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ABSTRACT

The optimisation of maintenance plans for complex systems involving many components is not an
easy problem. Analytical and mathematical models are possible, but often need to make significant
assumptions and are unable to look at the distribution of costs and failures. This paper discusses a
project in which a discrete-time simulation model was added onto an existing optimisation model in
order to go beyond just estimating the mean performance and give a better picture of the risk and
variability involved with potential maintenance plans.

1 INTRODUCTION

The scheduling of maintenance for complex systems of assets involving many components can be a very
challenging problem. The aim is to produce a schedule of when and how to preventively maintain each
asset that balances the cost of the scheduled maintenance with the expected cost due to failure within
the system. The schedule may be intended for a long planning horizon, often up to 20 years. For large
organisations, there can be thousands of assets, with maintenance costs measured in tens of millions
of pounds. Furthermore, many assets are dependent structures, made up of heterogeneous components
combined in a multi-layered hierarchy, each with their own specific maintenance needs. The structural
combinations can be linked in series, parallel or k-out-of-N subsystems. There are often limited budgets
on cost and/or manpower that constrain the amount of maintenance that can be performed in a given
time window. Thus, the size and structure make maintenance schedule optimisation a complex problem,
and the uncertainty in the usable life of each component introduces stochasticity as well.

One approach to maintenance optimisation is using analytical approaches based on stochastic
processes (such as Markov chains) and renewal theory (Scarf 1997). These can be very powerful tools,
allowing the probabilistic nature of the system to be modelled, but are only tractable for systems with
a few components or many identical components (de Smidt-Destombes et al. 2007). This is certainly
not the case in many real-life settings. For more realistic cases, the analytical approaches can only be
used to motivate heuristic policies.

An alternative is to develop optimisation models, such as Mixed Integer Linear Programmes (MILPs)
or Stochastic Programmes (Zhu et al. 2021), that utilise statistical models for the lifetime of components
to estimate the risk of failure. Decision Lab have developed such a model, included in their Combined
Health Asset Risk Model (CHARM). CHARM is based on an earlier model called CONCEPT, developed
for the Canal and River Trust, which was a runner-up in the President’s medal OR60 in 2018 (Griffiths
and Wilson 2019). These models are much better suited to solving resource constrained problems
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than the stochastic models. However, in complex hierarchical structures, converting the probabilities of
failure for each component into the probability of the asset failing is non-trivial, with approximations
often required. And whilst the probabilities include some aspects of stochasticity, the output of the
models cannot generate information beyond the mean costs over the time-horizon.

To help overcome the issues associated with stochastic modelling and optimisation models, simulation
has been used to test the solutions proposed by those models, such as the work of Barata et al. (2002).
Simulation can handle both the complexity and stochastic elements, and enable a full evaluation of a
policy with fewer simplifying assumptions. Much of the literature focus on estimating the expected
values of cost or lifetime. This is a risk neutral approach and does not take full advantage of simulation
to empirically estimate the distribution of these quantities for more informed decision making.

In this paper, we discuss a project that aimed to add simulation to the CHARM tool built by Decision
Lab. This multi-fidelity modelling approach enables the plans generated by a MILP to be tested more
thoroughly, providing estimates for characteristics of the total maintenance cost distribution (such as
the 95th percentile) and the availability of machines that function in parallel.

One of the key aims was to build a simulation model that could be generalised to the various contexts
in which Decision Lab use this type of modelling without the need for significant modification. The
model needed to be able to take the input data for CHARM and the optimised maintenance schedule
and construct the hierarchical structure of the assets. For this reason, the simulation was built to be as
generic as possible.

The rest of this paper is organised as follows. Section 2 gives a brief review of some of the literature on
asset maintenance, particularly mentioning examples which feature simulation. The proposed simulation
model is described in Section 3, with a discussion on methods for sensitivity analysis in Section 4. In
Section 5 we demonstrate the model and its insights on a realistic randomised asset structure, before
concluding in Section 6.

