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Abstract

In the fast paced and data rich world of today there is an increased demand for

methods that analyse a stream of data in real time. In particular, there is a desire

for methods that can identify phenomena in the data stream as they are emerging.

These emergent phenomena can be viewed as observations being received that are

surprising when compared to the history of the data. Motivated by challenges in the

telecommunications sector, we develop methods that operate when the stream does

not follow classical assumptions. This includes when the data are not independent or

identically distributed, or when the phenomena occur gradually over time.

This thesis makes three contributions to the field of anomaly detection for stream-

ing data. The first, Non-Parametric Unbounded Change (NUNC), provides a non-

parametric method for identifying changes in the distribution of a data stream. The

second, Functional Anomaly Sequential Test (FAST), provides a method for identi-

fying deviations from an expected shape in a stream of partially observed functional

data. The third, mvFAST, extends FAST to the multivariate functional data setting.
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Chapter 1

Introduction

Advances in computational power, and the growing emphasis on timely data driven

decision making, mean that the analysis of a data stream in real time is a challenge

that has become increasingly important in recent years. Motivated by the need to

know what is happening right now, this real-time analysis has been applied in a variety

of applications including healthcare (Aziz et al., 2016), wireless networks (Onibonoje

and Olowu, 2017), urban infrastructure (Wan et al., 2022), air quality (Megantoro

et al., 2021), and the Covid-19 pandemic (Leon et al., 2020). The work in this thesis

focuses on a particular aspect of the streaming data analysis challenge: the detection

of emergent anomalous phenomena. These are observations that can, in some way,

be considered to be surprising when compared to previously observed data within the

stream.

The detection of emergent anomalous phenomena is of critical importance in many

sectors. One such sector is the digital infrastructure within today’s telecommunica-

tions industry. The emergence of anomalous phenomena in this setting might, for

example, indicate the occurrence of a significant event such as a service outage or

hardware failure. It can be critical to identify these events before they impact on an

end user. This is not only to preserve user connectivity, but also to help assure the

reputation of a leading national infrastructure service provider.

This thesis is motivated by several challenges drawn from the telecommunications

sector, and presents three novel methods for the detection of emergent phenomena

1



CHAPTER 1. INTRODUCTION 2

in a range of settings. These settings include when the data stream does not follow

classical assumptions such as being independent or identically distributed, or when

the phenomena emerge gradually over time. The remainder of this thesis is organised

as follows: in Chapter 2 we review the literature pertinent to the work presented in

this thesis. Specifically the focus of this chapter will be on sequential change and

anomaly detection, and functional data analysis.

In Chapter 3 we introduce NUNC, a novel non-parametric window based algorithm

for detection of changes in the distribution of a data stream. This method has been

developed in response to an applied challenge of monitoring an operational metric on

a given line with a view to taking pre-emptive remediation ahead of the customer

reporting an issue. We present such an application along with empirical evaluations

of the method, and a discussion on the computational properties of the algorithm.

Additionally, we establish theoretical results for the choice of points to search in the

window, and for the choice of the test threshold in order to control the false alarm

rate at a desired level.

Chapter 4 introduces a method for monitoring partially observed functional data

for emergent anomalies, and Chapter 5 extends this to the multivariate setting. We

name this method the Functional Anomaly Sequential Test (FAST) and demonstrate

the performance of our method in a range of settings, including monitoring points on

an internet network. We also establish several theoretical results concerning threshold

selection, bounds for the detection power, and a consistency result for mvFAST.

Finally, we close the thesis with a discussion on our contribution to the literature,

and potential avenues for future work, in Chapter 6.



Chapter 2

Literature Review

This chapter seeks to set the foundations for the research introduced in Chapters 3

to 6. To achieve this, we draw upon various areas of statistics including sequential

changepoint detection, functional data analysis, and anomaly detection. In Section

2.1 we begin by reviewing sequential changepoint methods including control charts,

and window based approaches. We then turn to introduce functional data analysis

(FDA) techniques in Section 2.4, exploring two pertinent FDA approaches: Functional

Principal Components Analysis (FPCA) and Principal Differential Analysis (PDA).

The chapter concludes with an overview of the literature on FDA applied to statistical

anomaly detection.

2.1 Sequential Changepoint Detection

Before introducing the sequential changepoint detection setting, it is perhaps first

helpful to consider the offline version of the changepoint problem. In the classical uni-

variate changepoint setting we consider a sequence of observations x1, . . . , xn, which

are realisations of the random variables X1, . . . , Xn respectively, containing a set of

changepoints {ν0, . . . , νK} ∈ N with ν0 = x1 and νK = xn. These K + 1 values divide

the sequence of observations into K segments such that Xi ∼ Fk for νk−1 < i ≤ νk,

and each 1 ≤ k ≤ K. Here Fk is the (possibly unknown) data generating process

for the kth segment of the data. The goal of a changepoint analysis is to accurately

3



CHAPTER 2. LITERATURE REVIEW 4

Figure 2.1.1: An example time series containing K = 3 segments. The dashed green

lines denote the changepoint locations.

estimate the values of the {νk}Kk=1 based on the observed time series. An example

sequence containing K = 3 segments is presented in Figure 2.1.1.

Many methods have been proposed for the detection of changepoints in an offline

setting. See Truong et al. (2020) for an excellent overview of the area. In the ap-

plications addressed in this thesis, however, we make use of sequential changepoint

detection tools. In this setting the data are collected individually, in sequence. As

each new observation is made a test is performed for the occurrence of a change

(Tartakovsky et al., 2014). Consider, by way of an example, a univariate sequence

of observations x1, x2 . . . ,. A sequential approach amounts to testing, at each t > 1,

whether there exists a 1 ≤ ν ≤ t such that x1, . . . , xν are drawn from a data gener-

ating process F , and xν+1, . . . , xt are drawn from a different data generating process

G ̸= F . Here F and G denote the (potentially unknown) pre- and post-change data

generating processes respectively.

An example time series that is being observed sequentially, and that contains a

change, is depicted in Figure 2.1.2. In this figure we see a sequence of observations

following the same data generating process (a), before a change in the mean of the

process occurs (b). After a sufficient number of post-change observations have been

seen an alarm is declared and a change is identified (c).
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In the sequential setting the goal is not to identify the precise location of a change

but instead to detect the occurrence of a change, as quickly as possible after it has

happened, without declaring an excessive number of false alarms (Tartakovsky et al.,

2014). This goal gives rise to the following two key metrics: (i) the probability of

false alarm, and (ii) the detection delay. Letting ξ denote the stopping time for

the sequential change detection test, with the stopping time indicating when the

method declares a change has been detected, the probability of false alarm is defined

as (Tartakovsky et al., 2014)

P (False Alarm) = P (ξ <∞| No Changepoint ) . (2.1.1)

That is, it is the probability that the test incorrectly declares a change has occurred.

The second key metric is the detection delay, D. This is defined as (Johnson et al.,

2017)

D = ξ − ν, (2.1.2)

where ν is the true changepoint location.

(a) (b) (c)

Figure 2.1.2: In this figure we present an example of sequential change detection.

In (a) we show an example time series containing no change. In (b) we show that

the change has occurred (solid green line) but has not yet been detected. In (c) the

change has been detected (dashed blue line).

Several different types of sequential changepoint detection methods have been

proposed in the literature. For a broad review of the area, see Tartakovsky (2019).

Two of the most common approaches are control charts and moving windows. For an

excellent introduction to control charts and moving window based methods see Qiu

(2013) and Aminikhanghahi and Cook (2017) respectively.
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Both control charts and window based approaches are utilised in the work of

this thesis. In Chapter 3 we will make use of a window-based approach as part of

a nonparametric sequential changepoint detection method. Conversely in Chapters

4 and 5 we shall make use of a control chart approach to detect anomalies within

sequentially observed functional data.

In the next section we will review the relevant literature in both these areas.

However, we take this opportunity to note that numerous other approaches for se-

quential change detection have been introduced. These include Bayesian (Shiryaev,

1963; Adams and MacKay, 2007; Byrd et al., 2018; Agudelo-España et al., 2020), dy-

namic programming (Fisch et al., 2022a), and convex optimisation (Cao et al., 2018)

based techniques. Each of these tools require parametric assumptions about the dis-

tribution of the data being observed and so, as we shall see, are unsuitable for use

in the settings we consider in this thesis. As such, in this review we focus solely on

the control chart and moving window methods as they are the most pertinent to the

later chapters of this work.

2.2 Control Charts

First introduced by Shewhart (1930), a control chart is a method to monitor for a

change to a process over time. See Qiu (2013) for a comprehensive review.

Formally, under the null hypothesis of no change, the process will generally be in-

dependent and identically distributed (i.i.d.). To monitor for a change to the process,

a control chart computes a sequence of test statistics, S1, S2, . . . , based on the data

observed so far. Specifically, at each time t the test statistic, St, is computed from the

observed data x1, . . . , xt. This test statistic is then updated sequentially as each new

observation arrives. Thus when xt+1 is observed St+1 can be computed. As we shall

see later, various forms for the test statistic have been considered in order to capture

different properties of the data stream sequence.

To detect a change, a control chart uses the cumulative sum of the test statistic,

∆t =
∑t

i=0 Si. Should ∆t exceed a specified threshold then the control chart declares
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that a change has occurred at observation t. This is represented by the stopping time,

ξ, where

ξ = inf {t : ∆t > U or ∆t < L} . (2.2.1)

Here U and L represent the upper and lower thresholds for the chart. Often, these

thresholds are selected so that the probability of false alarm is controlled at some

pre-determined level α (Polunchenko and Tartakovsky, 2012).

An early, and perhaps best known example of the control chart methods, is the

approach introduced in Page (1954). The so-called CUSUM approach monitors cu-

mulative sums of some statistic based on the observed data stream. Over the years

various CUSUM schemes have been proposed. We will review some of the most com-

mon approaches below.

2.2.1 CUSUM Charts

The original parametric CUSUM chart of Page (1954) tests for a change in the mean

of a mean-zero data stream using the test statistic St = max(0, St−1 + xt), S0 = 0.

We then test to see whether the partial sum

St =
1√
t

t∑
r=0

Sr, (2.2.2)

exceeds the control chart threshold. As discussed above, this threshold will typically

have been selected to control the probability of a false alarm at a pre-specified level.

Note that the factor of
√
t is introduced in equation (2.2.2) to control the variance

of the partial sum. An example trace of the Page CUSUM test statistic is presented

in Figure 2.2.1. Observe how, once the changepoint has occurred, the test statistic

begins to increase rapidly leading to the CUSUM scheme declaring an alarm.

Kirch and Weber (2018) discuss an extension to the CUSUM test, the so-called

Page-CUSUM. This test allows for any parameter, not just the mean, to be monitored

by replacing the statistic, St, in equation (2.2.2) with a score statistic:

S(xt; θ) =
d

dθ
log (f(xt, θ)) .
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(a) (b)

Figure 2.2.1: In (a) we present an example time series that is tested for a change

using the CUSUM test in equation (2.2.2). In (b) we plot the trace of the CUSUM

test statistic, with the solid vertical green line the true change location, the horizontal

line the test threshold, and the dashed blue line the time of detection.

Here θ is a parameter for the distribution of the data under the null hypothesis and

f(·, θ) is the corresponding density. The Page-CUSUM test takes the following form

Kt = max
0≤w≤t

1√
w

t∑
r=t−w

|S(xr; θ)|, (2.2.3)

The maximisation over w is implemented to increase test power by searching over

a range of different segments, but at the price of quadratic computational cost (Yu

et al., 2020).

An alternative parametric approach to the CUSUM-based approaches based on

the chart of Page (1954) is the sequential likelihood ratio (SLR) test (Lorden, 1971).

The SLR test is designed to detect changes in the distribution of the data, rather

than changes in a set of parameters. To this end let f(·,θ) and g(·,θ) be the pre- and

post-change densities, where θ is a vector of parameters. Lorden (1971) then defines

the sequential test as follows:

Lt = max
2≤ν≤t

t∑
j=ν

log
g(xj;θ)

f(xj;θ)
. (2.2.4)

One important challenge with Lorden’s approach is that the post-change distribu-

tion is often unknown. To overcome this, the generalized likelihood ratio (GLR) test
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was proposed by Siegmund and Venkatraman (1995). This replaces the unknown post

change density, g, with the maximum likelihood estimate (MLE). Consequently only

the family of the post-change distribution, rather than the full distribution, needs to

be specified. In practice it can be challenging to specify this post-change distribu-

tion. This could occur, for example, because the data does not follow a parametric

model. Motivated by this challenge, in Chapter 3 we present a novel non-parametric

method for sequential changepoint detection where neither the pre-, nor post-, change

distribution needs to be known.

The selection of the post-change distribution is not the only issue with the gen-

eralized likelihood ratio test. A second disadvantage is the computational cost of

computing the post-change MLE, which is quadratic in the length of the data stream.

One solution to this increased computational cost is the use of the sliding window

approach that we describe in Section 2.3. Recently, however, Romano et al. (2021)

have sought to address this issue from a control chart perspective. In particular, they

provide an exact test for the Gaussian change in mean problem, FOCuS (Fast Online

Cumulative Sum), with a logarithmic computational cost on average.

Over the years various alternative approaches to the parametric CUSUM test have

been detailed in the literature. One such example is the Bayesian formulation of the

CUSUM test known as the Shiryaev-Roberts procedure (Shiryaev, 1963). The test

has also been adapted to determine deviations from a particular form of underlying

model. Examples include the CUSUM test for changes in the parameters of a linear

model (Ploberger and Kramer, 1992), the structure of hidden markov models (Fuh,

2003), sets of panel data (Wu, 2019), and the parameters of time series models (Song

and Kang, 2020).

Each of the parametric CUSUM tests presented so far make the assumption that

the observations are independent and identically drawn from some null distribution.

Whilst many of the aforementioned methods allow for the parameters of the distri-

bution to be estimated from the data, they at least require that the family of the

distribution be specified up front. Such assumptions are inappropriate for the data

structures considered in Chapters 4 and 5 of this work, where the data need not be
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independent, identically distributed, or drawn from a known distribution. Motivated

by the need to relax some of these assumptions, Tartakovsky et al. (2005) propose

a non-parametric CUSUM test, and it is this approach that we shall build upon in

Chapter 4 and 5. We briefly review the non-parametric CUSUM literature in the next

section.

2.2.2 Non-Parametric CUSUM Chart

The essential ingredients of the non-parametric CUSUM control chart mirror that of

the parametric one: the observations are used to compute a test statistic, and if the

cumulative sum of this test statistic exceeds a threshold then an alarm is declared.

The difference between the two approaches, however, is that in the non-parametric

approach the test statistics do not rely upon there being an underlying distribution

for the observed data (Hušková and Hlávka, 2012).

The non-parametric CUSUM control chart was first introduced by Tartakovsky

et al. (2005). Under their approach the test statistic is formulated as

Ht =
t∑

j=1

h(xj), (2.2.5)

where h(·) is a user-defined function of the observed data. Tartakovsky et al. (2005)

note that an appropriate choice for h(·) can overcome the need to assume the observed

data are i.i.d. Furthermore, h(·) can be selected so that a particular property of the

data stream can be monitored for a change. Tartakovsky et al. (2013) propose several

choices for h(·), for example h(·) = xt −mt, where mt is the median estimated from

the first t points; or h(·) = C1xt + C2x
2
t − C3, for constants Ci. The former choice

is designed for monitoring for changes in the location of a data stream where the

distribution for the data is heavy-tailed, whereas the latter is designed for monitoring

for changes in both the mean and variance simultaneously.

One disadvantage of the non-parametric CUSUM chart, however, is that it may

be time consuming to identify a suitable h(·) function. Furthermore, there are no

theoretical guarantees that the selected function is the best possible, or even near

optimal. That said, this approach does allow for the CUSUM test to be extended to
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a broad number of settings, and in Chapter 4 we will incorporate this method into

our anomaly detection test.

Whilst the classical CUSUM test, and variants of it, are some of the most common

control charts in the literature various other monitoring schemes have been proposed.

In the next section we shall present a brief overview of some other relevant recently

proposed approaches.

2.2.3 Other Related Approaches

In a similar vein to the non-parametric CUSUM test of Tartakovsky et al. (2005),

other control charts have been suggested that do not assume any knowledge of the

distribution for the data. These methods use U-statistics to detect changes (Kirch and

Stoehr, 2019). Example U-statistics include the Mann-Whitney (Mann and Whitney,

1947) or Mood (Mood and Graybill, 1963) statistics, used for changes in scale and

location respectively (Kowalski and Tu, 2008). Several authors implement the U-

statistic approach, for example Ross and Adams (2012); Zhou et al. (2014), and Xiang

et al. (2019). In more recent literature, the U-Statistic approach has also been utilised

to detect anomalies in autoregressive (AR) models, see Lee (2020) and Gamage and

Ning (2020).

One issue with each of the control chart methods presented thus far is that, under

the null hypothesis, they require the data to be drawn from a distribution that is

weakly stationary - that is, the mean and variance are constant over time. Unfortu-

nately such an assumption is not always suitable for the data generating process at

hand. Work has been done to address this challenge by Qiu and Xiang (2014), who

allow for a time varying mean structure under the null using a first order AR model.

This is extended by Mathieu et al. (2020), who define the following model for the data

xt =

ηt + vt 1 ≤ t ≤ ν

ηt + vt + ft,δ t > ν.

(2.2.6)

Here ηt is an Moving Average (MA) process, vt is a slowly varying function, and ft,δ

represents a change in mean by the level δ. The use of an MA process and slowly
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varying function in equation (2.2.6) allows for non-stationarity, and serial correlation,

to be modelled under the null. A shortcoming of this method, however, is the require-

ment that the change be abrupt and occur as a step change at time ν. In Chapter 4

of this work we consider an application where changes from our non-stationary mean

emerge gradually, rather than as a step change at a single point in time. As a result

of this, the works of Qiu and Xiang (2014) and Mathieu et al. (2020) are unsuitable

for use in our setting.

Little exists in the control chart literature regarding gradually emerging changes,

however Shu et al. (2008) offers one approach by modelling a change from a constant

mean under the null, to a mean that follows an ARMA time series model under the

alternative. The effect of this is that the change can emerge gradually and increase in

magnitude as more points are observed. As a result, the work of Shu et al. (2008) offers

some progress towards the detection of gradual changes, albeit with the caveats that

the post-change data follows an ARMA structure, and that the pre-change distribution

is stationary. In Chapter 4 we will build upon Shu et al. (2008) by modelling both

non-stationarity under the null and the emergence of gradual changes.

Another well studied alternative to the CUSUM chart is the exponentially weighted

moving average (EWMA) chart. This chart, introduced by Hunter (1986) for use in

sequential changepoint detection, features a test statistic given by

Et = λEt−1 + (1− λ)j(xt, . . . , xt−w+1), (2.2.7)

where j(xt, . . . , xt−w+1) is a function of the previous w data points and 0 ≤ λ ≤ 1.

The advantage of this method is that it can place emphasis on changes in the most

recent observations by suitably weighting equation (2.2.7) towards the contribution

of the second term. This is in contrast to the CUSUM, where all points contribute

equally to the test statistic. The EWMA chart has been applied by other authors in a

variety of settings, including Dong et al. (2008) and Raza et al. (2015) for changes in

non-stationary data, Ross (2014) and Keriven et al. (2020) for changes in distribution,

and Plasse et al. (2021) for changes in transition matrices.
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2.3 Window Based Sequential Methods

In contrast to the control chart approach, window based changepoint detection seeks

to identify changes in a stream of data occurring within the points contained within

a window. For a window of size w, this therefore corresponds to analysis of the data

stream xt−w+1, . . . , xt.

We begin our review of moving window based methods with the MOSUM, before

proceeding to explore some alternative approaches.

2.3.1 The MOSUM Test

The MOSUM test of Bauer and Hackl (1978) monitors the cumulative sum of data

within a sliding window in order to detect a change in mean. The test uses the statistic

Rw,t =
1

σ
√
w

t∑
i=t−w+1

xi − µ, (2.3.1)

where µ is the mean under the null, and σ is the standard deviation of the data. Under

the MOSUM test, an alarm is declared if |Rw,t| > γ, where γ is the test threshold.

The work of Bauer and Hackl (1978) was subsequently extended by Hušková (1990),

and Chu et al. (1995), where asymptotic distributions for γ are proposed.

An example of a window based analysis is given in Figure 2.3.1. Figure 2.3.1(a)

depicts a stream of data, and a window denoted by the shaded purple region. Any

changepoint analysis that takes place is carried out using only the data contained

within the window, and this window moves along the data stream as new observations

are received. In Figure 2.3.1(b) we show the trace of the MOSUM test statistic, Rw,t,

for the sample of data contained in Figure 2.2.1(a). Observe how, unlike the CUSUM

test statistic plotted in Figure 2.2.1(b) the size of the MOSUM test statistic only

increases significantly when the window contains the changepoint.

A more recent work by Eichinger and Kirch (2018) explores the utility of the

MOSUM test to detect changes in the mean of an i.i.d. data stream following any
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(a) (b)

Figure 2.3.1: In (a) we present an example of a window based change analysis. The

window is of size w = 30 and depicted by the shaded region between the dashed purple

lines. In (b) we plot the trace of the MOSUM test statistic on the data from Figure

2.2.1(a), with the solid vertical green line the true change location, the horizontal line

the test threshold, and the dashed blue line the time of detection.

distribution. They define their MOSUM statistic as

Mw,t =
1

σ
√

2w

∣∣∣∣∣
t∑

j=t−w+1

xj −
t−w∑

j=t−2w+1

xj

∣∣∣∣∣ (2.3.2)

and, similarly to the original MOSUM, declare a change if |Mw,t| > γ. As can be seen

from equation (2.3.2), their test differs from the classical MOSUM test by searching

not a window of size w, but by comparing two windows of size w against each other

in order to identify a change in mean. This is proposed because it transpires that

the test power is maximised in the middle of the window. This comes at the cost,

however, of a potential increase in detection delay due to the wait for the changepoint

to be located at the centre of the window.

There are several advantages to using the MOSUM over a control chart method for

sequential changepoint detection. In particular, using a moving window provides the

advantage of a bounded computational cost, overcoming the issue control charts face

as the length of the data stream increases. It also introduces issues, however, such as

the need to select an appropriate window size. That said, recently Xie et al. (2022)

have provided a method for choosing the optimal window size under the assumption

that the data are i.i.d.
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Whilst the MOSUM test has generally been designed to detect a change in the

mean of a data stream, Hsu (2007) have also applied the method to detect changes in

variance. More recently, several authors have proposed sliding window based methods

that seek to detect a broader range of changes than those in mean or variance. We

overview some of these alternative approaches in the next section.

2.3.2 Alternative Sliding Window Based Methods

An example of a more generalized variant of a window based change detection method

is outlined by Kirch and Weber (2018). Their approach utilises windowed sums given

by

Hw,t =
t∑

j=t−w+1

h(xj, θ̂), (2.3.3)

where h(·, ·) is an estimating function and θ is a parameter estimated such that∑m
j=1 h(xj, θ̂) = 0, for a set of changepoint free historical data x1, . . . , xm. Many

existing window based methods, for example the MOSUM given in equation (2.3.1),

are contained in the definition of Hw,t. Kirch and Weber (2018) demonstrate that

location changes, changes in the parameters of non-linear models, and changes in

integer-valued time series can all be detected by a suitable choice of estimating func-

tion. The complication here, however, is identifying such a function. Furthermore,

there is a need to identify a set of training data that is changepoint free to set the

parameter θ.

As Tout et al. (2018) discuss, a window based algorithm is also a useful tool for

analysing a non-stationary stream of data. The authors propose a method similar to

the MOSUM of Eichinger and Kirch (2018) to identify changes in the mean of a non-

stationary data stream. A drawback of the method, however, is that it requires the

data follow a Gaussian distribution and has constant variance across all observations.

Talagala et al. (2020) present a windowed algorithm, OddStream, that relaxes these

assumptions and detects changes in non-stationary and non-identically distributed

data. To do so their method monitors a matrix of time series features generated from

the windowed data. By monitoring several features at once, a broader range of changes
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can be detected. A disadvantage of the method, however, is that the detection step

uses a principal component projection of the feature matrix and so which features

have changed cannot be identified.

Whilst each of the window based techniques presented so far search for a change

inside the window of data, recently an alternative approach has been proposed where

the window of data is compared to the out of window observations. Gösmann et al.

(2020), for example, compare the estimate of the parameter of interest, θ, on the first

t− w points with the estimate obtained from the most recent w points:

Dt,w(θ) = |θ̂1:t−w − θ̂t−w+1:t|. (2.3.4)

Here θ̂s:t is the estimate of the parameter of interest using observations xs, . . . , xt. A

similar approach is taken by Dette and Gösmann (2020) who instead use a likelihood

ratio test to compare θ̂1:t−w andθ̂t−w+1:t. The advantage of these approaches is that

using the first t − w observation to estimate θ offers a more accurate estimate than

simply using the windowed data should the parameter of interest be unchanged over

the whole data stream. A drawback of both Gösmann et al. (2020) and Dette and

Gösmann (2020), however, is that they require parametric models for the data.

An interesting variation on the traditional window based method has been recently

proposed by Padilla et al. (2019b), who introduce a test for a change in the distribution

of a data stream. In contrast to the other works discussed so far, their approach does

not use a single fixed window size, but instead computes a set of test statistics using

multiple window sizes and then takes the maximum of these statistics. The test

statistic used by Padilla et al. (2019a) is a Kolmogorov-Smirnov (KS) test statistic:

Ks:t =
√
t− s+ 1 sup

y

∣∣∣F0(y)− F̂s:t(y)
∣∣∣ , (2.3.5)

Here F̂s:t(y) is the CDF estimated from the points xs, . . . , xt and F0(·) is either the true

CDF, or the CDF estimated from a sample of data drawn from the null distribution.

The window statistic is then defined as Wt = maxt−L≤s≤t K̂s:t. Here L is a cutoff

point for the backwards movement of the window. The benefit of this approach is

that considering various window sizes can improve the power of the test. On the
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(a) (b)

Figure 2.3.2: In (a) we present an example time series that is non-stationary but

contains a change in mean at time ν = 100. The solid green line is the true change-

point, the dotted blue line the MOSUM detection time, and the dashed purple line

the CUSUM detection time. In (b) we show an example where the change at time

ν = 100 is of a much smaller magnitude (equal to 0.5). Observe how the CUSUM

test detects the change (dashed purple line) but the MOSUM test does not.

other hand, it also increases the computational cost by a factor of L as Ks:t must be

computed for each t− L ≤ s ≤ t.

Now that we have provided an overview of some of the key literature in the fields

of both control charts and sliding windows it can be instructive to contrast these two

schools of thought. In particular, in Figure 2.3.2 we present two examples for a change

in mean comparing the CUSUM control chart with the MOSUM test. Figure 2.3.2

(a) shows how a sliding window method can provide favourable results compared to

a control chart when the data stream is non-stationary. The reason for this is that a

large value is needed for the control chart threshold in order to control the false alarm

rate, and this in turn reduces test power and increases detection delay. On the other

hand, we see that in Figure 2.3.2(b) the control chart offers better detection power

when the change magnitude is smaller. This is because the control chart considers

the whole of the data stream. As such, it is more sensitive to changes that are smaller

in magnitude, whereas the MOSUM only considers the points in the window.

Now that we have laid the foundations for sequential changepoint detection, we

can turn our attention to the other area of statistics that is frequently used in this
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thesis: Functional Data Analysis. The next part of this literature review will briefly

overview the essential ingredients needed to work in a functional data setting, before

then moving on to an analysis of existing functional anomaly detection techniques.

2.4 Functional Data

Functional data analysis is a growing field of statistics that focuses on the analysis

of curves of data, rather than individual points. These curves can represent any

observation that varies over a continuum, and it is typical for this continuum to

be time. A wide variety of functional data methods exist in the literature, and for

overviews Ramsay (2005) or Ferraty and Romain (2011) can be consulted. Hsing and

Eubank (2015) also offer a theoretical perspective on the field. The main focus of this

section is anomaly detection in functional data. In order to adequately describe the

state of the art in this area we first introduce the foundations of FDA to the reader,

and in particular highlight the approach of Ramsay (2005).

2.4.1 Foundations of Functional Data Analysis

Observations in functional data analysis consist of curves of data, {X1(t), . . . , Xn(t)},

where t ∈ T . Here T is the compact interval the curves are observed over, and

Xi(t) ∈ L2(T ). In general, T = [a, b] ∈ R, however this is not a requirement. In

Figure 2.4.1(a) we show an example of functional data observed over the interval

[0, 1]. Notice how each observation consists of a smooth curve, and each curve has

been observed over the same time interval. We also remark that in this example each

of the curves has a similar shape, however this is not a requirement of functional data

in general. The computations in Figure 2.4.1(a), along with all other functional data

computations in this thesis, have been performed using the R package fda (Ramsay

et al., 2021) unless stated otherwise.

As Ramsay (2005) note, in practice it is difficult to observe data in a continuous

manner. To obtain a sample of functional data, then, an approximation for the

functional observations, {Xi(t)}, is sought. This is obtained by using basis functions
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(a) (b)

Figure 2.4.1: Figure (a) depicts 50 functional observations over the interval [0,1].

