
ON THE (CROSSED) BURNSIDE RING OF PROFINITE GROUPS

NADIA MAZZA

Abstract. In this paper we investigate some properties of the Burnside ring of a profinite
group as defined in [6]. We introduce the notion of the crossed Burnside ring of a profinite FC-
group, and generalise some results from finite to profinite (FC-)groups. In our investigations,
we also obtain results on profinite FC-groups which may be of independent interest.

1. Introduction

The Burnside ring B(G) of a group G is a commutative ring, which encodes in some way
useful information about the abstract group G (e.g. [5]). In particular, if G is a finite group,
the mapping of a subgroup H of G to the underlying abelian group of the Burnside ring B(H)
defines a projective Mackey functor for G, and this fact is key in the study of Mackey functors for
finite groups [17]. The crossed G-sets of a finite group G act on the category of Mackey functors
for G, leading to a decomposition of the Mackey algebra of G into p-blocks, after extending the
scalars to some suitable p-local ring for a given prime p dividing the order of G [2].

In [5], Dress proves that, for G finite, there exists a 1-1 correspondence between the connected
components of the prime ideal spectrum of B(G) and the conjugacy classes of perfect subgroups
of G. In [7], Gluck gives a formula to calculate the primitive idempotents of B(G), and he
uses his result to provide an algebraic proof of Brown’s result on the Euler characteristic of the
simplicial complex whose vertices are the nontrivial p-subgroups of G.

In [6], the authors introduce the Burnside ring B̂(G) of a profinite group G as a generalisation
of the Burnside ring of a finite group. In [6, Section 5], the authors hint at certain properties of

B̂(G), which are similar to those of Mackey functors according to Dress [17, Section 2]. Their
results have been used in [1] to study Mackey functors arising in number theory.

The main objective of the present paper is to investigate a generalisation to profinite groups
of the above results on the (crossed) Burnside ring of a finite groups and its applications. Hence,
in Sections 2 and 3, we review the known background on crossed Burnside rings for finite groups
and on the Burnside ring of a profinite group. These lead us to take a closer look at profinite
FC-groups in Section 4. An FC-group is a group in which every element has a finite conjugacy
class. That is, a group G is FC if and only if CG(g) has finite index in G, for all g ∈ G. Properties
of FC-groups are described in [18], and also in [15, Section 14.5]. In particular, finite groups, and
profinite abelian groups are profinite FC. We make a few observations about the structure of
profinite FC-groups, which we have not found in the literature, and which may be of independent
interest. In Section 5, we use Dress and Siebeneicher’s construction of the Burnside ring of a
profinite group and define the crossed Burnside ring [13] of profinite FC-groups. In Section 6, we
generalise in some way Dress and Gluck’s results on the idempotents of the Burnside Q-algebra
and Burnside ring of a finite group to the class of profinite groups. Finally, in Section 7, we turn
to Mackey functors, and review the approaches in [1, 6], before generalising Oda and Yoshida’s
results [2, 13] to obtain an action of almost finite crossed G-spaces on the category of Mackey
functors.
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2. Background on the crossed Burnside ring of finite groups

We recall the needed background on crossed Burnside rings of finite groups from [13, Section
2]. Let G be a finite group and let SetG denote the category whose objects are the finite G-sets
and the morphisms are G-equivariant maps. Let S be a normal subgroup of G, which we regard
as a G-set for the conjugation action: (g, s) 7→ gs = gsg−1 for all g ∈ G and all S ∈ S. Then S
is a G-monoid. That is, S is a G-set equipped with a multiplication S × S → S for which there
is a multiplicative identity 1S .

Definition 2.1. [13, (2.6,2.7)] Let S be a normal subgroup of G. A crossed G-set over S is a
morphism f : X → S in SetG.

Given two crossed G-sets over S, say fi : Xi → S, for i = 1, 2, their sum and product are the
crossed G-sets:

f1 + f2 : X1 tX2 −→ S and f1 × f2 : X1 ×X2 −→ S,

where

(f1 + f2)(x) = fi(x) for x ∈ Xi, for i = 1, 2, and (f1 × f2)(x1, x2) = f1(x1)f2(x2).

The additive identity element is the unique morphism ∅ → S, where ∅ is the empty set (i.e.
the initial object in SetG), and the multiplicative identity is u : G/G → S, where u(G) = 1S .
Addition and multiplication are commutative up to isomorphism. In particular,(

f1 × f2 : X1 ×X2 −→ S
)
−→

(
f2 × f1 : X2 ×X1 −→ S

)
(f1 × f2)(x1, x2) 7−→ (f2 × f1)(f1(x1)x2, x1),

is an isomorphism of crossed G-sets since

f2
(
f1(x1)x2

)
f1(x1) = f1(x1)f2(x2)f1(x1) = f1(x1)f2(x2) in S.

Define the category ×Set(G,S) to be the category whose objects are the crossed G-sets over S,
and the morphisms

φ : (f1 : X1 → S) −→ (f2 : X2 → S) in ×Set(G,S)

are the G-equivariant maps φ : X1 → X2 such that f2φ = f1 : X1 → S.

The category of crossed G-sets over S is a commutative monoid. The Grothendieck construc-
tion [11, Section 24.1] turns the abelian monoid of isomorphism classes of crossed G-sets over S
into a commutative ring ×B(G,S), called the crossed Burnside ring of G over S . That is, the
elements of ×B(G,S) are the isomorphism classes of virtual crossed G-sets over S, which can be
written as differences

[f1 : X1 → S]− [f2 : X2 → S],

where [fi : Xi → S] are isomorphism classes of crossed G-sets over S.
Unless otherwise stated, we will henceforth take S = G as G-monoid with conjugation action

of G, and we denote it Gc to avoid any confusion. Thus, Gc =
⊔

x∈Cl(G)

G/CG(x), where Cl(G) is

a set of representatives of the conjugacy classes of the elements of G. Then, we let Bc(G) denote
the crossed Burnside ring of G over Gc and simply call it the crossed Burnside ring of G.

As a group, Bc(G) is free abelian with basis the isomorphism classes of transitive crossed
G-sets. These have the form [wa : G/H → Gc], where wa(gH) = ga for some a ∈ CG(H). We
have (wa : G/H → Gc) ∼= (wb : G/K → Gc) as crossed G-sets if and only if K = gH and
b = ga for some g ∈ G. The Burnside ring B(G) of G embeds into Bc(G) via the injective ring
homomorphism: [G/H] 7→ [w1 : G/H → Gc]. We refer to [2, 13] for further properties of Bc(G)
for a finite group.
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3. From finite to profinite

Let G be a profinite group. By a subgroup of G, we mean a closed subgroup of G. If U is an
open (normal) subgroup of G, we write U ≤o G (U Eo G). We refer the reader to [14, 19] for
the background on profinite groups.

