jumps do not significantly improve volatility

forecasts. For instance, Forsberg and Ghysels (2007), Giot and Laurent (2007), Martens

et al. (2009), Busch et al. (2011), Sévi (2014), Prokopczuk et al. (2016) and Caporin

(2022) review the use of jumps and signed jumps to forecast future volatility. Their results

suggest that the inclusion of jumps and signed jumps tends to improve the in-sample

fit of models, but does not result in any significant out-of-sample forecasting gains. For

instance, the latter of the aforementioned studies (Caporin, 2022), uses 5-minute return

data for over 4,800 Russell-3000 stocks, spanning the period 2003 to 2019. Results are

presented for different levels of liquidity since many of the stocks are infrequently traded.

He considers several tests for jumps, paying careful attention to stale prices and possible

spurious jumps. Using different jump measures, Caporin (2022) estimates many popular

volatility forecasting models, including models with signed jumps, and finds that the out-

of-sample performance of many models is statistically equivalent. He suggests that his

evidence “challenges the possibility that jumps convey relevant information for volatility

forecasting (p.4)”, arguing that the trade-off between model complexity and forecasting

abilities favors the use of the simple HAR-RV model proposed by Corsi (2009).

The current paper contributes to the literature in a number of ways. First, we show

how jumps may be decomposed into signed finite and infinite activity jumps. We identify

the finite and infinite jump components using the intersection of the ABD jump test and

the SFA finite activity jump test (Aı̈t-Sahalia and Jacod, 2011; Andersen et al., 2007b).

Duong and Swanson (2015) use higher order power variations to decompose jumps into

large and small jumps, and examine their role in predicting the volatility of returns. By

contrast, we use a more robust tests-based decomposition of days with significant jumps

into ones with finite or infinite activity jumps. As noted by Aı̈t-Sahalia and Jacod (2014),
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in finite samples the estimated jumps based on higher-order power variations are often

poor measures of actual jumps. Second, we develop versions of the ABD test and realized

semivariance measures that are robust to microstructure noise, and perform well at high-

frequency. The noise robust semivariance measures are modifications of the two-scale

realized variance measure of Zhang et al. (2005). Third, we present new empirical evidence

showing the contribution of the various types of signed, finite and infinite activity, jumps

to improving volatility forecasts at different forecast horizons. We examine the choice

of sampling frequency and sampling scheme, as well as the use of noise-robust realized

measures. Volatility forecasts using transaction-time based measures are dominated by

those using regular clock-time based measures. Fourth, as most jumps are idiosyncratic,

no single forecasting model dominates, so better forecasts are obtained with simple model

averages using 300-second jump measures.

Our application uses high-frequency data from 2000 to 2016. Using extended HAR

models, we forecast the volatility of SPY, the SPDR S&P 500 ETF, as well as 20 con-

stituents of the S&P 100 index which vary by sector and volume. We show that jumps

contribute significantly to the volatility of SPY and the 20 stocks we examine. As expected,

we find the SPY volatility forecasts to be more accurate, since aggregation helps to identify

more informative jumps which improves the out-of-sample mean square prediction error

(MSPE) performance.

To preview our findings, when jumps classified by sign and activity are used as ad-

ditional predictors in HAR models, we find significant improvements with both in- and

out-of-sample performance. We focus on the MSPE results from pseudo, out-of-sample

forecasts using rolling window regressions. In terms of our classification of jumps by activ-

ity, infinite jumps are relatively more important at shorter horizons, whereas finite jumps

dominate at longer horizons. Adding signed finite and infinite jumps to the forecasting

model often generates significantly better forecasts than the standard HAR-RV model.

However, no single extended model dominates.

The use of noise-robust estimators substantially improves the out-of-sample perfor-

mance of our extended HAR models, especially at higher frequencies. The gains are greater

4



for individual stocks than for the SPY index. This is unsurprising since SPY is the most

liquid asset with a low level of microstructure noise. One might have expected standard

volatility measures to deliver more accurate forecasts at the 300-second frequency, since

microstructure noise should be small. However, this only holds true for SPY. For individual

stocks, the forecasting gains are quite similar using noise-robust and standard volatility

measures. In line with Ghysels and Sinko (2011), noise-robust measures only improve

forecasting performance when the level of market microstructure noise is significant.

The greatest gains in real-time forecasting performance are generally found using re-

turns sampled at 300-second intervals, rather than at 5- or 60-second intervals, irrespective

of whether noise-robust or standard volatility measures are used.3 Since the forecasting

performance of no single model dominate across sampling frequency and forecasting hori-

zon, we investigate model averaging using the model confidence set approach of Hansen

et al. (2011) to reduce the set of retained models in the averages. Simple model averaging,

including averages with time-varying weights, generally results in significant out-of-sample

forecasting performance (e.g. Aiolfi et al., 2011; Aiolfi and Timmermann, 2006; Elliott and

Timmermann, 2016; Timmermann, 2006). These gains arise using both SPY and indi-

vidual stocks across different horizons. The gains are greatest using the returns sampled

every 300-seconds. We assess the predictive accuracy of model averaging using the pair-

wise test of Diebold and Mariano (1995). The results show that model averaging produces

significantly smaller MSPEs, even at longer horizons of 66 days / 3 months.

These results are in line with Giacomini and Rossi (2010), where the relative forecasting

performance of individual models often changes over time. Here, we identify the incidence

of cojumps in our data using the co-exceedance rule of Gilder et al. (2014). The cojumps

results indicate that the jumps in our data are mainly idiosyncratic, reflecting stock specific

differences in the arrival of news and the reaction to that news.4 The fact that the timing,

size and sign of most jumps are stock specific is the main reason why no single forecast

3This result is inline with Liu et al. (2015) who find that 300-second/5-min RV is very difficult to
beat. Across a range of different asset classes, they find that 5-minute returns volatilities obtained from
the two-scale realized volatility (TSRV) subsampling approach of Zhang et al. (2005) is the preferred
method of estimating daily volatility.

4Similar qualitative conclusion are obtained using the multijump test of Caporin et al. (2017). The
number of detected cojumps is also similar to the numbers reported in Caporin et al. (2017) and Mukherjee
et al. (2020).
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model dominates.

As a robustness check, we consider alternative, transaction-time sampled volatility

measures. To the best of our knowledge, only Patton and Sheppard (2015) have considered

an alternative sampling scheme for forecasting and their focus is on signed jumps. They

do not examine the role of finite and infinite jumps, nor do they compare their results

with those using the popular clock-time sampling scheme. In the case of SPY, we find

that the share of jumps in transaction-time based RV measures is far smaller than for

clock-based measures, and any jumps are predominantly finite activity jumps. In terms

of forecasting performance, we conclude that forecasts using volatility and jump measures

based on transaction sampling are inferior to the forecasts from clock-based sampling.

The remainder of the paper is as follows. The theoretical background is set out in Sec-

tion 2. The estimation of signed finite and infinite activity jumps is described in Section 3.

Noise-robust volatility measures are also discussed. Section 4 sets out the forecasting

framework, including the extended HAR forecasting model and forecast evaluation cri-

teria. The data and empirical results are described and discussed in Section 5. Model

averaging results are presented in Section 6. Section 7 presents several robustness checks –

forecasts using transaction-time sampled volatility measures, assessing out-of-sample fore-

cast using the mean absolute prediction error loss function, and replacing the benchmark

HAR-RV model with the HAR-Q model of Bollerslev et al. (2016). Finally, Section 8

summarizes the paper and presents our conclusions.

2 Theoretical Background

Let Xt denote the log-price of an equity or an equity index. We assume X is an Itô-

semimartingale process defined on some filtered probability space (Ω,F , (Ft)t≥0,P), with

the following representation:

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs + Jt, t ∈ [0, T ] (1)
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where a is a locally bounded and predictable drift term, σ is the adapted, càdlàg spot

volatility, Wt is a standard Brownian motion, and Jt is a pure jump process with finite

and infinite activity components, Jt = JFt +J It . The finite activity J
F
t and infinite activity

J It jump processes are:

JFt :=

∫ t

0

∫
|x|>ε

xµ(dx, ds), (2)

J It :=

∫ t

0

∫
|x|≤ε

x(µ(dx, ds)− ν(dx)ds), (3)

where µ is the jump measure of X with compensator ν, and ε > 0 is an arbitrary number.

For more details on Itô-semimartingale processes, see Aı̈t-Sahalia and Jacod (2014) and

the references therein. As Aı̈t-Sahalia and Jacod (2012) note, the continuous part of the X

process captures the normal risk of an asset that can be hedged using standard methods.

The large, finite jumps capture default risk or big news-related events, while small jumps

capture price movements which impact high-frequency prices but wash out at the daily

level, e.g. the price impact of large transactions.

Since volatility is a latent variable, realized measures are widely employed to give

consistent estimates of the quadratic variation (QV) of the process using high-frequency

data. The QV of the price process is defined as:

QVt =

∫ t

0

σ2
sds︸ ︷︷ ︸

Integrated Variation (IV)

+
∑
0≤s≤t

(∆Xs)
2

︸ ︷︷ ︸
Jump Contribution

(4)

where ∆Xs := Xs − Xs− when X jumps at time s. The widely used, realized volatility

(RV) measure converges in probability to the QV as the sampling interval ∆n → 0:

RVt =
n∑
i=1

(∆n
iX)2

p−→ QVt, (5)

where the day is split into n = ⌊1/∆n⌋ equally spaced intervals of length ∆n with n,

∆n
iX = Xi∆n −X(i−1)∆n is the log-return in interval i, and ⌊x⌋ denotes the integer part of

x.
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To separate the integrated variation component of QV from the jump component, we

use the threshold bipower variation (TBPV) measure proposed by Corsi et al. (2010),

a modified version of the so-called bipower variation measure of Barndorff-Nielsen and

Shephard (2004). The TBPV, which is robust to jumps in both the stochastic limit and

the asymptotic distribution, converges in probability to the integrated variance as the

sampling interval ∆n → 0:

TBPVt = µ−2
1

n

n− 1

n∑
i=2

|∆n
iX|1{(∆n

i X)2≤ϑi}|∆n
i−1X|1{(∆n

i−1X)2≤ϑi−1}
p−→

∫ t

0

σ2
sds, (6)

where µ1 =
√
2/π ≈ 0.7979, n/(n− 1) is a small sample correction, and ϑ is the threshold

estimator defined as in Corsi et al. (2010, appendix B).

Barndorff-Nielsen et al. (2010) introduced positive and negative realized semivariance

(RS) estimators to capture upside and downside risk:

RS+
t =

n∑
i=1

(∆n
iX)21{∆n

i X>0}
p−→ 1

2

∫ t

0

σ2
sds+

∑
0<s≤t

(∆sX)21{∆sX0} (7)

RS−
t =

n∑
i=1

(∆n
iX)21{∆n

i X<0}
p−→ 1

2

∫ t

0

σ2
sds+

∑
0<s≤t

(∆sX)21{∆sX<0}. (8)

3 Identifying and Decomposing Jumps by Sign and

Activity

To identify days with significant jumps, we employ the intra-day jump test proposed by

Andersen et al. (2007b, ABD). If the largest intra-daily value of the test exceeds the critical

value, we classify the day as a jump day. The Jt indicator for a day with significant jumps

is 1 if maxi
(
|∆n

iX|
/√

∆nTBPV
)
> Φ−1

1−β/2 and 0 otherwise, where Φ−1
(·) is the inverse of the

standard normal distribution function, α is the significance level and β = 1−(1−α)∆n is the

Šidàk multiple testing correction. Hence, the estimated continuous and jump components
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of QV are:

Ĉt = RVt · (1− Jt) + TBPVt · Jt, (9)

Ĵt = (RVt − TBPVt, 0)
+ · Jt. (10)

To identify days with significant finite and infinite activity jumps, we employ the SFA test

proposed by Aı̈t-Sahalia and Jacod (2011). The test statistic uses the ratio of two truncated

realized power variation measures to eliminate the large jumps. The truncated realized

power variation B(p, υn,∆n)t =
∑n

i=1 |∆n
iX|p1{|∆n

i X≤υn}, with υn = ϱ∆ϖ
n , ϱ > 0, ϖ ∈

(0, 1/2), is the sum of truncated absolute returns, |∆n
iX| ≤ υn, raised to the power p over

different sampling frequencies ∆n. The SFA test statistics has different limits depending on

whether the jumps in Xt are finite or infinite activity jumps: SFAt =
B(p,υn,k∆n)t
B(p,υn,∆n)t

p−→ kp/2−1

in the finite activity case and 1 in the infinite activity case. Under the finite activity null,

the statistic
(
SFAt − kp/2−1

)/√
V̂t

L−→ N (0, 1), where V̂t = N(p, k)B(2p,υn,∆n)t
B(p,υn,∆n)2t

. For further

details on N(p, k), and other settings, see Aı̈t-Sahalia and Jacod (2011). We set k = 2 and

p = 4, and use the indicator function Ft = 1

{
SFAt < kp/2−1 − Φ−1

1−α

√
V̂t

}
to identify

days with finite activity jumps.