Figure (b) shows an example system of K = 10 cubic B-splines over the same interval.

to smooth a sample of point data observed over T into a set of curves. To be concrete,

first consider T discretised into a fine grid of T points: {1, . . . , T} . Then, if xi1, . . . , xiT

represent the ith discrete sample observed over the grid, and {bk(t)}Kk=1 are the K basis

functions, a curve can be approximated from these points as

X̂i(t) =
K∑
k=1

cikbk(t). (2.4.1)

The coefficients ci = {cik}Kk=1 are estimated such that

ĉi = arg min
ci

T∑
t=1

||xit − X̂i(t)||22 = arg min
ci

T∑
t=1

||xit −
K∑
k=1

cikbk(t)||22, (2.4.2)

where || · ||2 represents the L2 norm.

A wide range of basis systems, {bk(t)}Kk=1, can be used including Fourier basis,

wavelets, power series, and splines. An example set of 10 cubic b-spline basis func-

tions is presented in Figure 2.4.1(b), and these are used to smooth a univariate time

series in Figure 2.4.2. Alternatives to the basis function system approach have also

been proposed in the literature, including the use of k-nearest neighbours algorithms

(Ferraty and Vieu, 2006), kernel smoothers (Zhang and Chen, 2007), or Gaussian

processes (Hall et al., 2008).

Systems of splines, and most notably B-Splines, see extensive use in the functional

data literature. One reason for this is that for any K basis functions the system that
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Figure 2.4.2: This figure shows an example time series that has been smoothed with

10 cubic b-spline basis functions. The spline fit is given by the solid blue line and has

been obtained using equation (2.4.2).

provides the minimum mean square error when fit to a sample of data is a set of

cubic splines (DeBoor, 2000). Furthermore, B-Splines have a set of properties that

make them convenient to use computationally, for example closed forms for the basis

functions, {bk(t)}Kk=1, and their derivatives. Further details on smoothing splines can

be found in (DeBoor, 2000).

A well known challenge when smoothing point data is the tradeoff between bias

and variance (Wasserman, 2006). An example is shown in Figure 2.4.3 highlighting

both underfitting (high bias), see Figure 2.4.3(a); and overfitting (high variance), see

Figure 2.4.3(b); of a set of basis functions. In order to balance the bias and variance,

Kokoszka and Reimherr (2017) suggest the use of penalised basis function smoothing.

This is where the cik in equation (2.4.1) are chosen as the minimisers of

ĉi = arg min
ci

T∑
t=1

[
||xit − X̂i(t)||22 + λ

∫
T
Dk
(
X̂i(t)

)
dt

]
, (2.4.3)

where λ is the smoothing parameter and Dk represents the kth derivative. Observe

how in equation (2.4.3) as λ → 0 we revert to unpenalised smoothing, and a high

variance fit and low bias; whereas when λ → ∞ we instead obtain low variance

and a high bias. Ramsay (2005) propose leave-one-out-cross-validation to select the
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choice of λ, however plug-in-estimators have also been proposed by Yoshida (2014).

In Figure 2.4.3(c) we show an example of spline fitting that has used equation (2.4.3)

in conjunction with cross-validation to select the value of λ.

Ensuring a balance between the bias and variance of the fit to the data is not

the only advantage of using the penalised smoothing method described in equation

(2.4.3). The second advantage is that it transforms the problem of fitting a set of K

basis functions using least squares, as in equation (2.4.2), to a problem of selecting the

optimal value of λ (Ramsay, 2005). This means that the fit obtained using equation

(2.4.3) can be very similar for a wide range of basis functions, and different choices of

K. The benefit of this is that it removes the problem of selecting the optimal basis

system, and choice of K, for a set of data.

Now that the foundations of FDA have been introduced, we are in a position to

present two important tools in the area. The first, Functional Principal Component

Analysis, forms part of several existing anomaly detection methods. The second,

Principal Differential Analysis, lies at the heart of the FAST and mvFAST methods

developed in Chapters 4 and 5 of this thesis.

(a) (b) (c)

Figure 2.4.3: This figure presents three different instances of smoothing a univariate

time series. In (a) we see high bias in the fit, in (b) we see high variance in the fit,

and in (c) we see an appropriate fit. This demonstrates the utility of selecting the

smoothing parameter in equation (2.4.3) using cross-validation.
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2.4.2 Functional Principal Component Analysis

Functional Principal Component Analysis (FPCA), first proposed by Dauxois et al.

(1982), is a functional extension of classical PCA (Pearson, 1901). FPCA uses a finite

orthogonal basis system to represent functional observations, and this representation

captures the dominant modes of variation within the data. A number of functional

data techniques utilise FPCA in order to make computations tractable, or allow for

existing statistical techniques to be adapted for the functional data analysis domain.

To compute the principal components for a sample of functional observations the

covariance operator for the data, under the assumption that the covariance is station-

ary, is decomposed into a summation of its eigenelements. A covariance operator for

functional data can be defined as

K(t, s) =

∫
T

∫
T

(Xi(t)− µ(t)) (Xi(s)− µ(s)) dt ds,

where µ(t) = E (X(t)) is the mean function for the data.

The covariance operator can be decomposed using Mercer’s Theorem (Mercer and

Forsyth, 1909) into the form

K(t, s) =
∞∑
j=1

λjϕj(t)ϕj(s).

Here λj and ϕj(t) are the eigenvalues and eigenfunctions of the covariance operator

respectively. It is these eigenelements that are used to evaluate the functional principal

component (FPC) scores, given by

ηij =

∫
T

(Xi(t)− µ(t))ϕj(t) dt. (2.4.4)

These scores can be used to provide a Karhunen-Loeve expansion of the observations:

Xi(t) = µ(t) +
∞∑
j=1

ηijϕj(t). (2.4.5)

Example eigenfunctions and FPC scores for the data in Figure 2.4.1(a) are depicted

in Figure 2.4.4. We remark that the FPC scores depicted in Figure 2.4.4(b) are not

functional observations. The ability to represent functional data as multivariate non-

functional observations has been exploited for various purposes including clustering
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(Luz López Garćıa et al., 2015), forecasting (Foutz and Jank, 2010), and anomaly

detection (Hyndman and Shang, 2010).

In practice the covariance operator, K(s, t), and its eigensystem will need to be

estimated from the data. The covariance operator can be estimated from a sample of

data as follows:

K̂(s, t) =
1

n

n∑
i=1

(Xi(t)− µ̂(t)) (Xi(s)− µ̂(s))

µ̂(t) =
1

n

n∑
i=1

Xi(t).

The eigenfunctions, and eigenvalues, can then be estimated from K̂(s, t). To perform

the estimation, one stated approach first proposed by Rao (1987) first discretises

K̂(s, t) into a matrix of T ×T values and then uses standard numerical linear algebra

techniques to estimate the eigenelements, see e.g. Trefethen and Bau (1997) for details.

Further computational efficiencies can be achieved by exploiting the basis function

representation for the observations Ramsay (2005), or by first smoothing the estimate

of the covariance operator Dubin and Müller (2005).

Once the eigenfunctions, ϕ̂j(t), and eigenvalues, λ̂j, have been estimated they can

then be used in place of their true values in equations (2.4.4) and (2.4.5) to perform

FPCA. The properties of these estimates is well studied, with Hall and Hosseini-Nasab

(2006) demonstrating that they can be consistently estimated using the discretisation

process described above subject to mild assumptions on the data.

The Karhunen-Loeve expansion for an observation that is given in equation (2.4.5)

forms the foundation for one of the main benefits of using FPCA. Indeed, a d-

dimensional representation for an observation can be obtained by truncating the sum

in equation (2.4.5) to d components. Such a representation can be considered a

projection of an observation into the d-dimensional subspace spanned by the first d

eigenfunctions for the data. The benefit of this representation is that, for any choice

of d, there exists no other basis of d functions that captures a greater amount of

variation than the FPCA eigenbasis. As such, FPCA provides the most efficient d-

dimensional orthogonal basis representation of a sample of curves possible (Kokoszka
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(a) (b)

Figure 2.4.4: In this figure we present examples of eigenfunctions and FPC scores

computed using the data in Figure 2.4.1(a). In figure (a) we show the first two

eigenfunctions, and in figure (b) we plot the first two FPC scores for each observation,

{(ηi1, ηi2)}ni=1, against each other.

and Reimherr, 2017). As we shall see in Section 2.5.1, this low dimensional represen-

tation for a sample of functional data has been used in several functional anomaly

detection methods.

In Figure 2.4.5 we present a reconstruction of the functional data from Figure

2.4.1(a) using d = 2 components. Observe how the projected data captures the

overall shape of the observations, but arguably misses some of the smaller fluctuations

particular to each curve.

One practical question when using FPCA is how to choose the number of principal

components, d, to use. Ramsay (2005) advise that d should be chosen so that at least

85% of the variation is explained by the representation. A drawback of this, however,

is that features of interest may only appear in a small number of curves, and so may

only be contained in the higher components. As a result, Aue et al. (2018) argue that

the low dimensional representation obtained using FPCA may omit key aspects of the

data.

Two additional criticisms can be levelled at FPCA. The first is that it fails to take

into account the temporal dependence between the functional observations, although

the dynamic FPCA approach of Hörmann et al. (2015) has addressed this to an extent.

The second criticism of FPCA is that it requires a stationary covariance operator,
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(a) (b)

Figure 2.4.5: In this figure we use FPCA with d = 2 to provide a low dimensional

representation of the data in Figure 2.4.1(a). In figure (a) we show the projection of

the full data set, whereas in figure (b) we plot a true observation (solid black line)

against its projection (dashed blue line).

which may be an unrealistic assumption to make in some settings. Recently, however,

Elayouty et al. (2022) have shown how estimates for the FPCs can be allowed to vary

over time to try to offset this. Their method requires the FPCs to be recomputed as

each new observation is received, and so this approach may be too computationally

expensive to use in a streaming setting. As an alternative to FPCA in the next section

we present an approach for obtaining a finite dimensional form for the data that does

not require any assumptions to be made regarding the covariance operator.

2.4.3 Principal Differential Analysis

An alternative model for functional data views the observations as a set of noisy real-

isations of the solution to an underlying order m linear ordinary differential equation

(ODE) (Ramsay, 1996). Principal Differential Analysis can be used to estimate the

coefficient for the ODE, and this ODE can be solved to obtain m linearly indepen-

dent solutions for the differential equation. These solutions admit a low dimensional

representation of the data, without the requirements of orthogonality of the basis

functions, or stationarity of the covariance operator, required by FPCA.
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The linear differential equation of order m to be fitted to the data takes the form

L = β0(t)D
0 + β1(t)D + . . .+ βm−1(t)D

m−1 + Dm, (2.4.6)

where Dk denotes the kth derivative of a function, and the {βj(t)}m−1
j=0 are coefficient

functions that are estimated using PDA. The coefficients are estimated by minimising∑n
i=1 ||L (Xi(t)) ||22, and Ramsay (1996) propose performing this minimisation on a

discretised grid of T points. Using this approach the coefficients are estimated by

β(t) =
(
Y (t)TY (t) + λIm

)
Y (t)Tz(t).

Here β(t) = {βj(t)}m−1
j=0 , Y (t) is an n ×m matrix with entries Yij(t) = Dj−1(Xi(t)),

z(t) = {Dm(Xi)(t)}ni=1, Im is the m × m identity matrix, and λ is a parameter

that controls the smoothness of the estimated coefficient functions. Ramsay (2005)

remarks that this estimation can instead by performed using the a basis function

representation for the coefficients in order to make the computation tractable. If K

basis functions are used to represent the coefficients, then the computational cost of

PDA is reduced from O(mT 3) to O(mK3).

In Figure 2.4.6 we present an example in which an order two linear differential

operator is fit to a set of data. We show both the solution to the estimated ODE

in Figure 2.4.6(a), and the two estimated the coefficient functions in Figure 2.4.6(b).

Notice how the fitted solution captures the overall shape of the observed data in a

single curve.

Given that an order m ODE has m linearly independent solutions, denoted by

{uj(t)}mj=1, a functional observation can be represented as follows

Xi(t) =
m∑
j=1

cjuj(t) + fi(t). (2.4.7)

Here fi(t) is a residual function. Note that, as in FPCA, in general this residual

function will not be mean zero but will decrease in size as the value of m increases.

The contrast with FPCA, however, is that there is no theoretical guarantee that the

expansion
∑m

j=1 cjuj(t) will capture the optimal portion of variation for a basis system

of size m. That said, a benefit of the model in equation (2.4.7) is that the {uj(t)} are
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(a) (b)

Figure 2.4.6: In figure (a) we see an example set of functional observations and the

solution (dashed blue line) to the linear differential operator fit to the data using PDA

with m = 2. In figure (b) we provide the estimated coefficient functions.

allowed to be linearly independent, a weaker condition than the orthogonality imposed

by FPCA. Furthermore, there is no requirement that the covariance operator for the

data is stationary. This therefore allows for a larger range of finite dimensional models

to be captured by PDA.

Several extensions to traditional PDA have been proposed, including extending

PDA so that the ODE parameters depend on a set of covariates (Jin et al., 2013;

Staniswalis et al., 2017). PDA itself has been applied in several settings, including

the analysis of auction pricing, (Wang et al., 2008); Kinematics, (Reimer and Rudzicz,

2010); speech analysis, (Sattar and Rudzicz, 2016); and microbiology, (Chung et al.,

2017).

One aspect of PDA that has received little attention to date, however, is the selec-

tion of the value of m. Ramsay (1996) suggest that it should be known beforehand,

and Ramsay (2005) only discuss how to compare the operator in equation (2.4.6) with

the operator given by L̃ = Dm for a value of m that has been chosen beforehand.

The lack of methods for selecting m is a key drawback of PDA. That said, choosing

the ODE order to minimise the size of the residuals between the solution to the fitted

ODE and the data is an approach discussed in both Hooker and Ellner (2015) and

Ramsay and Hooker (2017) for ODE fitting methods unrelated to PDA. In Chapters

4 and 5 we will build upon this notion of using the residuals and propose methods for
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the selection of the ODE order.

Now that the necessary foundations for FDA have been introduced, and two key

techniques discussed, we conclude our review of background literature by providing

an overview of recent contributions to anomaly detection in functional data.

2.5 Anomaly Detection in Functional Data

Functional anomaly detection is an area of functional data analysis concerned with

identifying anomalous observations within a sample of functional data. Broadly speak-

ing, two primary forms of anomaly are discussed in the literature: (i) magnitude

anomalies, where the values of the curve differ from those in the sample by a sub-

stantial margin; and (ii) shape anomalies, where the appearance of the curve differs

from the other shapes within the sample (Dai et al., 2020). A specific form of shape

anomaly, phase anomalies, are considered by Tucker et al. (2013). This is where the

curve is a similar shape but has been shifted in time, and detection of these anomalies

is discussed in Harris et al. (2020).

Figure 2.5.1 displays examples of both shape, and magnitude, anomalies. Observe

how the majority of curves in the sample take similar values. On the other hand, the

magnitude anomaly (dashed orange line) takes greater values than the other curves in

the sample, and the shape anomaly (solid red line) follows a different shape. Finally,

the figure shows how an anomaly can be both a shape and magnitude anomaly, as

depicted by the dotted black line.

In this section we will first explore the detection of anomalies in univariate func-

tional data, a well studied area of research, before then outlining the detection of

multivariate functional anomalies. This is an area that has received less attention, in

part due to the high computational cost of working with multivariate functional data.

2.5.1 Univariate Functional Anomaly Detection Using FPCA

A wide range of different approaches for detecting anomalies in univariate functional

data have been proposed and in this section we will outline some of the most im-
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Figure 2.5.1: Figure showing example functional anomalies. The solid red line is a

shape anomaly, the dashed orange line is a magnitude anomaly, and the dot and dash

blue line is a phase anomaly. Finally, the dotted black line can be considered both a

shape and magnitude anomaly, showing that the two are not mutually exclusive.

portant. To begin with we will present anomaly detection methods that rely upon

FPCA, before then moving onto other methods such as those that build upon classical

anomaly detection tools from multivariate statistics such as depth measures.

The motivation for using FPCA for anomaly detection is that the projection of

each observation into the subspace spanned by the principal components can be said

to ”borrow information from across the curves” Wang et al. (2016). This means that

observations with similar behaviours will have similar projections, and also similar

FPC scores. Each of the methods discussed in this section are therefore seeking to

identify when a projected observation is dissimilar to the majority of the projections

in the sample. Such dissimilarity suggests that the observation is an anomaly because

it has features that are not present within the majority of the observed data.

A leading approach for FPCA based functional anomaly detection, relying upon

the FPC scores, is proposed by Hyndman and Shang (2010). Here two approaches are

considered, both of which are founded upon taking the sample of principal component

scores from equation (2.4.4) and applying multivariate outlier detection methods to

them. In the first method, the Tukey depth (Tukey, 1975) of the first two scores is
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calculated, and a bagplot (Rousseeuw et al., 1999) is used to identify anomalies. In

the second method, kernel density estimation is applied to the first two scores, and

then a highest density region (Hyndman, 1996) is computed for a desired level of

probability coverage (eg, 99%). Points lying outside the highest density region are

then identified as outliers.

An example using a bagplot in conjunction with the first two FPC scores is pre-

sented in Figure 2.5.2. The bagplot has been created using the R package applpack

(Wolf, 2019). In the figure the inner region of the bag contains the median (plus

symbol) and the most central 50% of the data, whereas the outer shaded region is the

convex hull of observations contained within the fence (by convention the fence is not

plotted). The fence is generated by inflating the inner bag by a factor of 3. Points

outside the fence are identified as anomalies

(a) (b)

Figure 2.5.2: Figure (a) shows a sample of functional observations with a shape

anomaly (solid red line) and a magnitude anomaly (orange dashed line). In figure (b)

we follow the approach of Hyndman and Shang (2010) and present a bagplot of the

first two FPC scores. The plus symbol is the median for the data, and the red points

outside the fence have been identified as anomalies.

More recently, several other authors have considered using FPCA in conjunction

with methods from multivariate statistics to detect anomalies. For example, Sawant

et al. (2012) use the Mahalanobis distance on the FPC scores, Barreyre et al. (2020)

apply a two-sample hypothesis test to two sets of functional data to determine if

one set of FPC’s differ from another, and Jarry et al. (2020) apply a hierarchical
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clustering method to the FPC scores. Each of these methods, however, suffer from

the usual drawbacks of FPCA insofar as they require stationary covariance between

the observations, and assume the data are independent.

Combining FPCA with non-functional anomaly detection approaches from multi-

variate statistics is not the only way FPCA has been used to detect anomalies. Indeed

both Hyndman and Shahid Ullah (2007) and Vilar et al. (2016) compare the obser-

vations with their low dimensional projections given by equation (2.4.5). Specifically

they use the integrated square error, ei, of the projections:

ei = ||Xi(t)− X̂i(t)||22. (2.5.1)

Curves with a large integrated square error are then labelled as anomalies. One

advantage of such an approach is that it uses the full information contained in the ob-

servations, rather than detecting anomalies based upon the projected data. Although

we do not utilise FPCA, in Chapter 6 we shall briefly describe a method that makes

use of integrated square error to detect anomalies.

Whilst FPCA can be seen as one of the key tools in the functional anomaly

detection literature, many other approaches use measures of depth for functional data

instead. We review these in Section 2.5.2. Although depth measures were originally

used for outlier detection in multivariate statistics (Liu et al., 1999), the methods

presented here use depth measures that have been designed for a functional data

setting.

2.5.2 Univariate Functional Anomaly Detection Using Depth

Measures

An early example of the use of depth measures is provided by Lopez-Pintado and

Romo (2007), who propose a depth measure known as band depth to detect anomalies.

The key idea here is that a band is delimited by two curves, Y1(t) and Y2(t), and a

curve is contained within these bands if Y1(t) ≤ Xi(t) ≤ Y2(t) for all t ∈ T . The band

depth of an observation can be calculated by assessing how many of the different

bands generated using the sample {X1(t), . . . , Xn(t)} the observation lies between.
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The upper and lower bands for the sample are then set such that for any t a set

proportion of the curves lie in the region between them. If a curve does not lie

entirely inside the region defined by these bands, then it can be declared an anomaly.

In Figure 2.5.3 we illustrate an example of anomaly detection using band depth.

The upper and lower bands have been calculated such that the area between the bands

contains 99% of the data. We see that a magnitude anomaly (dashed orange line) lies

entirely outside the two bands and so has been identified as anomalous.

Figure 2.5.3: In this figure we illustrate how band depth (Lopez-Pintado and Romo,

2007) can be used for anomaly detection. The light blue shaded region denotes the

area between the upper and lower bands, with observations entirely outside this region

(eg, the dashed orange line) being declared as anomalous.

Unfortunately a key criticism of using the band depth of Lopez-Pintado and Romo

(2007) for anomaly detection is that it does not consider the proportion of the time

the observation spends outside the band. This is addressed by the modified band

depth (MBD) approach of López-Pintado and Romo (2009), where the fraction of

the interval where an observation is contained within the bands is considered; and

also by the modified epigraph index (MEI) approach presented in Pintado and Romo

(2011). The latter identifies the proportion of time a curve lies below the other

curves in the sample. Should a curve have a large value of MBD or MEI, then

this would indicate that it is an anomaly. In Figure 2.5.3, for example, both the
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MBD and MEI are able to detect the dotted blue shape anomaly as well as the

dashed orange magnitude anomaly. The disadvantage of these band depth methods,

however, is that a shape anomaly may lie within the centre of the data and thus

remain undetected (see, for example, the solid red line depicting a shape anomaly in

Figure 2.5.3). As a consequence, these band-based approaches are best used to detect

magnitude anomalies.

In multivariate statistics depth measures are combined with anomaly detection

methods such as the boxplot or bagplot to detect anomalies (Liu et al., 1999). A

similar approach has been taken in the functional anomaly detection literature when

using depth measures, with several visual anomaly detection tools being proposed.

Two of the most important approaches are the functional boxplot (Sun and Genton,

2011), which extends the concept of a boxplot to functional data (see Figure 2.5.4);

and the outliergram (Arribas-Gil and Romo, 2014), which provides a way of combining

the MBD and MEI depth measures to improve anomaly detection performance.

Figure 2.5.4: This figure presents an example of a functional boxplot. The black curve

is the median, the shaded light blue region is the box, and the dashed green lines are

the whiskers. Observations lying outside the whiskers are identified as anomalies. In

this example this corresponds to the dashed orange, and the dotted blue, curves.

A range of other depth based approaches have been proposed in the literature.

Narisetty and Nair (2016), for instance, propose the extremal band depth measure in
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a bid to add robustness to the existing depth methods. Huang and Sun (2019), on the

other hand, present the total variation depth measure. Unlike the measures discussed

so far, the total variation depth performs well when detecting both magnitude and

shape anomalies.

A challenge when detecting functional anomalies using depth measures is the se-

lection of the depth measure to use. In principle, the choice of depth measure can

be motivated by the anomalies that one wishes to detect. Unfortunately, this pre-

supposes some knowledge of the anomalous structures present within the data. Such

knowledge will not always be available. Dai and Genton (2018a) propose to address

this challenge through the use of Directional Outlyingness. As we shall see in the

next section, this quantity can detect both shape and magnitude anomalies and is

compatible with a wide range of depth measures.

2.5.3 Univariate Functional Anomaly Detection Using Direc-

tional Outlyingness

In a bid to unify the range of existing depth measures for functional anomaly detec-

tion, Dai and Genton (2018a) propose the concept of Directional Outlyingness. This

measure is compatible with any depth measure and can be used to detect both shape

and magnitude anomalies. Directional outlyingness is defined by Dai and Genton

(2018a) as

O(Xi(t)) =

[
1

D(Xi(t))
− 1

]
· v(t).

Here D(·) is a depth measure and v(t) is defined as Xi(t)−m(t)
||Xi(t)−m(t)||2

, where m(t) is the

median of the sample of curves with respect to the chosen depth measure.

To use directional outlyingness to detect anomalies two different quantities must

be computed. The first, MO, is the mean outlyingness and is designed to detect

magnitude anomalies; and the second, V O, is the variational outlyingness and seeks
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to identify shape anomalies. The MO and V O are defined as

MO(Xi(t)) =

∫
T
O(Xi(t))w(t) dt

V O(Xi(t)) =

∫
T
||O(Xi(t))−MO(Xi(t))||22w(t) dt,

where w(t) is a weight function. In order to detect anomalies using these quantities

Dai and Genton (2018a) propose plotting the MO and V O against each other. They

term this the Magnitude-Shape (MS) plot and show how critical regions for the plot

can be calculated and used for anomaly detection. Alternatively, Dai and Genton

(2018b) discuss how directional outlyingness can be combined with the functional

boxplot of Sun and Genton (2011).

In Figure 2.5.5 we present an example MS plot using the same data as in Figure

2.5.3. The depth measure used to calculate the directional outlyingness value is

the random projection depth, as suggested in Dai et al. (2020), and it has been

computed using the R package fdaoutlier (Ojo et al., 2021b). The threshold for

anomaly detection is given by the dashed black ellipsis and has been computed using

the approach laid out in Dai and Genton (2018b). As can be seen from Figure 2.5.5,

unlike in the band depth (Figure 2.5.3) and functional boxplot (Figure 2.5.4) examples

all three of the anomalies, including the shape anomaly contained in the centre of the

observed curves (see Figure 2.5.3), have been detected.

Whilst directional outlyingness allows any depth measure to be incorporated into

a single anomaly detection method, one issue with it is that the choice of both the

depth measure, D(·); and weight function, w(t); can lead to different observations

being identified as anomalies. As such, the anomaly detection results can be difficult

to interpret in practice.

As with the FPCA based methods, both depth based and directional outlyingness

based approaches suffer from the issue that they assume the functional observations

are independent. Outside of the anomaly detection literature, however, there are

many examples of dependency structures in functional data. These include functional

autoregressive processes, and other time series models, or sequences of curves that

are strongly mixing (Hörmann et al., 2010). Whilst some of the depth based mea-
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Figure 2.5.5: In this figure we present an MS plot for the same data as depicted in

Figures 2.5.3. The dashed black ellipsis depicts the threshold for anomaly detection,

with the three observations outside the elliptical region being identified as anomalies.

sures may allow for the assumption of independence to be relaxed, their results can

be confounded by dependence structures that many functional time series possess.

The FPCA methods, on the other hand, rely on the decomposition of the covariance

operator for the data. When dependence between the observations is present, this co-

variance operator fails to model the relationships between the functional observations

and this leads to incorrect anomaly detection results Hörmann et al. (2010).

Whilst the lion’s share of functional anomaly detection tools rely upon either

FPCA or depth measures, a small number of entirely different approaches are dis-

cussed in the literature. Both Vinue and Epifanio (2020) and Ojo et al. (2021a),

for example, propose anomaly detection approaches that apply non-FPCA dimension

reduction tools. Harris et al. (2020), on the other hand, apply a range of transfor-

mations to the observations in order to highlight anomalous shape structures within

the data. None of these aforementioned approaches make use of tools relevant to the

techniques presented in this thesis, however, and so we do not discuss them in more

detail and instead direct the interested reader to these works.

Both the depth based approaches, and to a lesser extent the FPCA based tech-

niques, have also been extended into the multivariate functional anomaly detection
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domain. Although the literature in this area is sparser than in the univariate case,

we present a review of it in the next section.

(a)
(b)

Figure 2.5.6: In (a) we present an example of two-dimensional functional data with

each dimension shown separately. In (b) we present a three-dimensional plot of the

mean function for the bivariate functional data with T represented on the z-axis.

2.5.4 Multivariate Functional Anomaly Detection

Multivariate functional data are denoted by {Xij(t)} for 1 ≤ i ≤ n and 1 ≤ j ≤ p,

where p is the number of dimensions of the observation. An example of 50 multivariate

functional observations of dimension p = 2 is shown in Figure 2.5.6. In this section we

provide a brief overview of some important multivariate functional anomaly detection

techniques. For a wider survey of the field of multivariate FDA, Górecki et al. (2018)

can be consulted.

As in the univariate setting, depth measures form a cornerstone of the anomaly

detection literature for multivariate functional data. Early attempts to extend depth

measures to the multivariate domain resulted in approaches that first compute the

depth of an observation in each of the p dimensions, and then either aggregate these

depths (Ieva and Paganoni, 2013), or use multivariate non-functional anomaly detec-

tion tools such as bagplots on the p-dimensional depth values (Hubert et al., 2015).

Rather than compute the depth for each dimension separately, the directional outly-
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ingness measure (Dai and Genton, 2018a) can be used to consider all the dimensions

of an observation together. Dai and Genton (2019), and Qu and Genton (2022)

demonstrate how this can be combined with a univariate tools such as the MS-plot

and functional boxplot in order to detect anomalies. More recently, Mozaffari et al.

(2021) demonstrate how the functional boxplot can be used to identify anomalies

within functional data representing two and three dimensional geometric shapes.

