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Abstract—The objective of the Optimal Transmission Switch-
ing (OTS) problem is to identify a topology of the power
grid that minimizes the total energy production costs, while
satisfying the operational and physical constraints of the power
system. The problem is formulated as a non-convex mixed-integer
nonlinear program, which poses extraordinary computational
challenges. A common approach to solve the OTS problem is
to replace its non-convex non-linear constraints with some linear
constraints that turn the original problem into a mixed-integer
linear programming, named DC OTS. Although there is plenty of
work studying solution methods for the DC OTS in the literature,
whether and how solutions of the DC OTS are actually useful
for the original OTS problem is often overlooked. In this work,
we investigate to what extent DC OTS solutions can be used
as a fast heuristic to compute feasible solutions for the original
OTS problem. Computational experiments on a set of PGLib
benchmark instances highlighted that the optimal solution of the
DC OTS is rarely feasible for the original OTS problem, which is
consistent with the literature. However, we also find that easy-to-
implement modifications of the solution procedure help to address
this issue. Therefore, we suggest using DC OTS solutions as a
complementary option to state-of-the-art heuristics to compute
feasible solutions of the original OTS problem.

Index Terms—AC Optimal Transmission Switching, DC Opti-
mal Transmission Switching, Heuristics

I. INTRODUCTION

The increasing cost of energy demands a more economical
dispatch of electric power on grids. Therefore, more effi-
cient operations of electric power transmission are of utmost
practical importance. The optimal (alternative current) power
flow (OPF) problem computes a minimum-cost dispatching
of electric power to meet power demand that satisfies the
physical laws - such as Kirchhoff’s Laws and Ohm’s Laws - as
well as other operational limits imposed by the grid. From the
mathematical modeling standpoint, the OPF problem is a non-
convex quadratic constrained quadratic programming problem
(first proposed by Carpentier [1]), which is strongly NP-hard
[2].

The optimal transmission switching (OTS) problem is the
OPF problem augmented with the option of switching off
transmission lines, which is modeled by introducing binary
variables. The resulting model is a mixed-integer non-convex
non-linear program, which poses extraordinary computational
challenges. Under some realistic operational assumptions, the

OTS problem is often approximated by a simplified mixed
integer linear/quadratic program (MILP/MIQP) [3], commonly
referred to as Direct-Current (DC) OTS, which is amenable
to faster solution approaches. Indeed, the DC OTS can be
solved efficiently by taking advantage of modern commercial
MILP/MIQP solvers, e.g., Gurobi and CPLEX among others.
Due to its favorable computational performance, DC OTS has
received substantial interest from the scientific community [3]–
[9]. However, the use of DC OTS solutions to retrieve good
quality solutions of the original problem is often criticized
in the literature. Indeed, DC OTS optimal solutions often
lead to infeasible solutions of the original OTS problem [10].
As pointed out in [11], network topologies with positive
economic impact in the DC OTS setting can actually be
misleading and economically inefficient in the original domain
(i.e., the AC power flow). However, in this paper, we show
that the DC OTS problem and its solutions can be effectively
used to compute feasible solutions of the AC OTS problem.
We propose a simple heuristic procedure that compute good
quality solutions. These solutions are comparable - in many
instances - with solutions computed by the Mixed Integer
NonLinear Programming solver Bonmin, which is considered
as the state-of-the-art heuristic for the AC OTS problem [12],
[13]. It is important to highlight that the proposed procedure
does not provide any (theoretical) guarantee on the quality of
the computed solution, which is in the nature of any heuristic
algorithm, thus motivating the comparison with similar state-
of-the-art algorithms (i.e., Bonmin).

The rest of the paper is organized as follows: Section II
provides the mathematical programming formulation of the
original OTS problem as well as the simplified DC OTS
approximation. In Section III, we describe the proposed simple
DC OTS-based heuristic. The computational results are re-
ported in Section V. Finally, Section VI draws the conclusion
of this work and mentions possible future research directions.

II. FORMULATIONS OF OPTIMAL TRANSMISSION
SWITCHING PROBLEM

NOMENCLATURE

δij the voltage angle difference of branch (i, j)
θi the voltage angle at bus i



Gii/Bii the shunt conductance / susceptance of branch (i, j)
at the sending end

Gi/Bi the shunt conductance / susceptance at bus i
pgi , q

g
i the active, reactive power injection at bus i

pij , qij the active, reactive power flow across branch (i, j)
xij binary variable representing on/off status of transmis-

sion line (i, j)
S̄ij the thermal limit of branch (i, j)
P i, P i the active power production upper and lower limits at

generators connected to bus i
Qi, Qi

the active power production upper and lower limits at
generators connected to bus i