2 LITERATURE REVIEW

There is a large literature on maintenance optimisation, covering many methods from Markov decision
processes (Olde Keizer et al. 2016) to stochastic programming approaches (Zhu et al. 2021). Here we
focus on papers where simulation has played a significant role. For a recent and thorough review of
the other areas of the maintenance optimisation literature, we direct readers to the work of de Jonge
and Scarf (2020).

Simulation has been applied widely within the optimal maintenance literature. Its usage largely
falls into two categories. The first is to evaluate the performance of maintenance policies derived
from simplified analytical models. For example, de Smidt-Destombes et al. (2007) consider multiple
large k-out-of-N homogeneous systems which all share spare parts and a repair shop. The solution
methodology is based on approximating queueing behaviour, and applied to a problem with systems
of up to N = 3000 components. A discrete-event simulation model is used to evaluate the accuracy
of the approximate models. Wu et al. (2016) consider the multi-component case where preventive
maintenance is only carried out when a component fails. They propose an importance measure to
decide which components to maintain and evaluate this policy with a simulation model. These papers
use simulation as an experimental paradigm, whereas in this paper seeks to use simulation as part of
the decision making process.

The second use of simulation is as the primary modelling paradigm, and several frameworks
have been suggested. Barata et al. (2002) considered condition-based maintenance with constant
monitoring of components. They produced a discrete-time simulation model that modelled failure due
to both deterioration and random shocks, and also allowed for random improvements from preventive
maintenance. Zhou et al. (2015) consider a similar problem to Wu et al. (2016). However, they
include planned preventive maintenance as well, and their analysis uses a simulation model to find the
optimal policy. Both Barata et al. (2002) and Zhou et al. (2015) use simulation as part of a grid search
optimisation. Huseby and Natvig (2013) utilise a Discrete Event Simulation (DES) model to estimate
multiple importance measures for network flow systems. Hong et al. (2014) model the degradation
of components for condition-based maintenance using Gamma processes. For multiple components
that cannot be treated independently, Gamma processes can be analytically intractable, so the authors
simulate these systems in discrete time to find optimal inspection periods, focusing on systems in which
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the degradation of components is dependent. Each of these models target a specific type of maintenance
policy, whether condition based or time based. Our simulation is more flexible to evaluate alternative
or mixtures of policies.

Chiacchio et al. (2020) developed a framework for simulating systems in which the physical
and state environment can alter the lifetime distributions of the components, as well as complex
structural dependence, such as spare parts that can also deteriorate when not being used. Their hybrid
simulation model uses continuous-time simulation to model the physical system evolution alongside
DES mechanisms for more basic failure and repair processes. This complexity leads to significant
computational costs. The authors also acknowledge that in many situations, the more complicated
behaviour is not known, but that this need not be included within their modelling framework. The
simulation model described here uses a similar mechanism of combining DES and time-driven simulation,
but not with the aim of modelling the physically processes directly. The time steps are larger influenced
by the failure processes we seek to model and reducing computational cost. Another example of a
hybrid simulation model for maintenance planning is Mulyana et al. (2020), who apply a combination
of Monte Carlo simulation and Systems Dynamics simulation for periodic preventative maintenance
for the packing department of a flour mill.

Beyond the maintenance planning discussed in this paper, simulation can also be used directly
within the joint optimisation of maintenance and other considerations. Wakiru et al. (2019) use a DES
model and simulation optimisation to find good policies involving maintenance and management of
the spare-parts inventory. Zahedi-Hosseini et al. (2017) solve a similar problem, testing out various
inventory control policies. In both cases, the optimisation is performed over a few variables using a
commercial heuristic. Bouslah et al. (2018) focus on a two machine manufacturing line, considering
maintenance, production and quality as an integrated problem, with dependent reliability and quality
deterioration. The model combines continuous-time simulation and DES. The simulation optimisation
uses a Response-Surface Methodology approach. Assid et al. (2015) also look at the joint preventive
maintenance and production problem in manufacturing, but in this case examining a single machine
that can create two products. The simulation is a hybrid between continuous-time simulation and DES.
Similarly, the optimisation is formulated with policy parameters as the decision variables and is solved
using a one-step Response Surface Methodology.