The key issue with extending depth based methods into the multivariate setting,

however, is the computational cost of the method as the number of dimensions in-

crease. Several authors have considered this issue, including the works of Wang and

Yao (2015) and Ojo et al. (2022). Both these methods seek to address the problem

of computational cost by first reducing the dimensionality of the observed data. As

an alternative to the use of dimension reduction techniques, Lejeune et al. (2020a)

compute various descriptive quantities for each dimension of the multivariate func-

tional observations. Examples of these quantities include curvature, and arc length.

Once the descriptors have been computed, they are aggregated across the dimensions

before existing non-functional anomaly detection tools are used to identify outlying

observations. A drawback of this, however, is noted by Lejeune et al. (2020b) who

observe that the approach is best used for detecting shape anomalies only.



Chapter 3

An Online Non-Parametric

Method for Detecting Changes in

Distribution using NUNC

3.1 Introduction

The challenge of sequential nonparametric changepoint detection has seen significant

development in recent years. See, for example, Tartakovsky et al. (2014) for an excel-

lent introduction to the area. Contributions include the work of Gordon and Pollak

(1994), Ross and Adams (2012), and Padilla et al. (2019a) who introduce novel ap-

proaches to detect changes in an unknown distribution. Others, including Chakraborti

and van de Wiel (2008); Hawkins and Deng (2010); Murakami and Matsuki (2010);

Ross et al. (2011); Mukherjee and Chakraborti (2012); Liu et al. (2013); Wang et al.

(2017) and Coelho et al. (2017) seek to address a different non-parametric challenge:

the sequential detection of changes in the mean, scale, or the location of the data.

Such methods have also found application in a range of fields including monitoring

financial systems (Pepelyshev and Polunchenko, 2017), monitoring viral intrusion in

computer networks (Tartakovsky et al., 2005), detecting changes in social networks

(Chen, 2019), genome sequencing (Siegmund, 2013), and radiological data (Padilla

et al., 2019a).

39
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Our work is motivated by a different challenge, increasingly encountered within

many contemporary digital settings, such as those found in the telecommunications

sector. In such environments it is important to perform device-side analyses on units

with limited computational power and data storage capability. Existing methods,

such as those mentioned above, are unsuitable for use in such cases as they require

the entire data stream to be stored and analysed a posteriori, whereas our memory-

constrained setting makes this impossible. As a consequence, an online approach that

uses a lighter data footprint is required.

One example of such data, encountered by an industrial collaborator, can be seen

in Figure 3.1.1. Here we display two sample data sets of a key operational metric that

are routinely monitored to identify problems with networking devices. Figure 3.1.1(a)

displays data from a healthy device, whereas the data in Figure 3.1.1(c) contains an

event that triggers a user intervention. Note in particular how the structure of the

data changes in the region when the event occurs. This can perhaps be more clearly

seen in Figures 3.1.1(b,d). The ideal, therefore, is to be able to (i) identify the start

of changing structure in advance of the user being required to start an intervention –

we call the correct detection of such an event an ‘anticipation’; (ii) using an approach

that does not necessarily require the same underlying distribution pre- and post-

change and (iii) can still permit (more subtle) non-anomalous changes in structure

that occur over time due to typical operational issues (e.g. electrical interference, line

optimisation, etc).

Many existing methods, such as those mentioned above, are unsuitable for use in

this setting as they typically require the entire data stream to be stored. Unfortu-

nately in our problem setting, such memory constraints are no longer possible. To

overcome this one might, for example, consider adopting an online non-parametric

changepoint detection approach using a sliding window, such as in the MOSUM test

(Chu et al., 1995; Eichinger and Kirch, 2018; Kirch and Weber, 2018; Meier et al.,

2021). Alternatively a control chart based approach, e.g. Ross and Adams (2012),

might be considered. Unfortunately, as described above, our telecoms operational

metric can exhibit non-anomalous shifts in mean and variance. Such structure, while
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(a) (b)

(c) (d)

Figure 3.1.1: Example of telecoms operational data: (a) a series without an event, and

(c) a series with an event taking place between the two red lines. The corresponding

kernel density estimates for the time series in figures (a) and (c) are presented in (b)

and (d) respectively. Note that in (d) the green represents the kernel density estimate

of the series when the event is taking place.

operationally acceptable, may cause a control chart to return excessive false alarms

due to the cumulative nature of the test statistic. Further, existing nonparametric

sequential changepoint detection methods prove unsuitable as they do not expect the

null distribution to change over time. While there are some methods that attempt to

model and account for non-anomalous drift (Gama et al., 2014), these can be challeng-

ing to tune when the form of drift is unknown. We thus take a different approach and

use a sliding window to deal with drift. To this end, we introduce a new windowed,

non-parametric procedure to detect sequential changes in an online setting. Taken

from the Latin, nunc (‘now’), our approach provides a Non-Parametric UNbounded
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Changepoint (NUNC) detection.

We propose two variants of NUNC: NUNC Local, and NUNC Global. The first of

these algorithms, NUNC Local, performs the detection in a sliding window, consid-

ering only the points inside this window. This allows for the implementation to work

in an online setting. The second, NUNC Global, uses an efficient updating step to

compare the distribution of the historic data seen with the distribution of the data

inside the sliding window; if these differ significantly, a change is identified.

The rest of this chapter is organised as follows: In Section 3.2 we outline the

methodology behind our new sequential tests. In particular, we detail the existing

non-parametric changepoint methods our work is based upon, and in Section 3.2.1

we provide details of our two new window-based changepoint detection tests. The

remainder of the section then explores the properties of the test, including the choice

of quantiles and threshold. In particular, a theoretical result is presented concerning

the selection of the threshold in order to control the false alarm probability, and this

result can also be utilised in an offline changepoint setting. The chapter concludes by

exploring the performance of NUNC Local and NUNC Global using both simulated

scenarios (Section 3.3) and data arising from the previously described telecommuni-

cations setting (Section 3.4).

3.2 Background and Methodology

Our approach builds on the recent work of Zou et al. (2014) and Haynes et al. (2017),

utilising a non-parametric likelihood ratio test as the basis for the proposed sequential

Non-Parametric test. In so doing, the method permits a range of data distributions

to be modelled, without the need for restrictive parametric assumptions. Below we

introduce both NUNC approaches, and provide a discussion of their various features

including computational performance and the choice of quantiles. However, prior to

doing so, we review the pertinent literature on non-parametric changepoint methods.

We begin by outlining some notation. Assume that we observe a data stream

of real valued independent observations x1, x2, . . . , xt, and that the data stream can
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contain a changepoint, at some (unknown) time point τ . Further, assume that x1

is the start of this data stream, xt is the most recently observed point, and that

for j > i, xi:j = xi . . . , xj denotes a segment of the data. If a change is present in

the data at τ1, then we refer to x1, . . . , xτ1 as the pre-change segment, drawn from

a distribution F1(·). Similarly, xτ1+1, . . . xτ2 are considered to be drawn from post-

change distribution, F2(·), with F1 ̸= F2.

Following Zou et al. (2014), let Fi:t(q) denote the (unknown) cumulative distribu-

tion function (CDF) for the segment xi, . . . , xt, and F̂1:t(q) as its associated empirical

CDF. I.e.

F̂1:t(q) =
1

t

t∑
j=1

{I(xj < q) + 0.5× I(xj = q)} . (3.2.1)

Under the assumption that the data are independent, then the empirical CDF will

follow a Binomial distribution. That is,

tF̂1:t(q) ∼ Binom(t, F1:t(q)). (3.2.2)

Using the Binomial distribution, the log-likelihood of the segment xτ1+1, . . . , xτ2 is

L(xτ1+1:τ2 ; q) = (τ2−τ1)
[
F̂τ1+1:τ2(q) log(F̂τ1+1:τ2(q))− (1− F̂τ1+1:τ2(q)) log(1− F̂τ1+1:τ2(q))

]
.

This log-likelihood can be used to form a likelihood ratio test statistic for the detection

of a change at a single quantile of the distribution as follows:

max
1≤τ≤t

2 [L(x1:τ ; q) + L(xτ+1:t; q)− L(x1:t; q)] .

Following Zou et al. (2014) and Haynes et al. (2017), this test statistic can be aver-

aged over multiple quantiles, q1, . . . , qK , in order to search for a change in distribution.

The statistic for such a test can be formulated as follows:

CK(x1:t) = max
1≤τ≤t

1

K

K∑
k=1

2 [L(x1:τ ; qk) + L(xτ+1:t; qk)− L(x1:t; qk)] . (3.2.3)

Here K is the fixed number of quantiles to be averaged over. Haynes et al. (2017)

propose that a value of K is chosen that is proportionate to log(t). The choice of

quantiles at which the empirical CDF can be evaluated will be discussed later in

Section 3.2.2.
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Using this test, a changepoint is declared when CK(x1:t) − β ≥ 0. Thus the

stopping time for our test becomes

max
1≤τ≤t

K∑
k=1

2 [L(x1:τ ; qk) + L(xτ+1:t; qk)− L(x1:t; qk)] ≥ Kβ, (3.2.4)

where β is the threshold for the test.

Having outlined how the existing (offline) non-parametric tests work, and how the

cost function from this work can be used to devise a stopping rule for a sequential

changepoint detection test, we are now in a position to introduce our two variant

nonparametric approaches.

3.2.1 Two Sequential Changepoint Detection Algorithms

We now introduce two different, yet related, approaches that can be adopted within

this nonparametric framework: NUNC Local and NUNC Global. Common to both is

the use of a sliding window, and the test statistic given in equation (3.2.3). Where the

two approaches differ, however, is the manner in which the data observed outside the

window are handled. In NUNC Local, a simplistic perspective is adopted, taking the

data contained within the sliding window into account – i.e., previously seen points

that fall outside this window are forgotten. The advantage of this approach is that

the sequential test is immune to false alarms that might be caused, for example, by

a natural drift in the underlying distribution of the data. The drawback, however, is

that the empirical CDF must be estimated only from the data in the window and so

any historic information is lost.

NUNC Global seeks to overcome the short-comings of NUNC Local. Specifically,

NUNC Global stores the empirical CDF that has been estimated using all data ob-

served so far, and tests whether the data from such empirical distribution differ from

the data observed in the current window. In Section 3.4 we will seek to contrast

the differences between these two variants. However, prior to this, we describe both

search methods more carefully, whilst also describing various properties and recom-

mendations.
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NUNC Local

Our first method takes a sliding window of size W and performs the test on the data

within this sliding window. In the sliding window of points we have that

Qlocalt = max
t−W+1≤τ≤t

K∑
k=1

2 [L(xt−W+1:τ ; qk) + L(xτ+1:t; qk)− L(xt−W+1:t; qk)] , (3.2.5)

where K is the number of quantiles. Letting β be the test threshold, whenQlocalt ≥ Kβ

then the algorithm stops at time t and declares that a change has occurred at time τ .

A description of NUNC Local pseudocode can be found in Algorithm 1.

The choice of the parameters for NUNC Local, including the window size, quan-

tiles, and threshold; will be discussed in Section 3.2.2 and in simulations in Section

3.3. We remark here, however, that the choice of K and the size of the window is

related to the computational cost of NUNC Local. In particular, the naive cost of

computing NUNC Local directly is O(KW 2). However, by using an Ordered Search

Tree (Cormen et al., 2001) to calculate the empirical CDF this can be reduced to

O(KW logW ).

Algorithm 1: NUNC Local Algorithm

Data: {xt−W+1, ..., xt−1, xt}, the last W realizations from a data generating

process X.

Input: β > 0, K < W , q1, . . . , qk quantiles

Q ←− max
t−W+1≤τ≤t

[∑K
k=1 2

(
L(x(t−W ):τ ; qk) + L(xτ+1:t; qk)− L(x(t−W ):t; qk)

)]
;

τ ∗ ←− arg max
t−W+1≤τ≤t

[∑K
k=1 2

(
L(x(t−W ):τ ; qk) + L(xτ+1:t; qk)− L(x(t−W ):t; qk)

)]
;

if Q ≥ Kβ then
Return τ ∗ as a changepoint

In order to reduce the computational requirements of NUNC Local, which is

quadratic in window size, it is possible to instead perform the search on a subset

of the points in the sliding window. In this setting, we obtain the stopping condition:

max
τ∈BJ

K∑
k=1

2 [L(xt−W+1:τ ; qk) + L(xτ+1:t; qk)− L(xt−W+1:t; qk)] ≥ Kβ,
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where BJ ⊂ {t −W + 1, . . . , t}. This corresponds to changing the maximisation in

Algorithm 1 to taking place over the set BJ rather than the entire window. Using

a subset of size J << W , the computational cost of NUNC Approximate is reduced

to O(JKW ). To find a suitable subset of values to search inside the sliding window,

we first note that intuitively it only makes sense to search for a change in the right

hand half of the window. This is because the data in the left of the window has

already been scanned for a change several times. Moreover, we can also establish the

following: that there exists a point on the right hand side of the window such that a

changepoint cannot be detected to the right of this point.

Proposition 1. For any quantile q the test statistic is bounded such that

L(xt−W+1:τ ; q) +L(xτ+1:t; q)−L(xt−W+1:t; q) ≤ −
τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)
.

Furthermore, for fixed W , this equation is decreasing as τ increases, and so if τ ∗ is

the point such that

− τ
∗

W
log

τ ∗

W
− (W − τ ∗) log

(
W − τ ∗

W

)
≤ β

2

then for τ > τ ∗ detection of a change is impossible.

Proof. See Appendix.

As a consequence of Proposition 1, only a portion of the right hand side of the

window needs to checked, and the value of this cutoff can be found, with the value

for τ ∗ being calculated numerically. Further computational efficiencies can be realised

for NUNC Local if it is only performed on a spaced out grid of points. This is due

to the value of the test statistic being correlated at nearby points. Consequently, if

segmenting the data at t does not return a change, then it is unlikely that a change

will be detected at t + 1. As a result, we propose to use an equally spaced grid of J

points starting from the centre of the window, after it has been trimmed using the

value of τ ∗. However, one drawback of using the grid method is that there will be

a higher detection delay for smaller values of J . This is due to it taking longer for

the change to reach a point that we are checking. As such, we conclude that there
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is a trade-off between computational efficiency and detection delay when using the

approximated algorithm.

NUNC Global

NUNC Global differs from the NUNC Local. Specifically it tests whether or not the

data in the window comes from a different distribution to all the data seen so far.

To store the information in a memory efficient manner, we again fix K quantiles and

update the long-run empirical CDF, denoted by z
(t)
W (·), each time a point leaves the

sliding window. The recursive equations for this update step are as follows:

z
(t)
W (q) = F̂1:(t−W )(q),

z
(t+1)
W (q) =

1

t−W + 1

[
(t−W )z

(t)
W (q) + F̂(t−W+1):(t−W+1)(q)

]
, t ≥ W. (3.2.6)

I.e. the long-run empirical CDF is updated to take into account the point that will

leave the sliding window at the next iteration. The Global algorithm then compares

the distribution for the long-run empirical CDF to the distribution of the data in the

sliding window, denoted by F̂t−W+1:m(·).

To implement this approach, we need to obtain a CDF estimate of the full data.

This is given by a weighted mixture of the long-run empirical CDF and the current

segment empirical CDF estimate. Assuming we are at time t, and have a sliding

window of size, W , we write this as

F̂full(q) = F̂1:t(q) =
t−W
t

z
(t)
W (q) +

W

t
F̂t−W+1:t(q).

With these distributions in place, we can obtain the equivalent likelihoods, given

respectively by

L(x1:t−W ; q) = (t−W )
[
z
(t)
W (q) log(z

(t)
W (q))− (1− z(t)W (q)) log(1− z(t)W (q))

]
L(xt−W+1:t; q) = W

[
F̂t−W+1:t(q) log(F̂t−W+1:t(q))− (1− Ft−W+1:t(q)) log(1− F̂t−W+1:t(q))

]
L(x1:t; q) = t

[
F̂full(q) log(F̂full(q))− (1− F̂full(q)) log(1− F̂full(q))

]
. (3.2.7)

The test statistic is then given by:

Qglobalt =
K∑
k=1

2 [L(x1:t−W ; qk) + L(xt−W+1:t; qk)− L(x1:t; qk)] . (3.2.8)
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When Qglobalt ≥ Kβ we stop and declare a change at time t. Pseudocode outlining

the Global algorithm is provided in Algorithm 2. We note that the computational cost

of NUNC Global isO(KW ). As with NUNC Local, this can be reduced toO(K logW )

by implementing an Ordered Search Tree for the empirical CDF (Cormen et al., 2001).

Algorithm 2: NUNC Global Algorithm

Data: x(t−W+1):W , the last W realizations from a data generating process X;

z
(t)
W (qk) for q1, . . . , qK .

Input: β > 0; K < W ; q1:K the fixed quantiles.

Q ←−
∑K

k=1 2 [L(x1:t−W ; qk) + L(xt−W+1:t; qk)− L(x1:t; qk)];

if Q ≥ Kβ then
Return t−W as a changepoint.

else

z
(t+1)
W (qk)←− 1

t−W+1

[
(t−W )z

(t)
W (qk) +F(t−W+1):(t−W+1)(qk)

]
for qk ∈ q1:K .

The advantage of this approach, over NUNC Local, is that only K pieces of infor-

mation are required to store information about the estimate of the CDF of the null

distribution, irrespective of the number of points observed so far or the size of the

sliding window, satisfying the memory constraint requirement of our application.

3.2.2 Parameter selection

The execution of both NUNC Local and Global requires the selection of various pa-

rameters, including the K quantiles q1, . . . , qk and threshold β. Additionally, the size

of the sliding window W must be chosen with care. In practice, W be chosen based

on specific knowledge of the application and data generating process at hand. We

defer further discussion of this until Section 3.3, where we consider the impact of W

on different simulation scenarios, and Section 3.4 where we explore selecting W in a

practical application by considering a range of different window sizes and selecting

the one that offers the best detection power.

Next, we turn to the challenge of choosing the K quantiles q1, . . . , qk. The value

of K itself should be chosen to be proportionate to log(W ), in line with the method
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proposed by Haynes et al. (2017). In particular, the value K = ⌈4 log(n)⌉ was pro-

posed, see Haynes et al. (2017, Section 4.3) for details. Given K, one approach to

choosing the {qk} would be to evaluate evenly spaced empirical quantiles. However,

an alternative approach is motivated by Haynes et al. (2017, Section 3.1). That is,

we select qk such that

qk = F̂−1
(

1 + (2W + 1) exp
[ c
K

(2k − 1)
])−1

, (3.2.9)

where c = − log(2W − 1). The reason for making such a choice is that this gives a

higher weight to values in the tail of the distribution (Haynes et al., 2017), allowing

for more effective change detection. In the Local algorithm, the qk will be updated

as the window changes; in the Global algorithm, however, these K points are fixed in

time. As such, the values of qk must be obtained using the first W points of data the

algorithm analyses. In some situations, however, this issue can be avoided because

there is prior knowledge of the underlying distribution of the data. In this case known

quantiles can be utilised rather than estimating them from the data.

Another important requirement for the two algorithms presented here, as in other

sequential changepoint methods, is the ability to control the false alarm rate (Tar-

takovsky et al., 2014). In general, the value of β will be tuned so that the probability

of a false alarm for data under the null hypothesis is set to some level α. This will

be the case, for instance, in the telecommunications application where the threshold

value will be tuned on devices where no event is detected. That said, we can follow

a similar approach to that of Eichinger and Kirch (2018) to obtain an idea of how β

relates to the probability of a false alarm. Indeed, we can (asymptotically) approx-

imate the distribution of each term in the sum of equation (3.2.5) by a chi-square-1

distribution (Wilks, 1938). This is the asymptotic distribution of the likelihood-ratio

test for a fixed t, τ , and q, assuming independent identically distributed (i.i.d.) data.

With this approximation, it can be shown that:
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Proposition 2. If β is chosen such that β = max {β1, β2}, where

β1 = 1− 8K−1 log

(
α

W (t−W + 1)

)
β2 = 1 + 2

√
2 log

(
W (t−W + 1)

α

)
,

then the probability of a false detection by time t using NUNC Local is bounded above

by α.

Proof. This result follows from bounds on the tail of sums of chi-square distributions

and a Bonferonni correction – see the Appendix for details.

It should be noted, that in situations where the window size is large this bound

may be conservative due to it being an asymptotic bound. Furthermore, when the

assumptions of data independence and identical distribution are not met, this bound

may not hold, as illustrated in simulations. In such settings we suggest selecting a

threshold by tuning on a data stream that does not contain any changes.

If using an approximate grid of size J < W , then it is necessary to replace the

values of W in the above proposition with the value J . Furthermore, as a corollary

to Proposition 2, a bound can be obtained for use in NUNC Global.

Corollary 1. If β is chosen such that β = max {β1, β2}, where

β1 = 1− 8K−1 log

(
α

(t−W + 1)

)
β2 = 1 + 2

√
2 log

(
(t−W + 1)

α

)
,

then the probability of a false detection by time t using NUNC Global is bounded above

by α.

Proof. The proofs follow similarly to Proposition 2, however we perform only one test,

rather than W tests, per window.

Due to the connection between our online methodology and the test of Zou et al.

(2014) and Haynes et al. (2017) these results can also be extended to the offline setting.
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In particular selecting β, as per Proposition 2, as the penalty in these changepoint

detection algorithms would control the probability of a false alarm in a segment of

length t.

Now that the methodology behind NUNC has been presented, and methods for

quantile and threshold selection discussed, we consider its performance within various

simulation settings.

3.3 Simulation Study

In this section we examine the properties of both NUNC approaches in various sim-

ulation settings. These can be seen in Figure 3.3.1. The first (Figure 3.3.1(a)) is a

change in the mixture proportions of a bi-modal Gaussian distribution, whilst the

second example considers a change in the scale of a Cauchy Distribution. The third

setting is a change in the amplitude of a sinusoidal process, and the final setting is that

of a change in the drift parameter of an Ornstein-Uhlenbeck (OU) process. Both the

sinusoidal and OU examples are included to highlight how NUNC performs when the

independence assumption is not met. These latter two scenarios are also motivated

by our telecommunications application as both exhibit drift. Realisations of each of

these data generating processes can be seen in Figure 3.3.1.

In what follows, we explore the performance of each method across the four given

scenarios. In particular we consider the influence of window size on the power, and

the detection delay, of the test. In each setting we will also compare the NUNC-based

tests against a MOSUM test, as implemented by Meier et al. (2021), a competitor

non-parametric online changepoint algorithm that has a lightweight data footprint.

3.3.1 False Alarm Probability

We begin by considering the false alarm rates returned by the three methods (NUNC

Local, NUNC Global and MOSUM) for 100 replicates of each of our four data gen-

erating scenarios, without a change being present. In each case, the series generated

was of length 1000, with K = 20 and W = 150 for NUNC Local and NUNC Global.



CHAPTER 3. NUNC 52

(a) (b)

(c) (d)

Figure 3.3.1: Four different simulations scenarios: (a) change in the amplitude of a

sinusoidal process; (b) change in scale of a Cauchy distribution; (c) change in mixture

proportions of a bi-modal Gaussian distribution; and (d) change in the drift parameter

of an Ornstein–Uhlenbeck process.
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For comparison, we also compared against the equivalent MOSUM procedure (i.e.

W = 150, and other settings set to default). The resulting false alarm rates for a

range of thresholds can be seen in Figure 3.3.2.

To explore the practical utility of Proposition 2, we compare the thresholds re-

quired for the i.i.d. multi-modal Gaussian and Cauchy change-in-scale false alarm rate

when seeking to achieve a 10% false alarm rate. Our study highlights that penalty

values of 9 and 10 are required by the NUNC Global algorithm for the multi-modal

Gaussian and Cauchy scenarios respectively. In these two settings, penalties of 11.6

and 12.6 respectively were required for NUNC Local. This compares favourably with

the approximate penalty values selected using Proposition 2 (9.51 and 12.30 for the

Global and Local cases respectively). Unsurprisingly, in the case of the (non-i.i.d.,

temporally dependent) sinusoidal and OU scenarios, the penalties required for a 10%

false alarm rate differ from those provided by Proposition 2.

(a) (b) (c)

Figure 3.3.2: The False Alarm rate for increasing threshold values for the four differ-

ent simulation scenarios analysed with (a) NUNC Local, (b) NUNC Global and (c)

MOSUM. The dotted line indicates a false alarm rate of 0.10, and the error bars indi-

cate two standard deviations. In each plot the simulation scenarios are represented by

sinusoidal change-in-amplitude (dark blue); the Cauchy change-in-scale (light blue);

in emerald green, the change-in-mixture proportions (emerald green); and the change-

in-drift in a OU process (light green).
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3.3.2 Detection Power and Detection Delay

We now turn to consider the detection power and detection delay of the NUNC al-

gorithms in a variety of settings. Following Tartakovsky et al. (2014), we define the

detection power as the probability that a changepoint is detected after it has occurred,

and the detection delay as the difference between the stopping time of the test and the

time the changepoint is known to have emerged. Again we focus on 100 replicates of

each of the four scenarios displayed in Figure 3.3.1, where each series is of length 1000

and the change occurs at time t = 300. In each case we seek to estimate the detection

power and detection delay, controlling the false alarm rate at 10% and allowing the

window size W of the algorithms to vary.

Results for the detection power, and detection delay, are summarised in Tables

3.3.1 and 3.3.2 respectively. It is notable that NUNC is able to detect changes in

a variety of settings, including those where the data has time-dependent structure.

We also note that NUNC Global outperforms NUNC Local in most cases, except

when the underlying distribution is sinusoidal. This is perhaps to be expected since

NUNC Global incorporates the long-run empirical CDF which stores the historical

data. This allows for better identification of departures from the null when the data

is stationary. When the data is non-stationary, however, this is not so beneficial and

so the performance of NUNC Local is comparable.

Turning to consider the results obtained for the detection delay, displayed in Table

3.3.2, it is evident that NUNC Local demonstrates stronger performance than that of

NUNC Global. This is as expected, because NUNC Global checks if the distribution

of the data in the window differs from the long run empirical CDF, whereas NUNC

Local checks each point in the window (after pruning as per Proposition 1) for a

changepoint within the window.

In comparison to the MOSUM, the detection power of NUNC typically exceeds it

except in the specific case of multi-modal data being analysed with a large window.

The reason MOSUM performs so well in this case is due to the fact that the change in

mixture proportions can also be cast as a change in mean. For the sinusoidal process,
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however, the non-stationarity of the data means that the threshold that is required is

too high for detection to take place.

The results in Table 3.3.1 also illustrate how, as one might expect, the perfor-

mance of NUNC Local improves for stationary data as the size of the window in-

creases. Specifically, the larger window provides a better estimate of the CDF of the

(stationary) data stream, which in turn makes it easier to identify when a change

has occurred. The price for this increased power, however, comes in the form of an

increase in computational cost due to the larger window size. As such, there is a

trade off between detection power and the computational burden of NUNC Local.

For NUNC Global, on the other hand, in many situations the use of the long run

CDF provides a better estimate of the distribution under the null. This somewhat

reduces the need to increase the window size.

3.4 Application

We now revisit the telecommunications example, briefly introduced in Section 3.1, to

explore the utility of NUNC in this setting. Recall that the data consists of historic

records of a key operational metric routinely monitored on devices that have limited

computational power and data storage capability. We have records for 473 such

devices, of which 133 were known to contain a (series specific) event that triggered

a user intervention. Due to the specifics of the application, engineers believed that

it is possible to identify the start of the event in the operational data before a user

identifies and makes an intervention. If this is true, then it would be desirable to

identify the start of changing structure in advance of the user identifying and making

an intervention. We call the correct detection of such a change in advance of user

identification, an ‘anticipation’. Conversely, the detection of such an event before it

is resolved is called a ‘detection’. The aim of this exploratory analysis, therefore, is to

identify to what extent NUNC can (a) identify the correct (event-containing) series

and (b) to what extent it can be used to ‘anticipate’ or ‘detect’.

Before summarising the results, we briefly discuss the various parameter choices
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(a) (b)

Figure 3.4.1: Comparison of anticipation rates achieved by the Local (Solid Line)

and Global (Dashed Line) variants of NUNC, and the MOSUM (Dotted Line), for

varying window sizes, for a window size of 100 and a false alarm rate of 15% in (a). A

histogram illustrating the distribution of the time between the detection of an event

by NUNC Local and the report by a customer, for a window size of 100 and a false

alarm rate of 15% in (b).

made: specifically, the threshold β, the window size W , and the choice of K. In line

with Haynes et al. (2017), we choose K = ⌈4 log(W )⌉. The choice of β was made to

control the false alarm rate at a desired level after discussion with domain experts.

In this particular setting, false alarms can be tolerated if this results in improved

identification of real events. Consequently a false alarm rate of 15% was selected. In

order to identify the appropriate value of β to achieve this, we first fix a window size

and then perform NUNC on the 340 data series without the event, choosing a value

of β that gives the desired false alarm rate. NUNC is then applied to the 133 series

known to contain an event using this β, for the chosen window size, to explore the

power of the approach for different window sizes. A similar process is also used to

implement the MOSUM test; again, the threshold is chosen to control the false alarm

rate at 15% for a given window size.