We recall the definition of the Burnside ring of a profinite group and the basic concepts
introduced in [6, Section 2], referring the interested reader to that article for the details.

A G-space is a Hausdorff topological space X equipped with a continuous G-equivariant action
ρ : G × X → X. For x ∈ X, its stabiliser is the closed subgroup Gx = {g ∈ G | gx = x} of
G and its orbit is the closed compact subset Gx = {gx | g ∈ G} of X. Throughout, we denote
G\X the set of G-orbits of X, and [G\X] a set of representatives.

We call X essentially finite if the fixed point sets |XU | are finite for all the open subgroups
U of G. A G-space X is almost finite if X is an essentially finite discrete topological space.

Given two essentially finite G-spaces X,Y , we define an equivalence relation

X ∼ Y if and only if |XU | = |Y U |, ∀ U ≤o G,

where XU = {x ∈ X | ux = x, ∀ u ∈ U}. It follows that two almost finite G-spaces are
equivalent if and only if they are isomorphic. If X is an essentially finite G-space, then the
equivalence class [X] of X contains an almost finite G-space which is unique up to isomorphism.
In other words, considering equivalence classes of essentially finite G-spaces is the same as
considering isomorphism classes of almost finite G-spaces. Observe that if X is an essentially
finite G-space, then for all U ≤o G, the set of U -fixed points XU is a finite NG(U)/U -set.

Suppose that X is a discrete G-space and write X = tx∈[G\X]Gx as the disjoint union of its
G-orbits. Since G is compact, every orbit is a compact discrete G-space, i.e. finite. It follows
that the bijection from the coset space G/Gx to Gx, defined by gGx 7→ gx, is a homeomorphism.
Hence, a discrete G-space X is almost finite if

(1) X ∼=
⊔

x∈[G\X]

G/Gx, where Gx ≤o G, and

for all U ≤o G, there exist finitely many orbits Gx with U contained in a G-conjugate of Gx.

Definition 3.1. Let AFG be the category of almost finite G-spaces. The objects are the almost
finite G-spaces, and the morphisms f : X → Y between two almost finite G-spaces X and Y
are the G-equivariant maps (necessarily continuous). We write HomAFG

(X,Y ) for the set of
morphisms X → Y .

Similarly to the case of finite groups, if X and Y are almost finite G-spaces, then f : X → Y
can be expressed as (

fx,y
)
x,y

where (x, y) runs through [G\X]× [G\Y ]

and fx,y : G/Gx → G/Gy is of the form fx,y(Gx) = gGy for some g ∈ G such that Gx ≤ gGy. In
particular, G/U ∼= G/V as almost finite G-spaces if and only if U and V are G-conjugate.

The isomorphism classes of almost finite G-spaces form an abelian monoid, with addition
given by disjoint unions, and multiplication given by the cartesian product. Recall that

(X × Y )U = XU × Y U , ∀ U ≤o G, ∀ X,Y ∈ Ob(AFG).

Definition 3.2. The Burnside ring B̂(G) of a profinite group G is the Grothendieck ring of the
category AFG. The elements are the isomorphism classes of virtual almost finite G-spaces. In

B̂(G), we have 1 = [G/G] and 0 = [∅], where [X] denotes the isomorphism class of an almost
finite G-space X.
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Every element of B̂(G) can be written as a difference [X] − [Y ] of the isomorphism class of
two almost finite G-spaces. For convenience, we will often make the abuse of notation and omit

the brackets to indicate elements of B̂(G).

In [6], the authors show that B̂(G) ∼= lim←−
NEoG

B(G/N) is a complete topological commutative

ring, generated by the isomorphism classes of transitive almost finite G-spaces. We now want to
generalise their results to introduce a crossed Burnside ring [13] for profinite groups. In order
to do so, we first want to find a suitable class of profinite groups where a similar construction
works. Following the same approach as for finite groups, given a profinite group G, let Gc denote
the G-space on which G acts by conjugation. We have a decomposition

Gc ∼=
⊔

g∈Cl(G)

Gg,

where Cl(G) denotes a set of representatives of the conjugacy classes Gg = {ug | u ∈ G} of G.
The topology on Gc is induced by the subspace topology on each Gg. In particular,

• Gc is discrete if and only if |Gg| <∞, i.e. if and only if CG(g) ≤o G for all g ∈ G.
• Gc is essentially finite if and only if |(Gc)U | = |CG(U)| <∞ for all U ≤o G.

These observations lead us to focus on the class of profinite FC-groups.

4. FC-groups

Definition 4.1. An FC-group is a group G whose elements have finitely many conjugates.
Equivalently, |G : CG(g)| <∞ for every g ∈ G.

The term FC means finite conjugacy (classes). The class of FC-groups is closed under taking
subgroups, finite products and intersections, and quotients. It obviously contains all the abelian
groups and all the finite groups. FC-groups are a subclass of the class of groups with restricted
centralisers, that is, groups in which the centralisers of elements are either finite or of finite
index (cf. [16]).

If G is FC, the centraliser CG(H) =
⋂

1≤i≤n
CG(hi) of a finitely generated subgroup H =

〈h1, . . . , hn〉 of G is the intersection of finitely many subgroups of finite index in G, and therefore
CG(H) has finite index in G too.

From [8, Section 1], we know that if G is a torsion FC-group, then G is locally finite (i.e.
every finitely generated subgroup is finite). It follows that G/Z(G) and G′ are locally finite for
any FC-group G. In particular, if G is finitely generated then |G/Z(G)| and |G′| are finite. In
[16, Lemma 2.6], the author proves that if G is a profinite FC-group, then G′ is finite, improving
on the previous result, stating that G′ is a torsion group. Therefore, a profinite FC-group is
finite-by-abelian. Recall that in a profinite group, G′ = [G,G] =

⋂
NEoG

[G,G]N is the closure
of the derived subgroup of G.

As observed above, the centralisers of finitely generated subgroups of FC-groups have finite
index. What can we say about the centraliser of a closed subgroup of an FC-group in general?

Proposition 4.2. Let G be an FC-group. TFAE

(i) Z(G) has finite index in G.
(ii) ∀ U ≤ G of finite index, CG(U) has finite index in G.
(iii) ∃ U ≤ G of finite index such that CG(U) has finite index in G.

By contrapositive, Z(G) is a subgroup of infinite index in G, if and only if the centraliser of each
subgroup of G of finite index is itself a subgroup of infinite index in G.
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Note that in (iii), it is equivalent to assume that such U is a normal subgroup of finite index
in G (up to replacing U with its core in G).

