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Abstract—In this paper, we consider observations from a
series of smart meters that are either completely or partially
aggregated, and our aim is to estimate the metering hierarchy.
We propose to estimate this important metadata through a
novel adaptation of the Chow–Liu tree learning procedure.
Our approach takes into account prior knowledge from a
set of dominance conditions that are easily elicited from the
consumption data. In addition to more traditional correlation-
based approaches we also introduce a distance-correlation-based
method for detecting edges. Synthetic experiments show the
benefits of distance correlation and the dominance conditions in
recovering tree structure. The paper concludes with a real-world
application of the method to infer energy metering hierarchies
in a library building.

Index Terms—smart meter, metadata, spanning trees and
arborescences, distance correlation, aggregation

I. INTRODUCTION

Modern buildings often incorporate multiple energy sensors
which are typically laid out according to a hierarchy [1]. For
instance, we might have a main meter at the “edge” of a
building, and then meters on individual floors, or associated
with risers. The positioning and relationships between these
sensors form an important class of metadata which enables
us to add context to observations of energy consumption
associated with the meters. Figure 1 provides an example of
how such metadata might be canonically recorded as a wiring
diagram. We also observe, associated with each meter, a time
series of energy consumption from these meters. Considerable
work is required to encode the information contained in the
wiring diagrams into a taxonomy, however, and in many
cases the wiring diagram may not even be accessible to the
practitioners. Our aim in this paper is to estimate the hierarchy
of the meters without access to ground-truth knowledge on the
wiring diagram—that is, we use the data itself to directly infer
the aggregation tree.

One of the barriers to effective inference of metadata is
the heterogeneity of the environments that one can face when
implementing monitoring solutions. For example, a university
campus is radically different from a steel works. To aid with
this task, recent work [2], [3] has considered the construction
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Fig. 1. Left: example of a wiring diagram for meter installation. Right:
example of electrical consumption across meters within a hierarchy—can we
infer the meter hierarchy from the consumption data directly? Under what
situations can we expect to estimate this structure accurately?

of a unifying schema for building metadata. While standards
are important to develop, in practice, energy managers, or
the systems they commissioned may not store data alongside
meaningful identifiers—identifiers that are understandable by
a human. For example, in our case study, meters are asso-
ciated with an ID “MC065-L04/M13R45099”, instead of
“Library, Main-Riser 3”.

Converting metadata into a structured form via a schema
is known as metadata normalization [3]. Although this is an
important task, it is not quite the objective of the present paper.
Instead, we focus on a somewhat lower-level task, i.e., can we
recover the relationships between meters in absence of any
labelled data on these relationships? Specifically, we present
a range of methods that can automatically (without manual
labeling) infer metadata related to the consumption hierar-
chy directly from the consumption patterns. Our approach is
statistical in nature, predicating on two possible measures of
association between meters. Given this statistical approach,
it is prudent to verify the methods in a simulated setting
in addition to a real-world application. For the former, we



consider a range of models aggregating dependent and non-
Gaussian data over random trees, and for the latter we consider
a case study relating to the library building on a university
campus for which we have ground-truth data via the wiring
diagram.

A. Statistical Background

The aggregation of data is often performed deliberately, for
instance, to compress or to enhance the interpretability of data.
Knowledge of aggregation hierarchies is known to be useful in
a prediction setting; for example, Hyndman et al. [4]–[6] use
knowledge of the aggregation hierarchies to more accurately
model and forecast future observations. When we observe data
that are aggregated but do not have access to the aggregation
hierarchy, the estimation of such a hierarchy forms a structure
learning task over the space of feasible aggregation trees.