In Figure 3.4.1(a) we present the anticipation rate for a range of window sizes.

As can be seen, a window of size between 80 and 120 performs the best, with NUNC

Local correctly identifying (i.e. anticipating) > 50% of events in advance of user

intervention. We also note that NUNC outperforms the MOSUM for various choices
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of W . One reason for this is because the MOSUM test threshold is set to avoid

detecting the non-anomalous changes in mean that many of the series exhibit, and

this reduces detection power.

False Alarms 1% 5% 10% 15%

Local 0.08 (0.37) 0.28 (0.59) 0.38 (0.68) 0.51 (0.77)

Global 0.03 (0.36) 0.06 (0.51) 0.20 (0.67) 0.35 (0.76)

MOSUM 0.02 (0.02) 0.04 (0.08) 0.05 (0.10) 0.06 (0.12)

Table 3.4.1: Table illustrating proportion of events anticipated (and detected) for

varying rates of false alarms for both NUNC Local and NUNC Global.

Finally, for a fixed window size (W = 100) we explore the anticipation and detec-

tion rate as the false alarm rate (or equivalently β) varies. The results are summarised

in Table 3.4.1, and Figure 3.4.2.

(a) (b)

Figure 3.4.2: Comparison of event anticipation (a) and event detection (b) rates

achieved by both the Local (Solid Line) and Global (Dashed Line) variants of NUNC,

and the MOSUM (dotted line), for a window of size W = 100 and a varying false

alarm rate.

From the results presented, one remark that can be made is that the detection

power for NUNC Local and NUNC Global is similar, with both achieving over 75%

for a false alarm rate of 15% and window of W = 100, but the anticipation power of

NUNC Local is significantly better for a range of false alarm rates and window sizes.
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As in the simulations on detection delay, this is due to the way that NUNC Local

checks every point within the window for a change, allowing for a shorter detection

delay. A second observation is that NUNC achieves better results than the MOSUM

in terms of both anticipation, and power, as the false alarm rate varies.

3.5 Concluding Remarks

This chapter has introduced NUNC Local and NUNC Global: two related, non-

parametric changepoint methods with a lightweight data footprint. NUNC Global

offers greater power in instances where there is a stationary underlying null distribu-

tion for the data (cf. Section 3.3.2). Conversely NUNC Local shows greater resilience,

and is able to outperform NUNC Global, in settings where the process contains time-

dependent or other non-independent structure, such as the telecommunications ex-

ample that we consider. Finally, we have explored how both forms of NUNC compare

against MOSUM, an existing non-parametric window based changepoint detection

test with lightweight footprint, in both simulations and the telecommunications ap-

plication.

To support the implementation of the algorithms, we also consider their compu-

tational properties and key theoretical results. The first of these provides a cutoff

value for the sliding window in NUNC Local, so that only relevant parts of the sliding

window are checked for a change. This provides a theoretical justification for reducing

the computational cost of the algorithm. A method for (approximately) selecting the

threshold was also provided, enabling the control of the false alarm rate at a fixed

level.

As with any approach, NUNC has various weaknesses that might be identified for

criticism. For example, the estimation of the empirical CDF from windowed data

means that gradual changes are likely to go undetected. In addition, as identified

by our simulation study, NUNC Global struggles with changing structure in time-

dependent series. The investigation of potential alternatives to the NUNC framework,

that can resolve such weaknesses, are left as avenues for future research.
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The reason for developing NUNC was to enable to data-driven identification of

an event that would anticipate a user intervention related to a telecommunications

device, rather than simply waiting for direct communication from end-users. As seen

in Section 3.4 this can be achieved with some success, with NUNC Local allowing for

detection in advance of the event in a meaningful number of cases. This provides a

powerful diagnostic tool, and demonstrates the ability of NUNC to successfully detect

changes that anticipate user intervention in a large number of cases.



Chapter 4

Detection of Emergent Anomalous

Structure Phenomena in

Functional Data

4.1 Introduction

In recent years, anomaly detection for functional data has received substantial at-

tention. Particular attention has been focused on identifying a completely observed

anomalous curve that deviates in shape or magnitude from the other observations in

a sample of functional data. Recent contributions to this area include the works of

Pintado and Romo (2011); Arribas-Gil and Romo (2014); Rousseeuw et al. (2018);

Dai and Genton (2018a); Huang and Sun (2019); Harris et al. (2020); Rieser and

Filzmoser (2022).

An extension of the classical functional anomaly detection problem is that of se-

quentially monitoring for anomalies in functional data. In the classical non-sequential

setting, a given approach analyses an entire sample of functional data to identify

curves that are anomalous. In one version of the sequential setting, however, com-

plete functional observations are received sequentially and compared to some baseline

sample to determine whether the new curve appears anomalous. As such, a sequential

method does not analyse the whole sample of data and instead makes a decision based

61



CHAPTER 4. FAST 62

solely on the observations as they are recorded. Existing sequential methods include

the functional profile monitoring techniques of Hall et al. (2001); Jeong et al. (2006);

Colosimo and Pacella (2010); Paynabar et al. (2016); Yan et al. (2018).

This chapter is motivated by a different, yet related, anomaly detection challenge

arising from a telecommunications application monitoring throughput data at a point

on a digital network. In this setting the observed data exhibits a similar shape over

any given day, and this shape takes the form of a smooth curve. It is this smooth curve

structure that motivates our functional data approach. Figure 4.1.1 shows an example

of this throughput functional data. In some instances, an anomaly is observed where

there is a deviation from the daily shape, as shown for example in Figure 4.1.1(b).

Such behaviour might indicate the occurrence of a significant event on the network

that requires an operational intervention.

(a) (b)

Figure 4.1.1: Observations of throughput data recorded at one minute intervals over

100 days at a point on a telecommunications network and represented as a functional

time series. Each curve denotes a single day of data (a). An instance of an anomalous

day is overlaid in red in (b).

To perform the operational interventions as soon as possible, we cannot wait for

a new curve to be completely observed and instead need to identify the anomalies

as they emerge. As such, we ideally need a method that monitors a partial curve

sequentially, as the data is collected over time. Existing functional anomaly detection

methods such as those proposed by Hyndman and Shang (2010) or Harris et al.

(2020) require the whole curve to be observed, and so are not applicable to this
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Figure 4.1.2: Sequential detection of emergent behaviour observed in Figure 1(b).

problem. Furthermore, it would not be computationally feasible to perform these

existing methods iteratively, as each new point on the curve is received. On the

other hand, non-functional methodologies for monitoring non-stationary data, e.g.

Zhang et al. (2018), Wang et al. (2018), or Talagala et al. (2020) may not handle

the temporal dependence contained in functional data, or require the anomalies to

consist of an abrupt change in mean. To address this, we propose detecting smooth

deviations from an underlying functional data shape sequentially, as the partially

observed functional data emerges over time. To be specific, we seek to identify both

the anomalous curves as they arise, and identify where in time on the curve the

anomaly takes place. (See Figure 4.1.2). To this end we introduce a Functional

Anomaly Sequential Test (FAST).

The essence of our proposed approach can be summarised as follows: FAST first

estimates the best fitting linear differential operator from a set of training data, before

then applying this operator to a new observation to obtain a new estimated residual

function. This residual function is used to calculate the test statistic for a non-

parametric CUSUM test (Tartakovsky et al., 2005), where if the cumulative value of

this test statistic exceeds a threshold then an anomaly is declared. By performing this

CUSUM test sequentially on a partially observed curve anomalies can be detected as

they emerge.

The remainder of the chapter is organised as follows: Section 4.2 introduces the

functional data framework and methodology that underpins the FAST procedure.

Various theoretical properties of the anomaly detection procedure are established
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in Section 4.3, including a threshold that controls the false alarm rate, and results

relating to the power of the test. A simulation study is then described in Section 4.4,

illustrating the performance of the method across a range of settings. We conclude in

Section 4.5 with an analysis of the throughput telecommunications data.

4.2 Background and Methodology

We start by outlining our approach to detecting emergent anomalies in functional

data. In Sections 4.2.1 and 4.2.2 we introduce the model which we assume describes

the data observed and our estimation approach, prior to introducing the FAST algo-

rithm in Section 4.2.3.

4.2.1 Model

In what follows we adopt the functional data model of Ramsay (2005). Consider a

sequence of functional observations {X1(t), X2(t), . . . , Xn(t)} ∈ L2(T ), none of which

are anomalous, and where the subscript denotes the i-th observation over the interval

T . In this work the interval is a day, so it is convenient to view {Xi(t)} as denoting

the observed value for the i-th day at time t.

As described in Section 4.1, each of our non-anomalous observations follows an un-

derlying shape. In order to represent this underlying structure we utilise the approach

of Ramsay (2005) and model the observations as noisy realisations of the solution to

an order m linear ODE, with the solution to the ODE describing the underlying shape

structure. The linear operator for this ODE takes the following form:

L = β0(t)D
0 + β1(t)D + . . .+ βm−1(t)D

m−1 + Dm, (4.2.1)

where Dk denotes the kth derivative of a function, and the {βj(t)}m−1
j=0 are coefficient

functions that are estimated from the data. The estimation of the operator, and the

choice of m, will be discussed in the next section.

Under the assumption that each observation is a noisy realisation of the solution

to the ODE underpinned by the operator in equation (4.2.1), an observation is given
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by

Xi(t) =
m∑
j=1

cjuj(t) + fi(t), cj ∈ R, 1 ≤ i ≤ n, t ∈ T . (4.2.2)

Here {uj(t)}mj=1 are the solutions to the ODE and
∑m

j=1 cjuj(t) represents the un-

derlying shape for the data. In equation (4.2.2) it is assumed that the {uj(t)} are

linearly independent m-times differentiable functions, and the {fi(t)} are m-times

differentiable mean-zero functional random variables representing noise.

We make the following assumption about the noise functions:

Assumption 1. The noise functions, {fi(t)}, are independent mean zero Gaussian

processes with stationary covariance functions.

Whilst FAST does not require this assumption to work in practice, it is used for

model selection in Section 4.2.2, and to develop an asymptotic distribution for the

test statistic in Section 4.3.

The aim of FAST is to detect when an observation has been contaminated by an

anomaly. We model an anomaly as a function, {gi(t)}, causing a deviation from the

underlying shape for the data. We make the following assumptions regarding these

anomaly functions:

Assumption 2. The anomaly functions {gi(t)} are (i) m-times differentiable, and

(ii) not equal to a linear combination of the {uj(t)}.

Assumption 2(i) is required so that the differentiability condition on the {Xi(t)}

is still satisfied when an anomaly is present. Additionally Assumption 2(ii) ensures

that the anomaly does not follow the underlying shape for the data. We also remark

that it is not necessary for an anomaly function to contaminate the entire observation

period, and that it can be present on some sub-region, S ⊂ T .

Building on equation (4.2.2), a model for a contaminated observation can be de-

fined as:

Xi(t) =


∑m

j=1 cjuj(t) + fi(t) t ∈ T \ Si∑m
j=1 cjuj(t) + fi(t) + gi(t) t ∈ Si.

(4.2.3)
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Whilst the above functional data model for the observations assumes continous

time, this may not be possible in practice. In such circumstances we follow the ap-

proach taken by other authors such as Nagy et al. (2017), and model the observations

on a fine grid. We let {1, . . . , T} be the fine grid that discretizes the compact set T ,

and let the discretized observation be denoted by {Xi(τ)}Tτ=1 for 1 ≤ i ≤ n.

With our model for the data generating process outlined, we now turn to consider

the estimation scheme that will be used. As we shall see in Section 4.2.3, the FAST

algorithm uses an estimate of the linear differential operator in equation (4.2.1), rather

than estimates of the solution functions in equation (4.2.2). To estimate the operator,

we follow the approach of Ramsay (1996) and use Principal Differential Analysis, as

we describe in the next section.

4.2.2 Estimating the Model Using Principal Differential Anal-

ysis

We begin by recalling that the approach of Ramsay (1996) to estimating an ODE to

model functional data uses Principal Differential Analysis (PDA). PDA estimates the

best fitting order m linear differential operator for a sample of functional data. As

described in the previous section, in this work the linear differential operator takes

the form of equation (4.2.1).

The linear ordinary differential operator is estimated by selecting the values of

β(t) = {βj(t)}m−1
j=0 that minimise ||L (X(t)) ||22, where || · ||2 represents the usual

L2 norm. As described in Section 2.4.3, Ramsay (1996) propose performing this

minimisation on a discretised grid of T points using the follow estimation scheme:

β(t) =
(
Y (t)TY (t) + λIm

)−1
Y (t)Tz(t).

Here β(t) = {βj(t)}m−1
j=0 , Y (t) is an n ×m matrix with entries Yij(t) = Dj−1(Xi(t)),

z(t) = {Dm(Xi)(t)}ni=1, Im is the m ×m identity matrix, and λ is a parameter that

controls the smoothness of the estimated coefficient functions. The estimated ODE,

L̂ = 0, will have m linearly independent solutions, and these estimated solution func-

tions are estimates of {uj(t)} in equation (4.2.2). Further computational efficiencies
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can be achieved when estimating the coefficients through use of basis function smooth-

ing. In the appendix we present simulations that explore the effect this has on the

estimated differential operator.

To detect anomalies the FAST algorithm applies the estimated ODE to the ob-

served data. Applying the operator L to an observation produces a residual function,

{ϵi(t)}ni=1, and it is these residual functions that form a key part of our test. We denote

the estimated residual obtained by applying the estimated ODE by {ϵ̂i(t)}ni=1. Note

that under Assumption 1, and using the well known properties of Gaussian processes,

the residual functions are also themselves mean-zero Gaussian processes (Rasmussen

and Williams, 2005).

An explicit connection between the residual functions and the model for the data

presented in equation (4.2.2) is given by the following:

L̂(Xi(t)) = L̂

(
m∑
j=1

cjuj(t) + fi(t)

)

= L̂ (fi(t))

= ϵ̂i(t), 1 ≤ i ≤ n. (4.2.4)

Although it will not be known a-priori if an observation is contaminated with an

anomaly, it can also be instructive to consider what happens when the differential

operator is applied to such an observation. Applying L̂ to the model in equation

(4.2.3) gives the following:

L̂(Xi(t)) =

ϵ̂i(t) t ∈ T \ Si

L̂(gi(t)) + ϵ̂i(t) t ∈ Si.
(4.2.5)

It is this property that motivates the FAST test: observations that deviate from the

underlying shape for the data will have contaminated residual functions.

One aspect of the model estimation that is yet to be addressed is the selection

of m, the order of the ODE to fit to the data. This is a subject that has received

little attention in the literature to date. It is suggested in Ramsay (1996) that the m

should be specified by discussion with experts or through use of physical modelling.
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Unfortunately in many applications, for example the telecommunications example in

Section 4.5, the order will not be known a priori.

As an alternative we propose selecting the order of the differential operator in a

data driven manner, motivated by the selection of regression models. In particular,

it is proposed that the Bayesian Information Criterion (BIC) (Schwarz, 1978) is used

to select the order of the ODE to fit to the data (Teräsvirta and Mellin, 1986). BIC

is given by

BIC(m) = m log(n)− 2ℓ̂ (4.2.6)

were ℓ̂ is the log-likelihood of the fitted model at the MLE, m is the order for the ODE

and n is the number of observed curves. Using Assumption 1 the residual functions

are mean zero Gaussian processes, and so on a discretised grid {ϵi(τ)}Tτ=1 will follow a

mean zero multivariate Gaussian distribution. As such, the log-likelihood in equation

(4.2.6) is that of a multivariate normal distribution. In the case where the noise

functions are independent the log-likelihood reduces to (Johnson and Wichern, 1988):

ℓ̂ = −n
2

log(

∑n
i=1

∑T
τ=1 ϵ̂

2
i (τ)

n
), (4.2.7)

where
∑n

i=1

∑T
τ=1 ϵ̂

2
i (τ) is the sum of square error between the observations and the

solution to the estimated ODE.

4.2.3 FAST: A Test for Intra-Functional Anomaly Detection

Having established our approach for estimating the ODE for non-anomalous data, we

are in a position to introduce FAST. The aim of FAST is to sequentially monitor an

emerging functional observation for anomalous behaviour. To achieve this it combines

the ODE estimation introduced in the previous section with a non-parametric CUSUM

test to identify when an anomaly is emerging. The pseudocode for FAST can be found

in Algorithm 3.

The first stage of the FAST algorithm takes as input a set of anomaly-free training

observations, {X1, . . . , Xn} ∈ L2(T ), and uses PDA to estimate L̂. This best fitting

linear differential operator is then applied to a new observation {Xn+1(t)} to obtain
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a residual function, {ϵ̂n+1(t)}. The residual function can then be used to define the

test function, Zi(τ), used by FAST. This is given by

Zn+1(τ) =
Sn+1(τ)− µ(τ)

σ(τ)
, 2 ≤ τ ≤ T (4.2.8)

where

Sn+1(τ) = (ϵ̂n+1(τ)− ϵ̂n+1(τ − 1))2 , 2 ≤ τ ≤ T.

Note that µ(τ) and σ(τ) are the mean and standard deviation of Sn+1 at time τ

respectively. In some settings, the structure for the noise function will be known and

so µ(τ) and σ(τ) can be obtained analytically. In others, however, these values will

be unknown. In this case they can be estimated from the training data that has been

used to estimate L̂. We then replace the µ(τ) and σ(τ) in equation (4.2.8) with their

estimators µ̂(τ) and σ̂(τ).

We standardise the test function in equation (4.2.8) so that at each time step it

is a mean-zero, unit variance random variable. This is necessary so that a threshold

for the test can be derived that controls the false alarm rate when the observations

are dependent, as is expected in the functional data setting. The cumulative sum of

equation (4.2.8) can then be treated as the test statistic, ∆n+1(τ); this is given by

∆n+1(τ) =
τ∑
r=2

Zn+1(r), 2 ≤ τ ≤ T. (4.2.9)

When performing FAST, the absolute value of ∆n+1(τ) is taken so that the test

is one sided. This is convenient since it allows for a single threshold for the test to

be selected by a user; and also because we do not make the distinction between large

positive, or negative, deviations of ∆n+1(τ). Furthermore, in line with the existing

CUSUM literature, the test statistic is scaled by the square root of the length of the

cumulative sum. The purpose of this is to control the increasing variation of the test

statistic under the null as the value of T increases.

An anomaly is detected should the scaled test statistic cross a threshold denoted

by γ ≥ 0. This gives rise to the following stopping rule for FAST:

ξ = min

{
2 ≤ τ ≤ T :

|∆n+1(τ)|√
τ − 1

≥ γ

}
, (4.2.10)
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where min {∅} = ∞ indicates no alarm being sounded. The threshold, γ, is chosen

so that the false alarm probability for FAST is controlled. Whilst in practice this

could be obtained through simulation, it is also possible to derive a theoretical choice

for the threshold for settings where Assumption 1 holds. This choice is discussed in

Section 4.3.

Algorithm 3: FAST Algorithm

Compute L̂ from the observed data X1, . . . , Xn. ;

for τ in 2 : T do

Compute S1(τ), . . . , Sn(τ);

µ(τ) = n−1
∑n

i=1 Si(τ) ;

σ(τ) = (n− 1)−1
∑n

i=1(Si(τ)− µ(τ))2;

end

Initialisation ;

Set ∆(1) = 0 ;

Choose the threshold γ ;

for τ in 2 : T do

Compute Zn+1(τ);

∆n+1(τ) = ∆n+1(τ − 1) + Zn+1(τ);

if |∆n+1(τ)| ≥ γ
√
τ − 1 then

BREAK;

end

end

4.3 Theoretical Properties of FAST

We now derive various theoretical properties for FAST, including the selection of a

threshold for the test that controls the false alarm rate at a suitable level, and results

for the power of the test for both a finite sample setting and as T →∞.
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In the classical (non-functional) online changepoint setting, it is common to con-

sider the average run length to false alarm (ARL). In practice selection of the threshold

for the changepoint test is made based on controlling the ARL at some pre-specified

level. This is done using training data in many applications due to the complexity

of the run length distribution (see Tartakovsky et al. (2014) for details). Within the

functional data generating scenario that we consider, however, we only observe each

curve at T points and so the test terminates at time T . Consequently, the following is

a more appropriate quantity to consider in this setting: the probability of false alarm

by time T . Below we propose a threshold that controls this quantity at a desired

level.

The probability of a false alarm by time T is defined as

P(ξ ≤ T |No Change) =
T∑
τ=2

P (ξ = τ |No Change) , (4.3.1)

where ξ is the stopping time for the test.

To establish a suitable threshold that controls the false alarm probability, we

follow Eichinger and Kirch (2018) and use a central limit argument to approximate

the asymptotic distribution of the test statistic in equation (4.2.10). We use this

approximation to select the threshold as per the following proposition. As we shall see

later (Section 4.4.1), whilst this is an asymptotic bound, it also performs favourably

in the finite sample setting.

Proposition 3. Let

γ = Φ−1

(
1− α

2(T − 1)

)
(4.3.2)

be the threshold used in the detection test. Then the probability of a false alarm by

time T is bounded above by α.

Proof. See appendix.

Whilst control of the false alarm rate is an important component for any sequential

test, theoretical guarantees for the power of the test are also desirable. In the next

result we consider an anomaly function, {gn+1(τ)}, emerging at time ν, for a period of
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length s; and a test threshold set as in Proposition 3. Using a Central Limit Theorem

approximation we can establish the following bounds on the probability of detecting

this anomaly.

Proposition 4. Let {gn+1(τ)} be an anomaly for a new observation that emerges at

time ν, until time ν + s; and let γ be the test threshold set as in Proposition 3. The

probability of detecting an anomaly by time T is bounded above and below by

P (|UT | ≥ γ) ≤ P(ξ ≤ T ) ≤
T∑
τ=2

P (|Uτ | ≥ γ) . (4.3.3)

Here Uτ ∼ N
(

1√
τ−1

∑τ
r=2

λ(r)√
2
, 1 + 1

τ−1

∑τ
r=2 2λ(r)

)
, λ(r) = (L̂(gn+1)(r)−L̂(gn+1)(r−1))2

µ(r)
,

and L̂(gn+1)(r) = 0 outside of ν ≤ r ≤ ν + s.

Proof. See appendix.

Proposition 4 illustrates how, as the size of the anomaly increases, the probability

of detection increases. The connection between the result and the duration of time

the anomaly emerges for, s, can also be obtained by rewriting Uτ as follows:

Uτ ∼


N(0, 1) τ < ν

N
(

1√
τ−1

∑τ
r=ν

λ(r)√
2
, 1 + 1

τ−1

∑τ
r=ν 2λ(r)

)
ν ≤ τ ≤ ν + s

N
(

1√
τ−1

∑ν+s
r=ν

λ(r)√
2
, 1 + 1

τ−1

∑ν+s
r=ν 2λ(r)

)
τ > ν + s.

In other words, as the size of s increases, both the mean and variance of Uτ increase.

Consequently the probability of detection also increases, much as one might expect.

Although the previous proposition considers the detection performance of FAST in

a finite sample setting, the detection power of FAST as T →∞ can also be considered.

The reason such a setting is useful to consider is that the threshold, γ, proposed in

Proposition 3 grows larger as T increases. In light of this one may ask if, for large

values of T , choosing the threshold using Proposition 3 will reduce the power of the

test. The next proposition establishes that, given certain conditions on the anomaly,

as T →∞ the detection of an anomaly occurs with probability equal to one.
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Proposition 5. Let {gn+1(τ)} be an anomaly for a new observation that emerges

for all τ ≥ ν, where ν = ⌊θT ⌋ and 0 < θ < 1, and let A be the event that{
L̂(gn+1)(τ)− L̂(gn+1)(τ − 1) = 0

}
at most finitely many times. Then

lim
T→∞

P

[
ξ <∞

∣∣∣∣A , γ = Φ−1

(
1− α

2(T − 1)

)]
= 1. (4.3.4)

Proof. See appendix.

Having developed theoretical results for both the control of the false alarm prob-

ability under the null, and the power of detection under the alternative, we now turn

our attention to the finite sample performance of FAST.

4.4 Simulation Study

In this section we will begin by considering the finite sample behaviour of the asymp-

totic threshold derived in Proposition 3, before assessing the performance of the de-

tection test on anomalous functions in a variety of cases. As we will see, FAST is able

to detect different forms of anomalies in a range of settings, including scenarios where

the test is mis-specified (i.e. where the assumptions underpinning Section 4.2 are not

fully satisfied).

Three different scenarios will be used in the simulation studies in this section. The

first scenario is one where the assumptions laid out in our functional data framework

are satisfied: a sinusoidal functional perturbed by a Gaussian noise:

Xi(t) = sin

(
1

100
πt

)
+ cos

(
1

100
πt

)
+ fi(t), 1 ≤ i ≤ n, t ∈ [1, 500]. (4.4.1)

Here fi(t) is a Gaussian process with covariance operator, K(s, t), given by K(s, t) =

0.3 exp
(

1
2

(
s−t
100

)2)
. Simulations where the choice of covariance function is a Matérn

function have also been completed, leading to similar results, and these are contained

in the appendix.

The second scenario we consider consists of replacing the Gaussian process innova-

tions, {fi(t)}, in equation (4.4.1) with innovations drawn from a Student’s t-process.

We explore the scenario where the t-process has two degrees of freedom and scale
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operator given by the same squared exponential covariance operator used for the

innovations in equation (4.4.1).

Finally, the third scenario we explore corresponds to one where there is a constant

underlying shape for the data plus some innovations {fi(t)}. This data generating

process is defined as

Xi(t) = c+ fi(t), 1 ≤ i ≤ n, t ∈ [1, 500], c ∈ R.

where the {fi(t)} are innovations that follows the same distribution as those in equa-

tion (4.4.1). When c ̸= 0 this system will not be the solution to any linear operator of

the form in equation (4.2.1) with non-zero coefficients, and consequently PDA should

not be able to estimate the shape of the data.

4.4.1 Finite Sample Threshold Performance

Our first simulations explore the Type 1 error properties of FAST. To this end, the

threshold derived in Proposition 3 was used to monitor observations from a model that

contained no anomalies. We consider this for each of the three scenarios introduced

above, performing 1000 repetitions of each simulation. For each repetition we generate

100 observations from the data generating process over an interval of 500 time points.

Scenario

Alpha
Scenario 1 Scenario 2 Scenario 3

0.01 0.01 0.05 0.04

0.05 0.04 0.06 0.06

0.1 0.05 0.07 0.07

0.2 0.06 0.08 0.08

Table 4.4.1: Comparison of empirical false alarm rate for different data generating

processes when the threshold has been set using Proposition 3 to control the false

alarm rate at α.

As can be seen from the results in Table 4.4.1, for scenario one - where the assump-

tions of our setting are satisfied - the threshold controls the false alarm probability at
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no more than the desired α. The results in the table also show that, in particular for

higher levels of α, the empirical false alarm rate is lower than the desired value. This

is a common feature of many sequential testing approaches, and is due to the use of a

Bonferroni Correction to control the type one error in a series of dependent hypothesis

tests (Tartakovsky et al., 2014). In particular, the correction leads to Proposition 3

providing an overinflated threshold.

On the other hand, in scenarios two and three the false alarm probability is not

always controlled at the desired level. This is, perhaps, to be expected, as the as-

sumptions required for Proposition 3 do not hold. That said, similar to in Scenario

one, for α = 0.05 and above the empirical false alarm rate does not exceed the level

α. The cause is again related to the effect of the Bonferroni Correction and the fact

that the test threshold is overinflated. The implication of these simulations results

are that Proposition 3 can be effective at controlling the false alarm probability even

in settings where our assumptions are not met.

Although control of the false alarm rate is important, the main purpose of FAST

is to detect emergent anomalies in a sample of functional data. To this end, in the

next section we will explore the detection performance of FAST in a range of settings.

4.4.2 Anomaly Detection Performance

Having shown that the theoretical result for the penalty is able to control the false

alarm rate in a finite sample, attention can now be given to the finite sample anomaly

detection performance of FAST.

Three different anomaly functions will be inserted into the data generating pro-

cesses. These anomalies are given by:

1. Polynomial Anomaly g(t) = a0 + a1(t− 100) + a2(t− 100)2 + a3(t− 100)3 +

a4(t− 100)4, a0 ∼ U[0, 0.5], ai ∼ U[0.5, 1.5], t ∈ [100, 200].

2. Sinusoidal Anomaly g(t) = b0 sin
(
2πt
100

)
+ b1 cos

(
2πt
100

)
, bi ∼ U[0.01, 0.2], t ∈

[100, 200].

3. Loss Of Shape Anomaly g(t) = 0 + fi(t), t ∈ [100, 200].
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(a) (b) (c)

Figure 4.4.1: 1000 instances of the three anomaly functions; polynomial, sinusoidal,

and loss of underlying shape; inserted into the Gaussian process residual function data

generating process.

The polynomial and sinusoidal anomalies represent magnitude and shape anomalies

respectively, whereas the loss of shape anomaly represents the underlying shape for

the data disappearing. The result of this is that the observations consist only of noise.

