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Abstract

Global warming has focused attention on how the world produces the energy
required to power the planet. It has driven a major need to move away from
using fossil fuels for energy production towards cleaner and more sustainable
methods of producing renewable energy. The development of offshore wind-
farms, which harness the power of the wind, is seen as a viable approach to
creating renewable energy but they can be difficult to design efficiently. The
complexity of their design can benefit significantly from the use of computa-
tional optimisation. The windfarm optimisation problem typically consists
of two smaller optimisation problems: turbine placement and cable routing,
which are generally solved separately. This paper aims to utilise selection
hyper-heuristics to optimise both turbine placement and cable routing si-
multaneously within one optimisation problem. This paper identifies and
confirms the feasibility of using selection hyper-heuristics within windfarm
optimisation to consider both cabling and turbine positioning within the
same single optimisation problem. Key results could not identify a conclu-
sive advantage to combining this into one optimisation problem as opposed
to considering both as two sequential optimisation problems.
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1. Introduction

Globally there is a need to move away from fossil fuel and carbon-
producing energy sources towards cleaner and more sustainable methods
of powering the world. This has led to the increased construction of large-
scale offshore windfarms, which utilise the faster wind speeds found at sea,
for greater and cleaner energy production. However, renewables are typically
more expensive than their carbon dioxide emission generating counterparts,
and this can create a barrier to investment within the industry. Increasing
the energy produced whilst minimising the cost of production is key to re-
ducing entry costs and attracting further investment into renewable energy.
The creation of windfarms can present significant design challenges to ensure
maximised production whilst minimising the cost of the farm. The develop-
ment of a windfarm requires the consideration of several sub-problems and
the need for them to be addressed. These include the interference impact of
other turbines, turbine placement taking account of expected wind speeds,
inter-turbine cabling and the connection to an external grid or substation.
Each of these areas are of fundamental importance. Increased power output
or better optimisation of cabling can result in a significant reduction to po-
tential lifetime costs which, could have the ability to make renewable energy
more competitive than traditional fossil fuel sources.

The majority of work to date in the area of offshore windfarm design has
been divided into two steps:

(1) Turbine placements subject to maximisation of power production and
consideration of other constraints such as interference between tur-
bines and minimum separation distances.

(2) Once turbine positions are determined, the cabling layout between
turbines is optimised with the goal of minimising costs and power loss
subject to constraints such as cable capacity and layout constraints.

Development of these two steps has largely been covered using mixed-
integer linear programs with the inclusion of heuristics in some areas such
as a matheuristic (Fischetti, 2017) and hyper-heuristics (Li et al., 2017).
Traditionally, the reduction in cabling cost is limited by the static posi-
tioning of the wind turbines from step (1). However, combining both steps
(1) and (2) could yield lower cabling costs within the windfarm whilst also
considering other objectives such as maximising power production. Cabling
can account for around 4-5% of the total capital expenditure for a typical
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windfarm construction (Cazzaro et al., 2020); and it can be as high as 18%
for offshore windfarms (Fuglsang and Thomsen, 1998). Therefore, any po-
tential reduction in this cost could be significant. This opportunity lends
itself toward the use of a hyper-heuristic approach which would allow for
a range of single low-level heuristics (LLH) to implement adjustments to a
windfarm’s turbine positions and cabling layout.

One of the main aims of this work is to investigate if the turbine place-
ment and cable routing optimisation problem can be combined and whether
such an approach is more beneficial than solving them sequentially (turbine
placement followed by cable routing). To achieve this, several optimisation
algorithms were developed using selection hyper-heuristics combined with
various solution acceptance criteria (move acceptance) and applied to both
a sequential model and a simultaneous model. In this paper, these models
are referred to as either sequential (one after the other) or simultaneous
(solving both at the same time).

The paper is structured as follows: Section 2 examines previous literature
and research within the area of windfarm optimisation and selection hyper-
heuristics. Section 3 defines the windfarm problem and gives a mathematical
formulation alongside visual examples. Section 4 presents the methodology
used. Section 5 presents the results when applied to real-world windfarm
instances and provides computational results alongside discussion. Finally,
section 6 concludes against the overall aims and objectives of this study and
provides recommendations for future work.