Our classification of jumps by sign and activity is described below.
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Use Measure Formula

QV Contributions

Finite Activity Jumps F̂ J t = Ĵt · Ft

Infinite Activity Jumps ÎJ t = Ĵt · (1− Ft)

Positive Jumps P̂ J t =
(
RS+

t − 1
2
TBPVt, 0

)+ · Jt

Negative Jumps N̂J t =
(
RS−

t − 1
2
TBPVt, 0

)+ · Jt

Forecasting Models

Signed Jumps ŜJ t = P̂ J t − N̂J t

Positive Signed Jumps Ĵ+
t = ŜJ t · Pt

Negative Signed Jumps Ĵ−
t = ŜJ t · (1− Pt)

Positive Signed Finite Jumps F̂ J
+

t = Ĵ+
t · Ft

Negative Signed Finite Jumps F̂ J
−
t = Ĵ−

t · Ft

Positive Signed Infinite Jumps ÎJ
+

t = Ĵ+
t · (1− Ft)

Negative Signed Infinite Jumps ÎJ
−
t = Ĵ−

t · (1− Ft)

We classify jumps by activity using the jump Jt and finite activity Ft indicators. The con-

tribution of positive and negative jumps to overall QV are based on (RS+
t − 1

2
TBPVt, 0)

+·Jt

and (RS−
t − 1

2
TBPVt, 0)

+ · Jt respectively. When forecasting volatility using our extended

HAR models, we use daily (net) signed jumps, ŜJ t, the difference between the positive

and negative measures (e.g. Patton and Sheppard, 2015). The corresponding positive and

negative signed jumps are Ĵ+
t = ŜJ · Pt and Ĵ−

t = ŜJ · (1 − Pt) respectively, where

Pt = 1
{
ŜJ t > 0

}
. Their finite/infinite counterparts are identified using the finite activity

Ft indicator.

3.1 Market Microstructure Noise

Market microstructure noise can distort realized volatility measures, and hence the

identification of jumps. We know that the contribution of jumps varies by sampling fre-

quency (Table 3), and that the level of market microstructure noise increases as the sam-

pling interval ∆n → 0. As a result, standard high-frequency realized volatility measures

tend to be biased, distorting jump test statistics (e.g. Hansen and Lunde, 2006b; Huang
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and Tauchen, 2005).5 This suggests that noise-robust volatility measures should be used

at high frequencies (e.g. 5 and 60 seconds), and possibly lower frequencies. Although Aı̈t-

Sahalia and Xiu (2019) suggest that improvements in stock market liquidity mean that the

common practice of treating the 5-minute returns of S&P 100 constituents as noise-free is

a reasonably safe choice for data sampled after 2009, it is problematic before then. They

also suggest that the 5-minute returns of a large portion of the S&P 500 index constituents

cannot be treated as noise-free.

We assume that the observed log price process, Yt, is contaminated by additive, mi-

crostructure noise:6

Yt = Xt + ut, (11)

where Xt is the process described in equation (1), ut is an i.i.d. noise process with E[ut] = 0

and E[u2t ] = ω2, and ut |= Xt. Jacod et al. (2009) and Christensen et al. (2014) propose pre-

averaging estimators for the RV and a consistent estimator of the IV. The pre-averaging

returns are estimated as a weighted average of returns within a local neighborhood of L

log-prices:

∆n
iX

∗ =
L−1∑
j=1

g

(
j

L

)
∆n
i+jY, (12)

where g = min(x, 1 − x), L = θ
√
n with θ = 1/3 for 5 and 60 seconds return or θ = 1

for 300 seconds returns. With these choices, the noise-robust estimator for the realized

5The bias is due to E[|∆n
i X|] ≤ E[|∆n

i X + ηi|], where ηi = ui − ui−1, and its presence produces poor
measures of the true volatility, as well as induces an attenuation bias in the autoregressive estimates (e.g.
Bollerslev et al., 2016).

6The mechanics of trading generate a diverse array of market microstructure effects including bid-
ask spread and corresponding bounce, the gradual response of prices to a block trade, and the strategic
component of order flow inventory control effects (Aı̈t-Sahalia and Jacod, 2014). Additive noise is the
simplest and most common market microstructure model.
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variance and the bipower variation are:7

RV ∗
t =

n

n− L+ 2

1

LψL2

n−L+1∑
i=0

|∆n
iX

∗|2 − ψL1 ω̂
2
AC

θ2ψL2
(13)

BPV ∗
t =

n

n− 2L+ 2

1

LψL2 µ
2
1

n−2L+1∑
i=0

|∆n
iX

∗||∆n
i+LX

∗| − ψL1 ω̂
2
AC

θ2ψL2
, (14)

where the leading n/(n−L+2) and n/(n−2L+2) terms are small sample corrections, and

the trailing term
ψL
1 ω̂

2
AC

θ2ψL
2

is a bias-correction to remove residual noise not eliminated by the

pre-averaging, and ψL1 = L
∑L

j=1

[
g
(
j
L

)
− g

(
j−1
L

)]2
and ψL2 = 1

L

∑L−1
j=1 g

2
(
j
L

)
are constants

associated with g(·) (e.g. Christensen et al., 2014; Jacod et al., 2009, Appendix A). The

unknown noise variance ω2 can be approximated using either the Bandi and Russell (2006)

estimator ω̂2
RV = 1

2n
RVt, or Oomen (2006a) estimator ω̂2

AC = − 1
n−1

∑n
i=2∆

n
i−1Y∆n

i Y , the

negative of the first order autocovariance of (log)-returns. We use the latter procedure.

The ABD test in Andersen et al. (2007b) can be modified to yield a test that is robust to

the presence of market microstructure noise. To do this we use the asymptotic distribution

of pre-averaged returns (see, for instance Christensen et al., 2014; Jacod et al., 2009;

Podolskij and Vetter, 2009, and the references therein):

n1/4∆n
iX

∗∣∣Fi/n ∼ N
(
0,
θσ2

12
+
ω2

θ

)
. (15)

Thus, we can define a threshold for identifying jumps as follows:

τ =
Φ−1

1−β/2

nϖ

√
ψL2 θσ̂

2 +
ω̂2

θ
, (16)

where Φ−1
1−β/2 is the inverse of the standard normal distribution, α is the significance level,

and β = 1 − (1 − α)∆n is the Šidàk multiple testing correction. We use the BPV ∗
t to

estimate σ̂2 and ω̂2
AC to estimate ω̂2. We set ϖ = 1/4 and θ = 1/3. Therefore, we reject

the null of no jumps whenever maxi (|∆n
iX

∗|) > τ .

Noise-robust versions of the realized semivariances, which capture upside and downside

7We also tried the threshold bipower variation measure proposed by Christensen et al. (2018), but the
differences were negligible.

12



risk, are constructed by appropriately modifying the two-scale realized variance measure

of Zhang et al. (2005):

TSRS+
t =

1

K

K∑
k=1

RS+
t,k −

n

n̄
RS+

t
P−→ 1

2

∫ t

0

σ2
sds+

∑
0<s≤t

(∆sX)2 1{∆sX>0}, (17)

TSRS−
t =

1

K

K∑
k=1

RS−
t,k −

n

n̄
RS−

t
P−→ 1

2

∫ t

0

σ2
sds+

∑
0<s≤t

(∆sX)2 1{∆sX<0}, (18)

where RS+
t,k and RS−

t,k are subsample, slower time scale, realized semivariance measures;

RS+
t and RS+

t are the full sample, faster time scale, realized semivariance measures; n̄ =

n−K+1
K

is the average number of observations in the subsamples; K = ⌊cn2/3⌋ and c is the

optimal bandwidth as in Zhang et al. (2005). The two-time scale estimators average the

realized semivariances over K subsamples, and apply a bias correction from the highest

possible frequency.8

3.2 Noise-Robust ABD Test and Two-Time Scale Realized Semi-

variance – Monte Carlo Results

We examine the performance of our noise-robust ABD test statistic and two-time scale

realized semivariance estimators using Monte Carlo simulations, where the log-price X is

simulated as:

dXt =
√
νtdWt + θLdLt

dνt = κ(ην − νt)dt+ γνν
1/2
t dBt,

(19)

where Wt and Bt are standard Brownian motions with covariance E[dWt, dBt] = ρdt,

and Lt is either a finite activity compound Poisson process or an infinite activity Cauchy

process (a β-stable process with β = 1).

Following Aı̈t-Sahalia and Jacod (2011), we set κ = 5, ην = 1/16, ρ = −0.5. The

compound Poisson process has intensity λ, and jumps that are uniformly distributed on

ν
1/2
t

√
m([−2,−1] ∪ [1, 2]). We set m = 0.7 and λ = 1.0 such that there is on average one

8Aı̈t-Sahalia et al. (2012) develop a noise-robust, pre-averaging, version of the Aı̈t-Sahalia and Jacod
(2009b) jump test, while Li and Xiu (2016) develop general GMM procedures that address measurement
error in realized volatility measures.
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jump every day. When jumps are of finite activity we set θL = 1, while for infinite jumps

we set θL = 0.5. Following Barndorff-Nielsen et al. (2008), we add noise to the Xt,i process:

Yt,i = Xt,i + ut,i,

where Y is the noisy, observed log price, ξ is the noise-to-signal ratio used to simulate

market microstructure noise, ut,i ∼ N (0, ω2
t ) and ω2

t = ξ2
∫ t
0
νsds. With this design, the

variance of the noise is constant throughout the day, but changing from day to day.

The price process is simulated via an Euler scheme where we normalize one second to be

∆n = 1/23, 400. Thus, the interval [0, 1] contains the usual 6.5hrs of trading activity. To

generate the observed prices, we discretize [0, 1] into a number n = 23, 400 of intervals. We

then contaminate the prices with market microstructure noise and aggregate the data to

the 5-, 60- and 300 seconds, which are equivalent to 4,680, 390 and 78 intraday observations

per day. We simulate 5 trading days and use 5,000 replications.

Table 1 shows the results of our Monte Carlo exercise exploring the size and power of the

two versions of the ABD test under finite and infinite jumps, with a moderate and higher

level of noise-to-signal ratio. The tests are evaluated at the 5% level. The noise-robust

ABD test is more powerful at higher, 5-second and 60-second, frequencies and when the

noise-to-signal ratio is higher. The standard ABD test is undersized (oversized) at higher

(lower) frequencies, irrespective of the level of noise-to-signal ratio, whereas the noise-

robust test displays very decent size levels which decrease with the sampling frequency.

This result is expected as the level of microstructure noise decreases when the data are

sampled more sparsely and therefore pre-averaged methods are less efficient.

The second and third panels show the power of the tests under finite and infinite activity

jumps. With finite activity jumps and a small noise-to-signal ratio, both tests perform

quite well with the noise-robust test outperforming (underperforming) the standard test

at higher (lower) frequencies.9 Finally, when jumps are infinite activity, the standard ABD

test is badly affected by the noise-to-signal levels.

9Maneesoonthorn et al. (2020) show, using a similar data generating process, that the Lee and Mykland
(2012) and the Aı̈t-Sahalia et al. (2012) tests –which are noise-robust versions– have very poor power at
lower frequencies.
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Table 2 compares the finite sample MSEs of the realized semivariance and two-time

scale realized semivariance measures. The results show that the realized semivariance

is very sensitive to market microstructure noise, resulting in large MSEs even when the

noise-to-signal ratio is moderate and the sampling frequency is low. On the other hand,

the overall performance of the two-time scale realized semivariance is very good.