Existing literature on hierarchical time series typically as-
sumes that the hierarchy is known. For example, van Erven and
Cugliari [7] represented electricity demand at increasing levels
of aggregation such that hierarchical time series prediction
can be used to 1) improve the forecasts and 2) to ensure
that the forecasts are aggregate consistent (i.e., they add up
nicely), cf. [4], [5], [8]. Chow and Liu [9] demonstrated how
to recover tree models using the maximum-weight spanning
tree (MWST) with mutual information as edge weights. More
recently, Quinn et al. [10], [11] proposed to use Edmonds’
algorithm with directed information for the estimation of di-
rected trees, while Tan et al. [12] looked at bounding the error
for estimating tree-structured Gaussian graphical models with
a Chow–Liu approach. For more general graphical models
[13], recent innovations focus on efficient model selection
via regularization [14], including harnessing prior knowledge
about the absence of edge structure [15]. In power systems
research, Liao, Weng et al. [16], [17] used the Chow–Liu
algorithm to reconstruct power grid topologies.

B. Meter Aggregation Trees

To formalize the problem, let x(j)t denote the observations
on meter j at discretely-indexed time points t = 1, . . . , n, for
simplicity we assume that n is the same for all j = 1, . . . , J
meters. We further assume that the interval between mea-
surements is the same across all meters. Let the meters be
associated with vertices V = {1, . . . , p} in a graph G(V,E)
with edge set E. We wish to find a tree structure over which
the measurements are aggregated, i.e.,

x
(j)
t =

∑
i∈child(j)

x
(i)
t , (1)

where child(j) = {i : (i, j) ∈ E}. An example of such a tree
and its edge set is given in Figure 2. Technically, the trees we
consider are arborescences (rooted directed trees), and these
represent a subset of the directed acyclic graphs that could
feasibly be constructed with vertex set V .

We assume that the disaggregated consumption is present
on the leaves of the tree (red meters in Figure 2). We then
consider two different observational settings:

x
(1)
t

x
(3)
t x

(2)
t

x
(4)
t x

(5)
t

Fig. 2. An example of a meter hierarchy where x
(1)
t is the root meter

and x
(3)
t , x(4)t and x

(5)
t are the leaf meters. The signals are aggregated

hierarchically such that x(1)t = x
(3)
t + x

(4)
t + x

(5)
t and x(2)t = x

(4)
t + x

(5)
t .

Note that some of the meters may be unobservable in real life.

1) Every meter on the network is observed, e.g., associated
with a time series. For instance, in Figure 2 we would
observe the series for all five meters.

2) We only observe time series for a subset of meters. In
this case, the series may not add up exactly in that the
parents consumption may appear to be different from its
child. The differing amount is due to unobserved child
meters.

C. Our Contributions

This paper contributes to the literature in two key ways.
First, we demonstrate how a range of correlation-based ap-
proaches can be used to infer smart meter hierarchies, and the
effectiveness of these procedures on real-world data. Second,
we provide a technical contribution that extends existing
tree-learning methods with a specific focus on inference for
aggregation hierarchies.

Given our interest in learning trees, we naturally focus on
Chow–Liu type algorithms [9]. However, instead of estimating
the mutual information directly, we use the correlation to
determine edge costs which can then be fed to either Kruskal’s
or Edmonds’ algorithm to compute the final tree estimates.
Importantly, we propose two extensions to this approach:

1) We consider the use of distance correlation [18], rather
than correlation, as a measure of dependence between
time series. To our best knowledge, this is the first
application of distance correlation to MWST.

2) We introduce a straightforward dominance condition
onto the hierarchy which requires child meters to be
smaller in magnitude than their parents.

The motivation behind these extensions is to improve the
robustness of the procedure when faced with either non-
Gaussian, or non-linear relationships between the meters.
The dominance condition is motivated by our application to
energy time series, whereby the non-negative nature of the
observations allows us to very quickly rule out infeasible
edges.

Section 2 develops the methodology including the domi-
nance and distance correlation adaptations. Section 3 presents
a range of synthetic experiments to verify that our method



can recover aggregation trees under a range of conditions,
while Section 4 presents a case study on data obtained from
a university library.