3 SIMULATION MODELLING STRUCTURE

Consider an asset constructed from a collection of components. Groups of components form subsystems,
which can operate in series (one component failure breaks the subsystem), in parallel (all components
must fail to break the subsystem) or in a k-out-of-N structure (N−k+1 component failures break the
subsystem). Groups of subsystems form Level 1 items in similar structures. (More complex systems
may have more levels.) Groups of Level 1 items make up the asset. This structure forms a hierarchical
Reliability Block Diagram dictating the reliability behaviour of the asset.

As an example, consider an asset system called Emergency Vehicles. Figure 1 shows part of the
reliability block diagram. This asset system is made up of Level 1 items such as Fire Engines and
Pumping Systems. In turn, the Fire Engines and Pumping Systems (Level 1 items) are decomposed
further into subsystems or components. For example, each Pumping System instance includes two
Hose components, which are connected in parallel. In this case, if one Hose breaks down, the Pumping
System can still function. Each Fire Engine contains one Camshaft and one Exhaust Manifold as its
components and they are connected in series. If either the Camshaft or the Exhaust Manifold fails, the
whole Fire Engine they belong to becomes unavailable.

Hose 1

Hose 2

Camshaft Exhaust Manifold

Pumping Station

Fire Engine

Figure 1: Part of the reliability block diagram of the Emergency Vehicles asset system.
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The aim of the model is to simulate the evolution of the asset including its (planned and unplanned)
maintenance over the time horizon. Overall, it is the reliability of the asset and the cost of the proposed
maintenance interventions schedule that we wish to estimate.

3.1 Model Content

The model used here is a discrete-time simulation written in Python, and utilises the agent-based
modelling package MESA (Kazil et al. 2020). We simulate at the component level over a fixed time
horizon. Each component is modelled using the ‘agent’ class of MESA, though little interaction occurs
between the components. At each time-step, the component’s state (consisting of its age and/or health
score, its status (functioning or failed), and accumulated planned and unplanned maintenance costs) is
updated. Figure 2 shows the logical steps of each agent update. The information on which components
have failed and the Reliability Block Diagram structure is then used to calculate whether the system
has failed and any associated costs.

Set Status to Working

Increase age:
a← a+∆t

Is a > A f ?

Set Status to Failed
Reset age: a← a−A f

Sample new lifetime: A f

Update unplanned cost

Add future interventions
to rescheduler

Next Component

Yes

No

Set Status to Working

Calculate Probability of Failure
Pf from Equation (1)

Sample U ∼ Uniform(0,1)

Is U < Pf ?

Set Status to Failed
Reset health score: H = 0.5

Update unplanned cost

Add future interventions
to rescheduler

Update health score:
H←min{H exp(β∆t) ,Hmax}

Next Component

Yes

No

Mechanical Component Electrical Component

Figure 2: Update procedure for the two types of component. Here ∆t is the time-step of the model.

The mechanism behind the failure of each component depends on its type. For some components,
their lifetimes can be easily modelled using a time-to-failure distribution (such as a Weibull or Log-
Normal distribution), in which case we partially utilise Discrete-Event Simulation ideas, mirroring the
approach of Chiacchio et al. (2020). Given the current age of the component, A0, we sample a failure
age A f from the lifetime distribution (conditional on being greater than A0). At each time-step, the age
is updated, and if it exceeds A f , the component fails. For other components, where the probability of
failure is often linked to a condition or health score, this approach is not possible. For example, the
U.K. industry standard for electrical components used in power transmission is the CNAIM framework
(Booth et al. 2017), which models the annual probability of failure as:

Pr{Failure in next year|H}= K
(

1+C max{H,4}+ C2

2!
(max{H,4})2 +

C3

3!
(max{H,4})3

)
(1)

where K and C are component-dependent constants and H is the current health score of the component
expressed as a function of the component’s age a:

H(a) = min{H0 exp(βa) ,Hmax} , (2)
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with H0 = 0.5, Hmax = 10 and β a component dependent ageing rate. Thus, components following the
CNAIM framework will fail in the current time-step with the probability given in equation (1). Using
a discrete-time model enables both types of component to be modelled in the same simulation.