4 Forecasting Models and Forecast Comparisons

The HAR-RV in Corsi (2009) models current and future RV as a linear function of

lagged daily, weekly and monthly values of RV. Andersen et al. (2007a) originally added

jumps to the HAR-RV model. Our forecasting models extend the HAR-RV model further

by adding signed, finite and infinite activity jumps. The benchmark HAR-RV model is

RVt,t+h = β0 + βdRVt + βwRVt−5,t + βmRVt−22,t + ϵt,t+h, (20)

where h is the forecast horizon, and RVt,t+h−1 = 1
h

∑h
i=1RVt+1−i. We examine nine dif-

ferent, extended HAR models. The first three forecasting models include daily, weekly

and monthly jumps in addition to the daily, weekly and monthly continuous component of

RV.10 The next three models replace the jump variables in previous models with their fi-

nite activity counterparts. The final three models replace the jump part with their infinite

activity jumps. We estimate separate models for unsigned, positive and negative jumps:

10We rely on the HAR-CJ framework, as this approach fully capture the very distinct sources of risk
observed in the Brownian and Jump variables (see, for instance, Bollerslev et al., 2015; Duong and Swanson,
2015; Hizmeri et al., 2020, and thereferences therein), and has been shown to outperform the HAR-J model
(e.g. Andersen et al., 2007a; Duong and Swanson, 2015; Hizmeri et al., 2020, among others).
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Jumps, Signed and Unsigned Models:

HAR-CJ: RVt,t+h = β0 + βCd
Ĉt + βCwĈt−5,t + βCmĈt−22,t + βJd Ĵt + βJw Ĵt−5,t + βJm Ĵt−22,t + ϵt,t+h

HAR-CJ+: RVt,t+h = β0 + βCd
Ĉt + βCwĈt−5,t + βCmĈt−22,t + βJ+

d
Ĵ+
t + βJ+

w
Ĵ+
t−5,t + βJ+

m
Ĵ+
t−22,t + ϵt,t+h

HAR-CJ−: RVt,t+h = β0 + βCd
Ĉt + βCwĈt−5,t + βCmĈt−22,t + βJ−

d
Ĵ−
t + βJ−

w
Ĵ−
t−5,t + βJ−

m
Ĵ−
t−22,t + ϵt,t+h

Finite Jumps, Signed and Unsigned Models:

HAR-CFJ: RVt,t+h = β0 + βCd
Ĉt + βCwĈt−5,t + βCmĈt−22,t + βFJdF̂ J t + βFJw F̂ J t−5,t + βFJmF̂ J t−22,t + ϵt,t+h

HAR-CFJ+: RVt,t+h = β0 + βCd
Ĉt + βCwĈt−5,t + βCmĈt−22,t + βFJ+

d
F̂ J

+

t + βFJ+
w
F̂ J

+

t−5,t + βFJ+
m
F̂ J

+

t−22,t + ϵt,t+h

HAR-CFJ−: RVt,t+h = β0 + βCd
Ĉt + βCwĈt−5,t + βCmĈt−22,t + βFJ−

d
F̂ J

−
t + βFJ−

w
F̂ J

−
t−5,t + βFJ−

m
F̂ J

−
t−22,t + ϵt,t+h

Infinite Jumps, signed and Unsigned Models:

HAR-CIJ: RVt,t+h = β0 + βCd
Ĉt + βCwĈt−5,t + βCmĈt−22,t + βIJd ÎJ t + βIJw ÎJ t−5,t + βIJm ÎJ t−22,t + ϵt,t+h

HAR-CIJ+: RVt,t+h = β0 + βCd
Ĉt + βCwĈt−5,t + βCmĈt−22,t + βIJ+

d
ÎJ

+

t + βIJ+
w
ÎJ

+

t−5,t + βIJ+
m
ÎJ

+

t−22,t + ϵt,t+h

HAR-CIJ−: RVt,t+h = β0 + βCd
Ĉt + βCwĈt−5,t + βCmĈt−22,t + βIJ−

d
ÎJ

−
t + βIJ−

w
ÎJ

−
t−5,t + βIJ−

m
ÎJ

−
t−22,t + ϵt,t+h
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The realized continuous and jump measures in the models are estimated using the

formulae outlined in Section 3. We also have an additional nine models where all the right-

hand volatility measures are the noise-robust measures discussed in Section 3.1. Although

additional variants of these models could be developed and evaluated, we do not believe

that it is worthwhile doing so since model averages should encompass these variants.

Our primary interest is in the performance of pseudo out-of-sample forecasts. We

consider horizons h = 1, 5, 22, and 66, corresponding to one day, one week, one month, and

one quarter ahead. We also use rolling window regressions of size 1000, or approximately

four years, to estimate the models. The out-of-sample performance is evaluated using the

mean squared prediction error (MSPE) loss function and, to a lesser extent, the out-of-

sample R2
oos. The MSPE, which has been shown to be robust to noise in the proxy for

volatility in Patton (2011) is:

MSPE = S−1
h

Sh∑
s=1

(
RV h

s − R̂V
h

s

)2

, (21)

where RV h
s and R̂V

h

s are respectively the actual and pseudo out-of-sample forecasts of

RVt,t+h, and Sh is the total number of out-of-sample forecasts from the series of rolling

window models. Additionally, we carry out pairwise tests of the null of equal predictive

ability using Diebold and Mariano (1995, DM,hereafter) tests with a MSPE loss criterion

and HAC standard errors.

The Model Confidence Set (MCS) procedure of Hansen et al. (2011) is used to identify

the subset of models with significantly lower MSPEs than the other models. We use the

MCS procedure with a quadratic loss function. We denote by M the set of all the HAR

models. We define dh,i,j = L(RV t,t+h, R̂V
(i)

t,t+h) − L(RV t,t+h, R̂V
(j)

t,t+h) as the difference in

the loss of model i and model j. We use a quadratic loss function as L. Finally, we

construct the average loss difference, d̄h,i,j, and define the test statistics as follows

thi,j =
d̄h,i,j√

V̂ar(d̄h,i,j)
, ∀i, j ∈ M (22)
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The MCS test statistics are given by TM = max
i,j∈M

|thi,j| and have the null hypothesis, H0

that all models have the same expected loss. The alternative hypothesis is that there

is some model i with a MSPE that is greater than the MSPE’s of all the other models

j ∈ M\i. When the null is rejected the worst performing model is eliminated, and this

process is iterated until no further model can be eliminated. The surviving models denoted

by MMCS are retained with a confidence level α = 0.05. We implement the MCS via a

block bootstrap using a block length of 10 days and 5000 bootstrap replications.11

5 Empirical Findings

5.1 Data

For our forecasting exercise, we use the SPDR S&P 500 ETF (SPY) and 20 individual

stocks in the S&P 500 index. The data are for the years 2000 to 2016, a total of 4277

trading days. The 20 individual stocks were chosen based on their jump activity index,

and the relative contributions of finite and infinite jumps. The data are sourced from

the TickData database.12 We follow Hansen and Lunde (2006b) and use previous tick

interpolations to aggregate the ticks to the required frequency.

Mean daily RV for SPY and the 20 stocks ranges from 1.037 to 8.284, while the average

number of shares traded per day ranges from 0.875 to 98.972 million. Since we are inter-

ested in the role of realized measures using different sampling frequencies in forecasting

realized volatility, we sample returns every 5, 60, and 300 seconds. The choice of 300

seconds is standard in high-frequency finance studies, and is motivated by the trade-off

between bias and variance (see Aı̈t-Sahalia et al., 2005; Bandi and Russell, 2006; Zhang

et al., 2005, inter alios for a more detailed discussion).

11Qualitatively similar results were obtained using different block sizes (20 and 50 days), and additional
bootstrap replications (10,000 and 20,000).

12TickData provides pre-cleaned and filtered price series. The algorithmic data-filters identify bad
prints, decimal errors, transposition errors and other data irregularities. The filters take advantage of the
fact that, since we are not producing data in real time, we have the capacity to look at the tick following
a suspected bad tick before we decide whether or not the tick is valid. The filters are proprietary and
are based upon recent tick volatility, moving standard deviation windows, and time of day. For a more
detailed explanation, see the high-frequency data filtering white paper on the TickData resources page
TickData.
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The respective contributions of the different types of jumps to total QV are shown in

Table 3. The contribution of jumps decreases as the sampling interval increases from 5 to

300 seconds. For SPY, the share of jumps decreases from 43.2% (5 seconds) to 14.3% (300

seconds).13 For the 20 stocks, the average jump share decreases from 67.6% to 29.8%. In

both cases, the decline is mainly due to the drop in the share of infinite jumps. The share

of infinite jumps in SPY drops from 32.6% using 5-second returns to 0.1% using 300-second

returns, and for the 20 stocks, the average share of infinite jumps drops from 34.2% to

0.2%. Hence, when returns are sampled every 300 seconds, the vast majority of jumps in

SPY and the 20 stocks are finite activity jumps. At this frequency, the small variations

that characterize jumps are close to Brownian increments. We find little evidence of

asymmetry in the shares of signed jumps. The Blumenthal-Getoor index or jump activity

index (β̂IJA),
14 which measures the activity of small increments, are consistent with the

estimated shares of finite and infinite jump components. In the case of SPY, the index is

1.45 using 5-second returns and 0.78 using 300-second returns, which implies that infinite

jumps are more important at higher frequencies.

Figure 1 plots the continuous and jump components of RV for SPY and the three stocks

– AMZN, HD and KO – with the largest, smallest and average RV. The days with jumps

are shown in red, and other days in blue. It is clear that there is considerable heterogeneity

in the level and timing of volatility. Although the highest spikes in volatility occur around

the dot-com and sub-prime crises (shaded areas), many other spikes in volatility are id-

iosyncratic. The 5- and 300-second autocorrelation functions of the SPY realized measures

based on noise-robust and standard measures are displayed in Figure 2. The SPY RVt and

Ĉt measures appear to be long-memory processes since their autocorrelations do not decline

exponentially. The ACF of the 5-second RVt and Ĉt measures (left-panel) lie below their

300-second counterparts (right-panel) – a hint that volatility forecasts using 300-second

realized measures may perform better than those using 5-second realized measures.

13The contribution of jumps to total QV is in line with those reported by Aı̈t-Sahalia and Jacod (2012),
who show that the levels of the continuous component of the 30 stocks within the Dow Jones Industrial
Average oscillate between 65% to 85%, and between 85% to 95% for the overall index.

14The jump activity index is estimated as in Jing et al. (2012).
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5.2 SPY Forecasting Results

Since we use the HAR-RV model as a benchmark for assessing the forecasting perfor-

mance of our extended HAR models, Table 4 sets out the in-sample coefficients, as well

as the in- and out-of-sample R2s and MSPEs, of the HAR-RV model for four forecast

horizons – h = 1 (day), h = 5 (week), h = 22 (month), h = 66 (quarter), using returns

sampled every 300 seconds. The significance of the coefficients is evaluated using Newey-

West HAC-robust standard errors, allowing for serial correlation of up to 5 (h = 1), 10

(h = 5), 44 (h = 22), and 132 (h = 66), since the random error term in the models is

serially correlated at least up to order h − 1. In following Andersen et al. (1999) and

Patton and Sheppard (2015), we estimate R2
oos as 1 minus the ratio of the out-of-sample

models-based MSPE to the out-of-sample MSPE from a forecast including only a constant.

The MSPE results are based on a pseudo out-of-sample rolling regression forecast using a

1000 day window.

All the coefficients in Table 4 are significant even at the three month horizon, confirming

the high persistence of volatility. The magnitude of the daily and weekly coefficients

decrease as we lengthen the forecast horizon. Although, the magnitude of the monthly

coefficient changes little with the horizons, its relative importance increases at longer

horizons.15

Summary forecasting results for extended HAR-CJ (jumps), HAR-CFJ (finite jumps),

and the HAR-CIJ (infinite jumps) models are presented in Table 5, also using 300 second

returns. In- and out-of-sample R2s and the MSPEs are presented for unsigned jumps,

positive signed jumps and negative signed jumps. Full results are available on request.