II. METHODOLOGY

An important contribution to the tree learning literature is
that of Chow–Liu [9] who demonstrate that the maximum-
likelihood estimate of the tree structure for a discrete distri-
bution is given by minimizing the K-L divergence of a graph
restricted to trees (with distribution Q). Extending this idea
to the Gaussian setting, Tan et al. [12] consider the K-L di-
vergence between a tree-structured Gaussian graphical model
and the normal distribution parameterized by the empirical
covariance, i.e., P̂ (x) = N (x; 0, Σ̂) such that

Ê = arg min
EQ:Q∈PN (RJ ,TJ )

DKL(P̂ ‖ Q). (2)

This is equivalent to maximizing the sum of mutual infor-
mation between each meter and its parent and therefore we
can obtain the optimal tree using a MWST algorithm. In
general, it is not efficient to compute mutual information
empirically when the number of samples is small (as these
are typically based on discretization), so an alternative is to
assume Gaussian distribution, which yields [12]:

I(x; y) = −1

2
log
(
1− ρ(x, y)2

)
, (3)

where I denotes mutual information and ρ(x, y) denotes the
correlation between x and y. Since I is monotonic with respect
to ρ2, the simplest algorithm is to feed the squared correlation
matrix into a MWST algorithm.

A. Distance Correlation (dCor)
In many situations, the Gaussian assumption previously

discussed may not hold. However, we may still wish to use
the Chow–Liu type argument to obtain a tree estimate. In
this setting we propose to use the distance correlation, which
mimics the construction of a correlation but uses an inner
product form which looks at the pairwise distances between
all points observed. Recall that the sample correlation for
x, y ∈ Rn has the form

ρ(x, y) = σ(x, y)(σ(x, x)σ(y, y))−1/2, (4)

where σ(x, y) = 〈x − x̄, y − ȳ〉/n. The correlation only
measures linear independence, not statistical independence. A
better measure of the latter can be obtained via the sample
distance correlation [18], [19], defined as

ρd(x, y)2 = σd(x, y)2/σd(x, x)σd(y, y), (5)

where σd(x, y)2 = 〈CXC,CY C〉F /n2, C is the centering
matrix, and Xij = |xi − xj | and Yij = |yi − yj | for
i, j = 1, . . . , n are the pairwise distance matrices for x and
y, respectively. In particular, 0 ≤ ρd(x, y)2 ≤ 1 with equality
to 0 if and only if x and y are statistically independent [18].
Fast algorithms for distance correlation are available from [20],
[21]. To create the optimal tree using distance correlation,
we simply feed the distance correlation matrix into a MWST
algorithm.

B. Graph Inference with Dominance Constraints

Given the aggregation property of the tree hierarchy, and
under the assumption that x(i)t ≥ 0, no meter can be the
parent of meters with larger readings. Therefore, under such
conditions it is natural to define a dominance matrix as:

domij = 1(x
(i)
t ≥ x

(j)
t , ∀t). (6)

Next, we remove all non-dominant edges before graph estima-
tion. In doing so, we reduce the probability of including the
wrong edges in the graph. If a directed graph is not required,
we can use dom|domT instead. Here | denotes the logical OR,
i.e., we symmetrize the dominance matrix.

TABLE I
COMPARISON OF THIS WORK AND PREVIOUS WORK.

Algorithm Input Matrix Output Tree
Chow and Liu [9] [I(xi;xj)]

p
i,j=1 Undirected

Mantegna [22] [
√

2(1− ρ(xi, xj)]pi,j=1 Undirected
Quinn et al. [10] [I(xj → xi)]

p
i,j=1 Directed

This work ρ2 or ρ2d matrix with dom Either

C. Maximum Spanning Tree with Distance Correlation and
Dominance

We propose to use the meter with the largest cumulative
reading arg maxi

∑n
t=1 x

(i)
t as the root meter. For an undi-

rected tree, the root is not so important; however, for our
aggregation tree, we wish to disaggregate from the root down
to the leaves. The goal is thus to find a directed rooted
tree (arborescence) based on our measures of dependence
(either squared correlation, or distance correlation). Edmonds’
algorithm is a standard approach for this task, with efficient
O(p log p+ |E|) computation [23]. It is worth noting that with
our dominance conditions in place, the number of possible
edges |E| can be drastically reduced if

∑
ij domij � p2. If

we do not have such conditions, then Edmonds’ algorithm
will achieve complexity O(p2). For comparison purposes,
we also run our experiments with the classical Kruskal’s
algorithm which simply performs a greedy search based on the
dependence weights, followed by a breadth-first search from
the root to turn it into a directed tree (polytree). Pseudo-code
for replicating the method is given in Algorithm 1.