This is motivated by a behaviour seen in our application, where the throughput at a

point on the network becomes zero for a period of time.

(a) Order One Model (b) Order Two Model

Figure 4.4.2: ROC curves for the Gaussian process residual data generating process.

The sinusoidal anomaly is the blue line, the polynomial anomaly is the green line,

and the noise only anomaly is the red line.

For each data generating process, and anomaly type, both the number of detec-

tions, and the average detection delay, will be recorded. In line with Tartakovsky

et al. (2014) we define detection power as the number of anomalies that are detected
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before the end of the anomalous region S, and the detection delay as the time taken

between the emergence of anomaly at time ν = 100, and the detection by FAST. This

is also referred to as the conditional detection delay, as we record the delay conditional

on a successful detection (Tartakovsky et al., 2014).

The metrics used in this simulation study can be connected to the two anomaly

detection problems that FAST has been designed to consider. The first problem is

the detection of anomalous curves, and the second is the sequential identification of

where in time the anomaly emerges. The detection power indicates the ability of

FAST to identify the anomalies, whilst the detection delay indicates how quickly the

emergence of the anomaly is detected. A further property of FAST assessed in these

simulations is the robustness of the method to model mis-specification. In particular,

we fit both the correct order ODE model (an order two model), and an incorrect order

one model.

To carry out the study, a sample of 100 functions is drawn from a data generating

process and used as a training set for detection of an anomaly. Each of the data

generating processes in this section consist of a single underlying shape, and the

anomalies deviate from this underlying shape. As in the previous section, we perform

1000 repetitions of each scenario, and generate the data over an interval of 500 time

points. Furthermore for each test we set the threshold using Propositon 3 with α =

0.05.

The performance of FAST with respect to these two metrics is presented in the

tables below, and ROC curves are provided in Figure 4.4.2 for the Gaussian process

residual data generating process. In particular these results indicate that in almost

all scenarios FAST has high power when the data generating process satisfies our

assumptions, even when the order of the ODE is mis-specified as an order one model.

Detection delay results are also encouraging. Note, in particular, that the average

detection delay in each scenario is less than the size of the anomalous region. The

results in the table also show that the average detection delay is lower when the order

for the ODE is specified correctly.

There are, however, two instances where the performance of FAST is reduced.
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Order One

Model

Gaussian process

Residuals

t-process

Residuals

No Underlying

Shape

Anomaly Type Power ADD Power ADD Power ADD

Polynomial 0.96 35.30 (37.04) 0.37 62.03 (50.02) 0.99 6.92 (13.46)

Sinusoidal 0.83 25.69 (23.02) 0.21 31.45 (33.46) 0.99 12.93 (2.06)

Loss of Shape 1.00 45.71 (15.50) 0.97 86.76 (18.44) 0.03 41.88 (92.04)

Order Two

Model

Gaussian process

Residuals

t-process

Residuals

No Underlying

Shape

Anomaly Type Power ADD Power ADD Power ADD

Polynomial 1.00 1.49 (12.72) 0.99 13.53 (23.53) 1.00 22.46 (6.67)

Sinusoidal 1.00 2.74 (4.74) 0.95 14.51 (15.20) 1.00 1.14 (0.75)

Loss of Shape 1.00 2.67 (10.44) 0.99 14.13 (13.93) 0.05 38.21 (95.84)

Table 4.4.2: Tables showing the detection power, and average detection delay (and

standard deviation of detection delay) for each anomaly.

The first is where there is a polynomial or sinusoidal anomaly, and the residuals

follow a Students’s t-process. The second is the loss of shape anomaly when there is

no underlying shape for the data. In the former case, the reason for this is due to the

magnitude of the Student’s t-process residuals obscuring the anomalous behaviour.

That said, for a second order model these anomalies are detected, showing that FAST

still works well for this data generating process if the model is correctly specified.

In the latter case, the loss of shape anomaly is undetected because the underlying

process itself only consists of noise, and so this anomaly does not represent a change

in the underlying structure for the data.

4.5 Application to Internet Network Data

We now finally turn to consider the application that originally motivated this research.

Here we use data taken from a testbed node somewhere on an internet network in

the United Kingdom. The data measures the volume of traffic passing through the

node, called throughput, each minute for the first four months of a given year. Fol-
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lowing Ramsay (2005) we prepare the minute by minute data by smoothing it using

a roughness penalty and cross-validation in conjunction with a system of 100 order 6

B-Splines. In Figure 4.5.1 the data for both January, and the remaining months, can

be seen to follow an underlying shape. This shape can be attributed as follows:

(i) Lower demand for internet data during the early hours of the morning where

many customers are asleep.

(ii) An increase in demand during the day as more consumers utilise the internet

for both personal, and commercial, purposes.

Such behaviour is what causes the data to have a strongly repeated shape, and it is

this feature that makes the dataset a candidate for our anomaly detection method.

(a) (b) (c)

Figure 4.5.1: Training data taken from the first 30 days of observations (a); test data

that the anomaly detection test will be performed on (b); and the test data with axis

scaled to show a similar underlying shape to the training data (c).

We use FAST in this setting to detect curves that are statistically atypical and

warrant further investigation with domain experts. In some instances these curves

may well be within the range of normal operation, whilst in others may suggest

anomalous behaviour.

To perform FAST, a training dataset consisting of the first 30 days of the dataset

is used. To select the order of the differential operator to fit to the training data

we use BIC, as described in Section 4.2.2, and this leads to an order four differential

operator being fitted to the training data. FAST is carried out with the test threshold

set to control the probability of false alarm at the 5% level. 11 alarms are declared,
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and these instances are depicted in Figure 4.5.2(a). One interesting aspect of the

results is that two of the days on which a detection takes place are on a public holiday

weekend. Whilst not in themselves anomalous, these detection events may indicate

different consumer behaviour over these days, and are depicted in Figure 4.5.2(b).

(a) (b)

Figure 4.5.2: Figure (a) illustrates the 11 detections returned by FAST, and (b)

illustrates the two public holidays on which FAST identifies atypical behaviour. In

both figures the grey lines represent the days where FAST does not detect anything.

FAST detects statistically atypical behaviour that reflects both a change in mag-

nitude, and a change in shape, compared to the core underlying shape of the data.

We show examples of such instances in Figures 4.5.3(a) and 4.5.3(b) respectively. Fi-

nally, we remark that the detection delay is less than than 40 minutes from when the

atypical behaviour appears to start. This illustrates how FAST is able to respond

quickly to these events as they emerge in this dataset.

4.6 Discussion

In this chapter we have introduced a new method for detecting the emergence of

anomalous structures within functional data. This is done using FAST, a non-

parametric CUSUM test with a threshold set to control the false alarm rate that takes

into account the intra-functional dependence. The main advantage of this method is

that it detects the emergence of smooth anomalies, rather than changes in a param-

eter as in other sequential detection tests. A second advantage is that, unlike other
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(a) (b)

Figure 4.5.3: This figure illustrates a selection of the days on which FAST identifies

the emergence of atypical behaviour. The vertical lines indicate the point where FAST

first identifies this behaviour.

functional anomaly detection procedures, the sequential nature of our test suggests

what part of the functional observation is anomalous; this increases the inferential

power of the new method.

In Functional Data Analysis the typical dimension reduction approach uses Func-

tional Principal Components Analysis (FPCA). This has been used in anomaly de-

tection methods such as Hyndman and Shang (2010) and Aue et al. (2018). In our

approach we instead estimate the low dimensional structure using PDA. One advan-

tage of using PDA is that it allows for the underlying shape to consist of linearly

independent functions, relaxing the condition of orthogonality in FPCA. A second

advantage is that PDA does not require the covariance operator for the functional

data to be stationary.

In addition to the methodological contributions made by this work, several the-

oretical results have been derived for FAST. One of these allows for a user to set a

threshold that controls the rate of false alarms observed when no anomaly is present,

and another provides bounds for the finite sample detection power of the test.

Simulation studies have been performed to further examine the finite sample per-

formance of FAST. These studies have demonstrated that control of the probability

of false alarms is possible using the threshold set out in Proposition 3. Furthermore,

we have illustrated how FAST exhibits both high detection power, and low detection
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delay, for a range of different settings including those where the assumptions of our

model are not satisfied, or there are multiple underlying shapes for the data. Fi-

nally, FAST has attained good results in situations where the choice of ODE order is

mis-specified.

Although the performance of FAST on simulated data is encouraging, the motiva-

tion for this paper was a telecommunications anomaly detection challenge. We have

demonstrated that FAST can detect atypical behaviours as they emerge in through-

put data taken from an internet network. The fact FAST can detect such events in

this setting is a primary contribution of the paper.



Chapter 5

Extending FAST to the

Multivariate Setting

5.1 Introduction

In Chapter 4 we considered the problem of detecting emergent anomalies in univariate

functional data. It is natural, perhaps, to consider the challenges involved in extending

our approach to the multivariate setting. This is the focus of the work we now present.

(a) (b)

Figure 5.1.1: Four days of throughput data (a), and then four weeks of throughput

data smoothed into a curve for each day (b), taken from three locations on the network.

The motivation for our work stems from a challenge in the telecommunications

sector where multiple points on a data network are monitored for potentially atypical

83
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behaviour. As can be seen in Figure 5.1.1, the data at all locations has a repeated

shape over the course of each day, and is recorded at a high frequency. In some

instances, however, the observations deviate from this expected shape in either all, or

a subset of, the dimensions of the data. In Figure 5.1.2 we present examples of such

deviations. Identified atypical events are subsequently referred to a network specialist

for further consideration.

Data of the form seen in Figure 5.1.1 are most naturally modelled as multivari-

ate functional data. In recent years, several authors have considered the challenge of

detecting anomalies in this setting. One approach to the problem utilises depth mea-

sures. See for example López-Pintado et al. (2014); Hubert et al. (2015); Rousseeuw

et al. (2018); Dai and Genton (2019); Dai et al. (2020); and Qu and Genton (2022).

Alternatives to the use of depth measures also exist, including the approaches pro-

posed by Wang and Yao (2015); Lejeune et al. (2020a) and Archimbaud et al. (2022).

Looking at the example in Figure 5.1.2, we see that it would be desirable for an

anomaly detection method to incorporate the following features: (i) to detect the

anomaly before the curve has been observed in full, (ii) to locate where on the curve

the anomaly can first be identified and, (iii) to identify which of the dimensions can

be considered anomalous. This means the existing methods are unsuitable for use in

our setting, and a new approach is required.

From a modelling perspective, there is a further challenge that we might consider.

As the data is drawn from a network, there is a dependency structure between the

different dimensions of the data and it is desirable to model this structure. This is

because it allows for instances where the behaviour of one location is unexpected with

reference to the behaviour of other locations. Whilst current multivariate functional

anomaly detection methods do not all require independence, they do not explicitly

seek to capture the structure within the data and so do not provide the insight that

we seek.

To incorporate features (i), (ii), and (iii) required by our data challenge we pro-

pose the multivariate Functional Anomaly Sequential Test (mvFAST). Central to our

method is the modelling of the underlying shape for the data using the solution to
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(a) (b)

Figure 5.1.2: Examples of atypical levels of throughput data in which: (a) all three

locations experience the phenomena; or (b) where only a subset of the locations

experience it. Note that in this example the atypical behaviour appears to occur at

the same time.

an ODE system, and it is this system that allows us to capture relationships between

different dimensions of the data. The differential operator defining this ODE system is

then applied to an observation to obtain a residual function. This residual function is

tested for anomalies using a CUSUM test with a two stage test threshold. As we shall

see, the purpose of the two stage test threshold is to distinguish between anomalies

affecting every dimension of an observation, and anomalies only affecting a subset of

dimensions. Crucially for our particular application, the CUSUM test can be applied

sequentially to a partially observed curve in order to detect anomalies as they emerge.

The remainder of this chapter is organised as follows: in Section 5.2 we explore

the model for the functional data, and the methodology underpinning mvFAST. In

Section 5.3 we turn to consider theoretical results for the test, establishing bounds on

the detection power and proposing an approach for selecting test thresholds. Subse-

quently, in Section 5.4 the finite sample power of the test is examined in a range of

settings. In particular, we consider (a) detection of both anomalies that contaminate

every dimension, and (b) anomalies that contaminate a subset of the dimensions. In

addition, we explore detection of anomalies in situations where there is trend in the

underlying shape for the data, and illustrate the performance of the test when the

order of the ODE has been mis-specified. Finally, we apply our method to detect



CHAPTER 5. MVFAST 86

anomalies at key locations on a telecommunications network, before concluding with

a discussion.

5.2 Methodology

In this section we outline the model that underpins our analysis of multivariate func-

tional data, and discuss how the model parameters can be estimated from the data.

We then present our anomaly detection test, mvFAST, demonstrating how it can be

applied offline to detect anomalous observations within a sample of fully observed

functional data. Additionally we consider its potential to sequentially detect anoma-

lies within a new, partially observed, curve.

5.2.1 Model

Before presenting our model for the data, we first describe the functional data set-

ting used in this chapter. We consider a time series of n p-dimensional functional

observations, {Xi(t)}ni=1, with Xi(t) = {Xij(t)}pj=1 and t ∈ T . We assume that each

Xij(t) ∈ L2(T ), and that T represents an interval of time. For our application the

time interval is one day, and the p dimensions locations on a network. Hence it is

convenient to consider Xij(t) as the observed value of the jth location at time t on

the ith day.

As described in Section 1, each of the non-anomalous observations follow a re-

peated shape in each dimension. In order to model the p-dimensional set of repeated

structures we utilise the approach of Ramsay (2005), representing the data as noisy

realisations of the set of solutions to a p-dimensional, order m linear ODE. The order

m linear differential operator for the ODE system is represented by L = {Li}pi=1. This

operator describes a relationship between the mth derivative of the ith dimension of

an observation with the derivatives up to order m − 1 of every observed dimension.

This gives rise to the following representation for each equation in the system:

Li =

p∑
j=1

m−1∑
k=0

βi,j,k(t)D
k
j +Dm

i , 1 ≤ i ≤ p. (5.2.1)
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Here Dk
j represents the kth derivative of the jth variable of the observation, and

{βi,j,k(t)} represents the functional coefficient for the kth derivative of the jth dimen-

sion for the equation for the ith dimension. The choice of m, and estimation of the

coefficient functions {βi,j,k(t)}, will be discussed in the next section.

Ramsay (1996) observes that if S(t) is a solution to the system, L, then each of

the p dimensions can be represented in the following form:

Sj(t) =
m∑
k=1

cjkujk(t), 1 ≤ j ≤ p. (5.2.2)

Here {cjk} ∈ R and the {ujk(t)} ∈ L2(T ) are the linearly independent solution

functions for the system. We can use the representation in (5.2.2) as the foundation

of a model for our data. Indeed, under the assumption that each observation is a noisy

realisation of the solution to a p-dimensional order m ODE we have the following:

Xij(t) =
m∑
k=1

cjkujk(t) + fij(t), 1 ≤ j ≤ p. (5.2.3)

Here {cjk}, and {ujk(t)} ∈ L2(T ) are as above, and the {fij(t)} ∈ L2(T ) are innova-

tion functions.

To ensure that our model can be consistently estimated we make the following

assumption:

Assumption 3. (i) For each 1 ≤ i ≤ n the functions
{
Dk(Xi)(t)

}m−1

k=0
are linearly

independent and (ii) the innovation functions, {fij(t)} are independent and identically

distributed m-times differentiable mean-zero functions.

The objective of this work is to detect anomalies that manifest as deviations from

a common shape structure for the data. As described in the introduction, these

anomalies can occur in either a subset of the dimensions of an observation (i.e. a

sparse anomaly); or in all of the dimensions (i.e. a dense anomaly). We also allow

for the anomalies to emerge in different dimensions of Xi(t) at different points in

time. Letting {gij(t)} be the contaminating function that drives the deviation from

the underlying shape structure, we have the following model for the anomalies:

Xij(t) =


∑m

k=1 cjkujk(t) + fij(t) t ∈ T \ Sij∑m
k=1 cjkujk(t) + fij(t) + gij(t) t ∈ Sij.

(5.2.4)
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Here Sij is the period in which the anomaly present in the jth dimension of the

ith function is present. We make two assumptions regarding the anomaly functions

to ensure (i) that the observations remain differentiable when contaminated by an

anomaly, and (ii) that the anomaly functions are not solutions to L:

Assumption 4. The anomaly functions {gij(t)} are (i) m-times differentiable, and

(ii) not equal to a linear combination of the {ujk(t)}.

A practical issue when working with functional data is that the observations will

not be available in continuous time. To address this, many authors (e.g. Nagy et al.

(2017)) have worked with the observations on a discretised grid. We let {1, . . . , T}

be the grid that discretises the compact set T , and denote the discretised observation

for the jth location on the ith day by {Xij(τ)}Tτ=1.

We next turn attention to the estimation of our model for the data. Our anomaly

detection test requires an estimate of the ODE operator, L, for it to be applied to

the observations. As we describe in the next section, our approach will make use of

Principal Differential Analysis (PDA) (Ramsay, 1996).

5.2.2 Model Estimation Using Principal Differential Analysis

To detect anomalies, mvFAST will apply the p-dimensional order m ODE operator, L,

to a set of observations. In practice the operator underpinning the ODE system will

be unknown, and so needs to be estimated from the data. To do so, we use Principal

Differential Analysis (Ramsay, 1996). PDA estimates the coefficients β(t) = {βl,j,k(t)}

as

β(t) = arg min
βl,j,k

n∑
i=1

||L(Xi)(t)||22 + λ

p∑
l=1

p∑
j=1

m∑
k=1

||βljk(t)||22, (5.2.5)

where || · ||2 is the L2 norm. Here λ ≥ 0 is a parameter that controls the amount

of penalisation that takes place and controls the smoothness of the estimates of the

coefficients. Furthermore, Ramsay and Hooker (2017) discuss how increasing the value

of the parameter prevents overfitting.

Following the approach of Ramsay (1996) the coefficients for each of the p equations

of L; denoted by
{
β(l)

}p
l=1

, β(l) = {βl,1,0(t), . . . , βl,1,m−1(t), βl,2,0(t), . . . , βl,p,m−1(t)};
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can be estimated on a discretised grid as follows

β(l)(t) =
(
Y (t)TY (t) + λImp

)−1
Y (t)Tz(l)(t).

In the above equation Y (t) is a matrix of dimension n×mp and each row of this matrix

is given by Yi,·(t) = {D0(Xi1(t)), . . . ,D
m−1(Xi1(t)),D

0(Xi2(t)), . . . ,D
m−1(Xip(t))} ,

z(l)(t) = {Dm(Xil)(t)}ni=1 is a vector of length n, and Imp is the mp × mp identity

matrix.

The purpose behind estimating the ODE system is not so that the solution func-

tions, {ujk(t)}, can be estimated but instead so that anomalies can be detected by ap-

plying the estimate of the differential operator for the ODE system to the observations.

When L is applied to an observation we obtain residuals functions, L(Xij)(t) = ϵij(t).

An explicit connection between the model for the data in equation (5.2.3) can also be

derived as follows:

L(Xij)(t) = L

(
m∑
k=1

cjkujk(t)

)
+ L(fij)(t)

= 0 + ϵij(t).

On the other hand if an anomaly is present then we have

L(Xij)(t) = L

(
m∑
k=1

cjkujk(t)

)
+ L(fij)(t) + L(gij)(t)

= 0 + ϵij(t) + L(gij)(t).

In practice, we will apply the estimated operator obtained from equation (5.2.5) and

in doing so obtain estimated residual functions, {ϵ̂ij(t)}. It is these estimated residual

functions that will be monitored by mvFAST.

Aside: ODE Order Selection Before we present our anomaly detection test, we

provide a brief discussion on how to select the order, m, of the ODE system. This

aspect of PDA has received limited attention in the literature, in particular for mul-

tivariate functional data. Ramsay and Hooker (2017) suggest that, for an unrelated

ODE selection method, the structure of the ODE should be based upon minimis-

ing the residuals of the fitted model. Motivated by this argument, and the similar
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challenge of selecting the order of a Vector Autoregressive (VAR) model (Lütkepohl,

1993), we propose to use the Bayesian Information Criterion (BIC) (Schwarz, 1978)

to select the order of the ODE. Following Lütkepohl (1993) we select the order of the

ODE using BIC as follows:

BIC(m) = log
(
n−1SSEm

)
+

log(n)mp2

n
, (5.2.6)

where SSEm =
∑n

i=1

∑p
j=1

∑T
τ=1 ϵ

2
ij(τ) is the sum of square error for the fitted ODE

of order m. We remark that under the assumption that the innovation functions are

mean-zero Gaussian processes then this will lead to consistent estimation of the true

order for the data (Lütkepohl, 1993).

The reason we draw on the literature for VAR models is because the coefficient

structure is identical in both the VAR and PDA settings, with the distinction between

the two models being the fact that VAR uses a difference operator, not a differential

operator.

With our model for the data in place, and estimation of the model from a sample

of data discussed, we next introduce our anomaly detection test.

5.2.3 Anomaly Detection Test

Recall that the primary goal of this work is to detect both observations that deviate

from a common shape structure, and to identify the location on the curve where this

deviation first occurs. To do this, our proposed anomaly detection test estimates

the shape structure using a system of differential equations and then monitors the

residuals of the fitted system to identify deviations. Below we present our anomaly

detection test in both the offline, where the curves have already been observed in full;

and online setting, where a new curve is monitored as it emerges.

Offline Anomaly Detection

For both offline anomaly detection, and the testing of a new observation for an

anomaly, the steps of mvFAST are similar. We begin with the offline testing problem

and then describe how it can be adapted to the sequential testing environment.
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Formally, the goal in the offline anomaly detection setting is to test the hypothesis

H0 : L(gij)(τ) = 0

H1 : L((gij)(τ) ̸= 0

for at least one 1 ≤ j ≤ p and 1 ≤ τ ≤ T , for each 1 ≤ i ≤ n.

Motivated by the fact that under the null L(Xij)(t) = ϵij(t), whereas under the

alternative L(Xij)(t) = ϵij(t)+L(gij)(t), we propose to monitor the residual functions

in order to detect the presence of anomalous behaviour. To do so we must obtain

estimates of the residual functions, and so to this end we obtain an estimate of L

using PDA. We then apply L̂ to each observation to generate estimates of the residual

functions: {ϵ̂ij(τ)}Tτ=1.

To monitor these residual functions mvFAST uses a CUSUM statistic of the form

∆ij(τ) =
τ∑
r=1

ϵ̂ij(r), 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ τ ≤ T. (5.2.7)

A test statistic based on the CUSUM test is adopted, in contrast to other multivariate

functional anomaly detection techniques, since it allows for the location on the curve

of the anomaly’s emergence to be identified.

Recalling that we seek to detect both dense and sparse anomalies we present a

threshold regime that differentiates between both forms. To achieve this we follow

an approach similar to that proposed by Tickle et al. (2021), utilising a two stage

threshold for the test. In particular we consider a sparse threshold, γ to identify if,

given the structure of the system, a single dimension of a curve is anomalous; and a

dense threshold, Γ, to identify when every dimension of a curve contains an anomaly.

Should a monitoring test statistic exceed γ, then we declare that individual series is

anomalous. That is, the jth dimension of the ith observation is anomalous at time τ

onwards if

|∆ij(τ)| > γ.

On the other hand, all p dimensions of the ith observation are declared as anomalous

at time τ onwards if ∣∣∣∣ p∑
j=1

∆ij(τ)

∣∣∣∣− pγ > Γ.
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Using the two detection rules presented above, we obtain the following stopping

time, ξij, for the jth dimension of the ith location of the data:

ξij = min

{
1 ≤ τ ≤ T : |∆ij(τ)| > γ,

∣∣∣∣ p∑
j=1

∆ij(τ)

∣∣∣∣− pγ > Γ

}
, 1 ≤ i ≤ n, 1 ≤ j ≤ p.

(5.2.8)

If neither threshold has been crossed then no anomaly has been identified. In this

particular case, following Baron and Tartakovsky (2006) and Tartakovsky et al. (2014),

we declare min {∅} =∞.

The motivation behind the use of a two stage threshold for the detection test is

that it allows for determination of whether a subset of the dimensions, or every dimen-

sion, is anomalous. Whilst the sparse threshold, γ, identifies anomalous behaviour

in any particular dimension, the dense threshold, Γ, is used to signal that, when

taken as a whole, the data is sufficiently anomalous to suggest that every dimension

is contaminated with an anomaly function.

In some scenarios, the detection of only one form of anomaly will be desired. In

these cases, only one of the two test statistics should be utilised. In the sparse case,

this will result in a stopping time of

ξij = min {1 ≤ τ ≤ T : |∆ij(τ)| > γ} , 1 ≤ i ≤ n, 1 ≤ j ≤ p, (5.2.9)

whilst in the dense case this stopping time will be

ξij = min

{
1 ≤ τ ≤ T :

∣∣∣∣ p∑
j=1

∆ij(τ)

∣∣∣∣− pγ > Γ

}
, 1 ≤ i ≤ n, 1 ≤ j ≤ p. (5.2.10)

In Section 5.3, results will be presented for choosing a threshold in each of the settings

in order to control the family-wise error rate.
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Algorithm 4: mvFAST Online Algorithm

Inputs: Observed data X1(t), . . . ,Xn(t), a new observations Xn+1(t), the

ODE order m, and the thresholds γ and Γ. ;

Outputs: C, a 1× p matrix to record the anomalous dimensions of the new

observation; and D, a 1× p matrix to record the detection times. ;

Initialise each entry of C to be FALSE and each entry of D to be ∞. ;

Compute L̂ from the training data X1(t), . . . ,Xn(t). ;

Initialise ∆n+1(0) = 0 ;

for r in 1 : T do

Apply L̂ to the new observation Xn+1(r) to obtain ϵn+1(r). ;

∆n+1(r) = ∆n+1(r − 1) + ϵi(r) ;

if |
∑p

j=1 ∆n+1,j(τ)| − pγ > Γ then

C[1, 1 : p] = TRUE ;

D[1, 1 : p] = r ;

break;

end

else if maxj |∆n+1,j(r)| > γ then

for j in 1 : p do

if |∆n+1,j(r)| > γ then

C[1, j] = TRUE ;

D[1, j] = r ;

end

end

break;

end

end

if No Anomaly Detected then

Update X1(t), . . . ,Xn(t) to X2(t), . . . ,Xn+1(t) ;

end

return C and D
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Online Anomaly Detection

We next turn our attention to the detection of anomalies sequentially within a new,

partially observed, curve as it emerges. That is, given that we have observed n curves

so far, we observe the (n+1)th curve Xn+1(1),Xn+1(2), . . . ,Xn+1(T ) sequentially. In

the online setting this corresponds to testing, at each time 1 ≤ τ ≤ T , the hypothesis

H0 : L(gn+1,j)(τ) = 0

H1 : L(gn+1,j)(τ) ̸= 0

for at least one 1 ≤ j ≤ p.

Similar to in the offline setting, L̂ is applied to the new observation as each new

point on the curve is received. That is, for each 1 ≤ τ ≤ T we apply L̂ to Xn+1(τ)

and compute the test statistic ∆n+1(τ) using equation (5.2.7). The decision as to

whether the new observation contains an anomaly can then be made using a similar

stopping time to the offline setting:

ξn+1,j = min

{
1 ≤ r ≤ τ : |∆n+1,j(r)| > γ,

∣∣∣∣ p∑
j=1

∆n+1,j(r)

∣∣∣∣− pγ > Γ

}
, 1 ≤ j ≤ p.

To sequentially monitor the partially observed curve for anomalies as it emerges over

time we repeat the process iteratively. This approach is used to analyse the telecom-

munications data in Section 5.5.

One distinction between the offline and online problem is that an estimate of L

must be obtained before the online analysis can begin. To facilitate this the estimate

is obtained from some anomaly-free training data {Xi(t)}ni=1. Using this training

data, an estimate of operator L̂ is obtained using PDA as in the offline setting.

Another distinction between the offline and online detection challenge is that,

in some situations, the underlying shape for the data may change as more complete

curves are observed. In this case, the sequential version of mvFAST should be adapted

such that, if the most recent observation Xn+1(t) does not contain an anomaly, then

it is substituted into the training data in place of X1(t). An updated estimate for the

differential operator for the system can then be computed using PDA. In Algorithm

4 we present pseudocode for the sequential form of mvFAST.
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5.3 Theoretical Results

We next turn to consider some key theoretical properties of mvFAST. These include

thresholds that can be employed to control the false alarm rate at a given level,

bounds for the detection power of the test, and a proof of the asymptotic consistency

of the location where the anomaly is detected on the curve. Results are provided for

both the dense, and sparse, anomaly scenarios and apply to both offline, and online,

mvFAST.

We begin by exploring how the threshold for mvFAST can be chosen to control

the family-wise error rate (FWER). The FWER is defined as

P

(
n⋃
i=1

p⋃
j=1

ξij <∞
∣∣∣∣No Anomaly

)
,

i.e. the probability of incorrectly identifying one or more of the p dimensions of an

observation as anomalous. Typically we seek to control this at some given level α.