A few points about the coefficients estimates are worth noting. The restrictions that the

coefficients on finite and infinite jumps are the same, and that the coefficients on positive

and negative jumps are the same, are decisively rejected. In line with Andersen et al.

(2007a) and Patton and Sheppard (2015), overall jumps tend to reduce future volatility,

negative jumps tend to increase it and positive jumps to decrease it. Finite (infinite) jumps

tend to decrease (increase) future volatility.

15These results are well-documented in the literature, see Andersen et al. (2007a), Corsi (2009), and
Corsi et al. (2010) among others.
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Unsurprisingly, the in-sample R-squared statistics (R2
is) in Table 5 suggest that in-

corporating jumps as predictors results in a better fit for our models, outperforming the

benchmark HAR-RV across the four forecasting horizons under examination. The out-

of-sample R-squared statistics (R2
oos) show that extended HAR models outperform the

benchmark model at one day and one week horizons, and about half the time at longer

horizons. The models with positive jumps have higher R2
oos’s at all horizons. Turning

to the MSPE results, the forecasting performance of the extended HAR models is signif-

icantly better at one day and one week horizons, and better (significantly better) about

half (one quarter) of the time at the one-month and three-month horizons. Note that no

single extended HAR model outperforms all the others, a finding also reported in Patton

and Sheppard (2009), which suggests that model averages combining the information con-

tained in the different volatility forecasting models may generate further forecast gains.

See Section 6 below.

5.3 SPY Forecasting Results Using Standard and Noise-Robust

Realized Measures

We know that microstructure noise is important at higher frequencies, and the result-

ing attenuation bias may generate less accurate volatility forecasts than forecasts using

noise-robust measures, such as the ones discussed in Section 3.1 above. We examined

this issue in detail. Table 6 compares the forecasting performance of SPY extended HAR

volatility models using standard versus noise-robust realized measures identifying models

with significantly lower MSPEs than the benchmark HAR-RV model. The entries in the

top panel are based on forecasts using standard realized jump measures as explanatory

variables; the bottom panel entries are based on noise-robust measures. The entries are

relative MSPEs –The ratio of the MSPE of the proposed model to the MSPE of the corre-

sponding benchmark model– so ratios below one indicate more accurate rolling regression

forecasts.16 Models with significantly lower MSPE than the benchmark model, based on

16The MSPE results are based on pseudo out-of-sample, rolling regression forecast using 1,000 day
window. Most models are retained in the model confidence set (MCS); the small number of entries for
models that are not retained in the MCS are identified with a dagger (†). The MCS results are generated
using a 10-day block bootstrap and 5,000 replications.
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pair-wise Diebold and Mariano (1995, DM) tests, are starred. The DM tests show that

many of the extended HAR models in Table 6 forecast as well as, or better than, the

HAR-RV models, although there is considerable variation across sampling frequencies and

time horizon.

At the 5 and 60 second frequencies, the forecasts from models using noise-robust real-

ized jump measures are somewhat more accurate than forecasts based on regular realized

jump measures. Many models using 5 and 60 second standard volatility measures are

excluded from the MCS at longer horizons, confirming the importance of taking account

of microstructure noise at higher frequencies. Nevertheless, the MSPE numbers for the

benchmark HAR-RV model in the final row of Table 6 suggest that models using 300-

second volatility measures tend to give better forecast than models using 5- or 60-second

returns, irrespective of whether standard or noise-robust volatility measures are used.

5.4 Extended HAR Model Forecasting Results for the Twenty

S&P Stocks

Some results for the 20 S&P 500 stocks are presented in Table 7. The relative MSPE

entries (averaged across the 20 stocks) are shown in the body of the table, while the average

MSPEs for the benchmark HAR-RV models using standard realized measures are shown

in the final row of the table. The entries for models which are not retained in the MCS

at least 15 times (out of 20) are suffixed with a dagger (†). The relative MSPE entries

are more clustered around one than in Table 6.17 In addition, with the majority of the

models retained in the MCS at least 15 times, this indicates that the improvement in the

forecasting performance of extended models with jumps is less clearcut for the 20 stocks,

than it is for the SPY. At the 5 and 60-second frequencies, the results show that noise-

robust volatility measures work best. This is because noise-robust measures provide more

efficient estimators of the latent volatility process, thereby reducing the attenuation bias

on the autoregressive coefficients (see, e.g. Andersen et al., 2005; Bollerslev et al., 2016).

However, consistent with the results for SPY, forecasts using 300 second volatility measures

17The entries are also less dispersed, in part because we are reporting averages.
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are generally better than forecasts using 5 or 60 second-based volatility measures.18 In

addition, the relative MSPEs of the standard volatility measures are often lower than

those of the noise-robust measures.

No single extended HAR model with jumps dominates all the other models – the main

reason being the small number of systematic jumps across the 20 stocks.19 We find that,

on average, cojumps only contribute to 9% of the total jump component, which means that

most jumps are idiosyncratic. To illustrate, the left panel of Figure 3 shows the returns on

May 06, 2010, the day of the so-called Flash Crash, one of the few days when the stocks

jumped together. The movement in returns on that date is very different from returns on

a typical day such as December 23, 2003 (right-panel) in which only idiosyncratic jumps

are present. Since the idiosyncratic jumps are stock specific reactions to news, what it

is perceived as negative news for one stock might be positive news for another stock, so

generating jumps of different size and directions. Aı̈t-Sahalia and Xiu (2016) suggest that

cojumps stem from surprising news announcements that occur primarily before the open-

ing of the U.S. market. Amengual and Xiu (2018) note that downward intraday volatility

jumps in the S&P 500 index are often associated with a resolution of policy uncertainty,

mostly through statements from the FOMC meetings and speeches by the chair of the

Federal Reserve. Aı̈t-Sahalia et al. (2020) find that idiosyncratic jumps are related to id-

iosyncratic events such as earning disappointments. Given the rich information content of

the different jump classifications and since no single extended HAR model dominates, the

next section focuses on whether model averages forecasts consistently outperform the fore-

casts from the benchmark HAR-RV and the best extended HAR models across sampling

frequencies and forecasting horizons.

18The improvements of the 300-second based realized measures vis-à-vis 5- and 60-second returns are due
to noise-robust measures are sometimes derived under some (strong) assumptions about the microstructure
noise, and whenever (some of) these assumptions are not met in practice, the estimators turn out to be
inconsistent. Therefore, the 300-second returns offer enough statistical power to avoid distortions that
could arise from microstructure noise.

19We identify jumps using the co-exceedance procedure of Gilder et al. (2014), which relies on the
intersection of the univariate jump tests.

23



6 The Gains from Model Averaging

Hitherto, we have shown that a variety of extended HAR volatility models, that ac-

count for the nature and sign of jumps, generate significant improvements in forecasting

performance. However, as no single specification consistently outperforms the other mod-

els across horizons and frequencies, which suggests that model averaging might generate

further forecasting gains. Four simple approaches to assigning model averaging weights

are considered.20 The aim of model averaging is to exploit relevant information embedded

in the different forecasts, and produce an ensemble model that outperforms the bench-

mark HAR-RV model and, more importantly, the best single, extended HAR-RV jump

model. Our approaches follow the literature closely (see, e.g. Aiolfi et al., 2011; Aiolfi and

Timmermann, 2006; Bates and Granger, 1969; Elliott and Timmermann, 2016, and the

references therein).

We present model averaging results for the four sets of weights tabulated below –

weights minimizing the estimated variance of the prediction errors, inverse MSPE weights,

inverse MSPE rank weights and equal weights. In the first three cases, the weights are

recalculated every time a new set of rolling forecasts are generated, and we prune the set

of models under consideration by averaging only the models that are retained in the model

confidence set.

Weight Formula Models

Min. Prediction Error Variance wht = argmin
w

w′Σ̂h
tw s.t. ι′w = 1 MCS

Inverse MSPE wht,i =
(MSPEh

t,i)
−1∑

i∈MJ
(MSPEh

t,i)
−1 MCS

Inverse Rank wht,i =
(Rankht,i)

−1∑
i∈MJ

(Rankht,i)
−1 MCS

Equal Weights whi,t =
1
N

All

Note: Σ̂ht is the estimated, rolling window variance-covariance matrix of the set of
MCS retained horizon h volatility forecasting models at time t. ι is a vector of ones
representing each retained model. MSPEh

t,i and Rankht,i are the rolling window MSPEs
and MCS Ranks for the MCS retained horizon h forecasting model at time t. Finally,
N represents all the jump specifications used in this study.

We present model averaging results for SPY and four individual stocks chosen by the

20We experimented with more complicated model averaging procedures, but the results were similar to
those presented here. To conserve space, we do not report these experiments, but the details are available
on request.
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level of their jump activity. All the stocks have an estimated Blumenthal-Getoor index

in the range 0 to 1, so their returns include finite and infinite activity jumps, with finite

jumps dominating. BA and KO with jump activity of 0.58 and 0.91 are the extreme cases.

The relative MSPEs for the best extended HAR-RV model and the four model averaging

approaches are shown in Table 8. The MSPEs for each index or stock and forecast horizon

are measured relative to the MSPE of the corresponding HAR-RV model. The bold entries

are model averages with lower MSPEs than the MSPEs of both the HAR-RV and best

extended HAR models. The starred entries denote model averages with significantly lower

MSPEs than the MSPEs of the HAR-RV models. Double starred entries identify models

whose MSPEs are significantly lower than the MSPEs of both the benchmark HAR-RV and

the best extended HAR model. The four model averages generate forecasts that typically

outperform the benchmark model for the four forecast horizons examined: h = 1 (on-day),

h = 5 (one week), h = 22 (one month), h = 66 (one quarter). For example, in the case

of SPY with 300-second returns, the one-week relative MSPE of the best extended HAR

model is 0.753 as compared with a range of 0.693 to 0.715 for the four model averages.

The largest MSPE reductions are generally found at the one-week horizon, followed by the

one-month horizon.

We also compare the model averaging results for SPY using 60 and 300 second returns.

The 300-second model average forecasts dominate the forecasts using 60-second returns,

generating significantly lower MSPEs.21 These results also hold for the four stocks reported

here, and for the other 16 stocks. The 300-second model averaged MSPEs are generally

lower than the MSPEs of both the benchmark HAR-RV and best extended HAR mod-

els. In about a quarter of the cases, the MSPEs from the 300-second model average are

significantly lower than the MSPEs of the best extended HAR model.

In conclusion, model averaging the forecasts from extended HAR-RV models generally

result in lower MSPEs. The MCS procedure for pruning dominated models and the use of

time-varying weights are helpful. Simple weighting schemes, e.g. inverse MSPEs, work as

well as schemes that are more complicated (e.g. Patton and Sheppard, 2009).

21The 300-second forecasts also dominate the unreported model average forecasts using 5-second re-
turns.
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7 Robustness Check

7.1 Transaction-Time Sampled Volatility Measures

In this sub-section, we examine the volatility forecasting performance of alternative

jump measures based on a transaction-based sampling scheme. Relatively few studies

have considered alternative sampling schemes. For instance, Griffin and Oomen (2008)

and Oomen (2006b) study the properties of alternative RV measures using clock/calendar,

transaction and business time sampling, but they do not consider jumps. To the best of

our knowledge, only Patton and Sheppard (2015) examine the forecasting performance

of jump measures using transaction time sampling, but they do not compare the clock

and transaction time-based volatility components and the forecasting performance thereof.

We contribute to this literature in two ways. Firstly, we decompose clock and transaction-

based RV measures into their continuous and jump components, including their signed and

finite/infinite activity jump components. Secondly, we compare the volatility forecasting

performance of the clock and transaction time-based measures, using our extended HAR

model averaging frameworks.

