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Decay of unstable states in the presence of colored noise and random initial conditions.
I1I. Analog experiments and digital simulations
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The decay of an unstable state under the influence of external colored noise has been studied by
means of analog experiments and digital simulations. For both fixed and random initial conditions,
the time evolution of the second moment {x%(¢)) of the system variable was determined and then
used to evaluate the nonlinear relaxation time. The results obtained are found to be in excellent
agreement with the theoretical predictions of the immediately preceding paper [Casademunt,
Jiménez-Aquino, and Sancho, Phys. Rev. A 40, 5905 (1989)].

I. INTRODUCTION

In the immediately preceding paper,! hereinafter re-
ferred to as paper I, a formalism was developed for the
calculation of the nonlinear relaxation time (NLRT) asso-
ciated with the decay of an unstable state under the
influence of external noise. The noise was assumed to be
Gaussian with zero mean, and with a correlation

() = Zexp(e—'| /). (1.1
The theory is generally applicable to systems describable
by Langevin-like equations; for convenience, these were
cast in the form

X=v(x)+%g(x)‘u, s (1.2)
where
5
p=——2—,u,+—€p—1](t), (1.3)

(n(t)n(t'))=28(t—1t'), €=r, and the noise variable
was scaled as p=¢£. The nonlinear relaxation time asso-
ciated with an average (over realizations of the noise and
over initial conditions) of an arbitrary ¢(x ), defined as

(B =)y
SRR

was calculated in general for a range of noise colors and
intensities and for different types of initial conditions.

In the present paper, we report the outcome of analog
and digital experiments undertaken to test the theoretical
results, to confirm that they are applicable to real physi-
cal systems, and to investigate their range of validity.
The investigations were related specifically to the Landau
model defined by

x=ax —bx3+&(1),

(1.4)

(1.5)
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where a,b >0. As discussed in paper I, this model has an
unstable state at x =0 and stable states at x=+V'a /b.
In the experiments and simulations, the system was ini-
tially set either at x =0 (fixed initial condition) or, alter-
natively, it was set in sequential realizations at initial po-
sitions with a distribution centered at x =0 (random ini-
tial conditions); in either case, it was then released, and
the time evolution of the second moment {(x2(z)) was
determined by squaring and ensemble averaging succes-
sive x(¢) trajectories.

The analog experiments and digital simulations are de-
scribed in Secs. IT and III, respectively; the value of T ob-
tained from them are presented, compared with theory,
and discussed in Sec. IV. Section V summarizes the work
and draws conclusions.

II. THE ANALOG EXPERIMENT

An electronic circuit model of (1.5) was constructed. It
was driven by external noise and the time evolution of its
response from given starting conditions was analyzed by
means of a digital data processor. The operating princi-
ples of such circuits, and the general philosophy and
practice of their application to problems in stochastic
nonlinear dynamics, have been discussed in detail else-
where.>? 1In this section, we describe the design and
operation of the particular circuit used for the present
work, and we report the results that have been obtained
from it.

A. The electronic circuit

The circuit is based on two analog multipliers* and a
Miller integrator, connected as shown in Fig. 1. In terms
of the scaled variables y and 7, (see below) that were used
to optimize its performance, the equation describing the

operation of the circuit is readily shown to be
Ti)}:[Vsy—y}—g(ts)] ’ (21)
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FIG. 1. Block diagram of the analog electronic circuit used
to model the time evolution of Eq. (1.5) from specified starting
conditions.

where 7, =RC is the integrator time constant, £(z,) is ex-
ponentially correlated Gaussian noise with correlation
function

(BB = Ve * 5,
Vi, is the variance of the noise voltage, and 7, is its
correlation time. The sign and magnitude of the constant
voltage ¥V can be set externally; in practice, the sign of
V, is alternated periodically, while keeping |V, | constant,
by application of a square wave of amplitude V, as
shown in the figure. A second square wave of the same
frequency and phase is used to operate a pair of solid-
state switches through which different forms of external
noise §(¢;) can be applied to the circuit.