2. Related Work

The considerable potential to increase output whilst reducing cost is re-
flected in the wide body of research addressing the optimisation of a wind-
farm’s layout. Much of the research focuses on one aspect of a windfarm,
either a turbine layout or inter-array cable routing; and very limited atten-
tion has been posed on the combination of these two aspects. Wu et al.
(2014) and Hou et al. (2017) developed metaheuristic approaches to solve
the combined problem. More in particular, Wu et al. (2014) combined a
genetic algorithm for the placement of wind turbines with an - inner - ant
colony optimisation routine to assess the associated “optimal” cabling costs.
Hou et al. (2017) developed a particle swarm optimisation approach to solve
the combined problem. However, some Most of the research has considered
both key components in sequence with turbine placement occurring first
followed by cable routingMarge et al. (2019). Research differs in terms of
the constraints considered (such as sound, wake or terrain) and objectives
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desired (cost, profit, power or efficiency). Some additional work has ex-
plored areas such as substation placement (Fagerfjäll, 2010) and the use of
machine learning to train a model for the faster computational examination
of potential siting locations (Fischetti, 2017).

Mixed-integer linear programming (MILP) is a popular method for de-
riving an optimal turbine or cabling layout. Fagerfjäll (2010) applied MILP
to optimise an onshore windfarm. Two models were developed, a produc-
tion model (for turbine placement) and an infrastructure model (for ca-
bling) which would be implemented upon the production model’s result.
This linear programme aimed to maximise production and revenues from
the windfarm. Within the production model, constraints on the MILP in-
cluded minimum separation distances and consideration of the production
loss between turbines due to the wake effect. These models were contrasted
to commercial heuristics-based optimisation software and showed the poten-
tial to yield significantly higher production values (40% or so higher). The
infrastructure model for inter-array cabling introduced Steiner nodes within
the spanning trees, allowing for shorter cable pathways when multiple tur-
bines were nearby. However, because the two models were not combined,
there is limited scope for providing a true optimal windfarm layout. Fur-
thermore, only two types of cables were considered within the inter-array
cabling, whereas in real-world scenarios several types exist and are in use.
Similarly, a MILP was implemented by Fischetti and Pisinger (2018) to the
cabling aspect in order to determine an optimal cable path between tur-
bines. An initial solution was developed and applied using a commercial
MILP solver and thereafter a matheuristic scheme was applied iteratively
to develop the solution. Fischetti and Pisinger (2018) found that using
both these methods combined typically outperformed the use of a sepa-
rate heuristic or MILP approach. But, the performance of the subsequent
heuristics depended heavily on the initial MILP and what might work for
larger projects was not always applicable to smaller windfarms with fewer
turbines to place. A more unique MILP model was proposed by Donovan
(2006); this required a minimum productivity requirement (MPR) for any
potential turbine location. The MPR identified the required power produc-
tion to justify investment into a turbine and ensure initial costs were paid
back within the specified required payback period. Including this constraint
within the model ensures that a windfarm can be profitable, however, overall
production may be sacrificed in the pursuit of a minimum cost layout.

Saavedra-Moreno et al. (2011) used an evolutionary algorithm to opti-
mise the positioning of turbines based on factors such as orography, wind
conditions, obstacles and cost of installation. Cazzaro et al. (2020) also
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adopted a heuristic approach, but, they concentrated upon the cable routing
problem. With a focus on fast heuristics that can scale well, various meta-
heuristics were used, including sweep multi-start, simulated annealing, tabu
search, variable neighbourhood search, ant algorithm and genetic algorithm.
These were applied to both test and training instances with tabu search and
variable neighbourhood search reaching near-optimal values within the test
set. Metaheuristics have also been applied to a floating offshore windfarm by
Lerch et al. (2021). They adapted a particle swarm optimisation model to
develop the inter-array cable layout subject to minimisation of the following
costs: acquisition, installation and energy loss costs. Additional constraints
included reliability assessments for electrical components insofar as floating
windfarms have increased complexity with cables undergoing high mechani-
cal load due to sea conditions. The model successfully avoided cable crossing
and also produced shorter cable distances and costs compared to the refer-
ence model used. Bauer and Lysgaard (2015) noted that the cabling routing
decision is the same as a vehicle routing problem and thus built a heuristic
algorithm for cable layouts based on the Clarke and Wright savings heuristic
for vehicle routing. A planar open savings heuristic was developed which
considered merging two routes into one and at each iteration chose to merge
with the greatest saving subject to capacity constraints. This was compared
to a hop-indexed integer programming formulation and found the heuristic
approach was within 2% of the optimal layout. However, the research only
focused on a maximum of two cable types which, whilst representative of the
real-world sites used within the paper, may have limited wider application.
The reader is directed to (Wilson et al., 2018) for more heuristic techniques
applied to windfarm layout optimisation problems.