For brevity, we only report results for SPY. The transaction-based volatility measures

are calculated using a 78 intraday returns sampling scheme as in Patton and Sheppard

(2015). This is the transaction-based equivalent of the 300-second/5-minute sampling

scheme, which is widely used in the literature. Intraday returns are calculated by fixing

the opening and closing prices, and recording the prices at business time ⌊ik⌋, where

i = 1, . . . , 79, k = N−1
79

, N is the number of unique date stamps per day, and ⌊.⌋ denotes

rounding down to the nearest integer.22

Table 9 shows that the transaction-based RV measure is primarily driven by its con-

tinuous part: the contribution of jumps to total QV is about 4.6% versus 14.3% for the

clock-based measures. Almost all the jumps are finite jumps, the same as for clock time,

and there is little difference in the contribution of positive and negative jumps. Although

most jumps are finite activity jumps, the smaller contribution of transaction time based

jumps to total QV implies a somewhat smaller jump activity index β̂IJA (0.708 versus

22Note that clock- and transaction-based RV descriptive statistics for SPY are very similar.
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0.778).

The relative MSPEs in Table 10 suggest that the forecasting performance of extended

HAR models using transaction-based measures is comparable to that of the benchmark

HAR-RV model, in sharp contrast to forecasting performance of extended HAR models

using clock-based measures. Similar to the clock-time results, the MSPEs of most of

the extended models are lower than the MSPE of the benchmark model at the one-day

horizon, although only three forecasts have significantly lower MSPEs. By contrast, as the

horizon increases, we only obtain a handful of statistically significant reductions in MSPEs.

Consequently, the model confidence set now includes all the models; since the forecasting

performance of the models is broadly similar, we cannot identify a set of superior models.

A comparison of clock- and transaction-time based SPY model averaging results is pre-

sented in Table 11 for daily, weekly, monthly, and quarterly horizons. With transaction-

based sampling, simple model averaging procedures (using MSPE, rank or equal weights)

generate statistically significant improvements in the MSPEs. However, the MSPE im-

provements are far smaller than those obtained with clock-based sampling, so the transaction-

time based MSPEs are always higher than their close-based counterparts. Based on these

SPY results, as well as results for the 20 stocks that are not reported, we conclude that

forecasts using volatility measures from transaction-based sampling of returns are inferior

to forecasts from clock-based sampling.

7.2 Mean Absolute Prediction Error (MAPE) Loss Function

Although we use the MSPE loss function for comparing forecasts, we checked the ro-

bustness of our findings using the alternative MAPE criterion. As shown by Hansen and

Lunde (2006a) and Patton (2011), the MSPE loss function ensures the ranking of various

forecasts is preserved when using a noisy volatility proxy. Nevertheless, Andersen and

Bollerslev (1998) and other authors in the volatility forecasting literature have expressed

concern that a few extreme observations may unduly distort forecasts evaluation and com-

parison exercises.23 As the MSPE loss function assigns more weight to large outliers, we

23Andersen and Bollerslev (1998) also argue that RV and related measures serve as proxies for daily
observed volatilities for all assets for which high-frequency data are available. Thus, volatility can now be
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consider the alternative MAPE loss function which is less sensitive to large forecast errors.

The MAPE is outlined as:

MAPE = S−1
h

Sh∑
s=1

∣∣∣RV h
s − R̂V

h

s

∣∣∣ , (23)

where RV h
s and R̂V

h

s are respectively the actual and pseudo out-of-sample forecasts of

RVt,t+h and Sh is the total number of out-of-sample forecasts from the series of rolling

window models.

The MAPE-based out-of-sample forecast comparisons for SPY and the average of the

20 stocks are set out in Tables 12 and 13 respectively. The format of these tables mirrors

that of Tables 6 and 7 in Section 5 above. The top (bottom) panels of both tables are

based on standard (noise-robust) realized jump measures. Models with significantly lower

MAPEs than the MAPE of the baseline HAR-RV model are starred, while a dagger (†)

identifies models that are not in the MCS.

Several conclusions can be drawn from these results. First, the performance of the

extended HAR models is, on average, superior to that of the benchmark HAR-RV model

at frequencies higher than 300 seconds. This finding holds true both for SPY and the

average of the 20 stocks. Second, at higher frequencies, forecasts using the noise-robust

realized jump measures tend to yield more accurate prediction than those based on stan-

dard realized jump measures. In addition, several models using 5 and 60 second standard

volatility measures are excluded from the MCS. Finally, the last rows of Tables 12 and 13

suggest that models using 300-second volatility measures generate more accurate forecasts

than models using 5- or 60-second returns. In sum, the MAPE results reported in this

sub-section corroborate the main findings of this paper using the MSPE loss function, so

we conclude that the forecasting gains afforded by the extended HAR models are robust

to the choice of loss function.

assumed to be quasi-observable, meaning that a broader range of loss functions may be considered besides
those that preserve rankings when using noisy volatility proxies.
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7.3 Forecast Comparisons Using a HAR-Q Benchmark Model

Bollerslev et al. (2016) argue that realized measures, especially the daily RV measures,

used in HAR style volatility forecasting models are measured with error which results in

attenuation bias. They note that, intuitively, the daily RV measure provides a stronger

signal for the next day’s volatility when measurement error is low and vice versa when

measurement error is high. Their HAR-Q model exploits this heteroskedasticity by allow-

ing the daily RV parameter in the HAR-RV model to vary over time as measurement error

varies:

RVt,t+h = β0 +
(
βd + βQRQ

1/2
t

)
RVt + βwRVt−5,t + βmRVt−22,t + ϵt,t+h, (24)

where the realized quarticity, RQt =
n

3

∑n
i=1 (∆

n
iX)4,24 proxies measurement error in daily

RV, and the associated parameter βQ is negative. As the RQ involves the estimation of

fourth order returns, the estimates may be very imprecise at higher 5- and 60-second

frequencies, so we confine our analysis to standard volatility measures using 300-second

returns.

The forecasting performance of HAR-Q models can sometimes dominate that of HAR-

RV models at shorter horizons, so the HAR-Q model serves as a useful alternative bench-

mark. In the HAR-Q model, days with high RV due to measurement error tend to be

followed by days with lower volatility, other things being equal. By contrast, as shown

in Section 5.2 and in line with previous findings in the literature (e.g., Andersen et al.,

2007a; Patton and Sheppard, 2015), days with jumps tend to be followed by days with

lower volatility. Since the HAR-Q model and our extended HAR models are focusing on

different features of the data, it is interesting to compare their forecasting performance.

The relative performance of our extended HAR models vis-à-vis the HAR-Q benchmark

are shown in Table 14. The results for SPY are shown on the left (Panel A), and for the

24We have also considered the tri-power quarticity (TPQ) of Barndorff-Nielsen and Shephard (2006).
In contrast to the standard RQ, the TPQ is a consistent estimator for the integrated quarticity (IQ) in the
presence of jumps. The performance of the HAR-Q model based on the TPQ estimator is qualitatively
similar to that using the RQ. Thereby, we only report results using the latter measure. This finding is in
line with Bollerslev et al. (2016), who reach similar conclusions using various IQ estimators. The results
based on the TPQ estimator are available upon request.
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average of our 20 stocks on the right (Panel B). Relative MSPEs (MAPEs) are reported

in the top (bottom) portions of the panels and, to aid comparison, results for the HAR-

RV model are also reported. The extended HAR models tend to forecast better than the

benchmark HAR-Q model, especially at the weekly and monthly horizons (h = 5 and

22 days), even though many of the MSPE and MAPE reductions are not statistically

significant. A plausible explanation for the better performance at the weekly and monthly

horizons relates to the fact that the daily coefficient becomes less relevant as the forecasting

horizon increases, as shown in Table 4. Therefore, the HAR-Q model loses accuracy and

efficiency relative to the extended HAR models, which consider jump measures at various

horizons, successfully exploiting the information content of jumps at different time periods.

8 Conclusion

We examine the gains in forecasting the volatility of equity prices by decomposing

jumps by activity (finite/infinite) and by sign using high-frequency data for SPY and

20 individual stocks. Our key findings are as follows. Quadratic variation contains a

significant jump component, even at the 300-second frequency. The contribution of infinite

jumps is greater than that of finite jumps at higher frequencies. However, at the 300-second

frequency, jumps are mainly of finite activity.

Extended HAR style models, incorporating a variety of jump activity and sign mea-

sures, generate statistically significant in-sample and out-of-sample improvements for both

SPY and the 20 individual stocks we examined, contrary to the out-of-sample forecast find-

ings in Caporin (2022) and a number of other papers noted in the introduction.25 Noise-

robust realized measures improve the forecasts of future volatility at higher frequencies.

However, since market microstructure noise declines as the sampling interval increases, the

forecasting advantage of the noise-robust jump volatility measures also diminishes.

The out-of-sample forecast results suggest that the lowest MSPEs are obtained using

25Further research is required to explain the difference in the out-of-sample forecast findings. For
example, our study differs from that of Caporin (2022) in many respects, including the focus on more
liquid stocks, different jump measures, the decomposition of jumps into signed finite and infinite activity
jumps, and the inclusion of longer lags on the jumps in the forecasting models.
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returns sampled every 300 seconds, rather than 5 or 60 seconds. This result holds true

across the four forecast horizons examines (ranging from h = 1 to h = 66 days ahead),

and irrespective of whether noise-robust volatility measures are, or are not, used. In terms

of MSPEs, there is little to choose between standard or noise-robust measures at this

frequency. Additional robustness checks showed that our volatility forecasting results are

robust to replacing the MSPE loss function with a MAPE loss function, as well as replacing

the baseline HAR-RV model with a baseline HAR-Q model.

We also examine the volatility forecasting performance of alternative jump measures

based on a transaction time-based sampling scheme. The transaction-based RV mea-

sures are mainly driven by their continuous component, and finite jumps dominate infinite

jumps. Using transaction-based volatility measures, the overall forecasting performance of

extended HAR models is similar to that of the benchmark HAR-RV model. Our conclu-

sion is that forecasts using transaction time-based realized volatility and jump measures

are inferior to forecasts using clock-based sampling measures. Our findings underscore the

importance of the appropriate choice of sampling scheme.

In the absence of a single dominant forecasting model, we investigate whether various

model averaging procedures generate significant forecasting gains. In many cases, we

prune the set of models using the MCS of Hansen et al. (2011) to eliminate dominated

models. We find that simple model averaging procedures generally result in significant

gains in forecasting performance vis-à-vis the single best extended HAR model, which in

turn outperforms the benchmark HAR-RV model. For example, model averaged results

using equal weights, or the normalized inverse MSPE weights in Bates and Granger (1969)

perform as well as model averaged results where the weights minimize the variance of the

prediction error.
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A Tables and Figures

Table 1: Noise-Robust ABD Test – Size and Power Simulations

ξ = 0.01 ξ = 0.1
5-Sec. 60-Sec. 300-Sec. 5-Sec. 60-Sec. 300-Sec.

Size

ABD Noise-robust 0.059 0.047 0.035 0.051 0.021 0.016
ABD 0.030 0.055 0.128 0.029 0.046 0.084

Power – Compound Poisson (Finite Jumps)

ABD Noise-robust 0.999 0.991 0.941 0.963 0.910 0.892
ABD 0.989 0.992 0.988 0.394 0.546 0.622

Power – Cauchy Process (Infinite Jumps)

ABD Noise-robust 0.956 0.815 0.746 0.910 0.717 0.546
ABD 0.736 0.770 0.768 0.482 0.572 0.616

Note: The table reports the empirical size and power of the ABD test of Andersen
et al. (2007b), and our modified, noise-robust version. ξ is the noise-to-signal ratio
used to simulate market microstructure noise. The theoretical size of the tests is
5% (α = 0.05). The models and Monte Carlo settings are laid out in Section 3.2 of
the paper.

Table 2: Standard vs. Noise-Robust Realized Semivariances – Finite Sample MSE Perfor-
mance

ξ = 0.01 ξ = 0.1
5-Sec. 60-Sec. 300-Sec. 5-Sec. 60-Sec. 300-Sec.