To summarize, we consider eight methods in total, includ-
ing all combinations of either: squared correlation (SC) or
distance correlation (DC); undirected (polytree, P) or directed
(arboresecence, A); and either dominance (D) or no dominance
conditions imposed. In the experiments that follow, we identify
the methods by combinations of the above acronyms, e.g.,
SCAD corresponds to Squared Correlation + directed Ar-
boresecence + Dominance conditions imposed, whereas SCP
correspond to Squared Correlation + undirected Polytree (no
dominance conditions imposed).



Algorithm 1 Maximum Spanning Tree with Dominance
Input: X ∈ Rn×k, algo ∈ {cor2, dCor}, directed ∈ {T, F}
Output: tree

1: Compute dom from X using Eq. (6)
2: C = −algo(X) // negation turns MinST into MaxST
3: if directed then
4: C(¬dom)← 0
5: tree← Edmonds(C)
6: else
7: dom← dom|domT // see Subsection 2.2
8: C(¬dom)← 0
9: tree← BFS(Kruskal(C)) // from the largest meter

10: end if

III. EXPERIMENTS

To investigate the performance of our methods, we con-
struct a simple testbed whereby we simulate a random tree
with exactly p meters according to a Galton–Watson process,
with branchings governed by the discrete uniform distribution
U{2, k}. Here k is the maximum number of children for each
meter, and for reconstructability, we exclude the possibility of
having meters with only a single child. For each leaf of the
tree, we simulate a random signal and then aggregate this over
the tree according to X = XleafA where A is a binary matrix
with entries:

Aij = 1(leaf(i) ∈ path(root, j)). (7)

As an example of use, please refer to the aggregation tree in
Figure 2. It can be readily verified that:x11 . . . x15

...
. . .

...
xn1 . . . xn5


︸ ︷︷ ︸

X

=

x13 x14 x15
...

...
...

xn3 xn4 xn5


︸ ︷︷ ︸

Xleaf

1 0 1 0 0
1 1 0 1 0
1 1 0 0 1


︸ ︷︷ ︸

A

.

(8)
We investigate two scenarios, the first represents very ide-

alistic settings where data is simulated independently and
identically across time, with the same distribution for each
leaf meter. In these cases, the focus is on the performance
of the method as a function of the number of data point
n and the structure of the graphs, which we vary through
the maximum number of children k. For each setting of the
experimental parameters, we simulate 2,000 random trees,
and compare the estimation performance using Matthews’
correlation coefficient [24] between the estimated trees and
the true trees,

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
. (9)

where tp, tn, fp, and fn are the number of true positives, true
negatives, false positives, and false negatives, respectively. The
MCC has a similar interpretation as a correlation coefficient, 1
is the best fit, while a value of around 0 indicates the estimated
tree is not informative.

A. Synthetic Data Generation

Since real meter data may possess occasional outliers that
result in heavy-tailed distributions, we should be careful to
consider a range of processes when evaluating our proposed
methodology. We therefore consider a family of stable dis-
tributions that can mimic these scenarios—with the Gaussian
setting forming an edge case.

1) Symmetric α-Stable Distribution: This distribution we
simulate from is formally defined by the characteristic function
E[eiuX ] = exp(−γα|u|α) where 0 < α ≤ 2 and γ > 0 is a
scale parameter [25]. We write X ∼ SαS(γ) if X follows
the symmetric α-stable distribution. S2S(γ) is the Gaussian
distribution N (0, 2γ2), whereas for α < 2 the tail distribution
approximately follows the power law P (X > x) ∝ x−α. In
general, the stable density is not expressible in closed form,
but there are a few exceptions including α = 1 (Cauchy),
α = 1.5 (Holtsmark), and α = 2 (Gaussian).