Proof. (i)⇒(ii)⇒(iii) are obvious. To show (iii) implies (i), we pick a transversal {t1, . . . , tn} of
U in G. Then,

Z(G) = CG(U) ∩
⋂

1≤i≤n
CG(ti) has finite index in G,

since it is a finite intersection of subgroups of finite index in G. The proposition follows. �

Now, if G is profinite FC, Shalev’s result leads to the following.

Proposition 4.3. Let G be a profinite FC-group. Then Z(G) is an open subgroup of G. In
particular, G is virtually abelian. More generally, if G is a residually finite FC-group whose
derived subgroup is finite, then Z(G) is a subgroup of finite index in G.

As a consequence of Proposition 4.3, if G is profinite FC, then the centraliser of any subgroup
of G is open in G.

Proof. Since G is residually finite, for each x ∈ G′, there exists a normal subgroup Ux / G of

finite index in G such that x /∈ Ux. Set U =
⋂
x∈G′

Ux. Then, U / G has finite index in G, and

U ∩ G′ = 1. Moreover, [G,U ] ≤ G′ ∩ U = 1 shows that U is a central subgroup. The result
follows. �

Note that the profinite completion of an FC-group need not be an FC-group, as seen on a
variant of P. Hall’s example [18, Example 2.1].

Example 4.4. Let p be a prime. For each n ∈ Z, let:

Xn = 〈xn, yn, zn | xpn = ypn = zpn = 1, [xn, yn] = zn〉 ∼= p1+2
+

be an extraspecial p-group of order p3 and exponent p. For every n ∈ Z, set

g2n−1 = x2n−1x2n and g2n = y2ny2n+1, and define G = 〈gn | n ∈ Z〉.

By definition, [g2n−1, g2n] = z2n and [g2n, g2n+1] = z−12n+1, with [gi, gj ] = 1 whenever |j − i| ≥ 2.
We have G′ = Z(G) = 〈zn | n ∈ Z〉 is an infinite elementary abelian p-group, and G/G′ too.
Moreover, G has exponent p and is nilpotent of class 2.

For g ∈ G, let {gG} denote its conjugacy class, and for a subgroup H of G, let 〈HG〉 denote
its normal closure. We have

{gGn } = {gnzinz
j
n+1 | 0 ≤ i, j < p} and 〈HG〉 ≤ HZ(G).

Every element of the abstract group G can be written in a unique way as a finite product
w = ga1i1 · · · g

an
in
zb1j1 · · · z

bm
jm

for some integers i1 < · · · < in and j1 < · · · < jm, and for integers

0 < a1, . . . , an, b1, . . . , bm < p. We calculate CG(w) = 〈gl | |l − is| > 1 , ∀ 1 ≤ s ≤ n〉Z(G), and
note that CG(w) is a normal subgroup of G of finite index. Therefore, as an abstract group,
G is FC since the conjugacy class of any word ge1i1 · · · g

ek
ik

is finite. However, in the profinite

completion Ĝ of G, the elements which cannot be expressed as words of finite length in the gi’s
have conjugacy classes of infinite size. (For instance the conjugacy class of the element whose
image in every finite quotient is the image of g1g2g3 · · · is infinite.)
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5. The crossed Burnside ring for profinite FC-groups

Let G be a profinite group, and let Gc denote the G-space on which G acts by conjugation.
Since

(Gc)U = CG(U), ∀ U ≤o G and Gc ∼=
⊔

g∈Cl(G)

Gg

as G-space, Gc is almost finite if and only if G is FC and Z(G) is finite, that is, if and only if
G is finite. Let us relax the requirement for Gc to be almost finite, and only ask for G to be
a discrete G-space. By the above, this hold if and only if G is profinite FC, and we then have
Gg ∼= G/CG(g) for all g ∈ G.

Definition 5.1. Let G be a profinite FC-group. Define the category ×AFG of almost finite
crossed G-spaces to be the category whose objects are the morphisms f : X → Gc, where X is
almost finite and f is G-equivariant. The morphisms φ : (f1 : X1 → Gc) −→ (f2 : X2 → Gc)
between two objects in ×AFG are the morphisms φ ∈ HomAFG

(X1, X2) such that f1 = f2φ.

Let X be an almost finite G-space. Then a map w : X → Gc decomposes as a sum twx, where

X =
⊔

x∈[G\X]

G/Gx and wx : G/Gx → Gc is G-equivariant. Explicitly, wx(gGx) = gwx(Gx), for

some element wx(Gx) ∈ CG(Gx).
We define the sum and product of almost finite crossed G-spaces using disjoint unions and

cartesian products, similarly to the case of finite groups. In particular, if wa : G/H → Gc and
wb : G/K → Gc are transitive almost finite crossed G-spaces, their product is the almost finite
crossed G-space ⊔

g∈[H\G/K]

(
wa·gb : (G/H ∩ gK) −→ Gc

)
,

see [13, Lemma 2.13(7)]. Two morphisms wa : G/H → Gc and wb : G/K → Gc are isomorphic
if and only if there exists g ∈ G such that K = gH and b = ga. With these operations, the
isomorphism classes of almost finite crossed G-spaces form an abelian monoid.

Definition 5.2. The crossed Burnside ring of G is the Grothendieck ring of the category ×AFG.
The elements are the isomorphism classes of virtual almost finite crossed G-spaces. In partic-
ular, 1

B̂c(G)
= [w1 : G/G → Gc] and 0

B̂c(G)
= [∅ → Gc], where the square brackets denote

isomorphism classes (which we will omit if there is no confusion), where w1(G) = 1 and ∅ is the
initial object of the category AFG.

The following observation is immediate (cf. [4, Section IV.8]).

Lemma 5.3. If G is finite, then B̂c(G) = Bc(G) = B(Gc), where B(Gc) is the evaluation of
the Burnside Green functor for G at the G-set Gc.

As for finite groups, there is an injective ring homomorphism B̂(G) → B̂c(G), defined by
mapping a virtual almost finite G-space X to w1 : X → Gc, where w1(x) = 1 for all x ∈ X.

[2, Lemma 2.2.2] extends to our context.

Lemma 5.4. (v : X → Gc) ∼= (w : Y → Gc) in ×AFG if and only if

|Hom×AFG

(
(wg : G/H → Gc), (v : X → Gc)

)
| = |Hom×AFG

(
(wg : G/H → Gc), (w : Y → Gc)

)
|,

for all (wg : G/H → Gc) ∈ ×AFG.