RS+ 9.568 0.067 0.003 967.498 6.737 0.274
RS− 9.589 0.069 0.004 968.441 6.801 0.287
TSRS+ 0.001 0.001 0.002 0.112 0.014 0.008
TSRS− 0.001 0.001 0.002 0.113 0.016 0.009

Note: The table entries are the MSEs of the realized and two-scale real-
ized semivariances in the simulation described in Section 3.2 of the paper.
The DGP is a Heston model augmented with a finite activity, compound
Poisson jumps. ξ represents the noise-to-signal ratio used to simulate
the market microstrcture noise. Second-by-second prices were simulated
5,000 times for 5 days with 6.5 trading hours per day.
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Table 3: Estimated Contribution of Signed, Finite and Infinite Activity Jumps to QV

SPY Avg. Stocks AMZN BA BFB CAT CHL COST CVX
5s 60s 300s 5s 60s 300s 300s 300s 300s 300s 300s 300s 300s

Continuous 56.798 88.474 85.725 32.399 65.612 70.198 73.426 72.586 55.143 74.899 62.182 69.525 80.277
Jumps 43.202 11.526 14.275 67.601 34.388 29.802 26.574 27.414 44.857 25.101 37.818 30.475 19.723

Pos. Jumps 21.847 6.450 8.257 33.946 16.535 14.992 15.208 14.362 22.474 12.574 17.978 15.963 9.849
Neg. Jumps 21.355 5.075 6.018 33.653 17.853 14.810 11.366 13.052 22.383 12.527 19.841 14.512 9.874

Finite Jumps 10.602 10.419 14.156 33.394 32.417 29.597 26.410 27.228 44.649 24.852 37.314 30.357 19.576
Infinite Jumps 32.600 1.106 0.118 34.207 1.971 0.205 0.165 0.187 0.208 0.249 0.504 0.118 0.147

Pos. Finite Jumps 5.584 5.941 8.219 17.028 15.539 14.883 15.127 14.248 22.380 12.465 17.681 15.892 9.766
Neg. Finite Jumps 5.017 4.478 5.937 16.366 16.878 14.714 11.283 12.979 22.269 12.387 19.633 14.465 9.810
Pos. Infinite Jumps 16.263 0.509 0.038 16.918 0.996 0.108 0.081 0.114 0.093 0.110 0.296 0.070 0.083
Neg. Infinite Jumps 16.338 0.597 0.080 17.287 0.975 0.096 0.084 0.073 0.115 0.140 0.208 0.047 0.064

β̂IJA 1.454 1.056 0.778 1.455 1.040 0.723 0.461 0.576 0.802 0.621 0.763 0.697 0.748

DOW EXC GILD GS HD JNJ JPM KO OKE PG SO UPS WMT
300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s

Continuous 68.881 69.488 63.203 75.979 73.935 70.611 76.122 74.208 59.168 71.147 70.791 68.292 74.102
Jumps 31.119 30.512 36.797 24.021 26.065 29.389 23.878 25.792 40.832 28.853 29.209 31.708 25.898

Pos. Jumps 15.029 15.506 18.911 12.311 13.875 12.919 12.926 12.498 19.059 15.416 14.486 15.477 13.013
Neg. Jumps 16.090 15.006 17.886 11.710 12.190 16.470 10.952 13.294 21.773 13.438 14.723 16.231 12.885

Finite Jumps 30.849 30.400 36.458 23.941 25.940 29.279 23.822 25.519 40.602 28.777 28.642 31.527 25.802
Infinite Jumps 0.270 0.112 0.339 0.080 0.125 0.111 0.056 0.273 0.230 0.076 0.568 0.181 0.096

Pos. Finite Jumps 14.830 15.434 18.670 12.297 13.843 12.832 12.899 12.341 18.982 15.365 14.274 15.373 12.968
Neg. Finite Jumps 16.019 14.966 17.788 11.644 12.097 16.447 10.923 13.178 21.620 13.413 14.368 16.154 12.834
Pos. Infinite Jumps 0.198 0.072 0.241 0.014 0.032 0.088 0.028 0.157 0.077 0.051 0.213 0.104 0.045
Neg. Infinite Jumps 0.071 0.040 0.098 0.066 0.093 0.023 0.029 0.116 0.153 0.025 0.355 0.077 0.051

β̂IJA 0.579 0.725 0.522 0.610 0.665 0.971 0.606 0.913 0.645 0.955 0.878 0.895 0.824

Note: The table reports the estimated percentage contribution of the different jump measures to QV. Results using 5-, 60-, and 300-
second returns are shown for SPY and the average of the 20 stocks. The results for the individual stocks were estimated using 300-second
returns. β̂IJA is the estimated Blumenthal-Getoor index of jump activity (see, Jing et al., 2012, for more details and settings).
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Table 4: HAR-RV Benchmark – SPY, 300 Second Returns

h = 1 h = 5 h = 22 h = 66

β0 0.095∗ 0.148∗∗ 0.288∗∗∗ 0.527∗∗∗

βd 0.246∗∗ 0.184∗∗∗ 0.103∗∗∗ 0.061∗∗∗

βw 0.422∗∗∗ 0.347∗∗∗ 0.322∗∗∗ 0.200∗∗∗

βm 0.238∗∗ 0.323∗∗∗ 0.290∗∗∗ 0.215∗∗∗

R2
(in) 0.512 0.629 0.562 0.337

R2
(oos) 0.443 0.673 0.707 0.470

MSPE 3.102 1.322 0.944 1.262

Note: The table reports the OLS coefficient estimates

and in- and out-of-sample R-squared for HAR-RV forecast-

ing regressions for SPY RV at the daily (h = 1), weekly

(h = 5), monthly (h = 22) and quarterly (h = 66) hori-

zons. The RV measures are calculated using 300 second

returns. The significance of the coefficients is based on

Newey-West HAC standard errors, allowing for serial cor-

relation up to order 5, 10, 44 or 132 for horizons h = 1, 5, 22

and 66 trading days. The superscripts ∗,∗∗, and ∗∗∗ denote

statistical significance at the 10%, 5% or 1% levels. The

out-of-sample R-squared, R2
oos, is calculated as one minus

the ratio of the MSPE from the HAR-RV model to the

MSPE from a model that only has an intercept.

Table 5: SPY Extended HAR Regressions Using Total, Positive and Negative Signed
Jumps

h = 1 h = 5 h = 22 h = 66 h = 1 h = 5 h = 22 h = 66 h = 1 h = 5 h = 22 h = 66
HAR-CJ HAR-CJ+ HAR-CJ−

R2
(in)

0.555 0.666 0.572 0.338 0.541 0.668 0.578 0.341 0.523 0.664 0.612 0.362

R2
(oos)

0.493 0.747 0.728 0.465 0.450 0.754 0.739 0.489 0.511 0.724 0.690 0.445

MSPE 2.821⋆ 1.017⋆ 0.872⋆ 1.274 3.059 0.995⋆ 0.840⋆ 1.218⋆ 2.720⋆ 1.110⋆ 0.994 1.318

HAR-CFJ HAR-CFJ+ HAR-CFJ−

R2
(in)

0.555 0.666 0.572 0.338 0.541 0.668 0.577 0.341 0.523 0.665 0.614 0.363

R2
(oos)

0.493 0.747 0.728 0.464 0.449 0.753 0.734 0.478 0.511 0.724 0.684 0.446

MSPE 2.822⋆ 1.018⋆ 0.874⋆ 1.276 3.066 0.998⋆ 0.857⋆ 1.243 2.721⋆ 1.112⋆ 0.994 1.317

HAR-CIJ HAR-CIJ+ HAR-CIJ−

R2
(in)

0.512 0.630 0.563 0.340 0.512 0.630 0.576 0.381 0.512 0.629 0.563 0.339

R2
(oos)

0.511 0.709 0.644 0.452 0.509 0.711 0.652 0.475 0.512 0.712 0.651 0.454

MSPE 2.722⋆ 1.173⋆ 1.151 1.316 2.731⋆ 1.168⋆ 1.125 1.264 2.714⋆ 1.162⋆ 1.121 1.299

Note: See Notes to Table 4. Bold in-sample and out-of-sample R-squared entries indicate that the fit of the proposed models is
better than that of the benchmark HAR-RV model in Table 4. Bold MSPE entries are lower than the MSPEs of the benchmark
models. Significantly lower MSPE entries at the 5% level are starred. The complete table of coefficient estimates is available on
request.
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Table 6: SPY Relative MSPEs by Frequency – Standard vs. Noise-Robust Measures

h = 1 (day) h = 5 (week) h = 22 (month) h = 66 (quarter)

5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec.

Panel A: Standard Jump Measures

HAR-RV 1.000 1.000 1.000 1.000 1.000 1.000† 1.000† 1.000 1.000 1.000† 1.000 1.000
HAR-CJ 1.253† 0.755∗ 0.909∗ 1.029 0.990 0.770∗ 0.980∗ 1.172† 0.924∗ 0.968 1.167† 1.010
HAR-CFJ 0.871∗ 0.752∗ 0.910∗ 1.181† 0.992 0.770∗ 1.051 1.178† 0.926∗ 1.010† 1.171† 1.011
HAR-CIJ 1.124† 1.060 0.878∗ 1.022 1.034 0.888∗ 0.969∗ 1.001 1.220† 0.940∗ 0.993 1.043
HAR-CJ+ 0.903∗ 0.993 0.986 1.165† 0.969 0.753∗ 1.147† 0.894∗ 0.891∗ 1.074† 0.977 0.965∗

HAR-CJ− 0.848∗ 0.969 0.877∗ 1.124 1.017 0.840∗ 0.841∗ 0.936∗ 1.053 0.917∗ 1.020 1.045
HAR-CFJ+ 0.925∗ 0.993 0.988 1.175 0.971∗ 0.755∗ 1.198† 0.877∗ 0.908∗ 1.096† 0.959 0.985
HAR-CFJ− 0.915∗ 0.969∗ 0.877∗ 1.215† 1.035 0.841∗ 0.982 0.959∗ 1.054 1.035† 1.020 1.044
HAR-CIJ+ 0.910∗ 1.055 0.881∗ 1.151 1.020 0.884∗ 1.086† 0.964∗ 1.192† 1.136† 0.940∗ 1.002
HAR-CIJ− 0.729∗ 1.059 0.875∗ 0.996 1.030 0.879∗ 1.054† 0.921∗ 1.189† 0.939∗ 0.977∗ 1.029

Panel B: Noise-Robust Jump Measures

HAR-RV 0.843∗ 0.907∗ 1.009 0.882∗ 0.976 0.962 0.821∗ 1.031 1.154 0.893∗ 1.013 1.014
HAR-CJ 0.768∗ 0.966 1.015 0.865∗ 1.010 0.962 0.977 1.044 1.145 0.988 0.996 0.906∗

HAR-CFJ 0.775∗ 0.960∗ 1.015 0.867∗ 1.060 0.958∗ 0.987 1.031 1.143 0.921∗ 0.925∗ 1.032
HAR-CIJ 0.791∗ 0.980 1.018 0.890∗ 1.025 0.965 0.803∗ 1.073 1.179 0.875∗ 1.016 0.998
HAR-CJ+ 0.851∗ 0.684∗ 1.015 0.884∗ 0.930∗ 0.960 0.838∗ 0.907∗ 1.145 0.926∗ 1.037 0.991
HAR-CJ− 0.870∗ 0.852∗ 1.013 0.828∗ 0.889∗ 0.953∗ 0.772∗ 0.912 1.135 0.899∗ 0.968 0.997
HAR-CFJ+ 0.866∗ 0.677∗ 1.015 0.895∗ 0.889∗ 0.960 0.861∗ 0.938∗ 1.145 0.919∗ 1.037 0.990
HAR-CFJ− 1.111† 0.852∗ 1.013 0.882∗ 0.894∗ 0.953∗ 0.786∗ 0.902∗ 1.135 0.931∗ 0.953 0.753∗

HAR-CIJ+ 0.794∗ 0.972 1.026 0.875∗ 1.005 0.977 0.841∗ 1.166 1.164 0.930∗ 1.038 0.994
HAR-CIJ− 1.009 0.958 1.016 0.793∗ 1.015 0.961 0.794∗ 0.947∗ 1.137 0.852∗ 0.941∗ 1.000

Memo:

HAR-RV MSPE 3.364 4.550 3.102 1.553 1.350 1.322 1.443 1.025 0.944 1.778 1.344 1.262

Note: The relative MSPE ratios are the ratios of the MSPEs of the extended HAR models using standard volatility measures (top panel) or noise-robust
measures (bottom panel) relative to the benchmark HAR-RV models employing standard measures. The starred MSPE entries indicate statistically
significant reductions in the MSPEs at the 5% level. Entries with a dagger, †, denote models not in the MCS. The MSPE and MCS results are
respectively based on rolling regression using 1,000 observations and a 10-day block bootstrap with 5,000 replications.
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Table 7: Twenty Stock averages of Relative MSPEs – Standard vs. Noise-Robust Measures

h = 1 (daily) h = 5 (week) h = 22 (month) h = 66 (quarter)

5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec.