When a component fails it is replaced by a new component and, if necessary, a new failure age
A f is generated. Once all components have been updated, the simulation uses the Reliability Block
Diagram to check the status of the asset. A significant assumption of the time-step approach is that
all failures are assumed to be concurrent. This can be mitigated with smaller step-sizes, but as it is
assumed maintenance must be completed within a time-step, there is a lower limit on the time-step.

The key decision input to the simulation model is the maintenance intervention schedule. This
describes when each intervention will be performed, and which components are affected by the
intervention. An intervention will reduce the age or health score of each of the components it impacts.
We do not assume the intervention is perfect. After the intervention, a new failure-age is then generated
(if required). As a simplification, we perform interventions before the ages and health condition of
components are updated. This effectively assumes that all the interventions take place at the beginning
of the time-step, rather than distributed through the time window.

An important element in the simulation model is that components do fail. In this case, the future
planned interventions for that component must be rescheduled. In reality, a new maintenance plan would
be developed each year using the optimisation model. As this can take hours to run, it is impractical
to achieve within each replication of the simulation model. Thus, we allow a user-specified heuristic
rule for rescheduling interventions. We describe the default heuristic here. Suppose that a component
failed during a year. At the end of that year, any future planned interventions will be moved to a year
after which all impacted components have exceeded their specified age or health score threshold.

3.2 Model Outputs

The simulation model outputs a data set stating the cumulative costs incurred over the planning horizon
and whether each component, Level 1 item or the asset failed during each time-step. Thus, by performing
many replications, the simulation can be used to estimate the time-dependent reliability of the asset,
Level 1 items and components (as measured by the probability of failure), as well as quantifying the
uncertainty of the future total cost.

The total cost of maintenance over the time horizon is the sum of the planned intervention costs,
the costs due to component failures and repairs, the disruption cost of downtime should the whole asset
fail and the cost of lost usable life due to early replacement. A key advantage of using the simulation
model in addition to the optimisation model is that we can analyse various possible future costs rather
than simply a single prediction, enabling percentiles and prediction intervals to be generated.

Whilst the reliability of the asset is important, we can also look at availability of Level 1 items.
This is defined as the number of a particular type of Level 1 item operating in each time-step. If these
items work in parallel, a few failures may not lead to asset level disruption, and thus the optimisation
model may not penalise this. However, it may impact the levels of productivity that can be achieved.
This information is much harder to quantify from the optimisation model output, but can be naturally
quantified by running the simulation many times and looking at the detailed output.

4 SENSITIVITY ANALYSIS

One of the points made in the literature review by de Jonge and Scarf (2020) is that relatively little
work in the field of maintenance optimisation accounts for uncertainty in the lifetime distributions of
components. Getting reliable data on the lifetime distributions is often difficult. For this reason, the
CHARM tool allows engineering judgement to be used when fitting distributions. The consequence
of this is that uncertainty in the parameter estimates cannot be quantified, making it very important to
study the sensitivity of the performance to errors in the lifetime distribution estimates, as well as other
parameters such as the cost of failure and the downtime caused by a failure.

As a system can involve hundreds of components, a full sensitivity analysis could be very compu-
tationally expensive. For this reason, we took a factor screening approach, aiming to identify the most
influential input parameters on the overall cost. The value of this is that if the proposed maintenance
schedule is found to be particularly sensitive to certain parameters, the optimisation could be re-run
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using conservative estimates for only those particular parameters, rather than considering the worst
case in all parameters (which could be very conservative).

We applied Improved Controlled Sequential Bifurcation (CSB-X), proposed by Wan et al. (2010).
The key idea behind CSB-X is that, if the sign of the effect is known (if it increases or decreases the
total cost), parameters can be grouped and then screened together. If the total effect of the group is
unimportant, each parameter in the group can be declared unimportant. Otherwise, the group can be
divided in two, and each tested again. This greatly reduces the amount of time required to perform the
factor screening, and CSB-X does this in such as way as to control the misclassification error rate.