V i, V i the upper and lower bounds of voltage magnitude at
bus i

Φij ,Φij the minimum/maximum voltage angle difference of
branch (i, j)

Bij the susceptance of branch (i, j)
C2i, C1i, C0i the coefficients for power production costs
Dp

i , D
q
i the active, reactive power demand at bus i

Gij the conductance of branch (i, j)

Consider a power transmission grid D = (N,E), where N
denote the set of buses (i.e. nodes in the terminology of graph
theory), and E denotes the set of branches linking the buses
(high-level abstraction of transmission lines, transformers and
so on). Note that branches are asymmetric, so (i, j) and (j, i)
are treated separately. Generation units (i.e., electric power
generators) are connected to a subset of buses. We assume
that there is electric demand, also called load, at every bus.
The aim of the OTS problem is to satisfy demand at all buses
at the minimum total production costs.

The mathematical programming formulation of the OTS
problem is shown in the sequel (1). Note that we use capital
letters to represent parameters and lower-case letters to rep-
resent variables unless otherwise specified. Moreover, N(i)
and G(i) denote the set of buses and the set of generators
connected to bus i respectively.

min
p,pg,q,qg,v,θ,δ

∑
g∈G

C2g · (pg)2 + C1g · pg + C0g (1a)

s.t. Giv
2
i +

∑
j∈N(i)

pij =
∑

g∈G(i)

pg −Dp
i , ∀i ∈ N

(1b)

−Biv
2
i +

∑
j∈N(i)

qij =
∑

g∈G(i)

qg −Dq
i , ∀i ∈ N

(1c)
δij = θi − θj , ∀(i, j) ∈ E (1d)

pij = xij

(
Giiv

2
i +Gijvivj cos (δij)+

Bijvivj sin (δij)
)
,∀(i, j) ∈ E

(1e)

qij = xij

(
−Biiv

2
i −Bijvivj cos (δij)+

Gijvivj sin (δij)
)
, ∀(i, j) ∈ E

(1f)

p2ij + q2ij ≤ xij(Sij)
2, ∀(i, j) ∈ E (1g)

P g ≤ pg ≤ P g, ∀g ∈ G (1h)

Q
g
≤ qg ≤ Qg, ∀g ∈ G (1i)

V i ≤ vi ≤ V i, ∀i ∈ N (1j)
MijΦij(1− xij) + Φijxij ≤ δij , ∀(i, j) ∈ E (1k)

δij ≤ xijΦij +MijΦij(1− xij), ∀(i, j) ∈ E (1l)
xij ∈ {0, 1}, ∀(i, j) ∈ E (1m)

where Mij is length of the longest path from bus i to bus j
in the network D.

Constraints (1b) and (1c) ensure the conservation of active
and reactive power flows at each bus, respectively (i.e. what-
ever electric power flows into the bus must flow out unless
consumed). Constraints (1e) and (1f) express how active and
reactive power flow across a transmission line is determined
by the voltages at its two delimiting busses, respectively.
Constraints (1g) to (1k) are operation limits associated with
the power system.

The DC power flow approximation is based on the following
assumptions on the power system network:

1) the voltage angle difference δij between any pair of
adjacent buses is small. For typical instances of the
Power Grid Library (PGLib) [14], −π

6 ≤ δij ≤ π
6 ;

2) the voltage magnitude vi is close to 1 for all the buses;
3) Bij ≫ Gij ;
4) Gii ≈ −Gij .

With the aforementioned assumptions, following simplifica-
tions on the power flow, we can approximate the active power
flow of the transmission line (i, j) as pij ≈ Bij(θi − θj)xij ,
while ignoring the reactive power flow (qij) because much
smaller than the active power flow (i.e., pij ≫ qij). For
more details on DC power flow approximation, we referred
the readers to [15].

Note that power transmission loss is neglected in the DC
power flow approximation. Therefore, in the DC OTS formula-
tion, we assume symmetry of branches, meaning that branch
(i, j) and (j, i) are identical. We denote with E′ the set of
symmetric (undirected) branches in DC OTS formulation (2).

min
pg,p,θ,x

∑
g∈G

C2g · (pg)2 + C1g · pg + C0g (2a)

s.t.
∑

(j,i)∈E′

pji −
∑

(i,j)∈E′

pij = Dp
i −

∑
g∈G(i)

pgi , ∀i ∈ N

(2b)
(1− xij)MijΦijBij ≤ pij −Bij(θi − θj),

∀(i, j) ∈ E′ (2c)

pij −Bij(θi − θj) ≤ (1− xij)MijΦijBij ,

∀(i, j) ∈ E′ (2d)

− S̄ij · xij ≤ pij ≤ S̄ij · xij , ∀(i, j) ∈ E′ (2e)