The operation of the circuit for fixed initial conditions
was as follows. With V| negative, so that the correspond-
ing potential has a single minimum at y =0, and with no
noise applied (switches both open), the system was al-
lowed to settle at y =0. The sign of ¥V, was then suddenly
made positive by the next half-cycle of square wave. In
terms of the corresponding double-well potential, the sys-
tem was thereby prepared, such that the representative
particle was initially in unstable equilibrium on top of the
central maximum at y =0. Simultaneously, noise was ap-
plied to the circuit (by closing one of the switches) and a
sweep of the Nicolet 1080 data processor was triggered.
As the system subsequently relaxed towards one or
another of the potential minima, its y(z;) trajectory was
digitized (1024 points, 12 bits precision) and the first to
fourth moments were computed and added to their en-
semble averages. The process was then repeated. The
number of blocks in the averages needed to provide ac-
ceptable statistical quality depended on the intensity of
the applied noise, but was typically in the range
300-3000.

For operation with random but coupled initial condi-
tions, the sequence of operations was exactly the same,
except that one of the noise switches was kept per-
manently closed. For random but decoupled initial condi-
tions, both noise generators (see below) were used and the
two switches were operated in phase opposition; thus no

(2.2)
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correlation existed between the noise-producing random
fluctuations about the equilibrium position (y =0) at the
bottom of the single-well potential prior to the transition
in the sign of ¥ and the noise responsible for the relaxa-
tion towards one of the two minima in the double-well
potential after the transition.

Particular care was taken to eliminate small dc offsets
arising in the multipliers and integrator; the trimming
circuitry that was used was of the conventional kind and
is not shown in Fig. 1. The scaling factor in the transfer
function* of the multipliers was reduced below its default
value of 10 in order to match the dynamic limits of the
circuit more closely to the simulated model. The resul-
tant loss of bandwidth (reduced to 80 kHz) was taken ac-
count of, first, by an appropriate choice of integrator time
constant (typically R=10 k, C=100 nF, whence
r=RC=1073s) and, second, by an arrangement of the
circuit (Fig. 1), such that the noise was injected directly
into the summation input of the integrator.

B. Scaling laws for the analog experiment

Although the system to be simulated was the Landau
model with unit coefficients

x=x—x3+f(1), (2.3)

it was often necessary in practice to use a value for the
amplitude V; of the square wave in (2.1) that differed
from unity. This scaling was in order to ensure that the
voltage swings in the circuit were as large as possible in
comparison to its own internal noise while, at the same
time, ensuring that “clipping” did not occur in any of the
components, i.e., that their maximum voltage limits were
not exceeded. To match the dynamical behavior of the
system to the characteristics of the noise generators, and
to enable the measurements to be completed reasonably
quickly, the integrator time constant (see above) was
chosen to be considerably less than unity. Consequently,
the system (2.3) was also being modeled in terms of scaled
time.> Assuming that the Gaussian random noise f(¢) in
(2.3) has the correlation function

Flfn)=2e i, (2.4)
it is straightforward to demonstrate that, if we want to
model (2.3) by means of data acquired from (2.1) with an
integrator time constant 7;, the proper scaling relations
are

T 1 _ Vi
=(gy_n 1 _ Tmms
D=(&*) Vo (2.5)
T=T7,/T; » (2.6)
t=t V. /7; , 2.7
x=y/V3}?. (2.8)

C. Noise generators for the analog experiment

For most of the experiments with fixed initial condi-
tions, a standard Wandel and Goltermann model RG2
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noise generator was used. For the experiments with ran-
dom but decoupled initial conditions, however, it was
necessary to use a pair of noise generators whose outputs
were uncorrelated: a twin-output pseudo-random noise
generator was constructed specially for this purpose. It
was of the type already described by Martano® and used
successfully in analog experiments.®” This kind of noise
generator is based on the filtering of pseudorandom
length sequences of dichotomous pulses to obtain
Ornstein-Uhlenbeck noise according to the theorem of
Rice.® The pulses are generated by a closed-loop-
feedback shift-register in which the ex-or feedback func-
tion is randomly inverted®~7 to ex-nor in order to elimi-
nate skewness and thus to obtain a virtually Gaussian dis-
tribution.