In our application, many of the input parameters have an intuitive sign. For example, increasing
the cost of failure is likely to increase the overall cost, and increasing the scale parameter of a Weibull
lifetime distribution will make failure before an intervention less likely, decreasing the total cost. For
these parameters, CSB-X can be highly effective. The speed of CSB-X depends on how well the factors
are ordered; if all the unimportant parameters are grouped together, it is much easier to screen them
out. But if this was known beforehand, it would be unnecessary to perform the screening. To help,
we first run the simulation 1000 times and split the total maintenance costs across the components.
We then list parameters in order of decreasing cost contribution of the associated component. This
heuristic appears to speed up the approach considerably.

The impact of increasing the shape parameter of lifetime distributions is much more difficult to
determine. So CSB-X could not be used for this purpose. An alternative that does not require the sign
of the effect to be known is the hybrid methodology proposed by Shen et al. (2010), which includes
CSB-X. We did implement this method but found that it came with a considerable computational cost.

5 APPLICATION

The asset system at hand is a Waste Management (WM) system of an industrial complex, which follows
the structure outlined in Section 3. The overall structure of the WM system is shown in Figure 3. The
Level 0 WM system is broken down into four Level 1 asset systems, which are connected in series.
On the top of the diagram, there is one Mobile Cleaning System (MCS), while instances of Portable
Tank Systems (PTS) and Static Cleaning Systems (SCS) are in parallel with each other and instances
of Super Portable Tank Systems (SPTS) are in series. The MCS item consists of 24 components, the
PTS items consist of 27 components, whilst both SCS and SPTS items are made up of 19 components
each. The individual Level 1 items are given a label, e.g. SCS 34 refers to the fourth SCS item. All
Level 2 components of the four Level 1 asset systems discussed are in Series with each other. It should
be noted that Figure 3 depicts assets of Levels 0 and 1, however the same idea generalises for deeper
Levels. This WM asset system, being used in an industrial complex is quite a complicated hierarchical
structure with 476 individual components being aggregated into their respective parents, something that
outlines the computational cost of the problem at hand, as well as the scalability of the model created.

MCS 11

PTS 25PTS 24PTS 23PTS 22PTS 21 PTS 26 PTS 27 PTS 28 PTS 29

SCS 35SCS 34SCS 33SCS 32SCS 31 SCS 36 SCS 37 SCS 38 SCS 39

SPTS 41

SPTS 42

Figure 3: A Reliability Block Diagram of the Waste Management hierarchy.

The CHARM tool was used to model the time to failure for all components and then to optimise
a maintenance schedule between 2021 and 2031, accounting for budget constraints for each year. The
simulation used the same input data as the optimisation model as well as the resulting maintenance
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plan to estimate the cost distribution, the reliability of the system and the availability of Level 1 items.
The results presented are based on 10,000 replications of the simulation with a time-step of 6 months.
All cost units are scaled to be between 0 and 1.

The annual total and unplanned maintenance costs are shown in Figure 4. Whilst the highest annual
costs are incurred upfront through a lot of planned maintenance, the variance in the costs increases
considerably over time, caused largely by increases in the unplanned costs due to component failures.
The maintenance plan reduces failure costs in the first half of the period, but is less effective later on.

Figure 4: Box plots of the annual total and unplanned costs over the time horizon.

The stacked area plots in Figure 5 demonstrates how the annual costs breakdown into both cost
types and Level 1 item groups. This can be done by different percentiles of the cost distribution, Figure
4 shows the 50th and 95th percentiles. Unsurprisingly, the planned costs remain fairly constant and it
is the unplanned maintenance costs that dominate the latter years in the higher percentile case, with
the PTS and SCS groups contributing significantly.

Figure 5: How the costs breakdown at different stages of the cost distribution.