Proof. Given almost finite G-spaces X and Y , then X ∼= Y in AFG if and only if |XU | = |Y U |
for all U ≤o G. Write X = tG/Gx and v = tvax , where ax ∈ CG(Gx), and x runs through
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a set of representatives of the G-orbits of X. Similarly, write Y = tG/Gy and w = twby . If

[wg : G/H → Gc] ∈ B̂c(G), then

Hom×AFG

(
(wg : G/H → Gc), (v : X → Gc)

)
=

=
⊔

x∈[G\X]

Hom×AFG

(
(wg : G/H → Gc), (vax : G/Gx → Gc)

)
and similarly for Y . Note that these are finite sets because HomAFG

(G/H,X) ∼= XH , via the
correspondence (ϕ : G/H → X) 7→ ϕ(H), is a finite set, for all H ≤o G and for all X ∈ AFG.
Now, Hom×AFG

(
(wg : G/H → Gc), (vax : G/Gx → Gc)

)
is the subset of HomAFG

(G/H,G/Gx) ={
ms : H 7→ sGx | H ≤ sGx

}
formed by the almost finite crossed G-spaces such that, if H ≤ sGx,

then wg(H) = g = sax = wax(sGx). The cardinality of these two sets of homomorphisms coincide
if and only if the almost finite crossed G-spaces (v : X → Gc) and (w : Y → Gc) have the same
number of G-orbits of the same type. �

In [6, Section 2], the authors prove that B̂(G) is a complete topological ring isomorphic
to lim←−

NEoG

B(G/N) via the ring homomorphism induced by the product of the fixed point maps

FixN : B̂(G) → B(G/N) defined below. More generally, let U ≤o G and let X ∈ AFG.
Then NG(U) acts on the finite set of U -fixed points XU . Indeed, for all x ∈ XU , all u ∈ U
and all g ∈ NG(U), we have u(gx) = g((ug)x) = gx. Since U acts trivially on XU , we can
regard XU as a finite NG(U)/U -set. Since (X t Y )U = XU t Y U , (X × Y )U = XU × Y U and
X ∼= Y =⇒ XU ∼= Y U , for any subgroup U of G and any G-spaces X and Y , this function

extends to a ring homomorphism B̂(G)→ B(NG(U)/U), for all U ≤o G. Now, let N Eo G and
let V ≤o G. Define

(2) FixN (G/V ) = (G/V )N =

{
G/V if N ≤ V .
∅ otherwise,

A routine exercise shows that the maps FixN are surjective ring homomorphisms. Each such

map has a section, called inflation, InfGG/N : B(G/N)→ B̂(G), which sends a finite G/N -set to

itself, regarded as an almost finite G-space on which N acts trivially. Define

Fix =
∏
NEoG

FixN : B̂(G) −→
∏
NEoG

B(G/N).

This is the injective ring homomorphism used in [6, Section 2] to show that B̂(G) ∼= lim←−
NEoG

B(G/N)

is a complete topological ring. In this topology, a basis of open ideals is {ker(FixN ) | N Eo G}.

Let G be a profinite FC-group and let (wa : G/U → Gc) be a transitive almost finite crossed G-

space, where U ≤o G and a ∈ CG(U). For N Eo G, the fixed point map FixN : B̂(G)→ B(G/N)

induces a ring homomorphism ×FixN : B̂c(G)→ Bc(G/N), where

FixN (wa : G/U → Gc) =

{
(waN : G/U → (G/N)c) if N ≤ U , or
0Bc(G/N) otherwise.

Note that ×FixN is neither injective nor surjective.
If N2, N1 Eo G with N2 ≤ (U ∩N1), then

×FixN1/N2
: Bc(G/N2)→ Bc(G/N1)

×FixN1/N2
(waN2 : G/U → (G/N2)

c) =

{
(waN1 : G/U → (G/N1)

c) if N1 ≤ U , or
0Bc(G/N1) otherwise.
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Hence
×Fix = (×FixN )NEoG : B̂c(G) −→

∏
NEoG

B̂c(G/N) is a ring homomorphism,

and, given N1, N2 Eo G with N2 ≤ N1, we have
×FixN1 = ×FixN1/N2

×FixN2 .

We aim to show that B̂c(G) ∼= lim←−
NEoG

Bc(G/N) (cf. [19, Definition 1.1.3 and Proposition 1.1.4]).

That is, we want to show that B̂c(G) is isomorphic to the subring of
∏
NEoG

Bc(G/N) formed by

all the elements of the form
(
wN : xN → (G/N)c

)
NEoG

∈
∏
NEoG

Bc(G/N) with

×FixN1/N2
(wN2 : XN2 → Gc) = (wN1 : XN1 → (G/N1)

c),

for all N1, N2 Eo G with N2 ≤ N1.

By [6, Section 2], we know that Fix : B̂(G)→
∏
NEoG

B(G/N) is an injective ring homomor-

phism, and that Fix(B̂(G)) ∼= lim←−
NEoG

B(G/N).

For the injectivity of ×Fix, suppose that ×Fix(w : X → Gc) = (0Bc(G/N))NEoG. Then XN =
0B(G/N) for all N Eo G, which forces X = 0

B̂(G)
too, by injectivity of Fix. Since 0

B̂(G)
= [∅]

is the initial object in the category AFG, there is a unique almost finite crossed G-space with
domain 0

B̂(G)
, it follows that [w : X → Gc] = 0

B̂c(G)
.

Let now
(
wN : XN → (G/N)c

)
NEoG

∈ lim←−
NEoG

Bc(G/N) be a nonzero element. The sequence of

the domains produces a unique element X ∈ B̂(G). Suppose that X is the isomorphism class
of
∑

U∈OG
λUG/U , where OG denotes a set of representatives of the conjugacy classes of open

subgroups of G, and the λU are integers. We can then write

wN =
∑

U∈OG
N≤U

∑
1≤i≤|λU |

waU/N,i
, with G/U = (G/N)

/
(U/N),

and where aU/N,i ∈ CG/N (U/N), for all 1 ≤ i ≤ |λU |, and all U ∈ OG with N ≤ U , N Eo G. By
convention, if λU = 0, then

∑
1≤i≤|λU |waU/N,i

= 0.

Note that if N1, N2 Eo G with N2 ≤ N1, then CG/N2
(U/N2)N1

/
N1 ≤ CG/N1

(U/N1), via
the quotient map G/N2 → G/N1. We can pick aU,N,i ∈ G such that aU,N,iN/N = aU/N,i for

N Eo G, and our definition of ×Fix implies that aU,N2,iN1 = aU,N1,iN1. The elements aU,N,i
satisfy [aU,N,i, U ] ⊆ N . Hence, for U ∈ OG with λU 6= 0, and for 1 ≤ i ≤ |λU |, let

aU,i =
⋂

NEoG
N≤U

aU,N,iN.

Then aU,i 6= ∅ is a closed subset of G (cf. [14, Proposition 1.1.4]), which consists of a single
element aU,i. Indeed, suppose that a, b ∈ aU,i. That is, a, b ∈ aU,N,iN , or equivalently, b−1a ∈ N
for all N Eo G, which forces a = b because ∩NEoGN = 1. Therefore aU,i = {aU,i}, where

aU,i ∈
⋂

NEoG
N≤U

{g ∈ G | [g, U ] ⊆ N}.