In the present version of the noise generator, two
different stages of the same 18-stage feedback shift regis-
ter are used as feedback inverters for two quite separate
41-stage shift-registers. In this way, two independent
random pulse sequences are obtained which, after filter-
ing, can serve as independent (uncorrelated) noise
sources. The clock frequency is 4 MHz. With the filter
time constants set to give a frequency cutoff above 40
kHz, the distribution functions of the noise at the outputs
were found to be Gaussian to more than 4 standard de-
viations. The period of the pseudorandom sequences is
about 6.5 days. This time exceeded by a large factor the
characteristic times both for an input sweep to the Nico-
let data processor (typically 10 ms) and also for the com-
pletion of an ensemble average of the statistical moments
of several hundred such sweeps (typically 15 min).

D. Analog experimental results

On completion of the ensemble averages of moments
for any given set of conditions, the nonlinear relaxation
time T defined by (1.4) was computed, usually from the
second moment. It was obviously impossible for the
upper limit of integration to be « in practice; rather, the
data-processor sweep time was adjusted such that
(xX(t)) had effectively settled as its final value {x2)
well before the end of the sweep. Some results of these
procedures are presented below. In the interests of clari-
ty, the raw values measured in terms of y and ¢, for vari-
ous values of ¥, have all been scaled to the correspond-
ing values of x and ¢, so as to be consistent with Egs.
(2.3).

In Fig. 2(a) is shown a typical x(¢) input sweep im-
mediately after being digitized by the Nicolet data pro-
cessor; part (b) of the figure shows the same signal after
being squared. A succession of such signals is ensemble
averaged to form the moments {x™(¢)). Figure 3(a)
shows the measured evolution of the second moment un-
der weak noise forcing. The shape of the curve is quite
different from that of Fig. 3(b), corresponding to relative-
ly strong noise, where the system starts to rise almost im-
r<nec21iate1y from its initial unstable equilibrium position at

x?)=0.

The values of T extracted from data such as those of
Fig. 3, for various values of 7 and D, and for different ini-
tial condition, are presented and discussed below in Sec.
IV.
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FIG. 2. (a) An example realization of x(¢) starting from the
initial condition x =0 at ¢t =0, with log,o(1/D)=2.00; 7=0.010.
(b) The same example realization as in (a), but after being
squared, ready to be added into the memory block in which the
second moment {x2(¢)) is being ensemble averaged.
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FIG. 3. Measurements of the relaxation of the second mo-
ment {x%(¢)) from the fixed initial condition x =0 at t =0 and a
noise correlation time 7=0.010, for two different noise intensi-
ties D: (a) an average of 300 x(z) trajectories with
logo(1/D)=4.69; (b) 3000 trajectories with log,,(1/D)=0.80.
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III. THE DIGITAL SIMULATION

The digital simulation was performed on an IBM-
9375/60 computer using standard algorithms for white
and colored noise.” Although further removed from be-
ing a real physical system, this type of simulation is
closer to the ideal theoretical model and has fewer
sources of error than the analog experiment. Hence it
can be used as a more precise test of the theoretical pre-
dictions.

An ensemble of typically 1000 or 2000 realizations is
made for each point. The step of integration of the algo-
rithm lies usually between 0.005 and 0.0005. The simula-
tion is carried up to a time typically of the order of 47,
where Tq=1In(1/D) is an estimate of the time scale of
the process. The steady-state value of {(x2) is deter-
mined using the data in the time interval (37,4T,). The
NLRT is obtained from simple numerical integration
(trapezoidal rule) of (1.4), from the time-discretized evo-
lution of {x2) between ¢t =0 and 3T,

The simulation of the initial conditions needs a bit
more attention. For the case of uncoupled but distribut-
ed initial conditions we generate the initial values of x,
according to the Gaussian distribution (3.7) of paper I,
and the values of the noise u, with another independent
Gaussian number of variance D. For the case of coupled
initial conditions, 70, we generate the initial values of
xo and u, using their joint probability density