This paper focuses on utilising the latest developments in selection hyper-
heuristics that focus on turbine positioning and cable layouts at the same
time within one optimisation problem as opposed to one after the other.
Cowling et al. (2000) defined hyper-heuristics as ‘heuristics to choose heuris-
tics’ and used a range of selection hyper-heuristics to schedule a sales sum-
mit. Selection hyper-heuristics consist of two key elements, selection method
(SM) and move acceptance (MA) (Kheiri, 2020). A move acceptance defines
if a solution is accepted or not and these methods are either stochastic if
there is a probability of accepting, or otherwise deterministic by nature. An
example of a MA is ‘improve or equal’ whereby if a new solution’s objec-
tive value is equal to or better than the current best, it is accepted and
becomes the new best solution. Selection methods then aim to diversify
the range of solutions searched by choosing the optimal low-level heuristic
based on set criteria or methodology (Drake et al., 2020). Li et al. (2017)
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pursued a multi-objective approach utilising nine selection hyper-heuristics
to control a set of low-level metaheuristics. These metaheuristics consisted
of three multi-objective evolutionary algorithms. A variety of move accep-
tance methods were also considered including only-improve, great deluge
and all-acceptance. Findings showed that selection hyper-heuristics could
exploit the use of multi-objective metaheuristics and provide statistically
significant performance compared to single objective use. Further work,
however, would need to include a greater number of move acceptance meth-
ods and the application to other components of windfarm design such as
inter-array cable routing.

The literature reviewed shows a significant and well-recognised gap in
the optimisation of an optimal windfarm design. Separation of the main
two stages (1) turbine placement and (2) cabling layout design can result
in a missed opportunity to consider the potential cable costs alongside the
turbine costs for a new position. Cabling between turbines (inter-array)
and a substation or external grid can be a significant cost factor within any
offshore windfarm; there may be benefits to it being considered alongside
the placement of wind turbines as suggested by Cazzaro et al. (2020). The
main methodology used within previous research is in the application of
mixed-integer linear programming and heuristics with only a small amount
of work considering the role of selection hyper-heuristics. This area is the
focus of this paper methodology.

3. Problem Description

Offshore windfarm design is a complex and challenging optimisation
problem, with a large number of possible layouts and varying objectives.
Several areas of design need to be addressed including turbine placement,
cable routing and substation placement. This paper focuses on two areas of
the design phase: turbine placement and cable routing. Previous research
shows the process of optimising these two areas has typically been done se-
quentially, in the order of turbine placement and then cable routing second.

• Turbine Placement Optimisation Problem: The placement of
turbines aims to determine a feasible selection of locations from which
the power production of the windfarm is maximised subject to various
constraints. A considerable impact upon potential production is the
wake effect between turbines. As wind flows through a turbine, the
kinetic energy of the wind is disrupted and results in a slower wind
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speed, reducing power production for any turbines downstream. Re-
duction of the wake effect is therefore of extreme importance and must
be considered within any optimisation model. In addition to the con-
sideration of the wake effect, there must exist a minimum separation
distance to avoid turbine blades colliding with each other. Limits upon
the number of turbines to locate should be specified in advance of any
optimisation model.

• Cable Routing Optimisation Problem: Within an offshore wind-
farm, the power produced by each turbine must be transferred back
to a substation located near to the farm; from which a high-capacity
export cable transmits the power to the main electrical grid. Optimi-
sation of this problem aims to find a feasible power routing between
turbines and the substation. An example of how a typical offshore
windfarm is connected is shown in Figure 1. Cabling between tur-
bines is called inter-array cabling and is typically low voltage cabling
with some resistivity. These cables are connected to the base of each
turbine (not the seabed) and then ‘hang’ down before laying on the
seabed floor. Turbines can either be connected to each other or di-
rectly connected to the substation. Once arriving at the substation
this power is exported to the grid. Key requirements of this optimisa-
tion problem involve the correct selection of cable type, minimisation
of power losses due to resistivity in cables and minimisation of the
cost of cabling. Offshore cabling can be an expensive component of a
windfarm accounting for around 4-5% of the total cost (Cazzaro et al.,
2020). As power is transmitted through cabling, a certain amount is
lost based upon the resistance of each cable; this varies dependent on
the cable type with the tendency for more expensive cables to have
lower resistance. Therefore, a trade-off can exist between choosing
more efficient cabling (benefitting in the long-term) and reducing the
cost of those cables.