The simulation is able to estimate the availability of groups of items over time. Whilst the PTS
and SCS groups act in parallel (and are modelled as such in the optimisation model), lower availability
leads to lower productivity. Hence, there are targets for the availability; seven PTS items and six SCS
items are required to be available in each time period. Figure 6 indicates the probability of meeting
these targets (green), having at least half of the target (amber) or falling below that (red). These plots
highlighted a significant issue that is not obvious from the output of the optimisation model: that as
time goes on the number of PTS items often fails to meet the target of 7. This indicates that PTS items
need to be maintained more often, so that failures are reduced and we are able to meet the target.

Analysing the data further, Figure 7 demonstrates the cumulative probability of failure for seven
items for PTS 21 (the other eight PTS items have similar plots). For several components, such as the
panel hose and electrical supply, the cumulative probability of failure climbs very quickly between 2026
and 2030. This sort of result from the simulation model could then be used to feedback information into
the optimisation model, as we could potentially change the maintenance thresholds of these components
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Figure 6: The probability of meeting the target availability for the PTS and SCS groups over the time
horizon.

Figure 7: Cumulative probability of failure for the most vulnerable components of PTS 21.

to be more conservative. The likely consequence would be a greater prioritisation for these components
in selecting maintenance and thus an improvement in the reliability of the Level 1 PTS group, which
is going to drive down the unplanned costs of the asset type discussed earlier.

5.1 Application of Sensitivity Analysis

We applied the CSB-X screening procedure to the scale, cost and disrupted days parameters for each
component type and the initial condition parameter of each individual component (constituting a total of
743 parameters). The aim here is to draw out parameters that have the largest influence on the expected
total cost. This will allow us to see which parameters have the greatest requirement for additional data.

The thresholds for defining important and critical factors were 0.1% and 0.2% of the mean total
cost, respectively. The experimental regions for scale parameters had problem specific definitions,
whilst the others were varied by plus or minus 10%.

Despite the very large number of factors, we were able to identify the most influential input
parameters within 30 minutes using 2 processors on a laptop and controlling the error rate at 5%. On
average, the heuristic mentioned in Section 4 reduced the computational cost by over 30% (based on
50 replications of each procedure). This demonstrates the utility of CSB-X for sensitivity analysis
when there are many input parameters. Ten input factors were identified, relating to eight component
types. The most influential parameters were the cost and scale parameters for the bund component of
the MCS and the flexible pipework of the SCS.



Rhodes-Leader, Worthington, Griffiths and Samartzis

6 CONCLUSION

This paper has presented a discrete-time simulation model for improving the understanding of the
stochastic nature of future maintenance costs and reliability of complex systems of assets under a
particular optimised maintenance schedule. The simulation model is flexible and able to adapt to many
systems based on the input data provided. The discrete-time nature gives the model the ability to model
failure processes that are more easily modelled in either continuous or discrete time.

The results from our application demonstrate the advantages of using a simulation model alongside
an optimisation model. As well as giving a clearer picture of the cost distribution and risk associated
with any proposed maintenance plan, the simulation is able to highlight problematic behaviour of the
optimised maintenance schedule, particularly the fact that several items that function in parallel can
fail at the same time.

In further work, we anticipate that this framework will be able to form a feedback loop with the
optimisation to improve solutions. The optimisation model is based on certain age or health thresholds that
determine a desired window for maintenance. If the simulation model highlights undesirable behaviour,
such as low availability of Level 1 items reducing productivity in certain periods, the detailed simulation
output could help identify which of these thresholds should be made more conservative (i.e. shifting
the window earlier) to improve the solutions the optimisation model generates.

We could also develop a more direct usage of simulation within the optimisation procedure. The
applications of simulation optimisation within the maintenance optimisation literature are limited to
either exhaustive grid searches (Barata et al. 2002) or low dimensional search problems (Zahedi-Hosseini
et al. 2017). As large complex systems with budget constraints create high dimensional combinatorial
optimisation problems, many of the cutting-edge simulation optimisation algorithms may not perform
well. This could further motivate a multi-fidelity modelling approach to the optimisation.
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