That is, the proportion of the n observations where one or more of the p series is

incorrectly identified as anomalous does not exceed α. The following result describes

the selection of the threshold so that the FWER is controlled for each of the three

stopping times (equations (5.2.8) - (5.2.10)) discussed in Section 5.3.

Proposition 6. Let Assumption 3 hold. Then the following choices for γ and Γ bound

the FWER above by α:

1. Sparse Anomalies Only (Equation (5.2.9))

γ =

np
(∑T

τ=1 Vτ

)
α


1
2

2. Dense Anomalies Only (Equation (5.2.10))

Γ = 2


np

(∑T
τ=1 Vτ

)
α


1
2

− pγ

 , for any γ <

(
n
∑T

τ=1 Vτ
pα

) 1
2

.
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3. Both Dense and Sparse Anomalies Simultaneously (Equation (5.2.8))

γ =

np
(∑T

τ=1 Vτ

)
α

[(p+ log(p))2 + 1

(p+ log(p))2

]
1
2

Γ = γ log(p)

where Vτ = Var (∆ij(τ)).

Proof. See appendix.

The next result concerns the power of the detection test to detect a change by

time T . To this end let D = {ξ ≤ T | gij(τ) ̸= 0, ∀1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ τ ≤ T}

be the event that a detection has taken place by time T given an anomaly is present.

Equipped with this we are in a position to state our result for the bounds on the

probability of detecting an anomaly:

Proposition 7. Assume that the ith observation is contaminated with a p-dimemsional

anomaly function {gij(t)}pj=1. Furthermore, assume that for any 1 ≤ τ ≤ T , E(ϵij(τ)3) <

∞. Then, under Assumption 3, the probability of detecting the anomaly by time T is

bounded by

−2µ1

K
+

11µ2

4K2
− 3µ3

4K3
≤ P(D)

≤
T∑
τ=1

 pVτ(
Γ + pγ − |

∑p
j=1 L(Gij)(τ)|

)2 +
V p
τ

min1≤j≤p (γ − |L(Gij)(τ)|)2

 .
Here K = Γ + pγ + |

∑p
j=1 L(Gij)(T )|, µ1 = E

(
|
∑p

j=1 ∆ij(T )|
)
,

µ2 = E

[(
|
∑p

j=1 ∆ij(T )|
)2]

, µ3 = E

[(
|
∑p

j=1 ∆ij(T )|
)3]

, Vτ is defined as in Propo-

sition 6, and L(Gij)(τ) =
∑τ

r=1 L̂(gn+1)(r).

Proof. See appendix for details.

The previous results are concerned with the performance of mvFAST on a finite

grid. It is perhaps also natural to question to ask how the test performs as the fineness

of the grid increases. The next pair of results seeks to show the conditions under which
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an anomaly is guaranteed to be detected as T → ∞. Further, we provide a result

that connects this guarantee to the detection delay of the test.

Our first result is concerned with the probability of detecting an anomaly as T →

∞. In particular, we continue on from a step in the proof of the lower bound in

Proposition 7 and show that if limT→∞
|
∑p

j=1 L(Gij)(T )|
T

is bounded away from zero then

we are guaranteed to detect the anomaly:

Corollary 2. Let the p-dimensional anomaly function {gij(t)}pj=1 emerge at a time

ν = ⌊θT ⌋, 0 < θ < 1, and assume that limT→∞
|
∑p

j=1 L(Gij)(T )|
T

= M for some M > 0.

Then, if Assumption 3 holds, and the residual functions, fij(t), are independent in t,

limT→∞ P(D) = 1

Proof. See Appendix.

This corollary can also be used to provide a proof of the consistency of mvFAST

subject to the same assumptions on the anomaly and innovation functions. In the

changepoint literature the consistency of a changepoint estimator refers to the perfor-

mance of the estimator as the size of the sample, n, tends to infinity. In particular, if

τ̂ is an estimator of the changepoint τ then τ̂ is a consistent estimator if |τ̂−τ |
n
→ 0 as

n→∞ (Truong et al., 2020). We apply this concept to our setting by seeking to show

that if ξ is the stopping time for the mvFAST test, and ν is the true changepoint,

then as T →∞, ξ−ν
T
→ 0. This is a desirable property, indicating that the detection

delay of the test does not increase at the same rate as the fineness of the grid. The

following proposition illustrates when this property holds.

Proposition 8. Consider observations over the interval T = [0, 1], and with this

interval discretised into T points with the sequence {ti}Ti=0, t0 = 0, and tT = 1. Let

the p-dimensional anomaly function {gij(t)}pj=1 emerge at a time ν = t⌊θT ⌋, 0 < θ <

1. Furthermore, let Aϵ =
{
t⌊θT ⌋, t⌊θT ⌋ + a1 . . . , t⌊θT ⌋ + am

}
, where am < ϵ for some

0 < ϵ < 1− θ and any m ∈ N.

Then if limm→∞
|
∑p

j=1 L(Gij)(t⌊θT⌋+am)|
m

> 0, Assumption 3 holds, and the residuals

functions are independent in t, as T →∞, ξ−ν
T
→ 0.
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Proof. See appendix.

In addition to the dense setting, each of the results presented in this section can be

trivially extended to the sparse setting where the anomaly function only emerges in

a subset, J , of the p dimensions. This simply requires a modification of the anomaly

functions by setting gij(t) = 0 for each j /∈ J and every 1 ≤ t ≤ T . Doing so ensures

that the conclusions of Propositions 7 and 7, and Corollary 2 still hold, so long as the

appropriate assumptions for each result are satisfied.

5.4 Simulation Studies

With key theoretical properties established, we next consider a suite of simulations to

study the performance of mvFAST in a finite sample setting. We begin by examining

the power and detection delay when detecting several different anomalies for a range

of data generating processes. Then, we will explore how mvFAST performs when

there is a mis-specification of the ODE order, or the underlying shape for the data is

non-stationary.

In Sections 5.4.1 and 5.4.2, five different forms of data generating processes are

considered over the interval T = [1, 300]. Namely:

(i) Single Underlying Shape: Xij(t) = sin
(
2πt
100

)
+ cos

(
2πt
200

)
+ fij(t).

(ii) Multiple Underlying Shapes: Xij(t) = aij sin
(
2πt
100

)
+ bij cos

(
2πt
200

)
+ fij(t),

aij, bij ∼ U[0.8, 1.2].

(iii) Heavy Tailed Innovation Functions: Xij(t) = aij sin
(
2πt
100

)
+ bij cos

(
2πt
200

)
+

f̃ij(t), aij, bij ∼ U[0.8, 1.2],

(iv) Correlated Innovation Functions: Xij = sin
(
2πt
100

)
+ cos

(
2πt
200

)
+ fij(t), with

fij(t) correlated between different observations.

(v) Bimodal Underlying Shape:

Xij(t) =

aij sin
(
2πt
100

)
+ bij cos

(
2πt
200

)
+ fij(t) if pij = 1

3 + aij sin
(
2πt
100

)
+ bij cos

(
2πt
200

)
+ fij(t) if pij = 0.
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aij, bij ∼ U[0.8, 1.2] and pij = Bernoulli
(
1
2

)
.

In the above settings {fij(t)} are Gaussian processes with squared exponential covari-

ance kernel, K(s, t) = 0.2 exp
(

1
2

(
s−t
20

)2)
, and

{
f̃ij(t)

}
are Student’s t-processes with

5 degrees of freedom and scale matrix parameterised by the same covariance kernel,

K(s, t).

The first two data generating processes enable analysis of mvFAST when the as-

sumptions of our model are met. On the other hand the heavy tailed, and correlated,

innovation function settings allow us to examine performance when the model ap-

proach is somewhat mis-specified. Finally, the bimodal underlying shape corresponds

to the situation where no single model for the ODE exists, and there is more than

one underlying shape for the data.

As part of our study we will seek to assess mvFAST on shape, magnitude, and

phase anomalies. We thus consider seven different anomaly functions. Furthermore,

we consider both dense, and sparse, settings. The seven instances we consider are as

follows, with each anomaly function emerging over the interval 100 ≤ t ≤ 200:

(i) Single Shape Anomaly: gij(t) = ci cos
(
2πt
30

)
+ di cos2

(
2πt
200

)
, ci, di ∼ U[1, 3].

(ii) Multiple Shape Anomaly: gij(t) = cij cos
(
2πt
30

)
+ dij cos2

(
2πt
200

)
, cij, dij ∼

U[1, 3].

(iii) Polynomial Shape Anomaly: gij(t) = cij
(

t
100

) 3
2
(
1− t

100

)
, cij ∼ U[1, 3].

(iv) Constant Magnitude Anomaly: gij(t) = cij, cij ∼ U[1, 5].

(v) Exponential Magnitude Anomaly: gij(t) = cij exp
(

t
100

)
, cij ∼ U(0.8, 1.2).

(vi) Phase Anomaly: gij(t) = −aij sin
(
2πt
100

)
−bij cos

(
2πt
200

)
+sin

(
2πt
cij

)
+cos

(
2πt
dij

)
,

cij, dij ∼ Discrete U[20, 80].

(vii) Consistency Anomaly: gij(t) = 3fij(t) (Dai and Genton, 2019).

We remark that the constant magnitude anomaly, unlike the other scenarios, also

represents a setting where the anomaly function does not satisfy the required differ-

entiability conditions. We also remark that the consistency anomaly, proposed by Dai
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and Genton (2019), is the situation where the anomaly function is a multiple of the

innovation functions. Such a scenario corresponds to when additional noise is added

to the underlying shape for the data. mvFAST should not detect this as an anomaly

as the underlying shape structure is unchanged. As such, this study examines if mv-

FAST is susceptible to declaring a false alarm when there has been an increase in the

noisiness of different data generating processes.

To assess the comparative strengths of our new method, this study proposes a

comparison of the detection power of mvFAST with the detection power of the method

of Dai and Genton (2019). We implement Dai and Genton (2019) using the R package

fdaOutlier (Ojo et al., 2021b). Further, in order to improve power, we first apply the

pointwise outlier transformation discussed in Dai et al. (2020) to the observations.

Although the method of Dai and Genton (2019) does not aim to detect the location

of an anomaly in partially observed multivariate functional data, or identify which

dimension is anomalous, it is still possible to compare the two methods. To ensure a

fair comparison, we allow the competitor method to see all the points on the curve from

the start, rather than observing the curve sequentially as mvFAST does. Furthermore,

we only require the competitor to identify the anomalous observation, and not the

particular dimension containing the anomaly. This is different to with mvFAST, where

a successful detection requires that the correct dimensions are identified.

5.4.1 Anomaly Detection Power

In this section, we consider the power of the mvFAST detection test on each of the

data generating processes and anomalies defined above. In all simulations, we have 50

observations with number of dimensions p = 10. We perform 500 repetitions of each

setting, control the FWER to be 5%, and for mvFAST fit the order m = 2 differential

operator.

Table 5.4.1 presents the results for the dense setting. In general, mvFAST performs

well even in cases where the underlying assumptions of the model are not satisfied

(columns 3, 4, and 5). However, it is clear that mvFAST is unable to detect phase

anomalies (row 6). One reason for this may be because the ODE structure that
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would be estimated from a sample of anomalous observations is similar to the ODE

structure that is estimated from non-anomalous data. This makes detection of the

anomaly using mvFAST difficult.

The results for the sparse scenarios are presented in Tables 5.4.3. The results are

similar to the dense case, although power is weaker in some cases owing to the smaller

number of dimensions that have been contaminated. Note that, as in the dense case,

the performance with respect to phase anomalies is poor (row 6). This may be for

similar reasons as described in the previous praragraph.

In terms of comparison with the method of Dai et al. (2020), our method performs

competitively in the majority of settings. This is particularly encouraging given that

the method of Dai et al. (2020) has access to all of the observation for the detection test

from the start, whereas mvFAST does not. In situations where depth measures are

less suitable, for instance when the observations are heavy-tailed (column 3), we also

see that mvFAST outperforms the method of Dai et al. (2020). A final remark that

can be made regarding the differences between mvFAST and the competitor method

is that, unlike mvFAST, the competitor identifies consistency anomalies. This is

as expected, however, because the method of Dai et al. (2020) seeks to detect such

anomalies whereas our method considers them a false alarm because there is no change

to the underlying shape for the data.

Whilst the detection of the anomalies is the key aim of mvFAST, a further per-

formance metric that can be considered is the time taken to detect the anomalies

given they emerge at time 100. The detection delay results are presented in the next

section.

5.4.2 Average Detection Delay

We next explore the detection delay for each of the data generating processes and

anomalies, for the three different sparsity settings. In order to assess the detection

delay performance, we use the definition of the conditional average detection delay
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given by Tartakovsky et al. (2014):

ADD = E (ξ − ν|ξ ≥ ν) ,

where ξ is the stopping time for the test. That is, we report the average detection

delay given that the detection occurs after the anomaly has emerged at time ν = 100.

The results for the detection delay in the dense case are presented in Table 5.4.2,

and the sparse case in Table 5.4.4. No comparison with Dai (2020) is given as their

method is not designed to work with partially observed curves.

The results for the study indicate that mvFAST is quick to identify shape anoma-

lies in each of the settings considered. The magnitude anomalies, however, are de-

tected more slowly. The reason for this is that the shape anomalies incorporate a

change in each of the derivatives of an observations, whereas the magnitude anoma-

lies only change the first term, with the higher order derivatives unchanged. As such,

the contribution of the anomaly to the residual function is smaller than with a shape

anomaly, and as such the time taken to exceed the threshold is greater.

A final point to make about the simulations in this section and Section 5.4.1 is

that they have considered when either all the dimensions, or one dimension, of an

observation contain an anomaly. Further results have also been obtained for when

5 of the 10 dimensions are contaminated. These results are similar to those for the

sparse setting presented in Tables 5.4.3 and 5.4.4 and so are included in Appendix

C.2.

5.4.3 Performance Under Model Mis-Specification

A primary assumption of mvFAST is that applying the estimated differential operator

to an observation removes the underlying shape, and so the test statistic under the

null hypothesis contains only an innovation function. For this to occur, however, it is

necessary to select the correct order for the ODE system. If the model for the data

is underfit, then not all of the shape structure will be captured and the test statistic

may contain more than just noise; if the model is overfit then anomalous behaviour

may be captured by the model and so remain undetected.
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Process

Anomaly

Underfit Overfit

Dense Sparse Dense Sparse

Single 0.77 0.13 1 1

Multiple 0.92 0.2 1 1

Polynomial 1 1 1 1

Phase 0.09 0.01 1 0.95

Constant 0.96 0.45 1 1

Exponential 1 1 1 1

Consistent 0.31 0.07 0.2 0.93

Table 5.4.5: Detection power of mvFAST when mis-specifying the order of the ODE

model for the data.

To enable the finite sample performance of mvFAST to be studied in this set-

ting, we perform mvFAST on the multiple underlying shape data generating process

(scenario (ii) in Sections 5.4.1-5.4.2). We test each of the seven anomalies, for both

the dense and sparse case. In each of the simulations, we have 50 observations with

number of dimensions p = 10. We perform 500 repetitions of each setting; fit both

an order m = 1, and m = 3, differential operator; and control the FWER to be 5%.

The results for these simulations are presented in Table 5.4.5. The results show that

power is only lost when underfitting and that this loss is only substantial in the sparse

case. The reason the dense case is only marginally affected is attributed to the fact

that combining the test statistic across the dimensions enhances the power of the test,

allowing for detection even in this challenging situation.

So far, we have made the assumption that the underlying shape for the data is

stationary over time. Below, however, we will consider a setting where this is not the

case. We shall first discuss how, where necessary, mvFAST can be adapted to handle

such non-stationarity before then presenting simulations to explore the efficacy of our

proposed approach.



CHAPTER 5. MVFAST 106

5.4.4 Modelling Trend in the Data

Whilst in some applications the underlying shape for each dimension of {Xi(t)} will

remain constant, in others the shape will evolve over time. This is the case for

example in our telecommunications setting, where evolving user behaviours lead to a

small upward trend in the data over time. In this section we consider two different

cases: the first is where there is additive trend, and the second is where there is a

scalar multiplicative trend. As we shall see, additive trend affects the estimation of

the differential operator and so needs removing before this estimation takes place,

whereas a scalar multiplicative trend does not.

We are not the first authors to consider the problem of estimating a differential

operator when there is a underlying trend in the observed data stream. Indeed,

both Hooker (2009) and Hooker and Ellner (2015) discuss estimation of an unknown

ODE structure that may also contain an additional unknown function, h(t), termed a

forcing function, and this forcing function may be subject to a trend. Unfortunately,

the estimate of this trend would be contaminated by the presence of the innovation

functions, fij(t), that are present in our model for the data but not in the ODE models

estimated in these works. As such, we seek an alternative approach by drawing on

the existing literature for estimating a trend contained in a functional time series.

To begin we first consider additive trend. We follow the approach of Kokoszka and

Young (2017) and define the additive trend function, {dj(t, i)}, as follows: dj(t, i) =

iyj(t), for some function {yj(t) ∈ L2(T )}pj=1. Note that the i, j, and t in the additive

drift function index the same quantities as in the observations {Xij(t)}. Using the

additive trend function we have the following model for our data:

Xij(t) = dj(t, i) +
m∑
k=1

cjkujk(t) + fij(t), 1 ≤ j ≤ p. (5.4.1)

Using the model in equation (5.4.1) we see that the differences, dj(t, i)− dj(t, i−

1), are stationary. The estimation of the additive trend function can therefore be

performed using differencing (Mart́ınez-Hernández and Genton, 2021):

d̂j(t, i) =
i

n

n∑
i=2

Xij(t)−Xi−1,j(t).
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Once estimates for {dj(t, i)} have been obtained, the trend can be removed from

the data so that the underlying shape becomes stationary. This then allows for the

differential operator for the data to be estimated using PDA in line with the approach

presented in Section 5.2.2.

The second form of trend we consider is a scalar multiplicative trend. This is where

a sample of data evolves over time by scaling. The function for a scalar multiplicative

trend is given by ej(i) = ci for some c ∈ R. The model for data affected by a scalar

multiplicative trend is thus

Xij(t) = ej(i)
m∑
k=1

cjkujk(t) + fij(t), 1 ≤ j ≤ p. (5.4.2)

Unlike additive trend, a scalar multiplicative trend has no affect on the estimation

of the ODE for the data. This is due to the fact L is a linear operator and so the

solutions to the ordinary differential equation L are scale invariant. As a result, if

L(
∑m

k=1 cjkujk(t)) = 0 then L (ej(i)
∑m

k=1 cjkujk(t)) = 0 also, since

L

(
ej(i)

m∑
k=1

cjkujk(t)

)
= ej(i)L

(
m∑
k=1

cjkujk(t)

)
= 0.

As such, mvFAST can be performed without modification when a scalar multiplicative

trend is present.

To highlight the performance of mvFAST when both additive, and multiplicative,

trend affect the model for the data we shall perform simulations using two additional

forms of data generating process. These are:

(vi) Additive Trend: Xij(t) = dj(t, i)+aij sin
(
2πt
100

)
+bij cos

(
2πt
200

)
+fij(t), aij, bij ∼

U[0.8, 1.2], dj(t, i) = iy(t). Here y(t) is an uncorrelated Gaussian process such

that, at any t, y(t) ∼ N(1, 0.5).

(vii) Multiplicative Trend: Xij(t) = ej(i)
[
aij sin

(
2πt
100

)
+ bij cos

(
2πt
200

)]
+ fij(t),

aij, bij ∼ U[0.8, 1.2], ej(i) ∼ N(1, 0.5).

In both the scenarios above {fij(t)} is defined as in the other simulation settings. That

is, a mean-zero Gaussian process with covariance kernel K(s, t) = 0.2 exp
(

1
2

(
s−t
20

)2)
.
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As in the simulations in Sections 5.4.1- 5.4.2 we shall consider the power, and

detection delay, of mvFAST with respect to each of the seven anomaly functions.

Furthermore, we consider both the dense and sparse settings, and provide a com-

parison with the method of Dai and Genton (2019). In each of the simulations we

have 50 complete observations with number of dimensions p = 10. We perform 500

repetitions of each setting, control the FWER to be 5%, remove the additive trend of

the observations using differencing as described above, and for mvFAST fit an order

m = 2 differential operator. The results for the detection power and detection delay

are presented in Tables 5.4.6 and 5.4.7 respectively.

Trend

Anomaly

Additive Multiplicative

mvFAST Dai mvFAST Dai

Single 1 0.76 1 1

Multiple 1 0.79 1 1

Polynomial 0.97 0.98 1 1

Phase 0.06 0.41 0.29 0.21

Constant 0.99 0.92 1 1

Exponential 1 1 1 1

Consistent 0.03 0.22 0.08 1

(a)

Trend

Anomaly

Additive Multiplicative

mvFAST Dai mvFAST Dai

Single 0.69 0.31 0.94 0.69

Multiple 0.75 0.3 0.96 0.66

Polynomial 0.58 0.56 0.84 0.8

Phase 0.03 0.41 0.01 0.04

Constant 0.14 0.13 0.82 0.81

Exponential 0.43 0.39 1 1

Consistent 0.01 0.15 0.16 0.51

(b)

Table 5.4.6: Detection power for mvFAST in the dense (a) and sparse (b) settings

when there is a trend in the underlying shape. The better result in each scenario is

highlighted in bold.

As can be seen from the results in Tables 5.4.6(a) and (b), in general mvFAST

performs well in both settings. Furthermore, the performance of mvFAST in the

non-stationary setting is similar to that of the stationary setting for the multiple

shape data generating process. This highlights the value of our proposed detrending

step when the trend is additive. It also reinforces the mathematical argument that

mvFAST is unaffected by a multiplicative trend.
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Trend

Anomaly
Additive Multiplicative

Single 1.98 (5.98) 6.17 (4.04)

Multiple 7.40 (4.43) 21.52 (41.52)

Polynomial 105.29 (19.60) 42.70 (15.62)

Phase 4.99 (25.61) 21.52 (41.52)

Constant 28.98 (44.99) 2.09 (1.88)

Exponential 36.04 (42.44) 2.37 (3.40)

Consistent 3.55 (21.021574) 9.74 (34.46)

(a)

Trend

Anomaly
Additive Multiplicative

Single 45.66 (22.08) 42.52 (18.21)

Multiple 41.87 (39.44) 52.89 (19.12)

Polynomial 6.37 (29.61) 33.58 (22.10)

Phase 3.58 (19.33) 7.66 (3.21)

Constant 10.02 (37.33) 116.00 (62.94)

Exponential 43.73 (61.64) 113.24 (10.61)

Consistent 3.07 (23.50) 19.18 (4.32)

(b)

Table 5.4.7: Average detection delay (and standard deviation) for mvFAST in the

dense (a) and sparse (b) settings when there is a trend in the underlying shape.

Now that the finite sample performance of mvFAST has been explored in a variety

of settings, attention can be directed towards the primary purpose of mvFAST: moni-

toring for anomalies in telecommunications data streams. We present this application

in the next section.

5.5 Telecommunications Application

(a) (b) (c)

Figure 5.5.1: Training (a) and test (b) throughput data drawn from three locations

on the network and used for the application. In figure (c) we present the data over a

smaller range of throughput values.

Recall from Section 1 that our dataset is a record of throughput data at three

key geographically dispersed points on a telecommunications network over 242 days.

In order to implement a functional data approach, the data has been partitioned
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into daily measurements and smoothed into a single curve for each day following the

approach of Ramsay (2005). In particular, we fit a system of 50 order 4 B-spline

functions using penalised smoothing, and use cross-validation to select the penalty.

The aim of the application is to analyse new data sequentially, in order to detect the

onset of atypical behaviour as soon as practicable. To demonstrate this, we form a

training dataset from the first 28 days of data, and then use mvFAST to test the

remaining days sequentially as time progresses. The training, and test, data are

depicted in Figure 5.5.1.

Our analysis indicates that several (statistically) interesting features are identified

within the dataset. These not only include the two instances of atypical behaviour

presented in Figure 5.1.2, but also several other potential events (see Figures 5.5.2 and

5.5.3). For example Figure 5.5.2(a) shows a deviation from the expected shape for the

data that affects all three variates, whereas in Figure 5.5.2(b) the behaviour affects

only one. Over the three locations and 207 days tested, mvFAST detects 35 days

requiring further expert analysis. In each case, the false alarm rate of the training

sample is controlled at the 5% level.

(a) (b)

Figure 5.5.2: Further examples of dense (a) and sparse (b) detections by mvFAST in

throughput data drawn from three locations on the network.
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(a) (b)

Figure 5.5.3: Deviations from the expected shape recorded on the same day, but

at different times (a), and a deviation identified in the dataset linked with atypical

morning demand (b). Observe that the blue line is when the observation appears

to deviate from the underlying shape, and the red line is when detection takes place

using mvFAST.

5.6 Discussion

In this chapter we have presented a novel method for the identification of anomalous

curves in a sample of multivariate functional data. Our proposed approach allows for

a subset of the dimensions of an observation to be labelled anomalous, and can be used

to detect the time point on the curve the anomaly can be said to have taken place.

The ability to detect anomalies and their location within a subset of the dimensions

of multivariate functional data is a key contribution of this work. A second advantage

is that this detection test can be extended to a sequential setting, as illustrated by

the application in Section 5.5.

At the heart of mvFAST lies the estimation of an underlying model for the data us-

ing PDA. Several methods exist in the literature for estimating parameters of an ODE

model, however there are several reasons for our choice of PDA. Foremost amongst

these is that, unlike other methods such as those discussed in Ramsay and Hooker

(2017) or Carey and Ramsay (2020), PDA does not require a computationally ex-

pensive two stage optimisation process to estimate the coefficients for the differential

operator L. Furthermore, the method is non-parametric and so allows for the ODE to
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be estimated without the need for assumptions of Gaussianity as made in Paul et al.

(2011). The use of PDA also allows for the dependency between different dimensions

to be captured in the representation for the data. This would not be the case if using

multivariate FPCA (Chiou et al., 2014).

The use of PDA, however, is not without drawbacks. One drawback is that it

requires each ODE equation to be of the same order, and so requires mp2 parameters

to be estimated. Further, every linking term in the system is included in the fitted

model. This may lead to overfitting, however to guard against this problem we utilise

the penalty term in equation (5.2.5). An alternative approach such as that of Carey

and Ramsay (2020) could be considered, where the structure of the system can be

specified and so fewer parameters may be needed. In many cases no prior model for

the system will be known, however, and so specifying a system with specific linkage

relationships between the p different dimensions will be challenging.

A second drawback of PDA is that parameter estimation may be affected by

the dependence structures in the data. In particular, we have no guarantee that

the parameter estimators are minimum variance when the innovation functions are

dependent. However, simulations have shown that successful anomaly detection can

still be carried out in these situations. Due to the fact that the primary concern of

this chapter is anomaly detection rather than ODE parameter estimation, we argue

that our simulations have shown that the limitations of PDA for model fitting do not

have a significant effect on anomaly detection.

Finally, recall that the main aim of this work was to detect anomalies in a telecom-

munications network as quickly as possible so that appropriate further action can be

taken. We have demonstrated that mvFAST is able to achieve this goal in Section

5.5, where we have analysed critical operational data drawn from such a network.
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Conclusions and Future Directions

This thesis has introduced three new anomaly detection methods: NUNC, FAST, and

mvFAST. In this closing chapter we shall discuss the key contributions of each of the

three proposed approaches, and suggest some avenues for future research.

The first of our contributions, NUNC, was introduced in Chapter 3 and offers a

computationally efficient method for sequentially detecting changes in the distribu-

tion of nonparametric data. The proposed approach was motivated by a telecom-

munications monitoring application, and has been shown to outperform a competitor

sequential method in this setting. A theoretical result for selecting an appropriate

threshold for controlling the false alarm rate of the test has also been presented, and

this result could be extended to other binary segmentation approaches in the at most

one change, or sequential, settings.

Several extensions to NUNC could be considered, with the most obvious being

to extend the method to multivariate data. One avenue for doing this would be to

consider using copulas to model the multivariate empirical distribution for the data.

This would have the added advantage of capturing the dependence structure between

the different dimensions of the data. Additionally, in a similar vein to mvFAST, a

multivariate form of NUNC could incorporate a test for changes affecting both every

dimension, or a subset of the dimensions. This could be implemented, for example,

by using a combination of the copula and the marginal empirical CDFs.

In Chapters 4 and 5 we introduce FAST, and the multivariate extension mvFAST.

113
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The key novelty of FAST is that it permits the detection of anomalies within partially

observed functional data, with mvFAST extending this to the multivariate functional

data setting. This extension is non-trivial, as in the multivariate setting anomalies can

affect either every dimension, or a subset of the dimensions of the data. Furthermore,

the anomalies may occur at different times in the different dimensions of a single

observation. Through the use of a two-stage threshold for the CUSUM test, mvFAST

is able to distinguish between the different forms of anomaly. Various theoretical

results have been obtained for both FAST and mvFAST, including results concerning

the choice of the threshold for the tests, and bounds on the test detection power.