P g ≤ pgi ≤ P g, ∀i ∈ G (2f)

xij ∈ {0, 1}, ∀(i, j) ∈ E′ (2g)



III. DC OTS AS A FAST HEURISTIC FOR THE ORIGINAL
OTS PROBLEM

The solution approach herein proposed -based on DC OTS
solutions - is underpinned by the following observations. First,
when solving instances of the DC OTS problem without any
limit on the number of branches that can be feasibly switched
off, the optimal solution often suggests switching off many
branches. This behavior, in addition to being impractical,
affects the likelihood of retrieving feasible solutions of the
original problem from DC OTS solutions. The second observa-
tion is that the optimal solution of DC OTS often overestimates
the production cost savings. This results in branches’ switching
strategies that lead to infeasible OTS problems. Therefore,
we suggest using a set K of candidate (sub-optimal) DC
OTS solutions, to retrieve the best feasible solution of the
original problem. In view of these observations, we first
solve the DC OTS problem with a cardinality constraint on
the maximum number of switchable branches L (in formula,∑

(i,j)∈E′(1 − xij) ≤ L), then for each of the best |K|
solutions of the DC OTS problem, we solve an OPF problem
on the modified grid (with branches switched off as suggested
by the considered DC OTS solution). A diagram of our
procedure is depicted in Figure 1.

Fig. 1. The proposed solution procedure

IV. COMPUTATIONAL EXPERIMENTS

To assess the viability of the proposed heuristic, we compare
and contrast the proposed approach with Bonmin on a selected
set of benchmark instances. Indeed, Bonmin is reported to find

high-quality solutions of the OTS problem, thus motivating our
choice, see for instance [12], [13].

A. Experiments’ settings

• Thirty instances extracted from the Power Grid Library
(PGLib) [14], representing different features and/or oper-
ating conditions of the electric power system, are used. In
particular, ten instances represent typical operating con-
ditions. Ten other instances are characterized by binding
power demands (denoted by “api”), and the last group
of ten instances considers binding limit on the voltage
magnitude difference (denoted by “sad”).

• The experiments are conducted on a laptop with CPU i7-
8750H and 16 GB of RAM. All computer programs are
written in Julia programming language (version 1.6.3).
The package JuMP (version 1.3.1) [16] is used as a
mathematical programming modeling language.

• Gurobi 9.0.1 is used to solve the DC OTS problem. The
parameter “Heuristics” of Gurobi is set to its maximum
value so that the solver will try as many primal heuristics
as possible to increase the quantity and quality of feasible
solutions. The stopping MIP optimality gap of Gurobi is
set to 0.5%.

• The solver Bonmin (version 1.8.8) is used to compute
heuristic solutions of the original OTS problem. We
call the solver Bonmin using Julia package “AmplNL-
Writer.jl” (version 1.0.1). Bonmin has different nested
algorithms. We follow the developers’ advice and use
its branch-and-bound algorithm (setting attribute “algo-
rithm” to ”B-BB”) to solve the OTS problem. We also
set Bonmin attribute ”honor original bounds” to ”yes”.
All the other attributes remain at their default value.

• The maximum time for solving integer programs (includ-
ing Gurobi and Bonmin) is set to two hours.

• IPOPT [17] is used as a heuristic for the OPF problem. In
this work, we use IPOPT via the Julia package ”Ipopt.jl”
(version 1.1.0)

V. COMPUTATIONAL RESULTS

Table I shows the number and the ratio - between paren-
thesis - of instances for which the proposed DC OTS-based
heuristic was able to compute a feasible solution of the original
OTS problem. More specifically, it displays the results for
different combinations of the parameters L and K. It is
important to observe that our results are in agreement with
the findings in [10] when we do not impose any limit on
the parameter L (i.e., L = ∞). In fact, in this case, we
are able to retrieve feasible solutions to the original OTS
problem from DC OTS optimal solutions in only two out of
the thirty instances. This behavior is only partially alleviated
by considering a larger set K of candidate solutions.

However, when we consider tighter restrictions on the
number of switchable branches (i.e., smaller values of L),
the DC OTS-based heuristic is drastically more effective. The
performance obviously improves by increasing the size of set
K. Indeed, the DC OTS-based heuristic is able to compute a



feasible solution in 21 instances (combining results with both
L = 5 and L = 3).

TABLE I
NUMBER(RATIO) OF INSTANCES FOR WHICH DC OTS-BASED HEURISTIC

FINDS A FEASIBLE SOLUTION OF THE ORIGINAL OTS PROBLEM.