(1+ay7) _
P (xg,p0) ~exp ”Z_DO‘(.uo‘ao‘/f-’co)2
a
—5%(1+aor)xg ) (3.1)

which is the steady solution of the linear model (3.5) of 1
with colored noise . In order to generate the pair of
variables (xg,uy) according to the statistics of (3.1) we
use two independent Gaussian random numbers of zero
mean and unity variance y; and y,, so that

__VDr V/D /ag (3.2a)
YT MHagn ' (4agn 2 -8
wo=vVDy, . (3.2b)

For the preparation with the nonlinear model (3.2) of I,
the statistics of x,uq are not strictly Gaussian. Howev-
er, for the small intensities of the noise involved, the
linear approximation is completely justified since the
corrections from the nonlinearities are of higher order
than the theoretical predictions.

IV. RESULTS AND COMPARISON
WITH THEORY

Given that the theoretical predictions of paper I are
asymptotic (small 7, small D), the analog and digital ex-
periments will be useful not only as a confirmation of
them but also in order to determine their range of validi-
ty. The results we present below correspond to the Lan-
dau models (3.2) and (3.4) of paper I with a =ay,=b=1.

J. CASADEMUNT et al. 40

The concrete predictions that we want to check are
Egs. (3.14), (3.16), (3.17), and (3.19) of paper I. The
reference framework will be the white-noise case with
fixed initial condition (3.10) of paper 1. This result was
tested in Refs. 10 and 11 and it is valid for D $0.01.

Our first result (3.14) of I has been checked for D =D,
where D’ is the intensity of the noise prior to the
“quench” [the change from Eq. (3.2) to Eq. (3.4) of paper
I at t=0]. The difference predicted in this case is

T?(r=0)—THr=0)=—1In2 . 4.1)
In Fig. 4, both analog and digital simulations support the
predicted shift for all D $0.01. In this regime, it is clear
that the same net effect of speeding the decay is always
present, irrespective of how small D is.

Our second prediction (3.16) of paper I establishes that
in the case of coupled initial conditions [the “quench”
model (3.2) and (3.4) of paper I] the effect of colored noise
relative to that of white noise is of higher order than 7.
We have checked the importance of these higher-order
corrections with digital and analog simulations. In Fig. S
we see that the relative deviation between both cases is
practically zero even for relatively large values of 7= 1.
The conclusion is that, as far as the decay time is con-
cerned, for a quench experiment the colored-noise case is
not essentially different than the white-noise case, so in
this kind of problem the white-noise assumption is
justified.

The third prediction (3.17) of paper I refers to the
NLRT for fixed initial conditions and colored noise. For
the model (3.2) the prediction is

ln—1~+‘r

1
Ty(r)=7 |InJ +CphL - (4.2)

In Fig. 6 we can see the excellent agreement between
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FIG. 4. NLRT vs log,(1/D) for white noise for fixed and
distributed initial conditions (D'=D). The straight lines are
the theoretical predictions (4.1). Stars (D’'=0) and squares
(D'=D) correspond to digital simulation, and rhombics
(D’=0) and triangles (D’'=D) to analog simulation.
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Finally, we have plotted in Fig. 8 the evolution of the
second moment for the linear model (3.3) of paper I and
the Landau model (3.2) of paper I for fixed initial condi-
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FIG. 5. Relative deviation of the NLRT with coupled initial
conditions with respect to the white-noise case vs 7. Stars
(D=107°) and squares (D = 10~°) correspond to digital simula-
tions, and triangles (D =2.0X 107°) and rhombics (D=4.7
X 1074) to analog simulations.

(4.2) and both kinds of simulation, covering a wide range
of validity for different values of D $0.01 and 7< 1.