One intriguing aspect of FAST that could provide a source of future research is the

estimation of the ODE function. Whilst the estimation of the residual functions using

PDA is unaffected by dependence in the data, the individual coefficient estimates may

be either biased or have high variance. This means that inference regarding a single

model coefficient cannot be performed. Whilst FAST is not directly affected by this

issue as it tests the residuals of the fitted ODE, the ability to test individual coeffi-

cients for anomalous structures could provide additional insights. As an alternative,

a fitting step that uses the method of Carey and Ramsay (2020) could be considered.

Their method provides guarantees on the fit of the individual ODE coefficients, and

so inference on these coefficients could be incorporated into the anomaly detection

process.

Finally, we turn to the problem outlined in mvFAST. This, and closely related,

settings are ripe for further development. Consider for example a scenario where

each dimension of a multivariate functional observation follows one of a finite set

of p underlying shapes (see Figure 6.1.1). Over time, it may be the case that a

particular dimension experiences a change from one shape to another (see Figure

6.1.2). Alternatively, there may be instances when an observation follows none of the

shapes available. We term the former of these events as a change, and the latter an

anomaly. Whilst functional anomaly detection methods such as mvFAST would be

able to sequentially identify when both changes and anomalies have occurred, they

would not distinguish between the two. Furthermore, they would not provide any
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Figure 6.1.1: Example of three-dimensional multivariate data containing p = 2 un-

derlying shapes (denoted by the dashed red and dotted blue lines respectively).

information as to what shape is being followed post-change. Consequently it would

be interesting to develop a method that can (i) sequentially detect when a dimension

of the data deviates from its underlying shape and, should a detection occur, (ii)

classify which, if any, of the other p shapes for the data are now being followed. Below,

we introduce a potential model for this setting and outline a suggested approach to

address this sequential anomaly detection and classification challenge.

In our setting we consider n observations of m different dimensions of a multi-

variate functional dataset. That is, {Xij(t) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, t ∈ T } ∈ L2 (T ),

with T representing the domain of time the functions are observed over. In this set-

ting Xij(t) represents the jth observation of the ith dimension at time t. As described

above, each of the observed dimensions of an observation follows one of p different

shapes, {Ck(t)}pk=1. If dimension i follows the kth shape at time j then we have the

following model for the observations:

Xij(t) = Ck(t) + ϵij(t), (6.1.1)

where ϵij(t) ∈ L2(T ) represents an independent and identically distributed mean-zero

innovation function.

Over time, it may be the case that the shape followed by a dimension changes,

and transitions to either one of the other p− 1 shapes or becomes anomalous. Below



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 116

Figure 6.1.2: This figure shows examples of changes in multivariate functional data

with p = 2 underlying shapes (denoted by the dashed red and dotted blue lines respec-

tively). In this example the first dimension experiences an abrupt change (equation

(6.1.2)), the second dimension experiences a gradual change (equation (6.1.3)), and

in the third dimension an anomaly (equation (6.1.4) is recorded (solid purple line).

three models are provided to represent this. The first model (6.1.2) represents an

abrupt change in shape at time ν, whereas the second (6.1.3) represents a gradual

change over time. The third (6.1.4) contains an anomaly function, {gij(t)} ∈ L2(T ),

that causes a deviation from the underlying shape. Examples of each of these three

occurrences are presented in Figure 6.1.2.

Xij(t) = Ck(t)Ij≤ν + Cl(t)Ij>ν + ϵij(t) (6.1.2)

Xij(t) = Ck(t) + f(j) (Cl(t)− Ck(t)) + ϵij(t) (6.1.3)

Xij(t) = Ck(t) + gij(t) + ϵij(t) (6.1.4)

In equation (6.1.3) f : Z → [0, 1] represents a function controlling the drift, with

f(1) = 0 and f(n) = 1, so that after n steps the shape has changed from the kth to

the lth.

In order to detect these changes, a test to compare an observation to its assigned

shape is required. If dimension i follows shape k at time j then we can define a
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distance, Zij, as follows:

Zij =

∫
T

(Xij(t)− Ck(t))2 dt. (6.1.5)

Intuitively, a large value of Zij suggests that an observation differs substantially from

its assigned shape. With this in mind, one could use Zij as the basis for a CUSUM

test statistic:

∆ij =

j∑
r=1

(Zir − µij) . (6.1.6)

Here µ represents the expected value of the distance under the null hypothesis of no

change. Should |∆ij| > γ, where γ is a threshold for the test, then an alarm would

be declared. We remark that by using the cumulative sum of the distance, Zij, it

is hoped that it is possible to detect both abrupt (equation (6.1.2)), and gradual

(equation (6.1.3)), changes in the data.

Once the detection test declares an alarm, one interesting possibility would be to

consider classifying the nature of the change. Using a similar measure to equation

(6.1.5) one might compare the distance of the post-change observation with the other

p− 1 shapes for the data. Should the observation be sufficiently close to one of these

shapes, then the dimension could be reclassified as following this shape. On the other

hand, should no shape offer a suitable fit then an anomaly would be declared.

The approach outlined above offers a glimpse into the challenge of combining

anomaly detection and classification for multivariate functional data. Many inter-

esting avenues could be explored to build upon our proposed approach, including

incorporating non-stationarity into the shapes for the data, or modelling the depen-

dency structure of the different dimensions.
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Chapter 3 - NUNC

A.1 Proof of Results

A.1.1 Proof of Proposition 1

Proof. In order to prove the desired bound, we focus on the extreme case where

either x1:τ < q and xτ+1:W > q, or vice versa, and note that this case maximises the

expression

L(xt−W+1:τ ; q) + L(xτ+1:t; q)− L(xt−W+1:t; q), (A.1.1)

for any quantile q.

By writing out the likelihoods in the above equation, it can be observed that

L(xt−W+1:τ ; q) = 0, L(xτ+1:t; q) = 0, and

L(xt−W+1:t; q) =
τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)
(A.1.2)

in the case where each x1:τ > q and xτ+1:W < q. We also have

L(xt−W+1:t; q) = − τ

W
log

τ

W
+ (W − τ) log

(
W − τ
W

)
(A.1.3)

when x1:τ < q and xτ+1:W > q. Given both τ
W

and W−τ
W

are less than one, the log

terms in equations (A.1.2) and (A.1.3) are both negative. As such, we can bound

both equations (A.1.2) and (A.1.3) above by the following bound:

L(xt−W+1:t; q) ≤ −
τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)
.
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As this case dealt with the maximum of equation (A.1.1), this then means that for

any quantile q and window of data x1, . . . , xW we have that

L(xt−W+1:τ ; q) +L(xτ+1:t; q)−L(xt−W+1:t; q) ≤ −
τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)
,

(A.1.4)

as required. Additionally, we note that this equation is decreasing in τ for fixed W .

We then consider the test statistic, given by equation (3.2.4). As a result of the

bound in equation (A.1.4) if

2K

[
− τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)]
≤ Kβ

then detection is impossible, as the bound for the test statistic does not exceed the

threshold for the test. As a result, we conclude that if

− τ
∗

W
log

τ ∗

W
− (W − τ ∗) log

(
W − τ ∗

W

)
≤ β

2

then due to the fact the expression decreases as τ increases then for τ > τ ∗ detection

is impossible. This completes the proof.

A.1.2 Proof of Proposition 2

Proof. A false alarm by the time t under NUNC Local can be written as

= P

(
t⋃

s=W

max
s−W+1≤τ≤s

K∑
k=1

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)] ≥ Kβ

)

≤
t∑

s=W

s∑
τ=s−W+1

P

(
K∑
k=1

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)] ≥ Kβ

)
(A.1.5)

The next part of the proof uses the fact that, under the i.i.d. assumption, asymp-

totically for any quantile the following holds

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)] ∼ χ2
1.

As in Wainwright (2019), it can be shown that if a random variable Xi follows a

χ2
1 distribution then it is Sub-Exponential with parameters 4 and 4. That is, Xi ∼

SE(4, 4).
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Under dependence, as is the case between different quantiles, if Xi ∼ SE(ν2i , bi)

then
∑n

i=1Xi − E(Xi) ∼ SE
(

(
∑n

i=1 νi)
2
,maxi bi

)
, and so

K∑
k=1

[L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)]−K ∼ SE(4K2, 4).

We then use a well known bound on the subexponential tail (Vershynin, 2018) to

obtain

t∑
s=W

s∑
τ=s−W+1

P

(
K∑
k=1

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)] ≥ Kβ

)

=
t∑

s=W

s∑
τ=s−W+1

P

(
K∑
k=1

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)]−K ≥ Kβ −K

)

≤ W (t−W + 1) exp

(
−1

2
min

{
Kβ −K

4
,
(Kβ −K)2

4K2

})
. (A.1.6)

We can set this final line equal to α to control our desired false alarm rate. We

have two cases in equation (A.1.6) and must bound above by the largest of these. The

first case is that

W (t−W + 1) exp

(
−Kβ1 −K

8

)
= α

in which case we choose

β1 = 1− 8K−1 log

(
α

W (t−W + 1)

)
.

On the other hand we have the case where

W (t−W + 1) exp

(
−(Kβ2 −K)2

8K2

)
= α

and solving this gives

β2 = 1 + 2

√
2 log

(
W (t−W + 1)

α

)
.

We then choose the larger of β1 and β2, completing the proof.
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Chapter 4 - FAST

B.1 Proof of Results

In this section we provide proofs of the results in Section 4.3.

B.1.1 Proof of Proposition 3

Proof. From definition of the probability of false alarm it is the case that

P(ξ ≤ T ) = P

(
T⋃
τ=2

{ξ = τ}

)
≤

T∑
τ=2

P(ξ = τ),

where any stopping time at τ can be bounded above by

P(ξ = τ) ≤ P

(
|∆n+1(τ)|√

τ − 1
≥ γ

)
because {ξ = τ} ⊂ { |∆n+1(τ)|√

τ−1
≥ γ}. Putting these two facts together gives

P(ξ ≤ T ) ≤
T∑
τ=2

P

(
|∆n+1(τ)|√

τ − 1
≥ γ

)
.

The quantity ∆n+1(τ) =
∑τ

r=2 Zn+1(r) may contain dependent terms in the summa-

tion, however a Central Limit Theorem result for dependent sequences (Billingsley,

1995) can be applied as each term in the sum is drawn from a Gaussian Process with

a stationary covariance matrix (Bradley, 2005). Under the Central Limit Theorem

approximation, we have that ∆n+1(τ)√
τ−1

∼ N(0, 1).
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Using this approximate distribution, and the symmetry of the Gaussian distribu-

tion, we obtain the following bound for the test statistic:

T∑
τ=2

P

(
|∆n+1(τ)|√

τ − 1
≥ γ

)
= 2

T∑
τ=2

1− Φ (γ) = 2

(
T − 1−

T∑
τ=2

Φ (γ)

)
.

To complete the proof we now need to find suitable γ so that P(ξ ≤ T ) ≤ α, and to

do this we equate

α = 2

(
T − 1−

T∑
τ=2

Φ (γ)

)
.

Hence we take

γ = Φ−1

(
1− α

2(T − 1)

)
,

to complete the proof.

B.1.2 Proof of Proposition 4

Proof. The initial steps of this proof follows similar steps to those taken in the proof

of Proposition 2 in Fisch et al. (2022b). In particular, we follow their approach to

establish equation (B.1.1). After this, our proof differs from theirs as the nature, and

distribution, of their test statistic is different to the FAST test statistic.

The probability of detecting a contaminated observation by time T , is given by

the expression

P

(
T⋃
τ=2

|∆n+1(τ)|√
τ − 1

≥ γ

)
,

where γ is the test threshold. To see why observe that the probability of an anomaly

not being detected by time T is given by P(ξ > T ) = 1− P(ξ ≤ T ) and that

P(ξ > T ) = P

(
T⋂
τ=2

|∆n+1(τ)|√
τ − 1

< γ

)
Hence taking the complementary event

P(ξ ≤ T ) = P

([
T⋂
τ=2

|∆n+1(τ)|√
τ − 1

< γ

]c)

= P

(
T⋃
τ=2

|∆n+1(τ)|√
τ − 1

≥ γ

)
.
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A bound on the probability of an anomaly being detected by time T can be

calculated by bounding this expression as follows:

P

(
|∆n+1(T )|√

T − 1
≥ γ

)
≤ P

(
T⋃
τ=2

(
|∆n+1(τ)|√

τ − 1
≥ γ

))

≤
T∑
τ=2

P

(
|∆n+1(τ)|√

τ − 1
≥ γ

)
. (B.1.1)

In order to proceed we require expressions for the test statistic, ∆n+1(τ), when

it has been contaminated by the anomaly function. Using the equation for the test

statistic, (4.2.9), for τ > ν + s the contaminated test statistic is given by

∆n+1(τ) =
τ∑
r=2

Zc
n+1(r) (B.1.2)

with Zc
n+1(τ) given by

Zc
n+1(r) =

(ϵ̂n+1(r) + L̂(gn+1)(r)− ϵ̂n+1(r − 1)− L̂(gn+1)(r − 1))2 − µ(r)

σ(r)
. (B.1.3)

We remark that although the anomaly only occurs on ν ≤ r ≤ ν + s, we set g(r) = 0

outside this range to avoid the need to write the contaminated test statistic in equation

(B.1.3) using three summations.

For the lower bound in equation (B.1.1), we proceed as in the proof of Proposition

3 and use the Central Limit Theorem Approximation (Billingsley, 1995) for the sum

in equation (B.1.3). The difference between this proof and that of Proposition 3,

however, is that the contaminated values Zc
n+1(τ) will not be mean-zero or have unit

variance.

In order to use the central limit theorem approximation we therefore first derive

the mean and variance of (ϵ̂n+1(r) + L̂(gn+1)(r)− ϵ̂n+1(r − 1)− L̂(gn+1)(r − 1))2. As

this quantity is the square of a Gaussian random variable with non-zero mean and

non-unit variance it is the case that

(ϵ̂n+1(r) + L̂(gn+1)(r)− ϵ̂n+1(r − 1)− L̂(gn+1)(r − 1))2 ∼ ψ(r)Vr (B.1.4)

where ψ(r) = Var(ϵ̂n+1(r) − ϵ̂n+1(r − 1)), and Vr is a non-central chi-square random

variable with one degree of freedom and non-centrality parameter

λ(r) = (L̂(gn+1)(r)−L̂(gn+1)(r−1))2

ψ(r)
(Johnson et al., 1994).
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We then combine equation (B.1.4) with equation (B.1.3) to see that

Zc
n+1(r) ∼

ψ(r)Vr − µ(r)

σ(r)
. (B.1.5)

This can then be further simplified by considering the relationships between µ(r),

σ(r), and ψ(r). To see the connection between µ(r) and ψ(r) we note that E(ϵ̂n+1(r)−

ϵ̂n+1(r − 1)) = 0 and so

µ(r) = E(ϵ̂n+1(r)− ϵ̂n+1(r − 1))2

= Var(ϵ̂n+1(r)− ϵ̂n+1(r − 1))

= ψ(r).

The relationship between ψ(r) and σ(r) can also be derived by observing that

(ϵ̂n+1(r)− ϵ̂n+1(r − 1))2 ∼ ψ(r)W,

where W is a χ2
1 random variable, because the LHS of the above is the square of a

zero mean non-unit variance Gaussian (Johnson et al., 1994). Now by definition

1 = Var

(
(ϵ̂n+1(r)− ϵ̂n+1(r − 1))2

σ(r)

)
= Var

(
ψ(r)W

σ(r)

)
,

because σ2(r) = Var(ϵ̂n+1(r)− ϵ̂n+1(r−1))2, and so because Var(W ) = 2 it is the case

that 2ψ2(r) = σ2(r). Hence we conclude that σ(r) =
√

2ψ(r).

Combining the expressions for µ(r) and σ(r) with equations (B.1.3) and (B.1.5),

we have therefore shown that(
(ϵ̂n+1(r) + L̂(gn+1)(r)− ϵ̂n+1(r − 1)− L̂(gn+1)(r − 1))√

σ(r)

)2

∼ Vr − 1√
2
,

where Vr is a non-central Chi-square distribution with one degree of freedom and

non-centrality parameter λ(r) = (L̂(gn+1)(r)−L̂(gn+1)(r−1))2

ψ(r)
.

Using results for the mean and variance of a non-central Chi-square distribution

(Johnson et al., 1994), the mean of each summand is therefore

E(Zc
n+1(r)) =

λ(r)√
2
,
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and the variance is

Var(Zc
n+1(r)) = 1 + 2λ(r).

Using the mean and variance in conjunction with the Central Limit Theorem, we

can conclude the test statistic is distributed as

∆n+1(τ)√
τ − 1

∼ N

(
1√
τ − 1

τ∑
r=2

λ(r)√
2
,

1

τ − 1

τ∑
r=2

1 + 2λ(r)

)
. (B.1.6)

Putting equation (B.1.6) into the lower bound in equation (B.1.1), we can conclude

that

P

(
|∆n+1(T )|√

T − 1
≥ γ

)
= P (|UT | ≥ γ) ,

where UT ∼ N
(

1√
T−1

∑T
r=2

λ(r)√
2
, 1
T−1

∑T
r=2 1 + 2λ(r)

)
, and where

λ(r) = (L̂(gn+1)(r)−L̂(gn+1)(r−1))2

µ(r)
, and L̂(gn+1)(r) = 0 outside of ν ≤ r ≤ ν + s.

The upper bound in equation (B.1.1) can be deduced similarly to the lower bound,

because by equation (B.1.6) we have

T∑
τ=2

P

(
|∆n+1(τ)|√

τ − 1
≥ γ

)
=

T∑
τ=2

P (|Uτ | ≥ γ) ,

with Uτ ∼ N
(

1√
τ−1

∑τ
r=2

λ(r)√
2
, 1
τ−1

∑τ
r=2 1 + 2λ(r)

)
.

Finally, to complete the result, we move the plus one term in the expression for

the variance outside the summation, and thus conclude that

Uτ ∼ N
(

1√
τ−1

∑τ
r=2

λ(r)√
2
, 1 + 1

τ−1

∑τ
r=2 2λ(r)

)
, as required.

B.1.3 Proof of Proposition 5

Proof. This result requires proof that

lim
T→∞

P
(
|∆n+1(T )| ≥ γ

√
T
)

= 1,

and in order to demonstrate this we first observe that

lim
T→∞

P
(
|∆n+1(T )| ≥ γ

√
T
)

= lim
T→∞

P

(
|
ν−1∑
τ=2

Zn+1(τ) +
T∑
τ=ν

Zc
n+1(τ)| ≥ γ

√
T

)
,

and that this is equivalent to

lim
T→∞

P
(
|∆n+1(T )| ≥ γ

√
T
)

= lim
T→∞

P

(∣∣∣∣∑ν−1
τ=2 Zn+1(τ)

T − ν + 1
+

∑T
τ=ν Z

c
n+1(τ)

T − ν + 1

∣∣∣∣ ≥ γ
√
T

T − ν + 1

)
.
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As ν is fixed it is the case that
∑ν

τ=2 Zn+1(τ)

T−ν+1
→ 0 as T →∞. Hence we can state that

lim
T→∞

P

(∑ν
τ=2 Zn+1(τ)

T − ν + 1
≥ −δ1

3

)
= 1

for any δ1 > 0. Turning our attention to the second term in the LHS, we recall

equation (B.1.3):

Zc
n+1(τ) =

[
(ϵ̂n+1(τ) + L̂(gn+1)(τ)− ϵ̂n+1(τ − 1)− L̂(gn+1)(τ − 1))2 − µ(τ)

σ(τ)

]
,

and expand this to see that we have

Zc
n+1(τ) =

(ϵ̂n+1(τ)− ϵ̂n+1(τ − 1))2 − µ(τ)

σ(τ)(T − ν + 1)

+

2

(
ϵ̂n+1(τ)− ϵ̂n+1(τ − 1)

)(
L̂(gn+1)(τ)− L̂(gn+1)(τ − 1)

)
σ(τ)(T − ν + 1)

+

(
L̂(gn+1)(τ)− L̂(gn+1)(τ − 1)

)2
σ(τ)(T − ν + 1)

,

with
(ϵ̂n+1(τ)− ϵ̂n+1(τ − 1))2 − µ(τ)

σ(τ)(T − ν + 1)
=

Zn+1(τ)

T − ν + 1
.

We then work with the following three pieces from the above expression:

T∑
τ=ν

Zn+1(τ)

T − ν + 1
(B.1.7)

T∑
τ=ν

2

(
ϵ̂n+1(τ)− ϵ̂n+1(τ − 1)

)(
L̂(gn+1)(τ)− L̂(gn+1)(τ − 1)

)
σ(τ)(T − ν + 1)

(B.1.8)

T∑
τ=ν

(
L̂(gn+1)(τ)− L̂(gn+1)(τ − 1)

)2
σ(τ)(T − ν + 1)

. (B.1.9)

Using Assumption 1 we see that by the weak law of large numbers (Karlin and Taylor,

2012), and because both equation (B.1.7) and equation (B.1.8) are the sum of mean-

zero random variables, these two pieces of the sum converge in probability to zero.

As a result we can state that

lim
T→∞

P

(
T∑
τ=ν

Zn+1(τ)

T − ν + 1
> −δ1

3

)
= 1,
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and

lim
T→∞

P

 T∑
τ=ν

2

(
ϵ̂n+1(τ)− ϵ̂n+1(τ − 1)

)(
L̂(gn+1)(τ)− L̂(gn+1)(τ − 1)

)
σ(τ)(T − ν + 1)

> −δ1
3

 = 1

for any δ1 > 0. On the other hand, due to the fact that the summand of equation

(B.1.9) is equal to zero only finitely many times the sum will take a positive value.

As such, we have that for some δ2 > 0:

lim
T→∞

P

 T∑
τ=ν

(
L̂(gn+1)(τ)− L̂(gn+1)(τ − 1)

)2
σ(τ)(T − ν + 1)

≥ δ2

 = 1.

Thus if we choose δ1 < δ2 and set δ = δ2 − δ1 > 0 we can put these four inequalities

together to show that

lim
T→∞

P

(∑ν−1
τ=2 Zn+1(τ)

T − ν + 1
+

∑T
τ=ν Z

c
n+1(τ)

T − ν + 1
≥ −δ1

3
− δ1

3
− δ1

3
+ δ2

)
= 1.

As δ = δ2 − δ1 > 0 both sides are positive, and so taking absolute values gives

lim
T→∞

P

(∣∣∣∣∑ν−1
τ=2 Zn+1(τ)

T − ν + 1
+

∑T
τ=ν Z

c
n+1(τ)

T − ν + 1

∣∣∣∣ ≥ δ

)
= 1.

Hence we have shown that for some δ > 0

lim
T→∞

P

(
|∆n+1(T )|
T − ν + 1

≥ δ

)
= 1.

We now turn to consider the threshold the asymptotic behaviour of the threshold,

γ
√
T

T−ν+1
. As γ has been chosen as in Proposition 3 we find that

γ
√
T

T − ν + 1
=

Φ−1
(

1− α
2(T−1)

)√
T

T − ν + 1
= O

(
Φ−1(1− α

2T
)

√
T

)
,

It is stated in Blair et al. (1976) that

Φ(1− T−1) = O
(√
−2 log(T−1)

)
and it is well known that √

2 log(T )

T
= o(1).
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Putting this together, we have that

γ
√
T

T − ν + 1
= o(1),

and so for any ϵ > 0 and large enough T

γ
√
T

T − ν + 1
≤ ϵ.

Due to the fact that there exists some δ > 0 such that

lim
T→∞

P

(
|∆n+1(T )|
T − ν + 1

≥ δ

)
= 1.

we can therefore conclude that, by letting ϵ = δ and choosing T large enough, we

have

1 = lim
T→∞

P

(
|∆n+1(T )|
T − ν + 1

≥ δ

)
= lim

T→∞
P

(
|∆n+1(T )|
T − ν + 1

≥ ϵ

)
≤ lim

T→∞
P

(
|∆n+1(T )|
T − ν + 1

≥ γ
√
T

T − ν + 1

)
.

We then use this to conclude that

lim
T→∞

P

(∣∣∣∣∑ν−1
τ=2 Zn+1(τ)

T − ν + 1
+

∑T
τ=ν Z

c
n+1(τ)

T − ν + 1

∣∣∣∣ ≥ γ
√
T

T − ν + 1

)
= 1,

as required.

B.2 Additional Simulation Results

In this section we shall present additional simulation results concerning both the

estimation of L and the detection performance of FAST. First, we shall consider

whether performing PDA with penalised basis smoothing has a significant impact on

the residuals obtained when estimating the differential operator for the observations

using PDA. Following on from this, we shall present a repeat of the simulations

contained in Section 4.4.1 but for when the covariance operator for the data has a

Matérn kernel.
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B.2.1 Choice of Basis in PDA

As described in Section 4.2.2, it is possible to improve the computational performance

of PDA by estimating the coefficient functions, {βj(t)} using basis functions and

penalised smoothing. A natural question to ask is whether or not the number of basis

functions, or choice of penalty, influences the residual functions to a significant extent.

If this is the case, then this would influence the output of FAST. Conversely, if this

was not the case then penalised basis smoothing could be implemented to improve

the computational performance of FAST without hindering detection power.

To assess the impact of the basis system and penalty term in the fitting of the

differential operator to a sample of functional data, we again consider the scenarios

of Section 4.4.1. We generate 100 non-anomalous functions from each of the data

generating processes and perform PDA on this data for a varying number, K, of

order six B-Spline basis functions and a varying smoothing parameter, λ. In each

iteration of the study we record the sum of square error of the residuals, given by∑100
i=1

∑500
τ=1 ϵ

2
i (τ), and for each K and λ perform 1000 replications of each scenario.

The results for the study are presented in Figure B.2.1. As can be seen, in general

neither the choice of K, nor λ, have a significant impact on the mean square error of

the fit. This implies that the computational performance of FAST can be enhanced

by using penalised smoothing without having a serious effect on anomaly detection

results. One comment can be made, however, that for very large values of λ the

error does increase somewhat. This can be attributed to the fact that as the penalty

term increases in size the model begins to underfit. This is similar to what has been

observed in the related challenge of fitting smooth functions using penalised basis

systems, as discussed in Section 2.4.1.

B.2.2 Simulation Studies with a Matérn Covariance Kernel

In this section we carry out simulations identical to those in Section 4.4.1 with the

only difference being the covariance operator is now specified by a Matérn structure
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(a) (b)

Figure B.2.1: Mean square error of the model fit using PDA for varying K (a), and λ

(b). In both figures the solid black line denotes the Gaussian process residual setting,

the dotted red line the T-process residual setting, and the dashed blue line the no

underlying shape setting.

given by:

K(s, t) =
3

40Γ(3)

(√
6 (s− t)

50

)3

K3

(√
6 (s− t)

50

)
.

Here Γ(·) is the Gamma function and Kν(·) is the modified Bessel function of the sec-

ond kind. The difference between this operator and the squared exponential operator

used in Section 4.4.1 is that it is not infinitely differentiable (the above model is only

twice differentiable), and so the observed functions are far less smooth (Rasmussen

and Williams, 2005).

Scenario

Alpha
Scenario 1 Scenario 2 Scenario 3

0.01 0.01 0.02 0.01

0.05 0.02 0.02 0.01

0.1 0.04 0.03 0.02

0.2 0.05 0.03 0.03

Table B.2.1: Comparison of empirical false alarm rate for different data generating

processes when the threshold has been set using Proposition 3 to control the false

alarm rate at α.
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The results for the simulations for the threshold are given in Table B.2.1, and

the results for anomaly detection performance in Table B.2.2. As can be seen, in

general the results are similar in terms of both false alarm control and the power of

the detection test, however a small increase in detection delay is also observed. One

reason for this may be because the Matérn covariance operator gives rise to rougher

functional observations than the squared exponential operator used in Section 4.4.1,

and this makes the onset of anomalous behaviour harder to identify.

Order One

Model

Gaussian process

Residuals

t-process

Residuals

No Underlying

Shape

Anomaly Type Power ADD Power ADD Power ADD

Polynomial 1.00 10.01 (12.33) 0.88 5.53 (42.53) 1.00 26.99 (13.46)

Sinusoidal 1.00 2.56 (15.06) 0.88 14.45 (54.37) 1.00 79.00 (19.02)

Loss of Shape 1.00 32.20 (12.00) 0.78 91.45 (24.09) 0.20 169.04 (194.70)

Order Two

Model

Gaussian process

Residuals

t-process

Residuals

No Underlying

Shape

Anomaly Type Power ADD Power ADD Power ADD

Polynomial 1.00 4.95 (39.55) 0.89 23.36 (92.17) 1.00 96.02 14.11

Sinusoidal 1.00 4.34 (19.14) 0.90 31.99 (107.31) 1.00 97.58 (19.03)

Loss of Shape 1.00 4.72 (21.47) 0.81 15.77 (75.77) 0.26 169.04 (200.12)

Table B.2.2: Tables showing the detection power, and average detection delay (and

standard deviation of detection delay) for each anomaly.