2) Fractionally Integrated Process with SαS Innovations:
The fractionally integrated FI(d) process is similar to its non-
fractional counterpart except that the differencing parameter
d ∈ R is fractional:

(1−B)dxt = εt. (10)

Here xt is a time series we wish to simulate, εt are the
i.i.d. innovations, and B is the backshift operator. In this paper,
the innovations are assumed to be SαS, which in turn requires
two convergence conditions: 1 < α ≤ 2 and α(d − 1) < −1
[26]. The advantage of fractional d is that when d > 0 it
can model long-range dependence where the autocorrelation
decays slower than exponentially, and the degree of long-range
dependence is captured by d. To simulate xt, multiply (10) by
(1 − B)−d on both sides then use the binomial expansion
to get xt =

∑∞
j=0 cjεt−j with coefficients c0 = 1 and

cj = Γ(j + d)/(Γ(d)Γ(j + 1)) for j ≥ 1 [26]. To make this
infinite sum computable, we truncate the sum as follows:

xt =

n−1∑
j=0

cjεt−j . (11)

B. Experiment 1: Complete Observations

Consider Xi ∼ FI(d) with SαS(1) innovations for each
leaf i of tree T . We generate n samples each then subtract
the global minimum to ensure that all data are non-negative.
This is then aggregated via (7) to produce the observed data.
We use the following parameters: α ∈ {1.5, 2}, with and
without long-range dependence (d = 1 − 1/α and d = 0),
n ∈ {10, 20, 50, 100, 200, 500}, p = 31, k = 3, with and
without dominance, with 2,000 experiments per scenario, via
Algorithm 1. When not using dominance, we remove lines 1,
4, 7–8 from Algorithm 1. The results are shown in Figure 3.
Results demonstrates that methods with dominance are clearly
best, and squared correlation comes out on top for α = 2
(Gaussian) whereas distance correlation comes out best for
α = 1.5 (Holtsmark). Furthermore, we can see that α = 1.5
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Fig. 3. Symmetric α-stable distribution simulation results. Plots of MCC vs n for all methods with shaded confidence intervals (1st–99th percentile). Left:
no long-range dependence. Middle: with long-range dependence. Right: with long-range dependence and 16 missing meters. Top: α = 1.5. Bottom: α = 2.

is harder than α = 2 and data with long-range dependence is
harder than those without.

To assess the robustness to different tree shapes, we also
look at different k-restricted trees and tabulate their relative
rankings and MCCs for each algorithm as k varies from 2 to
5. The resulting rankings of the methods are relatively stable,
as can be seen from the means and standard deviations in
Tables II and III.

TABLE II
MCCS FOR α = 1.5, n = 500.

Means (Standard Deviations)
Method k = 2 k = 3 k = 4 k = 5

SCP .863 (.115) .847 (.122) .832 (.126) .803 (.134)
SCA .729 (.129) .742 (.127) .744 (.127) .720 (.132)
DCP .887 (.098) .871 (.106) .847 (.113) .806 (.120)
DCA .764 (.117) .774 (.116) .763 (.118) .728 (.123)
SCPD .877 (.107) .871 (.110) .866 (.112) .852 (.117)
SCAD .912 (.073) .911 (.074) .909 (.076) .896 (.084)
DCPD .904 (.090) .898 (.097) .889 (.100) .868 (.107)
DCAD .936 (.057) .939 (.056) .937 (.057) .925 (.065)

C. Experiment 2: Missing Data

This experiment is motivated by real-life situations where
a number of meters are unobservable. Tree generation is
identical to Experiment 1 except that we randomly remove
16 meters after aggregating from a random tree of size 47,
such that only 31 meters are available for reconstruction. We
conduct experiments for α ∈ {1.5, 2}, n = 500, p = 47,
k = 3, with 2,000 experiments per each α. The results are
given in Figure 3 show the importance of the dominance
condition in maintaining a reasonable level of performance,

TABLE III
MCCS FOR α = 2, n = 500.