Given the complex design challenges and a considerable number of fac-
tors involved in windfarm design, the problem is simplified within this paper.
To reduce the potential turbine positions, a grid of pre-defined locations is
used, also allowing for the minimum separation distance to be incorporated
between each grid point. Further assumptions are made below:

A1 Only one turbine may occupy any given position with the grid.

A2 Cabling is only in straight lines and between turbine positions or the
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Figure 1: Example offshore windfarm cable layout, orange arrows indicate the direction
of power flow toward the substation

substation (in the real world cabling can curve but this adds a large
amount of complexity).

A3 Only one cable may traverse between each pair of turbines.

A4 The substations’ position is already known and cannot move.

A5 Only one type of turbine is being placed with a rating of 9.5MW.

A6 Without any turbines, the expected production at each spot on the
grid is the same, i.e., wind speed is equal everywhere.

A7 There are no differences in foundation costs and therefore these are
not considered.

These assumptions allow for easier development and evaluation of opti-
misation models whilst still considering major conditions such as wake effect
and cabling factors.

The problem can be defined mathematically as follows: A vector, T
of size n where n is the number of potential turbine positions represents
whether or not a position on the grid has a turbine occupying it (1 = oc-
cupied, 0 = empty). Four matrices are defined to signify (1) cabling, (2)
distances, (3) power loads, and (4) cabling costs.

(1) Cabling matrix represents the cabling between each subsequent siting
option (ci,j) and substation where: c is either 1 if a cable exists or 0
if no cable exists between position number i and j. n represents the
number of sites + 1, with the additional site representing cabling to
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the substation.

Cabling =


c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n
...

...
. . .

...
cn,1 cn,2 · · · cn,n


An example potential grid of potential turbine locations and cabling
is shown in Figure 2. Shown is a grid of 16 potential positions with 5
selected and the substation shown in the bottom left, alongside the ca-
bling layout with power flow indicated by the arrow direction. Within
this example there is one power flow route to the substation defined
as (9, 15, 8) → (6) → (1) → (sub). Where the cumulative net power
is summed at each flow point (6), (1) and (sub).

Figure 2: Example grid showing potential turbine sites and substation position alongside
power flow within the windfarm

(2) Distance matrix represents the distance between each potential po-
sition (di,j) with d representing the distance between site number i
and j. n represents the number of sites + 1, with the additional site
representing cabling to the substation.

Dist =


d1,1 d1,2 · · · d1,n
d2,1 d2,2 · · · d2,n
...

...
. . .

...
dn,1 dn,2 · · · dn,n


(3) Net Power matrix accounts for the net power sent between each po-

sition (pi,j) with p representing the net power transferred from site
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number i and j. This is the net power after losses due to wake and
cabling have been considered. n represents the number of sites + 1,
with the additional site representing cabling to the substation. The
sum of the nth column, therefore, shows the total net power flow into
the substation from all turbines.

NP =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

...
. . .

...
pn,1 pn,2 · · · pn,n


Net power flow between two points is defined as the initial power flow
minus power losses due to resistivity in the cable. This varies depen-
dent upon the cable cross-section and material used such as copper or
aluminium. To calculate the power capacity, in MW for a given cable:

P =
I × V

1000
(1)

where: I is the rated cable current in Amps; V is the cable voltage in
kV; and P is the power capacity, in MW for the cable.

The expected power loss (in MW) for each cable over a set distance is
therefore equal to:

PLi,j =
I2 ×R×D

1× 109
(2)

where: R is the resistance (ohm/km) within the cable; D is the dis-
tance travelled in km, from point i to j is equal to Disti,j ; and PLi,j

is the power loss between points i and j.