Panel A – Standard Jump Measures

HAR-RV 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000† 1.000 1.000
HAR-CJ 0.999 0.991 0.972 0.950 0.916 0.933 0.929 0.942 0.970 0.928 0.958 0.995
HAR-FJ 1.057 0.984 0.973 1.048† 0.916 0.934 1.064† 0.943 0.974 1.043 0.952 0.997
HAR-IJ 1.010 0.973 0.940 0.986 0.955 0.942 1.035 1.010 1.063 1.007† 1.014† 1.037
HAR-CJ+ 1.044 1.000 0.968 1.098† 0.939 0.945 1.203† 0.994 1.038 1.127† 1.004† 1.033
HAR-CJ− 1.063 1.018 0.932 1.038 0.943 0.934 1.144† 0.970 1.026 1.078† 0.997† 1.018
HAR-CFJ+ 1.055† 0.999 0.969 1.153† 0.940 0.945 1.267† 0.994 1.038 1.173† 1.004 1.031
HAR-CFJ− 1.103† 0.984 0.932 1.115† 0.938 0.937 1.228† 0.970 1.030 1.144† 0.997† 1.016
HAR-CIJ+ 1.044 0.979 0.939 1.090† 0.966 0.946 1.189† 1.010 1.080 1.129† 1.004† 1.042
HAR-CIJ− 1.011 0.982 0.947 1.071† 0.960 0.945 1.213† 1.005 1.091 1.137† 1.006† 1.062

Panel B – Noise-Robust Jump Measures

HAR-RV 0.966 0.916 0.969 0.975 1.017 0.998 0.975 1.081 1.138 0.956† 1.050 1.032†

HAR-CJ 0.958 0.935 0.975 0.934 0.975 0.990 0.958 1.077 1.135 0.949 1.040 0.962
HAR-FJ 0.980 0.939 0.976 0.962 1.003 0.996 0.966 1.082 1.075 0.882 0.963 0.994
HAR-IJ 0.969 0.926 0.970 0.956 1.022 0.985 0.943 1.064 1.122 0.905 1.042 1.021
HAR-CJ+ 0.955 0.986 0.978 0.962 1.008 0.991 0.981 1.082 1.092 0.956 1.042 1.017†

HAR-CJ− 0.973 0.943 0.961 0.950 0.984 0.994 0.938 1.043 1.126 0.936† 1.030 1.019
HAR-CFJ+ 0.947 0.987 0.980 0.952 1.010 0.993 0.967 1.086 1.091 0.924† 1.044 1.014
HAR-CFJ− 0.963 0.938 0.962 0.962 0.984 0.994 0.948 1.047 1.107 0.945† 1.031 1.024
HAR-CIJ+ 0.972 0.926 0.950 0.957 1.022 0.994 0.966 1.073 1.091 0.952† 1.045 1.008
HAR-CIJ− 0.964 0.935 0.948 0.948 1.025 0.986 0.969 1.061 1.116 0.943† 1.037 1.033

Memo:

HAR-RV MSPE 373.1364 54.8865 22.7444 85.5808 16.9684 9.9258 27.0842 8.8123 6.3931 17.2674 7.9011 6.2917

Note: The relative MSPE entries are the 20 stock average ratios of the MSPEs of the extended HAR models using standard volatility measures (top
panel) or noise-robust measures (bottom-panel) relative to the MSPEs of HAR-RV models employing standard measures. The entries with a dagger,
†, denote models which were retained in the MCS for fewer than 15 stocks. The MSPE and MCS results are respectively based on rolling regression
using 1,000 observations and a 10-day block bootstrap with 5,000 replications.
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Table 8: Model Averaging Results – Relative MSPEs at Different Horizons for SPY, BA,
BFB, COST and KO

h = 1 h = 5 h = 22 h = 66 h = 1 h = 5 h = 22 h = 66
SPY – 300 seconds SPY – 60 seconds

Best Extended HAR 0.875∗ 0.753∗ 0.891∗ 0.965∗ 0.752∗ 0.969 0.877 0.940∗

Avg. – Min Var Weights 0.987 0.693∗∗ 0.895∗ 0.966∗ 0.812∗ 0.977 0.940∗ 0.971∗

Avg. – MSPE Weights 0.879∗ 0.706∗∗ 0.862∗∗ 0.919∗∗ 0.875∗ 0.914∗∗ 0.850∗ 0.965∗

Avg. – Rank Weights 0.910∗ 0.715∗ 0.845∗∗ 0.873∗∗ 0.880∗ 0.923∗ 0.846∗ 0.986
Avg. – Equal Weights 0.873∗ 0.712∗ 0.876∗ 0.928∗ 0.877∗ 0.914∗∗ 0.852∗ 0.964∗

Memo: HAR-RV MSPE 3.102 1.322 0.944 1.262 4.550 1.350 1.025 1.344

BA – 300 seconds BFB – 300 seconds

Best Extended HAR 0.981 0.937 0.993 0.864∗ 0.924∗ 0.836∗ 0.822∗ 0.876∗

Avg. – Min Var Weights 0.992 0.905∗∗ 1.083 1.001 0.969∗ 0.845∗ 0.751∗∗ 0.812∗∗

Avg. – MSPE Weights 0.972∗ 0.906∗ 0.915∗∗ 0.959∗ 0.926∗ 0.823∗ 0.814∗ 0.856∗∗

Avg. – Rank Weights 0.976∗ 0.923∗ 0.928∗∗ 0.980 0.936∗ 0.820∗ 0.810∗∗ 0.847∗∗

Avg. – Equal Weights 0.972∗ 0.906∗ 0.919∗∗ 0.961∗ 0.926∗ 0.823∗ 0.816∗ 0.878∗

COST – 300 seconds KO – 300 seconds

Best Extended HAR 0.958∗ 0.879∗ 0.925∗ 0.957∗ 0.814∗ 0.709∗ 0.882∗ 0.939∗

Avg. – Min Var Weights 1.016 0.985 0.881∗∗ 0.950∗ 0.923∗ 0.695∗∗ 0.837∗∗ 0.916∗

Avg. – MSPE Weights 0.962∗ 0.871∗ 0.920∗ 0.958∗ 0.817∗ 0.713∗ 0.888∗ 0.975∗

Avg. – Rank Weights 0.969∗ 0.856∗ 0.907∗∗ 0.945∗∗ 0.811∗ 0.686∗ 0.829∗∗ 0.950∗

Avg. – Equal Weights 0.962∗ 0.873∗ 0.922∗ 0.960∗ 0.817∗ 0.723∗ 0.914∗ 0.983∗

Note: The table reports the relative MSPE, the ratio of MSPE of the model indicated in the first column to the MSPE
of the benchmark HAR-RV, in both cases using standard volatility measures as opposed to noise-robust measures. The
best models refers to the min. MSPE model from the set of extended HAR models presented in Section 4. The bold
entries are model averages with lower MSPEs than the MSPEs of both the HAR-RV and the best extended HAR models.
The starred entries denote model averages with significantly lower MSPEs than the benchmark HAR-RV models, whereas
doubled starred (superscript ∗∗) entries identify models whose MSPEs are significantly lower than the MSPEs of both the
benchmark HAR-RV and the best extended HAR model.
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Table 9: Estimated Contribution of Jumps to QV – Comparison of Clock and Transaction
Time Sampling Results

Clock Time Transaction Time
Sampling Sampling

Continuous 85.725 95.413
Jumps 14.275 4.587

Pos. Jumps 8.257 2.279
Neg. Jumps 6.018 2.308

Finite Jumps 14.156 4.503
Infinite Jumps 0.118 0.084

Pos. Finite Jumps 8.219 2.232
Neg. Finite Jumps 5.937 2.271
Pos. Infinite Jumps 0.038 0.047
Neg. Infinite Jumps 0.080 0.038

β̂IJA 0.778 0.708

Note: The table reports the contribution of the differ-
ent realized jumps to QV using 300 second clock and
transaction-based (78 ticks per interval) sampling.

Table 10: SPY Volatility Forecasting Performance – Transaction-Based Sampling Results

h = 1 (day) h = 5 (week) h = 22 (month) h = 66 (quarter)

HAR-RV 1.000 1.000 1.000 1.000
HAR-CJ 0.973∗ 1.114 1.030 1.023
HAR-CFJ 0.973∗ 1.114 1.030 1.022
HAR-CIJ 0.981 0.999 1.061 1.017
HAR-CJ+ 1.037 1.119 0.956∗ 0.971∗

HAR-CJ− 0.990 1.003 1.036 1.012
HAR-CFJ+ 1.037 1.119 0.956∗ 0.971∗

HAR-CFJ− 0.990 1.003 1.036 1.012
HAR-CIJ+ 0.981∗ 0.996 1.052 1.011
HAR-CIJ− 0.980∗ 0.997 1.064 1.016

Memo: HAR-RV MSPE 3.724 1.500 1.071 1.349

Note: The Table reports the relative MSPE of the extended HAR SPY volatility forecasting
models at different horizons. The relative MSPEs are the ratio of the MSPEs of the extended
HAR models relative to the benchmark HAR-RV model. The starred entries indicate statisti-
cally significant reductions in MSPE identified by the Diebold and Mariano (1995) test using
a 5% significance level.
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Table 11: SPY Model averaging Relative MSPEs – Comparison of Clock and Transaction-
Based Sampling Results

300 second, Clock-Based Sampling Transaction-Based Sampling
h = 1 h = 5 h = 22 h = 66 h = 1 h = 5 h = 22 h = 66

HAR-RV benchmark 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best Extended HAR 0.875∗ 0.753∗ 0.891∗ 0.965∗ 0.973∗ 0.996 0.956∗ 0.971∗

Avg. – Min Var Weights 0.987 0.693∗∗ 0.895∗ 0.966∗ 1.009 0.995 0.921∗∗ 1.001
Avg. – MSPE Weights 0.879∗ 0.706∗∗ 0.862∗∗ 0.919∗∗ 0.926∗∗ 0.950∗∗ 0.889∗∗ 0.961∗

Avg. – Rank Weights 0.910 0.715∗ 0.845∗∗ 0.873∗∗ 0.969∗ 0.957∗∗ 0.855∗∗ 0.943∗∗

Avg. – Equal Weights 0.873∗ 0.712∗ 0.876∗ 0.928∗∗ 0.937∗∗ 0.954∗∗ 0.914∗∗ 0.963∗

Memo:

HAR-RV MSPE 3.102 1.322 0.944 1.262 3.724 1.500 1.071 1.349

Note: The table compares the forecasting performance of the extended HAR SPY volatility forecasting models at
different horizons h using clock and transaction based realized measures. The clock-based results use 300 second
returns. The relative MSPEs are the ratio of the MSPEs of the models indicated in the first column to the MSPE
of the benchmark HAR-RV model. The bold entries are models averages with lower MSPEs than the MSPEs of
both the HAR-RV and the best extended model. The starred entries denote model averages with significantly lower
MSPEs than the benchmark HAR-RV models, whereas doubles starred (∗∗) entries identify models whose MSPEs
are significantly lower then the MSPEs of both the benchmark HAR-RV and the best extended HAR model.
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Table 12: SPY Relative MAPEs by Frequency – Standard vs. Noise-Robust Measures

h = 1 (day) h = 5 (week) h = 22 (month) h = 66 (quarter)
5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec.