Means (Standard Deviations)
Method k = 2 k = 3 k = 4 k = 5

SCP .872 (.077) .866 (.080) .839 (.080) .801 (.086)
SCA .764 (.093) .781 (.086) .765 (.084) .733 (.089)
DCP .860 (.081) .849 (.084) .818 (.085) .777 (.090)
DCA .752 (.097) .765 (.090) .745 (.089) .708 (.094)
SCPD .887 (.072) .890 (.073) .874 (.072) .853 (.076)
SCAD .918 (.057) .922 (.056) .919 (.055) .904 (.057)
DCPD .876 (.077) .876 (.079) .858 (.078) .838 (.080)
DCAD .911 (.060) .915 (.058) .910 (.058) .896 (.060)

where we see SCAD and DCAD consistently outperforming
the other methods. Generally in the setting with missing meters
we should not expect to consistently recover the true graph;
however, the proposed dominance condition still enables us to
recover the majority of the graph structure in an acceptable
manner (peaking around MCC ≈ 0.85).

IV. ESTIMATION OF METERING HIERARCHY

In this section, we present a real-world application of
our aggregation tree estimators. The task is based on the
observations of 20 meters measuring electricity consumption
at different points throughout a university library.

A. Meter Data

The building we consider serves as the main library for a
university campus (Figure 4). It has been extended in various
stages over the years, with the original building dating back
to the construction of the campus in the 1960’s. The metering
of the building has also developed over the years. Historically



Fig. 4. An image of the library studied in this paper. The majority of the
building is brick construction (circa 1964).

only the consumption at the edge of the building had been
monitored. The historic data (more than 10 years old) was
observed via dial meters; however, more recently the university
has transitioned to digital metering with much smaller meter
constants. The meters themselves are queried by data loggers
(associated with ID’s as mentioned earlier). These data loggers
monitor the consumption within each 10 minute interval,
reporting the number of times C kWh of energy has been
consumed in this interval, where C is the meter constant. With
the digital meters C can typically be very small; however,
there will still be some quantization error at this stage of data
collection.

Due to the infrastructure in place to query and store data
from the sensors there are common outages which results in
sporadic periods of missing data for many years of measure-
ment. For this reason, we focus our analysis in 2021, which
was the cleanest subset of data we could easily extract for
this case study. As the university was periodically closed
due to COVID-19 response the usage pattern, and therefore
consumption across the library may therefore not represent a
standard operational year. While this would be a challenge
if we were interested in drawing insights on the patterns of
consumption, it should not hinder our analysis here which
relates to the hierarchy of meters themselves—we should not
expect the metering hierarchy to change over the course of
our analysis, or indeed from year to year (unless new meters
are installed). Our observations are gathered every 10 minutes
for the same 20 meters across a period of 105 days. In total,
we have 151,200 observations.

B. Tree Estimation Procedure

To perform the analysis, we consider 105 days worth of data
and build a separate tree for each day. We repeat this procedure
for all variations of the method, and report the recovery
results relative to the ground-truth tree, as encoded via the
wiring diagram. To remove the strong periodic component,
we perform the analysis with and without differencing.

It is worth noting that we perform the analysis with and
without a set of five virtual meters, which allows us to consider
a more complex hierarchy. The use of such virtual meters is

justified based on the wiring diagram (see Figure 1), where
we would like to measure consumption when meters are
combined, but given the meter placement these profiles are
not physically measured. In the analysis below, we contrast
the performance of the methods with and without these virtual
meters.