Putting aU,N,i = 1 if N 6≤ U , we have (aU,N,iN)NEoG ∈ lim←−
NEoG

CG/N (UN/N) = CG(U), we

conclude that aU,i ∈ CG(U) (cf. [19, Exercise 0.4(2)]).
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Consequently, (waU,i : G/U → Gc) ∈ ×AFG, and

×Fix(waU,i : G/U → Gc)N =

{
[waU/N,i

: G/U → (G/N)c] ∈ Bc(G/N) if N ≤ U
0Bc(G/N) otherwise,

saying that ×Fix(waU,i : G/U → Gc) ∈ lim←−
NEoG

Bc(G/N). We have thus proved the following.

Proposition 5.5. Let G be a profinite FC-group. Then ×Fix induces a ring isomorphism

B̂c(G)
∼=−→ lim←−

NEoG

Bc(G/N).

The crossed Burnside ring of a profinite FC-group has some of the properties similar to
those of the crossed Burnside ring of a finite group. Let R be a commutative ring, and write

B̂c
R(G) = R ⊗Z B̂c(G). Given U ≤o G and a ∈ CG(U), we have

∑
g∈[NG(U)/U ]

ga ∈ Z(RCG(U)),

since ga ∈ CG(gU) = CG(U) for all g ∈ NG(U). As in [2, Section 2.3], we obtain a ring
homomorphism:

zU : B̂c
R(G) −→ Z(RCG(U)), zU (w : X → Gc) =

∑
x∈[G\X]

U≤GGx

∑
g∈[NG(Gx)/Gx]

gax,

where
(w : X → Gc) =

⊔
x∈[G\X]

(wax : G/Gx → Gc)

is an almost finite crossed G-space. Here, ax ∈ CG(Gx) for all x, and the notation U ≤G Gx
means that there exists h ∈ G such that U ≤ hGx. The map zU extends to virtual almost finite
crossed G-spaces, and since |G : U | <∞, the above sums are finite. Therefore zU is well defined,
and we obtain a ring homomorphism

ζ : B̂c
R(G) −→

∏
U∈OG

Z(RCG(U)), ζ(ŵ) =
(
zU (ŵ)

)
U∈OG

, ∀ ŵ ∈ B̂c
R(G),

where OG denotes a set of representatives of the conjugacy classes of open subgroups of G. The
same argument as in [2, Lemma 2.3.2] shows the following (for the proof, we now use K ≤o G
with |G : K| minimal such that ŵ =

∑
i λU (waU : G/U → Gc) has a nonzero λK).

Lemma 5.6. If R is torsionfree, then ζ is injective. Consequently, we obtain a mapping

Spec(
∏

U∈OG

Z(RCG(U)))→ Spec(B̂c
R(G)).

Note that the ring extension B̂(G) ⊂ B̂c(G) is not algebraic, and therefore the mapping in
Lemma 5.6 need not be surjective.

6. Idempotents of B̂(G)

Let G be a profinite group. We draw on the properties of the ring homomorphisms FixN and
InfGG/N defined in Section 5 in order to investigate the relationships between the idempotents of

B̂(G) with those of the Burnside rings of the finite quotient groups of G.
If G is finite, Dress proved that G is soluble if and only if the prime ideal spectrum of B(G)

is connected, i.e. the only idempotents of B(G) are 0 and 1 (cf. [9, Section 7.5, Corollary]). (By

ideal, we mean an ideal that is closed in the topology of B̂(G) defined by taking {ker(FixN ) |
N Eo G} as open neighbourhood basis of 0 ∈ B̂(G).) This result extends to profinite groups

and B̂(G) in the following way.
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Proposition 6.1. Let G be a profinite group. Then G is prosoluble if and only if the prime

ideal spectrum of B̂(G) is connected, i.e. the only idempotents of B̂(G) are 0 and 1.

Proof. We know that the result holds for finite soluble groups. Let G be a prosoluble profinite

group, i.e. G/N is soluble for all N Eo G. Suppose that e = e2 ∈ B̂(G). Since Fix is a ring
homomorphism, FixN (e) is an idempotent in B(G/N), and therefore FixN (e) ∈ {0, 1}, for all
N Eo G.

Since Fix is injective FixN (e) = 0 for all N Eo G if and only if e = 0 in B̂(G), i.e. e is
the isomorphism class of the empty set. So, suppose that e 6= 0. Then there must be some
open normal subgroup N of G such that FixN (e) 6= 0 ∈ B(G/N). Since G/N is a finite soluble
group, we must have FixN (e) = 1 ∈ B(G/N). That is, FixN (e) = [(G/N)

/
(G/N)] ∼= [G/G] ∼=

[(G/M)/(G/M)], and it follows that FixM (e) = 1 ∈ B(G/M) for every open normal subgroup

M of G. We conclude that e = 1 in B̂(G).

Conversely, suppose that 0 and 1 are the only idempotents of B̂(G). Let N Eo G. Suppose

that e2N = eN ∈ B(G/N). Then InfGG/N (eN ) is an idempotent of B̂(G). By assumption, this

idempotent must be either 0 or 1. It follows that either eN = 0 of eN = 1 in B(G/N) for all
N Eo G, and so G/N is a finite soluble group. �

The above result leads us to investigate a possible correspondence between the (primitive)

idempotents of B̂(G) and those of the Burnside rings B(G/N), for N Eo G of the finite quotients
of G.

First, let us recall some elementary facts in group theory. By convention, a perfect group is
a nonabelian (hence nontrivial) group.

Remark 6.2.
(1) G is a perfect group if and only if G/H is perfect for all H E G. Indeed, G is perfect

if and only if G has no nontrivial abelian quotient, if and only if no nontrivial quotient
G/H of G has a nontrivial abelian quotient.

In particular, if G is profinite FC, [16, Lemma 2.6] shows that G′ is finite. Since
the property FC is inherited by subgroups, and since H ′ ≤ G′ for all H ≤ G, any
perfect subgroup of G is finite. More generally, for an arbitrary FC-group G, any perfect
subgroup is torsion (since G′ is torsion).