Appendix C

Chapter 5 - mvFAST

C.1 Proof of Results

C.1.1 Proof of Proposition 6

Proof. To establish this result we will consider each of the three anomaly detection

settings in turn. Recall that these settings are: sparse anomalies only, dense anoma-

lies only, and both forms of anomaly. In each of the three cases we will draw on

Chebychev’s inequality. To make use of this inequality, we will need expressions for

the expectation and variance of the test statistic, ∆ij(τ), which has been defined in

equation (5.2.7).

We observe that by the mean-zero assumption for the residual functions,

E (∆ij(τ)) = E

(
τ∑
r=1

ϵij(r)

)
= 0.

Further, we note that the variance is given by

Var (∆ij(τ)) =
τ∑
r=1

Var (ϵij(r)) + 2
∑

1≤a<b≤τ

Cov (ϵij(a)ϵij(b)) .

As the innovation functions are identically distributed, we denote the variance as

Var (∆ij(τ)) = Vτ .

A further result, required for the dense setting, is the mean and variance of∑p
j=1 ∆ij(τ). By Assumption 3 each innovation function is independent and iden-

132
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tically distributed. Hence the residual functions will be uncorrelated across the p

dimensions. Thus

E

(
p∑
j=1

∆ij(τ)

)
= 0,

Var

(
p∑
j=1

∆ij(τ)

)
=

p∑
j=1

[
τ∑
r=1

Var (ϵij(r)) + 2
∑

1≤a<b≤τ

Cov (ϵij(a)ϵij(b))

]

= pVτ .

Using these results, we are in a position to establish the choices of threshold presented

in the proposition.

Sparse Anomalies Only For the sparse setting a false alarm is the event

P (False) = P

(
n⋃
i=1

p⋃
j=1

T⋃
τ=1

|∆ij(τ)| ≥ γ

)

≤
n∑
i=1

p∑
j=1

T∑
τ=1

P (|∆ij(τ)| ≥ γ) , (C.1.1)

using the union bound. Using Chebychev’s inequality, and the above results for the

expectation and variance of |∆ij(τ)|, it can be seen that

P (|∆ij(τ)| ≥ γ) ≤ Vτ
γ2
.

Combining this with equation (C.1.1) we see that

n∑
i=1

p∑
j=1

T∑
τ=1

P (|∆ij(τ)| ≥ γ) ≤
n∑
i=1

p∑
j=1

T∑
τ=1

Vτ
γ2

=
np
∑T

τ=1 Vτ
γ2

. (C.1.2)

Setting equation (C.1.2) equal to α and rearragning demonstrates that

γ =

np
(∑T

τ=1 Vτ

)
α


1
2

,

as required.
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Dense Anomalies Only For the dense case we note that a false alarm is given

by the event

P (False) = P

(
n⋃
i=1

T⋃
τ=1

|
p∑
j=1

∆ij(τ)| − pγ ≥ Γ

)

≤
n∑
i=1

T∑
τ=1

P

(
|

p∑
j=1

∆ij(τ)| ≥ pγ + Γ

)
.

Again, by a similar application of Chebychev’s Inequality we obtain

P (False) ≤ np
∑T

τ=1 Vτ

(Γ + pγ)2
. (C.1.3)

Setting the RHS of equation (C.1.3) equal to α and rearranging the subsequent

quadratic equation provides us with the expression

Γ2 + 2pγΓ +

(
p2γ2 − np

∑T
τ=1 Vτ
α

)
= 0.

This can be solved to show that

Γ = 2


np

(∑T
τ=1 Vτ

)
α


1
2

− pγ

 .

Here the positive part of the root has been taken to ensure that Γ > 0. Further, since

Γ must be positive, we also require

γ <

(
n
∑T

τ=1 Vτ
pα

) 1
2

.

Both Dense and Sparse Anomalies In this final case a false alarm is given by

either the sparse, or the dense, thresholds being exceeded. Using the union bound we

see that this can be written as

P (False) = P (Dense ∪ Sparse) ≤ P (Dense) + P (Sparse) .

Using the same result as in the sparse setting, we see that

P (Sparse) ≤ np
∑T

τ=1 Vτ
γ2

, (C.1.4)
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and using a similar series of steps as in the dense setting but with Γ = γ log(p), we

see that

P (Dense) ≤ np
∑T

τ=1 Vτ

γ2 (p+ log(p))2
. (C.1.5)

As such, we set the sum of equations (C.1.4) and (C.1.5) equal to α and rearrange to

obtain

γ =

np
(∑T

τ=1 Vτ

)
α

[(p+ log(p))2 + 1

(p+ log(p))2

]
1
2

,

as required.

C.1.2 Proof of Proposition 7

Proof. In the dense setting we split the detection probability into two cases:

P(D) = P

([
T⋃
τ=1

|
p∑
j=1

∆c
ij(τ)| > Γ + pγ

]
∪

[
T⋃
τ=1

p⋂
j=1

|∆c
ij(τ)| > γ

])
. (C.1.6)

The first term on the RHS of (C.1.6) represents an anomaly with respect to the dense

threshold, and the second term an anomaly detected in each dimension with respect

to the sparse threshold.

We begin with the upper bound. By the union bound

P(D) ≤ P

(
T⋃
τ=1

|
p∑
j=1

∆c
ij(τ)| > Γ + pγ

)
+ P

(
T⋃
τ=1

p⋂
j=1

|∆c
ij(τ)| > γ

)
.

We therefore consider the contributions from the dense and sparse terms separately.

For the dense case we note that

P

(
T⋃
τ=1

|
p∑
j=1

∆c
ij(τ)| > Γ + pγ

)
≤

T∑
τ=1

P

(
|

p∑
j=1

∆c
ij(τ)| > Γ + pγ

)
,

and consider the ∆ij(τ) term when it has been contaminated by an anomaly. By

equation (5.2.7) when the ith observation contains an anomaly the test statistic is

∆ij(τ) =
∑τ

r=1 ϵij(r) + L̂(gn+1)(r). Using the triangle inequality together with the
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fact that
∑τ

r=1 L̂(gn+1)(r) = L(Gij)(τ), we note that

T∑
τ=1

P

(
|

p∑
j=1

∆c
ij(τ)| > Γ + pγ

)
≤

T∑
τ=1

P

(
|

p∑
j=1

∆ij(τ)|+ |
p∑
j=1

L(Gij)(τ)| > Γ + pγ

)

≤
T∑
τ=1

P

(
|

p∑
j=1

∆ij(τ)| > Γ + pγ − |
p∑
j=1

L(Gij)(τ)|

)
.

(C.1.7)

Using a similar approach as to that of Proposition 6, we utilise Chebychev’s inequality

to place an upper bound on the probability in equation (C.1.6). As such, we find

T∑
τ=1

P

(
|

p∑
j=1

∆ij(τ)| > Γ + pγ − |
p∑
j=1

L(Gij)(τ)|

)
≤

T∑
τ=1

 pVτ(
Γ + pγ − |

∑p
j=1 L(Gij)(τ)|

)2
 .

This is the bound for the dense term in equation (C.1.6).

For the sparse term in equation (C.1.6) we bound the intersection probability using

Fréchet’s bound:

P

(
T⋃
τ=1

p⋂
j=1

|∆c
ij(τ)| > γ

)
≤

T∑
τ=1

min
j

P (|∆ij(τ)| > γ) .

When then proceed in a similar manner to the dense term, finding that

T∑
τ=1

min
j

P
(
|∆c

ij(τ)| > γ
)
≤

T∑
τ=1

min
j

P (|∆ij(τ)| > γ − |L(Gij)(τ)|) .

Again, using Chebychev’s inequality results in

T∑
τ=1

min
j

P (|∆ij(τ)| > γ − |L(Gij)(τ)|) ≤
T∑
τ=1

min
j

(
Vτ

(γ − |L(Gij)(τ)|)2

)

≤
T∑
τ=1

(
Vτ

maxj (γ − |L(Gij)(τ)|)2

)
.

Putting this together with the bound for the dense case completes the proof for the

upper bound.
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For the lower bound we begin with equation (C.1.6) and proceed as follows:

P(D) = P

([
T⋃
τ=1

|
p∑
j=1

∆c
ij(τ)| > Γ + pγ

]
∪

[
T⋃
τ=1

p⋂
j=1

|∆c
ij(τ)| > γ

])

≥ P

(
T⋃
τ=1

|
p∑
j=1

∆c
ij(τ)| > Γ + pγ

)

≥ P

(
|

p∑
j=1

∆c
ij(T )| > Γ + pγ

)

= P

(
|

p∑
j=1

∆ij(T ) +Gij(T )| > Γ + pγ

)
(C.1.8)

≥ P

(
|

p∑
j=1

∆ij(T )| > Γ + pγ + |
p∑
j=1

Gij(T )|

)
,

where the final line follows from the fact that for any x, y,∈ R we have |x+y| ≥ |x|−|y|.

Labelling K = Γ + pγ + |
∑p

j=1 L(Gij)(T )|, E
(
|
∑p

j=1 ∆ij(T )|
)

= µ1,

E

[(
|
∑p

j=1 ∆ij(T )|
)2]

= µ2, and E

[(
|
∑p

j=1 ∆ij(T )|
)3]

= µ3, we can utilise the

following bound due to Rohatgi and Székely (1992):

P

(
|

p∑
j=1

∆ij(T )| > Γ + pγ + |
p∑
j=1

Gij(T )|

)
≥ −2µ1

K
+

11µ2

4K2
− 3µ3

4K3
,

as required.

C.1.3 Proof of Corollary 2

Proof. In order to prove this result we need to show that limT→∞ P(D) = 1. We begin

from equation (C.1.8) in the proof of Proposition 7. That is,

P(D) ≥ P

(
|

p∑
j=1

∆ij(T ) + L(Gij)(T )| > Γ + pγ

)
.

The next step is to by divide the inequality in the RHS above by T , giving:

P (D) = P

(
|
∑p

j=1 ∆ij(T ) + L(Gij)(T )|
T

>
Γ + pγ

T

)
. (C.1.9)

Our strategy is now to apply a form of Kolmogorov’s Strong Law of Large Numbers

(Sen and Singer, 1994) to the RHS of the above equation. That is, we will apply the
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Kolmogorov’s Strong Law to:

|
∑p

j=1 ∆ij(T ) + L(Gij)(T )|
T

.

By Kolmogorov’s Strong Law

P

(
lim
T→∞

|
∑p

j=1 ∆ij(T ) + L(Gij)(T )|
T

= lim
T→∞

E

(
|
∑p

j=1 ∆ij(T ) + L(Gij)(T )|
T

))
= 1,

and so we will need to compute the expectation in the above expression. Using

Jensen’s inequality we obtain

E

(
|
∑p

j=1 ∆ij(T ) + L(Gij)(T )|
T

)
≥
∣∣∣∣E
(∑p

j=1 ∆ij(T ) + L(Gij)(T )

T

)∣∣∣∣.
Further, because ∆ij(T ) is the sum of mean-zero random variables, we find∣∣∣∣E

(∑p
j=1 ∆ij(T ) + L(Gij)(T )

T

)∣∣∣∣ =

∣∣∣∣
∑p

j=1 L(Gij)(T )

T

∣∣∣∣.
By assumption, limT→∞

|
∑p

j=1 L(Gij)(T )|
T

= M > 0, and so

lim
T→∞

E

(
|
∑p

j=1 ∆ij(T ) + L(Gij)(T )|
T

)
≥M > 0. (C.1.10)

Using the fact that the residual functions are independent in t, the Strong Law of

Large Numbers, and the lower bound on the expectation in equation (C.1.10) on

equation (C.1.9) we see that

P

(
lim
T→∞

|
∑p

j=1 ∆ij(T ) + L(Gij)(T )|
T

>
Γ + pγ

T

)
= 1.

This is because the LHS of the inequality converges almost surely to at least M > 0

and the RHS converges to zero. Now we recall from the proof of Proposition 7, and

in particular equation (C.1.8), that for any T , if |
∑p

j=1 ∆ij(T )+L(Gij)(T )| > Γ+pγ,

then a detection must have occurred. As a result of this, we obtain

1 = P

(
lim
T→∞

|
∑p

j=1 ∆ij(T ) + L(Gij)(T )|
T

>
Γ + pγ

T

)
≤ P

(
lim
T→∞

D
)
.
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To complete the proof we observe that the probability of detecting an anomaly by

time T forms an increasing sequence of events in T and so we can exchange the limit

and the probability (Billingsley, 1995). As such, we have that

1 = P
(

lim
T→∞

D
)

= lim
T→∞

P (D) ,

as required.

C.1.4 Proof of Proposition 8

Proof. This proof follows similar logic to the proof of Proposition 3.1 in Tickle et al.

(2021).

We consider the subset of T , Aϵ =
{
t⌊θT ⌋, t⌊θT ⌋ + a1 . . . , t⌊θT ⌋ + am

}
, where am < ϵ

for some 0 < ϵ < 1− θ. This can be visualised as a fine grid of m+ 1 points over the

interval [ν, ν + ϵ). We also let DAϵ be the event that a detection takes place on the

grid Aϵ, i.e DAϵ = P(ξ < ν + ϵ).

As m → ∞ the grid spacing becomes vanishingly small. Using the assumption

that the residual functions are independent in t, limm→∞
|
∑p

j=1 L(Gij)(t⌊θT⌋+am)|
m

> 0,

and Corollary 2 it is therefore the case that P(DAϵ) = 1. Hence ξ ≤ ν + am.

As a result of this, we can conclude that as m, T → ∞ it is the case that ξ−ν
T
≤

am
T
< ϵ, as required.

C.2 Additional Simulation Results

C.2.1 Further Results on Detection Power and Delay

In this study we perform an identical set of simulations to those carried out in Section

5.4.1, with the exception that p = 5 dimensions contain an anomaly. The results are

presented in Table C.2.2, and are similar to the case examined in Section 5.4.1 where

p = 1 dimensions are contaminated with an anomaly.



APPENDIX C. CHAPTER 5 - MVFAST 140

P
ro
ce
ss

A
n
om

al
y

S
in
gl
e
S
h
ap

e
M
u
lt
ip
le

S
h
a
p
e

H
ea
v
y
T
a
il
ed

M
ix
in
g
In
n
ov
a
ti
o
n
s

B
im

o
d
a
l
S
h
a
p
e

m
v
F
A
S
T

D
a
i

m
v
F
A
S
T

D
a
i

m
v
F
A
S
T

D
a
i

m
v
F
A
S
T

D
a
i

m
v
F
A
S
T

D
a
i

S
in
gl
e

1
0.
9
9

1
1

1
0
.9
4

1
1

0
.9
8

0
.8
1

M
u
lt
ip
le

1
1

1
1

1
0
.9
9

0
.9
1

1
1

0
.9
1

P
ol
y
n
om

ia
l

1
1

1
1

0
.9
8

1
0
.9
4

1
1

1

P
h
as
e

0.
14

1
0
.1
5

1
0
.1
2

0
.0
5

0
.8

1
0
.1
1

0
.0
5

C
on

st
an

t
1

1
1

1
0
.9
8

1
0
.9
7

1
0
.5
9

0
.9
9

E
x
p
on

en
ti
al

1
1

1
1

1
1

1
1

1
1

C
on

si
st
en
t

0
.1
1

1
0
.0
6

0
.2
4

0
.0
8

0
.9
2

0
.6
4

1
0
.0
9

0
.7
5

T
ab

le
C

.2
.1

:
C

om
p

ar
is

on
of

d
et

ec
ti

on
p

ow
er

of
m

v
F
A

S
T

an
d

th
e

se
q
u

en
ti

al
tr

an
sf

or
m

an
d

d
ir

ec
ti

on
al

ou
tl

y
in

gn
es

s
ap

p
ro

ac
h

(D
ai

)
of

D
ai

et
al

.
(2

02
0)

in
th

e
sp

ar
se

se
tt

in
g

w
it

h
50

%
an

om
al

y
co

n
ta

m
in

at
io

n
.

T
h

e
b

et
te

r
re

su
lt

in
ea

ch
sc

en
ar

io
is

h
ig

h
li

gh
te

d

in
b
o
ld

.

P
ro
ce
ss

S
in
gl
e
S
h
a
p
e

M
u
lt
ip
le

S
h
a
p
e

H
ea
v
y
T
a
il

M
ix
in
g
In
n
ov
a
ti
o
n
s

B
im

o
d
a
l
S
h
a
p
e

S
in
gl
e

13
.5
6
(8
.6
3
)

1
3
.4
3
(8
.6
2
)

1
7
.3
3
(1
2
.7
4
)

1
7
.6
0
(4
5
.1
3
)

1
1
.2
1
(1
0
.1
0
)

M
u
lt
ip
le

12
.3
2
(7
.1
1
)

1
0
.2
1
(2
.9
3
)

1
3
.6
9
(8
.7
5
)

4
4
.4
2
(6
9
.8
1
)

8
.4
9
(2
.4
5
)

P
ol
y
n
om

ia
l

80
.5
6
(2
3.
9
1
)

8
8
.6
8
(2
4
.6
5
)

9
3
.7
9
(2
4
.2
6
)

6
5
.6
6
(7
8
.4
8
)

4
9
.2
8
(5
6
.8
9
)

P
h
as
e

14
.5
5
(3
8.
4
8
)

1
5
.4
5
(3
9
.4
2
)

1
3
.4
4
(4
0
.0
3
)

3
3
.9
0
(6
5
.2
6
)

1
6
.0
2
(4
7
.7
6
)

C
on

st
an

t
43
.3
5
(2
6.
7
9
)

3
8
.6
0
(3
7
.5
8
)

5
8
.3
1
(3
2
.9
6
)

4
1
.5
3
(7
3
.3
3
)

1
4
.5
9
(4
7
.6
0
)

E
x
p
on

en
ti
al

45
.4
3
(2
5.
7
3
)

3
8
.3
2
(3
2
.6
2
)

6
3
.4
3
(3
5
.9
2
)

3
0
.8
6
(6
4
.8
0
)

7
4
.3
5
(5
0
.3
7
)

C
on

si
st
en
t

11
.7
0
(3
5.
6
9
)

6
.3
0
(2
6
.4
2
)

7
.2
5
(3
2
.9
6
)

5
9
.7
4
(8
1
.7
1
)

1
4
.3
2
(4
7
.5
0
)

T
ab

le
C

.2
.2

:
A

ve
ra

ge
d

et
ec

ti
on

d
el

ay
(a

n
d

st
an

d
ar

d
d

ev
ia

ti
on

)
of

m
v
F
A

S
T

in
th

e
sp

ar
se

se
tt

in
g

w
it

h
50

%
an

om
al

y
co

n
ta

m
in

at
io

n
.



Bibliography

Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection,

2007. URL https://doi.org/10.48550/arXiv.0710.3742.

Diego Agudelo-España, Sebastian Gomez-Gonzalez, Stefan Bauer, Bernhard

Schölkopf, and Jan Peters. Bayesian online prediction of change points. In Confer-

ence on Uncertainty in Artificial Intelligence, pages 320–329. PMLR, 2020. URL

https://doi.org/10.48550/arXiv.1902.04524.

Samaneh Aminikhanghahi and Diane J Cook. A survey of methods for time se-

ries change point detection. Knowledge and information systems, 51(2):339–

367, 2017. doi: 10.1007/s10115-016-0987-z. URL https://doi.org/10.1007/

s10115-016-0987-z.

Aurore Archimbaud, Feriel Boulfani, Xavier Gendre, Klaus Nordhausen, Anne Ruiz-

Gazen, and Joni Virta. Ics for multivariate functional anomaly detection with appli-

cations to predictive maintenance and quality control. Econometrics and Statistics,

2022. ISSN 2452-3062. doi: https://doi.org/10.1016/j.ecosta.2022.03.003. URL

https://www.sciencedirect.com/science/article/pii/S2452306222000247.

Ana Arribas-Gil and Juan Romo. Shape outlier detection and visualization for

functional data: the outliergram. Biostatistics, 15(4):603–619, 03 2014. ISSN

1465-4644. doi: 10.1093/biostatistics/kxu006. URL https://doi.org/10.1093/

biostatistics/kxu006.

Alexander Aue, Gregory Rice, and Ozan Sönmez. Detecting and dating structural

breaks in functional data without dimension reduction. Journal of the Royal

141

https://doi.org/10.48550/arXiv.0710.3742
https://doi.org/10.48550/arXiv.1902.04524
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1007/s10115-016-0987-z
https://www.sciencedirect.com/science/article/pii/S2452306222000247
https://doi.org/10.1093/biostatistics/kxu006
https://doi.org/10.1093/biostatistics/kxu006


BIBLIOGRAPHY 142

Statistical Society: Series B (Statistical Methodology), 80(3):509–529, 2018. doi:

10.1111/rssb.12257. URL https://doi.org/10.1111/rssb.12257.

Edward Austin, Gaetano Romano, Idris A. Eckley, and Paul Fearnhead. On-

line non-parametric changepoint detection with application to monitoring oper-

ational performance of network devices. Computational Statistics & Data Anal-

ysis, 177:107551, 2023. ISSN 0167-9473. doi: https://doi.org/10.1016/j.csda.

2022.107551. URL https://www.sciencedirect.com/science/article/pii/

S0167947322001311.

Kahtan Aziz, Saed Tarapiah, Salah Haj Ismail, and Shadi Atalla. Smart real-time

healthcare monitoring and tracking system using gsm/gps technologies. In 2016

3rd MEC International Conference on Big Data and Smart City (ICBDSC), pages

1–7. IEEE, 2016. doi: 10.1109/ICBDSC.2016.7460394. URL https://doi.org/

10.1109/ICBDSC.2016.7460394.

M. Baron and A. G. Tartakovsky. Asymptotic optimality of change-point detec-

tion schemes in general continuous-time models. Sequential Analysis, 25(3):257–

296, 2006. doi: 10.1080/07474940600609597. URL https://doi.org/10.1080/

07474940600609597.

C. Barreyre, B. Laurent, J. M. Loubes, L. Boussouf, and B. Cabon. Multiple testing

for outlier detection in space telemetries. IEEE Transactions on Big Data, 6(3):

443–451, 2020. doi: 10.1109/TBDATA.2019.2954831. URL https://doi.org/10.

1109/TBDATA.2019.2954831.

Peter Bauer and Peter Hackl. The use of mosums for quality control. Technometrics,

20(4):431–436, 1978. ISSN 00401706. doi: 10.1080/00401706.1978.10489697. URL

https://doi.org/10.1080/00401706.1978.10489697.

P. Billingsley. Probability and Measure. Wiley Series in Probability and Statistics.

Wiley, 1995. ISBN 9780471007104. URL https://books.google.co.uk/books?

id=z39jQgAACAAJ.

https://doi.org/10.1111/rssb.12257
https://www.sciencedirect.com/science/article/pii/S0167947322001311
https://www.sciencedirect.com/science/article/pii/S0167947322001311
https://doi.org/10.1109/ICBDSC.2016.7460394
https://doi.org/10.1109/ICBDSC.2016.7460394
https://doi.org/10.1080/07474940600609597
https://doi.org/10.1080/07474940600609597
https://doi.org/10.1109/TBDATA.2019.2954831
https://doi.org/10.1109/TBDATA.2019.2954831
https://doi.org/10.1080/00401706.1978.10489697
https://books.google.co.uk/books?id=z39jQgAACAAJ
https://books.google.co.uk/books?id=z39jQgAACAAJ


BIBLIOGRAPHY 143

J. M. Blair, C. A. Edwards, and J. H. Johnson. Rational chebyshev approximations

for the inverse of the error function. Mathematics of Computation, 30(136):827–830,

1976. ISSN 00255718, 10886842. doi: 10.2307/2005402. URL https://doi.org/

10.2307/2005402.

C. Bradley. Basic properties of strong mixing conditions. a survey and some open ques-

tions. Probability Surveys, 2:107–144, 11 2005. doi: 10.1214/154957805100000104.

Michael Byrd, Linh Nghiem, and Jing Cao. Lagged exact bayesian online changepoint

detection with parameter estimation, 2018. URL https://doi.org/10.48550/

arXiv.1710.03276.

Yang Cao, Liyan Xie, Yao Xie, and Huan Xu. Sequential change-point detection via

online convex optimization. Entropy, 20(2), 2018. ISSN 1099-4300. doi: 10.3390/

e20020108. URL https://www.mdpi.com/1099-4300/20/2/108.

Michelle Carey and James O Ramsay. Fast stable parameter estimation for linear

dynamical systems. Computational Statistics & Data Analysis, 156:107124, 2020.

doi: 10.1016/j.csda.2020.107124. URL https://doi.org/10.1016/j.csda.2020.

107124.

Subhabrata Chakraborti and Mark A. van de Wiel. A nonparametric control chart

based on the mann-whitney statistic. Institute of Mathematical Statistics Col-

lections, page 156–172, 2008. doi: 10.1214/193940307000000112. URL http:

//dx.doi.org/10.1214/193940307000000112.

Hao Chen. Sequential change-point detection based on nearest neighbors. The Annals

of Statistics, 47(3):1381–1407, 06 2019. doi: 10.1214/18-AOS1718. URL https:

//doi.org/10.1214/18-AOS1718.

Jeng-Min Chiou, Yu-Ting Chen, and Ya-Fang Yang. Multivariate functional principal

component analysis: A normalization approach. Statistica Sinica, 24(4):1571–1596,

2014. ISSN 10170405, 19968507. doi: 10.5705/ss.2013.305. URL http://dx.doi.

org/10.5705/ss.2013.305.

https://doi.org/10.2307/2005402
https://doi.org/10.2307/2005402
https://doi.org/10.48550/arXiv.1710.03276
https://doi.org/10.48550/arXiv.1710.03276
https://www.mdpi.com/1099-4300/20/2/108
https://doi.org/10.1016/j.csda.2020.107124
https://doi.org/10.1016/j.csda.2020.107124
http://dx.doi.org/10.1214/193940307000000112
http://dx.doi.org/10.1214/193940307000000112
https://doi.org/10.1214/18-AOS1718
https://doi.org/10.1214/18-AOS1718
http://dx.doi.org/10.5705/ss.2013.305
http://dx.doi.org/10.5705/ss.2013.305


BIBLIOGRAPHY 144

Chia-Shang J. Chu, Kurt Hornik, and Chung-Ming Kuan. Mosum tests for parameter

constancy. Biometrika, 82(3):603–617, 1995. ISSN 00063444. doi: 10.1093/biomet/

82.3.603. URL https://doi.org/10.1093/biomet/82.3.603.

Matthias Chung, Justin Krueger, and Mihai Pop. Identification of microbiota dy-

namics using robust parameter estimation methods. Mathematical biosciences, 294:

71–84, 2017. doi: 10.1016/j.mbs.2017.09.009. URL https://doi.org/10.1016/j.

mbs.2017.09.009.

M.L.I. Coelho, M.A. Graham, and S. Chakraborti. Nonparametric signed-rank con-

trol charts with variable sampling intervals. Quality and Reliability Engineer-

ing International, 33(8):2181–2192, 2017. doi: 10.1002/qre.2177. URL https:

//doi.org/10.1002/qre.2177.

Bianca M. Colosimo and Massimo Pacella. A comparison study of control charts

for statistical monitoring of functional data. International Journal of Production

Research, 48(6):1575–1601, 2010. doi: 10.1080/00207540802662888. URL https:

//doi.org/10.1080/00207540802662888.

T.H. Cormen, T.H. Cormen, C.E. Leiserson, Inc Books24x7, Massachusetts Insti-

tute of Technology, MIT Press, R.L. Rivest, C. Stein, and McGraw-Hill Pub-

lishing Company. Introduction To Algorithms. Introduction to Algorithms. MIT

Press, 2001. ISBN 9780262032933. URL https://books.google.co.uk/books?

id=NLngYyWFl_YC.

Wenlin Dai and Marc Genton. Multivariate functional data visualization and out-

lier detection. Journal of Computational and Graphical Statistics, page 30, 03

2018a. doi: 10.1080/10618600.2018.1473781. URL https://doi.org/10618600.

2018.1473781.

Wenlin Dai and Marc Genton. Functional boxplots for multivariate curves: Mul-

tivariate curves. Stat, 7:e190, 08 2018b. doi: 10.1002/sta4.190. URL https:

//doi.org/10.1002/sta4.190.

https://doi.org/10.1093/biomet/82.3.603
https://doi.org/10.1016/j.mbs.2017.09.009
https://doi.org/10.1016/j.mbs.2017.09.009
https://doi.org/10.1002/qre.2177
https://doi.org/10.1002/qre.2177
https://doi.org/10.1080/00207540802662888
https://doi.org/10.1080/00207540802662888
https://books.google.co.uk/books?id=NLngYyWFl_YC
https://books.google.co.uk/books?id=NLngYyWFl_YC
https://doi.org/10618600.2018.1473781
https://doi.org/10618600.2018.1473781
https://doi.org/10.1002/sta4.190
https://doi.org/10.1002/sta4.190


BIBLIOGRAPHY 145

Wenlin Dai and Marc G. Genton. Directional outlyingness for multivariate func-

tional data. Computational Statistics & Data Analysis, 131:50 – 65, 2019. ISSN

0167-9473. doi: https://doi.org/10.1016/j.csda.2018.03.017. URL http://www.

sciencedirect.com/science/article/pii/S016794731830077X.
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