C. Daily Analysis

In this section we present a summary of the results taken
across each day of measurements. The results of the study
are presented in Figure 5. The results align with the synthetic
experiments, except that it is harder to recover the tree with
real data, for example the best performing method DCAD
typically achieves an MCC of around 0.6–0.7 at a daily level.
As expected, when we remove the virtual meters (which can
be seen as meters 15–20 in Figure 1) the recovery of the
tree becomes more difficult. This is likely due to further
consumption occurring between the parent and child meters,
so the aggregation is not tight. In general we see that the
directed tree search wins out over the undirected tree, and the
dominance constraints prove useful. Significantly, this allows
the dominance aware methods to identify the correct root
meter with high probability. Results on the non-differenced
data (i.e., consumption profiles seen in Figure 1) are typically
slightly worse than on the differenced data which we present
here. The general pattern of performance is similar however,
with DCAD and SCAD winning the comparison.

SCP SCA DCP DCA SCPD SCAD DCPD DCAD
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Fig. 5. Boxplots of performance as measured by the MCC for the differenced
data. Top: performance without virtual meters. Bottom: performance with
virtual meters.
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D. Composite Analysis

Given that we do not expect the hierarchy to evolve over
time, it is useful to further summarize the daily results. For
visualization purposes here we plot a tree estimated on the
whole data set, i.e., instead of building one tree for each day,
we estimate a single tree on the whole dataset. To assign some
measure of confidence in the estimated edges we then weight
the edges by the empirical probability of that edge being
present across each day (cf. [27], [28]). In this application,
we can easily elicit the dominance conditions, and to illustrate
the effectiveness of these constraints we plot the trees with
and without these conditions in Figure 6. Results show that
dominance is very helpful for the reconstruction. The trees
presented here are based on distance correlation; however,
similar results are achieved using squared correlation. The
results here include the virtual meters which help trace out
the hierarchy (i.e., the intermediate nodes) in the tree.

We remark that while the tree in this example is relatively
small, it is still a challenging problem as there are effectively
many missing meters in this application, i.e., consumption can
occur between meters in the network.

V. CONCLUSION

In this paper we have investigated several ways to estimate
aggregation trees from smart meter data. We have proposed
a novel combination of methods, and importantly introduced
constraints based on dominance conditions to the tree-learning
algorithm. We have also extended Chow and Liu [9] style
approaches by considering the use of distance correlation
rather than correlation. In general, we find that the DCAD,
or distance correlation + directed arboresecence + dominance
conditions imposed, performs the best; however, our studies
show the biggest difference in performance is due to the
dominance condition. This makes sense in both theory and
practice, as it allows one to easily identify feasible parent-child
relationships. The real-world results verify this benefit and

show that on real smart-meter data it is feasible to recover good
estimates of metering hierarchies purely from the consumption
data itself.

It is important to reflect on some of the weaknesses of
these methods. In general, the problem of reconstructing the
hierarchies is very difficult, and this is especially the case when
the aggregation relationship is not tight, i.e., the child meters
do not add to something close to the parent meters. In practice,
this may often happen, for instance, we may have a building
that has meters on several, but not all floors. The aggregate
consumption across all floors is thus not simply the sum of
the individually metered floors. In the case study, we have an
analogous situation. To solve this problem, we can introduce
virtual meters in strategic places; however, in our example we
used prior knowledge to place these virtual meters (based on
the wiring diagram). In reality, this may not be possible. As
such, our methods should be considered highly experimental—
we believe they provide significant utility, but only when one
suspects the aggregation hierarchy is tight. In a more advanced
system, one could plausibly use further metadata about the me-
ters to direct the tree-estimation procedure; however, given the
heterogeneous nature of metering installations, we preferred to
investigate the performance of simple tree learning procedures
at this stage. Another topic for future research is to use the
expected dominance, or domij = 1(E[sign(x(i)−x(j))] ≥ 0),
which allows more leeway for missing data. One further
application of the tree-learning algorithms proposed could be
to improve energy consumption forecasting. Once we have a
good grasp on the aggregation structure, we can use this to
help reconcile time-series forecasts of consumption and the
meter level, including at a highly granular scale, for instance,
individual room/floor consumption.
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