(2) Let p be a prime, and letG be a profinite group. Recall that for a finite groupH, there is a
unique well-defined characteristic subgroupOp(H) which is the minimal normal subgroup
of H with quotient a p-group. For all N Eo G, let UN the characteristic open subgroup
of G such that N ≤ UN ≤ G and G/UN ∼= (G/N)

/
Op(G/N). If N2 ≤ N1 are open

normal subgroups of G, then G/U1
∼= (G/N2)

/
(U1/N2) is a (finite) p-group, quotient of

G/N2, where Ui = UNi . Therefore, G/U2 � G/U1, and we obtain an inverse system of
finite p-groups {G/Ui, G/Uj � G/Ui (∀ Nj ≤ Ni), Ni, Nj Eo G}. Let G = lim←−

NEoG

G/UN

be the inverse limit, and θp : G → G the quotient map induced by the projections

G/N → G/UN . Note that θp is well defined since the squares G/N2
//

��

G/N1

��
G/U2

// G/U1

, where

the maps are the quotient maps, commute for all N1, N2 Eo G with N2 ≤ N1. We define

Op(G) = ker(θp) =
⋂

NEoG

UN .

Then, Op(G) is a closed characteristic subgroup of G with the property that any pro-p
quotient group of G is a quotient of G/Op(G).
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(3) Let H ≤ G be a finite subgroup of a residually finite group G. For each x ∈ H, there

exists Nx Eo G such that x /∈ Nx. Let NH =
⋂
x∈H

Nx. Then NH Eo G and NH ∩H = 1.

Hence, there are infinitely many open normal subgroups of G which do not meet H. In
particular, if G is profinite FC and H is a perfect subgroup of G, then the set

NH = {N Eo G | |H ∩N | = 1}

is a filter base for G, that is, NH is a family of open normal subgroups of G such that:
(i) for all N1, N2 ∈ NH , there exists N3 ∈ NH with N3 ≤ N1 ∩N2, and

(ii)
⋂

N∈NH

N = {1}.

Indeed we note that we have the stronger condition that for any N1 Eo G and for any

N2 ∈ NH , then N1 ∩N2 ∈ NH , from which follows that
⋂

N∈NH

N =
⋂

NEoG

N = {1}.

Remark 6.2 (2) would lean towards a definition of idempotents in B̂Zp(G), if we tried to
extend the result from finite groups. However, as we shall shortly see, our methods only allow
us to define idempotents indexed by open subgroups of G, but we cannot expect the p-perfect
subgroups of a profinite group to be all open. We thus leave this question aside, referring the
reader to Proposition 6.4 as a starter towards generalising further our results. We close this
parenthesis on some remarks about groups with the following observation.

Let G be a profinite group, and define the set of (closed) subgroups of G

P = {1 < H ≤ G | H ′ = H}.

Write [P] for a set of representatives of the G-conjugacy classes of perfect subgroups of G. For

n ∈ N, define inductively the (closed) derived series G = G(1) ≥ G(2) ≥ G(3) ≥ . . . for G,

where we define G(1) = G and G(i) = [G(i−1), G(i−1)] for all i ≥ 2. Since the series is monotone

decreasing, if some G(n) is finite, then the series converges and we have a well defined subgroup

G(∞) =
⋂
n∈N

G(n).

Lemma 6.3. Let G be a profinite group. Then P 6= ∅ if and only if G is not prosoluble, if
and only if G(∞) exists and is nontrivial, that is, the derived series converges to a nontrivial
subgroup of G.

Proof. First, note that P 6= ∅ if and only if G is not prosoluble, since H ∈ P if and only if for
all N Eo G such that H 6≤ N , then G/N is a finite group with a perfect nontrivial subgroup

HN/N . Hence, we need to show that P 6= ∅ if and only if G(∞) exists and is nontrivial.

If G(∞) exists and is nontrivial, then G(∞) ∈ P. Conversely, suppose that P 6= ∅. Let
U = 〈H | H ∈ P〉. Note that 1 6= U is characteristic in G since P is closed under G-conjugation
and since the image of any perfect subgroup of G by an automorphism of G is again a perfect
subgroup of G. Moreover, U ′ ≥ 〈H ′ | H ∈ P〉 = U shows that 1 6= U ∈ P is perfect. The
assertion follows from the observation that G/U is soluble. Indeed, any perfect subgroup H/U
of G/U , with U ≤ H ≤ G, satisfies H = H ′U = H ′U ′ = H ′, where the first equality holds
because H/U = (H/U)′ = H ′U/U . Hence, H ∈ P, which implies that H = U . Therefore, G/U

is profinite and soluble, and we must have 1 6= U = G(∞) as required. �

The set [P] is useful in the description of the integral idempotents of the Burnside ring of
a finite group G. Indeed, if G is a finite group, the primitive idempotents of the Burnside Q-
algebra BQ(G) of G are indexed by the conjugacy classes of subgroups H of G, and have the
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form [7]:

eH =
∑

1≤K≤H

µ(K,H)

|NG(H) : K|
G/K

where µ(−,−) denotes the Möbius inversion formula, and the sum is over all the subgroups of
H. In BQ(G), we have e2H = eH and eH is characterised by |(eH)K | = 1 if and only if K is
G-conjugate to H, and |(eH)K | = 0 otherwise.

In the (integral) Burnside ring B(G), the set

{fH =
∑
K

eK | H ∈ [P] ∪ {1}}

is a complete set of primitive pairwise orthogonal idempotents, where K runs through a set of
representatives of the conjugacy classes of subgroups of G such that K(∞) is G-conjugate to H,
for all H ∈ [P] ∪ {1}.

Suppose now that G is profinite. We generalise Gluck’s idempotent formula to B̂Q(G) as
follows: Let OG denote a set of representatives of the conjugacy classes of open subgroups of G.
For H ∈ OG, put

eH =
∑
K≤oH

µ(K,H)

|NG(H) : K|
G/K.

For all N Eo G, we have FixN (eH) = eH/N if N ≤ H and FixN (eH) = 0 if N 6≤ H, as element
in BQ(G/N). Indeed,

FixN (eN ) =
∑

N≤K≤H

µ(K,H)

|NG(H) : K|
G/K =

∑
N≤K≤H

µ(K/N,H/N)

|NG/N (H/N) : K/N |
(G/N)

/
(K/N)

in BQ(G/N), since, if N ≤ H, then NG/N (H/N) = {gN ∈ G/N | gNH ≤ HN = H} =

NG(H)/N . By definition, (eH)2 = eH , since (FixN (eH))2 = FixN (eH) for all N Eo G. Now, if

U ≤o G, then |(eH)U | = |(eH/N )U/N | for any N Eo G with N ≤ H ∩ U . By the case of finite
groups, this number is 1 if U/N is G/N -conjugate to H/N , and 0 otherwise. It then suffices to
observe that for such N , U/N is G/N -conjugate to H/N if and only if U is G-conjugate to H.
It follows that |(eH)U | = 1 if U is G-conjugate to H and 0 otherwise, for all H,U ≤o G.

We have shown the following.

Proposition 6.4. Assume the above notation.

(1) For every H ≤o G, the element eH =
∑

K≤oH
µ(K,H)
|NG(H):K|G/K ∈ B̂Q(G) is an idempotent.