Panel A: Standard Jump Measures

HAR-RV 1.000 1.000† 1.000 1.000 1.000 1.000† 1.000† 1.000† 1.000 1.000 1.000 1.000
HAR-CJ 1.095 0.979∗ 0.993 1.039 1.023 0.972∗ 1.013† 1.074† 0.983 1.015 1.127† 1.000
HAR-CFJ 1.199† 0.980 0.994 1.232† 1.029 0.973∗ 1.127† 1.079† 0.983 1.059† 1.134† 1.001
HAR-CIJ 1.030 1.005† 0.957∗ 0.984 1.011 0.971∗ 0.924∗ 0.991† 1.039 0.881∗ 1.008 1.034
HAR-CJ+ 1.200† 1.014† 1.019 1.188† 0.985 0.977 1.084† 0.946∗ 0.996 1.046† 0.992 0.988∗

HAR-CJ− 1.072 0.959∗ 0.951∗ 1.088 0.955∗ 0.993 0.968∗ 0.947∗ 0.972∗ 0.976∗ 0.997 1.004
HAR-CFJ+ 1.218† 1.014† 1.019 1.199† 0.987 0.978 1.108† 0.938∗ 0.997 1.037 0.984 0.991
HAR-CFJ− 1.259† 0.965∗ 0.953∗ 1.259† 0.960∗ 0.996† 1.091† 0.954∗ 0.971∗ 1.032† 1.001 1.002
HAR-CIJ+ 1.163† 0.992† 0.950∗ 1.171† 0.994 0.959∗ 1.079† 0.973∗ 1.012 1.036† 0.970∗ 1.004
HAR-CIJ− 0.922∗ 0.998† 0.955∗ 0.957∗ 0.993 0.960∗ 0.946∗ 0.974∗ 1.026 0.927∗ 0.991 1.010

Panel B: Noise-Robust Jump Measures

HAR-RV 0.943∗ 0.987 0.987 0.932∗ 0.990 0.989 0.931∗ 0.982 1.004 0.906∗ 0.971∗ 0.994
HAR-CJ 0.932∗ 1.022 1.023 0.927∗ 0.997 1.041 0.952∗ 0.969∗ 1.032 0.955∗ 0.967∗ 0.999
HAR-CFJ 0.952∗ 1.024 1.023 0.966∗ 1.012 1.037 0.998 0.965∗ 1.030 0.950∗ 0.946∗ 0.966∗

HAR-CIJ 0.915∗ 0.973∗ 0.997 0.886∗ 0.974 0.995 0.824∗ 0.982∗ 1.018 0.861∗ 0.978 1.009
HAR-CJ+ 0.972∗ 0.944∗ 0.999 0.956∗ 1.001 1.001 0.937∗ 0.959∗ 1.011 0.920∗ 0.977 1.013
HAR-CJ− 0.902∗ 0.968∗ 1.000 0.885∗ 0.975 1.011 0.870∗ 0.917∗ 1.028 0.886∗ 0.932∗ 0.982
HAR-CFJ+ 1.007 0.947∗ 0.999 0.974∗ 1.003 1.001 0.950∗ 0.972∗ 1.006 0.911∗ 0.973∗ 1.001
HAR-CFJ− 1.036 0.978∗ 0.999 1.004 0.988 1.009 0.942∗ 0.929∗ 1.025 0.920∗ 0.935∗ 0.982∗

HAR-CIJ+ 0.951∗ 0.970∗ 1.001 0.947∗ 0.978 1.001 0.933∗ 1.009 0.995 0.909∗ 0.978∗ 0.940∗

HAR-CIJ− 0.890∗ 0.965∗ 0.999 0.836∗ 0.981 0.994 0.848∗ 0.965∗ 1.004 0.835∗ 0.946∗ 0.989

Memo:

HAR-RV MAPE 0.463 0.448 0.441 0.489 0.401 0.399 0.631 0.471 0.460 0.767 0.568 0.562

Note: The relative MAPE ratios are the ratios of the MAPEs of the extended HAR models using standard volatility measures (top panel) or noise-robust
measures (bottom panel) relative to the benchmark HAR-RV models employing standard measures. The starred MAPE entries indicate statistically
significant reductions in the MAPEs at the 5% level. Entries with a dagger, †, denote models not in the MCS. The MAPE and MCS results are
respectively based on rolling regression using 1,000 observations and a 10-day block bootstrap with 5,000 replications.
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Table 13: Twenty Stock averages of Relative MAPEs – Standard vs. Noise-Robust Measures

h = 1 (day) h = 5 (week) h = 22 (month) h = 66 (quarter)
5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec.

Panel A: Standard Jump Measures

HAR-RV 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000† 1.000 1.000
HAR-CJ 0.960 0.953 0.979 0.926 0.933 0.966 0.893 0.921 0.972 0.904 0.939 0.986
HAR-CFJ 1.153† 0.956 0.979 1.128† 0.940 0.967 1.073 0.927 0.973 1.024† 0.941 0.987
HAR-CIJ 1.061 0.990 0.983 1.039 1.003 0.989 1.015 1.015 1.021 0.979 1.003 1.011
HAR-CJ+ 1.195† 0.993 0.996 1.195† 0.988 0.994 1.139† 0.991 1.017 1.066† 0.986 1.010
HAR-CJ− 1.161† 0.996 0.975 1.157† 0.989 0.976 1.106 0.986 0.981 1.038† 0.990 0.994
HAR-CFJ+ 1.234† 0.994 0.996 1.236† 0.989 0.993 1.173† 0.989 1.017 1.086† 0.987 1.008
HAR-CFJ− 1.234† 0.990 0.975 1.231† 0.988 0.976 1.160† 0.985 0.983 1.070† 0.989 0.994
HAR-CIJ+ 1.193† 0.991 0.981 1.196† 1.008 0.988 1.139† 1.018 1.025 1.075† 1.002 1.019
HAR-CIJ− 1.176† 0.993 0.990 1.193† 1.009 0.997 1.163† 1.019 1.031 1.079† 1.004 1.020

Panel B: Noise-Robust Jump Measures

HAR-RV 0.985 0.961 1.013 0.997 0.999 1.080 1.005 1.003 1.097 0.988 0.972 1.030
HAR-CJ 0.911 0.986 0.999 0.961 0.967 1.055 0.949 0.961 1.073 0.913 0.922 0.988
HAR-CFJ 0.956 1.000 0.999 1.011 0.999 1.056 1.010 0.974 1.071 0.941 0.909 0.967
HAR-CIJ 0.879 0.958 0.984 0.912 0.992 1.063† 0.929 1.007 1.064 0.925 0.965 1.009
HAR-CJ+ 0.972 0.996 1.007 0.989 1.020 1.091† 1.020 0.990 1.118† 0.934 0.937 1.026
HAR-CJ− 0.973 0.975 0.986 0.942 1.024 1.057 0.949 0.992 1.057 0.930 0.946 0.996
HAR-CFJ+ 0.952 1.015 1.009 0.958 1.041 1.094† 0.981 1.007 1.119† 0.913 0.944 1.027
HAR-CFJ− 0.947 0.973 0.986 1.004 1.035 1.055 0.984 1.001 1.054 0.945 0.949 0.996
HAR-CIJ+ 0.924 0.934 0.987 0.990 0.974 1.053 1.003 0.985 1.074 0.967 0.972 1.014
HAR-CIJ− 0.942 0.948 0.989 0.970 0.989 1.059 0.997 0.996 1.091† 0.986 0.967 1.024

Memo:

HAR-RV MAPE 1.690 1.245 1.138 1.619 1.131 0.996 1.765 1.198 1.045 1.973 1.343 1.171

Note: The relative MAPE ratios are the 20 stock average ratios of the MAPEs of the extended HAR models using standard volatility measures (top
panel) or noise-robust measures (bottom panel) relative to the benchmark HAR-RV models employing standard measures. The entries with a dagger,
†, denote models not in the MCS for fewer than 15 stocks. The MAPE and MCS results are respectively based on rolling regression using 1,000
observations and a 10-day block bootstrap with 5,000 replications.
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Table 14: Extended HAR Specifications vs. HAR-Q Model

h = 1 (day) h = 5 (week) h = 22 (month) h = 66 (quarter) h = 1 (day) h = 5 (week) h = 22 (month) h = 66 (quarter)

Panel A: SPY Panel B: Stock Average

Relative MSPEs
HAR-Q 1.000 1.000† 1.000† 1.000 1.000 1.000 1.000 1.000‡

HAR-RV 1.107† 1.074† 0.921∗ 0.981 1.040‡ 1.019 1.016 0.962
HAR-CJ 1.007 0.827∗ 0.839∗ 0.990 1.007 0.948 0.986 0.959
HAR-CFJ 1.007 0.827∗ 0.840∗ 0.992 1.007 0.949 0.990 0.961
HAR-CIJ 0.972∗ 0.954∗ 1.009† 1.023 0.972 0.957 1.081‡ 0.997
HAR-CJ+ 1.092† 0.902∗ 1.032† 0.947∗ 1.000 0.959 1.057 0.994
HAR-CJ− 0.970∗ 0.809∗ 0.870∗ 1.025 0.963 0.947 1.043 0.979
HAR-CFJ+ 1.094 0.904∗ 1.042† 0.967∗ 1.001 0.959 1.057 0.991
HAR-CFJ− 0.971∗ 0.811∗ 0.870∗ 1.024 0.963 0.950 1.047 0.978
HAR-CIJ+ 0.975 0.950∗ 0.994† 0.983 0.972 0.961 1.099‡ 1.003
HAR-CIJ− 0.969∗ 0.945∗ 0.991† 1.010 0.981 0.959 1.111‡ 1.021‡

Relative MAPEs
HAR-Q 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
HAR-RV 1.033 0.996 0.939∗ 0.990 1.000 1.009 0.970 0.982
HAR-CJ 1.036 0.978 0.923∗ 0.995 0.988 0.984 0.947 0.978
HAR-CFJ 1.036 0.979 0.923∗ 0.986 0.989 0.984 0.948 0.979
HAR-CIJ 0.998 0.979 0.975∗ 1.024 0.994 1.008 1.008 1.002
HAR-CJ+ 1.062 0.982 0.991 0.990 1.006 1.012 0.997 1.002
HAR-CJ− 0.982 0.999 0.898∗ 0.988 0.985 0.994 0.959 0.986
HAR-CFJ+ 1.063 0.984 0.992 0.989 1.006 1.012 0.997 1.000
HAR-CFJ− 0.984 1.002 0.898∗ 0.986 0.983 0.994 0.959 0.986
HAR-CIJ+ 0.992 0.964∗ 0.948∗ 0.998 0.991 1.006 1.008 1.011
HAR-CIJ− 0.979 0.965∗ 0.959∗ 1.000 1.001 1.016 1.012 1.012

Note: The relative MSPEs (top panel) and MAPEs (bottom panel) ratios are respectively the SPY (Panel A) and the 20 stock average ratios
(Panel B) of the extended HAR models using standard volatility measures, estimated using 300-second returns, relative to the new benchmark
HAR-Q model. For Panel A (SPY), starred values indicate statistically significant reduction in either MSPEs or MAPEs at the 5% level and a †
denotes models not in the MCS. For Panel B (stock average), a ‡ denote models not in the MCS for fewer than 15 stocks. The MSPE and MAPE,
and MCS results are respectively based on rolling regression using 1,000 observations and a 10-day block bootstrap with 5,000 replications.
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Figure 1: Time Series of Realized Volatility – Jump and Continuous Components

Note: This figure depicts the elements of the realized volatility for SPY and three individual stocks
estimated at the 300 second frequency. The three individual stocks have the largest, smalles and average
RV. NBER dated U.S. recession are shaded grey.

Figure 2: Autocorrelation Function of SPY Realized Measures
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Note: The figure graphs the autocorrelation of the realized variance and its elements. The autocorrelations
at the 5 and 300 second frequencies were estimated using noise-robust and raw estimators, respectively.
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Figure 3: Systematic versus Idiosyncratic Jumps
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Note: The figure depicts the intraday returns of the 20 individual stocks across two different trading days. The
left plot displays the behavior of the stocks during the Flash Crash of May 06, 2010, where all the stocks jump
together, whereas the right panel show a normal day on December 23, 2003, where all jumps are idiosyncratic.
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