L = ∞ L = 5 L = 3
K = 1 2 (6.7%) 4 (13.4%) 8 (26.8%)
K = 3 3 (10%) 11 (36.7%) 14 (46.7%)
K = 10 5 (16.7%) 15 (50%) 19 (63.3%)

Table II displays the computational results of the heuristic
procedure herein proposed. More specifically, it reports the
best result of the procedure with the following parameters’
settings: L = 3, 5,∞ and K = 10. For all the benchmark
instances, listed in the first column, the table displays the
following statistics. The second column reports the value of the
optimal solution of the AC OPF problem, which is computed
with IPOPT solver. Columns 3–7 display the statistics of the
proposed heuristic algorithm. More specifically, column 3 re-
ports the value of the heuristic solution while columns 4, 5 and
6 report the computational time of the MIP solver to compute
the set K of DC OTS solutions, the time to solve the restricted
OPF problem and the total time respectively. The number of
DC OTS solutions obtained from the MIP solver (size of the
set K) is reported in column 7 (# sol). The third and the
second to last columns report the computational performance
of Bonmin, in terms of both objective function value and
solution time. Finally, the last column reports the percentage
difference (GAP) between the best solution computed by the
heuristic procedure herein proposed and Bonmin. “INF” means
that no feasible solution of the original OTS problem is found.
”TL” means that the time limit is reached, i.e., the solution
procedure hits the 2-hour time limit of computation. Therefore,
the solution process is halted and the best feasible solution
found within the time limit is reported.

Overall, the DC OTS-based heuristic is very fast. For many
instances, the total computational time is a fraction of a second
with very few cases (two) requiring a computational time that
is in the order of a couple of dozen of minutes. The DC
OTS-based heuristic is considerably faster than Bonmin. In
some instances, the speed-up factor is of several orders of
magnitude. Indeed, in eight instances of the considered set
Bonmin reaches the time limit of 2 hours of computation.
However, Bonmin provides better quality solutions, as also
highlighted by the GAP statistics.

In terms of solution quality, the DC OTS-based heuristic
performs reasonably well on instances representing typical
operating conditions. For only one of these instances, the DC
OTS-based heuristic fails to retrieve a feasible solution to the
original problem due to the infeasibility of the underlying DC
OTS problem. On average, the heuristic solutions are close to
the one provided by Bonmin, with an average gap of 0.4%.
On the set of instances with binding power demand, the DC
OTS-based heuristic is not always able to retrieve a feasible
solution, even for those instances, e.g., “case89 pagase api”,
for which the underlying DC OTS problem is feasible. Overall,

the performance of the DC OTS-based heuristic in terms of
the quality of solutions computed deteriorates with respect to
Bonmin, with an average gap between the two approaches that
amount to 4.5%, considering only the instances for which a
feasible solution is available for both the methods.

Finally, we observe that the DC OTS-based heuristic fails
to compute feasible solutions for half of the instances with
binding voltage angle difference limit because the underlying
DC OTS is infeasible. The reader should not be surprised
by such behavior. In the DC power flow approximation, the
voltage magnitude on each bus is set to 1, and the volt-
age angle difference is the only determinant for transferring
power along branches of the grid. Therefore, limiting the
voltage angle difference may be too restrictive thus turning
the problem into an infeasible one. For completeness, this
class of instances is also challenging for Bonmin. Finally,
we would like to highlight instances in which the DC OTS-
based heuristic outperforms Bonmin. Indeed, the DC OTS-
based heuristic computes comparable solutions to Bonmin
in “case30 ieee” and “case24 ieee rts sad” but in a much
shorter computational time. We also observe that for instances
”case30 as api” and ”case73 ieee rts sad”, DC OTS-based
heuristic finds significantly better solutions than Bonmin.
Indeed, Bonmin is not able to compute a solution of instance
“case30 pagase api” within the imposed time limit, while
the heuristic solution is even 44% smaller than the AC OPF
solution. This is a significant improvement and, once again,
highlights the potential benefit of modifying the grid topology
by switching off branches.

All in all, we can recommend considering the DC OTS
heuristic as a complementary option to Bonmin, which is
a state-of-the-art heuristic for OTS problems, to compute
feasible solutions to the original OTS problem, especially for
instances representing nominal operating conditions.

VI. CONCLUSION

In this paper, we study to what extent solutions of the DC
OTS problem can be used to retrieve feasible solutions of
the original OTS problem, thus motivating the development
of a fast DC OTS-based heuristic. We found that the key
for DC OTS-based heuristic to compute high-quality feasible
solutions of the original OTS problem is to restrict the number
of switched-off branches and use sub-optimal solutions of DC
OTS problem. With these easy-to-implement modifications,
DC OTS can be significantly more effective and together
with its unparallel speed, it can be a useful complementary
alternative to Bonmin, which can be deemed as a state-of-the-
art heuristic for the AC OTS problem.
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