In particular, it need not be a finite Q-linear combination of transitive finite G-sets.
(2) The ghost map

B̂Q(G) −→ QOG , x 7→ (|xU |)U∈OG

maps the set {eH | H ∈ OG} to a canonical basis of the ghost Q-algebra. That is,
eH 7−→ (δU,H)U∈OG

, where δU,H = 1 if U is conjugate to H and is 0 otherwise.

Example 6.5. Let G = Zp for a prime p. Then, for all n ≥ 0,

epnG =
1

pn
G/pnG− 1

pn+1
G/pn+1G ,

since for nonnegative integers m ≤ n, we have µ(pmG, pnG) = 1 if n = m, µ(pmG, pnG) = −1 if
m+ 1 = n, and µ(pmG, pnG) = 0 otherwise.

If G = Ẑ, then eG =
∑
n

µ(nẐ, Ẑ)

n
Ẑ/nẐ, where n runs through all the integers which factorise

into a product of distinct primes.
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Dress’s result [5, Proposition 2] does not extend as such to obtain a complete list of the

integral primitive idempotents in B̂(G). If H is a perfect subgroup of G, it need not contain

any open subgroup, and there may be infinitely many subgroups K of G such that K(∞) is
G-conjugate to H.

In particular, if G is an infinite profinite FC-group, then any perfect subgroup H of G is
finite, and therefore the set P is a subset of the finite subgroups of G, each of which possessing
finitely many conjugates. Since Z(G) has finite index in G, there are infinitely many subgroups

K ≤ G such that K(∞) is G-conjugate to H. But the elements eH introduced above are only
defined for subgroups of finite index. Our methods lead, for instance to idempotents inflated
from B(G/Z(G)). We conclude this section with an example.

Example 6.6. Let G = A5 × Ẑ. Then G is profinite FC and H = A5 × {1} is the unique

nontrivial perfect subgroup of G. Note that for any H ≤ U ≤ G we have U ′ = U (∞) = H. Let

eH = InfGG/Z(G)

(
A5/A5 −A5/A4 −A5/D10 −A5/D6 +A5/C3 + 2A5/C2 −A5/1

)
,

where we write A5 = G/Z(G) ∼= H, and we use the obvious identifications of the subgroups of

H. We might expect (eH)2 = eH ∈ B̂(G) to be a summand of eG.

7. Action of almost finite crossed G-spaces on Mackey functors for profinite
groups

Let G be a finite group and let R be a commutative ring. Each crossed G-set acts on the
category MackR(G) of Mackey functors for G over R, producing a natural transformation of
the identity morphism in MackR(G). This property has been used in [2] to obtain a ring
homomorphism from the crossed Burnside ring of G to the centre of the Mackey R-algebra for
G over R. Mackey functors have been extended from finite to profinite groups, taking some
different perspectives depending on the objective(s) of the authors ([1, 12] and [6, Section 5]).
In the present section, we show that the almost finite crossed G-spaces act on a category of
Mackey functors. We follow in parallel [1] and [6], specialising their perspective to our context.

Throughout, let G be a profinite group and let R be a commutative ring. We build on
Section 3.

Definition 7.1. Let AF rG be the subcategory of AFG with the same objects as AFG, and
morphisms f : X → Y are the almost finite morphisms such that the fibres f−1(y) are finite,
∀ y ∈ Y .

The categories AF rG and AFG of discrete G-spaces are introduced and used in [1, 6, 12]. By
contrast, in [10], the authors consider G-spaces X, for a discrete group G, such that each point
stabiliser is a finite subgroup of G, and such that X has finitely many G-orbits.

Let us record some useful observations.

Remark 7.2.

(1) If f ∈ HomAFG
(X,Y ), then f−1(y) is an almost finite Gy-space for all y ∈ Y , and

Gx ≤ Gy for all x ∈ f−1(y).
(2) If G is finite, then AFG = AF rG.
(3) If G is infinite, then AF rG has no terminal object, since HomAF r

G
(X,G/G) 6= ∅ if and

only if X is finite.

We introduce two kinds of Mackey functors for a given profinite group G (compare with [1,
Definition 2.6] and [6, Section 5]).

Definition 7.3. A Mackey functor for G is an additive functor M = (M∗,M
∗) : AFG×AFG →

Ab with M∗ covariant and M∗ contravariant, subject to the following axioms.
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(MF1) M∗(X) = M∗(X) for every almost finite G-space X. Thus we write simply M(X).

(MF2) If
⊔
i

Xi is almost finite, then the natural inclusions Xi →
⊔
i

Xi induce an isomorphism

M(
⊔
i

Xi) ∼=
∏
i

M(Xi) of abelian groups.

(MF3) For any pull back diagram of almost finite G-spaces

X
α //

β
��

Y

γ

��
Z

δ
// W

in AFG, the diagram M(X)

M∗(β)
��

M(Y )

M∗(γ)
��

M∗(α)oo

M(Z) M(W )
M∗(δ)
oo

commutes in Ab.

A restricted Mackey functor for G is an additive functor M = (M∗,M
∗) : AF rG ×AFG → Ab

with M∗ covariant and M∗ contravariant, subject to the same axioms (MF1, MF2), and with
a restricted variant of (MF3), where the vertical maps in the left hand side pull back diagram
are morphisms in AF rG.

We let Mack(G) (resp. Mackr(G)) denote the category of (restricted) Mackey functors for
G, whose objects are the (restricted) Mackey functors for G, and the morphisms are the natural
transformations of functors. Given a commutative ring R, we set MackR(G) = R⊗Z Mack(G)
and call it the category of Mackey functors for G over R.

Remark 7.4. Recall that a pull back of G-spaces encodes the Mackey formula: If

X
α //

β

��

G/H

γ

��
G/K

δ
// G/L

,

is a pull back with H,K,L closed subgroups of G, and, to simplify, assume that the maps γ and
δ are induced by inclusions of subgroups H,K ↪→ L, then X is of the form

X ∼=
⊔

u∈[H\L/K]

G/(H ∩ uK).

In particular, the double coset space [H\L/K] is a discrete space if and only if at least one of
H or K is an open subgroup of L.

In [6, Section 5], the authors show that the Burnside functor B̂ := B̂G : AFG → Ab, where

B̂(X) = HomAFG
(−, X) =: {f : Y → X in AFG}

satisfies the axioms of Mackey functors, without any finiteness assumption on the fibres of the

maps. In their setting, the covariant part B̂∗ is given by the composition of maps: If φ ∈
HomAFG

(X,Z), then B̂∗(φ) : B̂(X) → B̂(Z) is given by B̂∗(φ)
(
f : Y → X

)
=
(
φf : Y → Z).