The last prediction (3.19) of paper I refers to the case
of distributed initial conditions in the presence of colored
noise. For the same distribution of the system variable x,
the difference between being and not being coupled to the
colored noise in our case, from (3.19) of paper I reads

T2(7r)—TP(r)=

%+m#ppn. @.3)

In Fig. 7(a) we see that this prediction is confirmed in a
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FIG. 6. NLRT with fixed initial condition vs the scaling vari-
able In(1/D)+7. The straight line is the theoretical prediction
(4.2). Triangles and squares correspond to digital simulation
with white noise and colored noise (75 1), respectively. Stars
correspond to analog simulations for colored noise (75 1).

tions and for different intensities of the noise (digital
simulation), in order to illustrate the universal law [Eq.
(3.10) of paper I]

R%a

2D

lln

+C
2

. (4.4)

On the one hand, it is clear that the effect of decreasing
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FIG. 7. (a) The difference between the values of T determined
for coupled and uncoupled initial conditions, as a function of
the noise correlation time 7. The straight line corresponds to
the theoretical prediction (4.3). Stars (D=D'=10"°) and
squares (D=D'=10"°) correspond to digital simulation, and
the triangles to analog simulation (D =D'=2.0X107%). (b) The
same quantity plotted as a function of log,,(1/D) for 7=0.5.
Stars and squares correspond to digital simulations, and rhom-
bics and triangles to analog experiments.



5920

0.5

00
00

FIG. 8. Digital simulation of the second moment {x?%(z)) for
fixed initial conditions. The dashes and curves correspond to
the model (3.3) of paper I (linear model with reflecting boun-
daries, a =R =1) and the solid ones to the Landau model (1.5)
(@a=b=1). @ D=10"% () D=10""°

the noise intensity is just to shift the entire curve. On the
other hand, the details of the shape in the nonlinear and
saturation regimes are characteristic of each model and
independent of D. Therefore, the constant C contains
essentially the information on these last stages of the re-
laxation. The difference AC between the C of a given
model and the reference value of the model (3.3) of paper
I is essentially the area enclosed between the respective
curves. This quantity is a measure of how fast the relaxa-
tion is, once the system has escaped from the unstable re-
gion.

V. SUMMARY AND CONCLUSIONS

In paper I the study of the decay of unstable states has
been presented and theoretical predictions for the NLRT
were obtained in different situations. These results were
deduced using asymptotic methods and the analog exper-
iments and digital simulation of the present paper have
demonstrated their wide range of validity.

The NLRT has provided a global characterization of
the decay of unstable states including the final stages of
the relaxation. The general picture establishes a univer-
sal logarithmic term plus a model-dependent constant
which accounts for the nonlinear and saturation regime.
This picture is valid for small noise intensities (far-
above-threshold condition). For the Landau model this
condition turns out to be valid for D /a?><107 2. In the
large noise intensity (bD /a’>>1) domain, the system
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becomes marginally stable (near threshold).!!

In these papers, we were interested in the corrections
introduced to this general picture by the presence of
colored noise and random initial conditions. In all the
cases studied, these effects can be taken into account as
corrections to the model-dependent constant. Neverthe-
less, due to the universal character of the responsible
mechanisms, which involve only the linear regime, these
effects are claimed to be universal and also present in oth-
er definitions of characteristic times such as mean-first-
passage times.

The prediction for the case of distributed initial condi-
tions with white noise, has been checked in the case
D’=D and indirectly in other cases in the calculations in-
volving the Markovian contributions in the colored-noise
case. The domain of validity is that of the unstable-state
picture we commented on above. It is remarkable that
the effect depends on the quotient D /D', so there may be
a finite contribution irrespective of how weak the noise is.
This could have some relevance in practice in order to
determine the actual uncertainty on the initial conditions
in “switch-on” problems or the effects of other internal
noise sources in a quenching experiment,'? for instance.

The colored-noise predictions of paper I were done up
to first order in 7. The simulations for finite values of 7
have shown that the predictions are quite good even for
moderate values of 7. The prediction of independence of
7 for the coupled case has turned out to be very good for
7=1. This remarkable result means that in a quenched
experiment, it is irrelevant whether one has colored or
white noise, as far as the decay time is concerned. The
prediction for the uncoupled initial conditions, which is
the most artificial case, has a shorter domain of validity.
The first-order contribution on 7 is valid up to 7<0.5. In
the particular case of fixed initial condition with colored
noise the predicted law has been shown to be valid for
T<1.

In general, we have also found that digital simulation
mimics the uncoupled case better than the coupled one.
The contrary happens in analog experiments which mod-
el better the coupled case. This is clear because the cou-
pled case is closer to any real physical situation.
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