The contravariant part B̂∗(φ) : B̂(Z)→ B̂(X) is given by the pull back: For f ∈ HomAFG
(Y,Z),

U //

B̂∗(φ)(f)
��

Y

f
��

X
φ // Z

By contrast, if V is an RG-module, for some commutative ring R, the fixed point module functor
FPV and the fixed quotient module functor FQV are not Mackey functors for G over R, but



ON THE (CROSSED) BURNSIDE RING OF PROFINITE GROUPS 15

restricted Mackey functors. Recall that they are defined on an almost finite G-space X by

FPV (X) =
∏

x∈[G\X]

V Gx and FQV (X) =
∏

x∈[G\X]

VGx ,

where VH = V/〈hv−v | h ∈ H, v ∈ V 〉 denotes the H-coinvariants of V . If f ∈ HomAF r
G

(X,Y ),
then the image of

(FPV )∗(f) :
∏

x∈[G\X]

V Gx −→
∏

y∈[G\Y ]

V Gy

in the V Gy coordinate consists of elements of the form
∑

x∈f−1(y)

∑
g∈[Gy/Gx]

gvx for elements vx ∈

V Gx , for all x ∈ f−1(y). This is well defined if and only if f−1(y) is a finite set. The contravariant
Mackey functor (FPV )∗ is induced by the inclusions of fixed points V Gy ↪→ V Gx for all x ∈
f−1(y). Similarly, the image of

(FQV )∗(f) :
∏

x∈[G\X]

VGx −→
∏

y∈[G\Y ]

VGy

in the VGy coordinate consists of elements of the form
∑

x∈f−1(y)

∑
g∈[Gy/Gx]

vx, where vx ∈ VGy is

the image of vx ∈ VGx via the quotient map VGx
// // VGy for all x ∈ f−1(y). Again, this is

well defined if and only if f−1(y) is a finite set. The contravariant Mackey functor (FQV )∗ is
induced by the inclusions of R-modules VGy ↪→ VGx for all x ∈ f−1(y).

A key observation in [17], extended in [2] (referring to the original work of Yoshida), is that,
if G is a finite group, then the crossed G-sets act on the category of Mackey functors. We now
generalise this action to profinite FC-groups and almost finite crossed G-spaces.

Let (f : X → Gc) ∈ ×AFG and let Y ∈ AFG. Define the mappings:

πY , τ
f
Y : X × Y −→ Y,

τ fY (x, y) = f(x)y and

πY (x, y) = y, for all (x, y) ∈ X × Y ,

where we have abbreviated the notation for convenience (πX×YY and τ
(f :X→Gc)
Y would be more

precise than πY and τ fY , respectively). Clearly, both are continuous and πY is G-equivariant

(G acts on X × Y diagonally). The map τ fY is G-equivariant too, since for all g ∈ G and all
(x, y) ∈ X × Y , we have

τ fY
(
g · (x, y)

)
= τ fY (gx, gy) = f(gx)gy = gf(x)gy = gf(x)y = gτ fY (x, y).

The fibres π−1Y (y) and (τ fY )−1(y) are subsets of the almost finite G-space X × Y , and therefore

they are almost finite Gy-spaces for all y ∈ Y . Thus πY and τ fY are morphisms in AFG. Note

that, if f(x) = 1 for all x ∈ X, then τ fY = πY .

Now, let M be a Mackey functor for G over R. Consider the composition

ηfY = M∗(τ
f
Y )M∗(πY ) : M(Y ) −→M(Y ).
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By definition of Mackey functors, this composition is an R-module homomorphism. Given
α ∈ HomAFG

(Y, Y ′), the diagrams of R-modules and homomorphisms

M(Y )
ηfY //

M∗(α)
��

M(Y )

M∗(α)
��

M(Y ′)
ηf
Y ′ // M(Y ′)

and M(Y )
ηfY // M(Y )

M(Y ′)
ηf
Y ′ //

M∗(α)

OO

M(Y ′)

M∗(α)

OO
commute.

It follows that [2, Proposition 4.3] holds in the present context.

Proposition 7.5. Let (f : X → Gc) ∈ ×AFG. The map ηf is a natural transformation of the
identity functor of the category MackR(G). Moreover, if (f ′ : X ′ → Gc) ∈ ×AFG, then

ηf + ηf
′

= ηftf
′
, and

ηf · ηf ′ = ηf×f
′
,

where, for any almost finite G-space Y , there are R-module endomorphisms of M(Y ),

(ηf + ηf
′
)Y = ηfY ⊕ η

f ′

Y : M(Y ) // M(X)⊕M(X ′) // M(Y )

and
(ηf · ηf ′)Y = ηf×f

′

Y : M(Y ) // M(X)⊗RM(X ′) // M(Y ) .

Explicitly, Proposition 7.5 states that, for a profinite FC-group G, the abelian monoid of
almost finite crossed G-spaces acts on the category of Mackey functors. If G is an arbitrary
profinite group, the action extended from [17, Section 9] remains well defined too, where

(X ·M)(Y ) =
(
M∗(πY )M∗(πY )

)
(M(Y )),

for all almost finite G-spaces X and Y , and for all Mackey functors M for G.
The proof is routine. For instance, for the equality ηf · ηf ′ = ηf×f

′
, let f : X → Gc, let

f ′ : X ′ → Gc, let M be a Mackey functor for G over R, and let Z ∈ AFG. Then,

M(Z)
M∗(πZ) //

M∗(πZ)
��

M(X × Z)
M∗(τ

f
Z)

//

M∗(πX×Z)

tt

M(Z)

M∗(πZ)
��

M(X ×X ′ × Z)

M∗(τ
f×f ′
Z ) ,,

M∗(τ
f

X′×Z
)

// M(X ′ × Z)

M∗(τ
f ′
Z )

��
M(Z)

the dotted maps make the diagram commute, and they are obtained applying M to the pull
back in AFG,

X ×X ′ × Z
πX×Z //

τf
X′×Z

��

X × Z

τfZ
��

X ′ × Z πZ
// Z

.

If instead we consider restricted Mackey functors for a profinite FC-group G, as in [1], then
×AFG does not act on Mackr(G). Indeed, if (f : X → Gc) ∈ ×AFG and Y ∈ AFG, then

πY : X × Y → Y is a morphism in ×AF fG if and only if X is finite. Instead, τ fY is a morphism

in ×AF fG if and only if, for all y ∈ Y , the set {(x, z) ∈ X × Y | y = f(x)z} is finite. Thus, only
the finite crossed G-sets act on Mackr(G). This observation does not come as a surprise to us,
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but it raises the question of the structure and purpose of the category (or categories) of Mackey
functors for a profinite groups.

Acknowledgements. We are sincerely grateful to Serge Bouc, Ilaria Castellano, Brita Nucinkis
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