(4) The cost of cabling is represented below with cc indicating the indi-
vidual costs from each siting position i and j (cci,j). The cabling cost
between two points is defined by choosing an appropriate cable based
upon the power load expected and identifying the cost per unit of
distance and multiplying by the distance travelled.

CC =


cc1,1 cc1,2 · · · cc1,n
cc2,1 cc2,2 · · · cc2,n
...

...
. . .

...
ccn,1 ccn,2 · · · ccn,n


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3.1. Windfarm Objective Function

The key objectives of windfarm optimisation are to maximise power pro-
duction within the farm whilst minimising the overall cost. As described pre-
viously, the power produced within an offshore windfarm is mainly impacted
by the wake effect and power losses through the cabling layout. Minimisa-
tion of cost is highly dependent upon the number of wind turbines placed,
the rated output of these turbines and the positioning and choice of cabling
used between turbines and back to the substation. Saavedra-Moreno et al.
(2011) utilised similar objectives within their cabling optimisation by cre-
ating a cost function equal to cabling costs

net power . Marmidis et al. (2008) optimised
purely turbine layouts and proposed an equation in the same fashion to be
turbine costs
net power . The objective function within this paper is therefore a com-

bination of both, resulting in: cabling costs+turbine costs
net power . This equation gives

a ‘ratio’ of the cost per unit of net power allowing for easier comparison
between smaller and larger windfarm instances.

Defining this mathematically based upon the introduced matrices and
previous equations gives:

obj =

∑
i,j CCi,j +

∑n−1
i=1 SiTc∑

i,nNPi,n
+ α (3)

where:
∑

i,j CCi,j equals total cabling costs;
∑n−1

i=1 SiTc equals total turbine
costs with Tc representing the cost per turbine and n−1 is the total number
of grid positions;

∑
i,nNP i,n equals total net power with n representing the

substation matrix column vector; α represents the feasibility of the windfarm
and is a dummy variable (1 = feasible, inf = not feasible), these feasibility
requirements are discussed in Section 3.2; and obj is the objective value to
be minimised.

3.2. Constraints

In line with previous research, several commonly used constraints are
defined. Firstly, there must exist a limit on the minimum and the maximum
number of turbines to be placed within the windfarm and the number of
turbines cannot exceed these. Secondly, a cable chosen to transfer power
between two points must be capable of handling the power flowing through
it, this includes all previous power flows. All turbines placed in the windfarm
need to have a cable path directing the flow of power back to the substation;
for each of these turbines, only one cable transferring power out of each
turbine may exist (multiple inputs into one turbine is allowed). Finally,
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cabling must not cross over each other. Although this is possible in the
real world it can result in significant costs and therefore is included as a
constraint within the problem formulation.

C1 A limit range on the number of turbines placed: tlower limit ≤ tcount ≤
tupper limit.

C2 The cable between two points must be able to support the power load
transferred.

C3 All turbines must be connected back to the substation.

C4 Turbines can only have one cable from which power flows out (no split
power outputs).

C5 Cabling cannot cross over.

Any violation of these constraints is considered a non-feasible solution.
Examples of feasible and non-feasible layouts are shown in Figure 3.

 

 

Feasible Layout 1 Cable Crossing Split Power Not All Connected 

Figure 3: Examples of feasible and non-feasible (cable crossing, split power output, dis-
connected turbine) layouts, blue points are turbines with arrows indicating cabling power
flow and the yellow point indicates the substation (the power destination)

3.3. Problem Instances

A variety of data is used within the optimisation problem, grid site
positions, substation position, interference data and cabling data. Within
the grid data, for each possible position, a ‘Northing’ and ‘Easting’ position
is given which is used to represent the solution as the X position and Y
position of each possible site. In addition, the substation’s position is also
given in the same way. The interference data consists of pre-computed wake
values within a range of arrays. This is used to quickly determine the wake
effect caused on each turbine by all the other turbines currently placed.
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This is then applied as a factor of reduction to the initially expected power
(9.5MW per turbine) to compute the ‘expected’ production of each turbine
placed.

Data2 for each cable available within the cabling layout is shown in
Table 1. There are two key types of cabling, ‘Aluminium’ and ‘Copper’
both of which have varying subtypes with different sizes, cost, current and
resistance.

Table 1: Cabling data

Cable
Number

Type Material
Size
[mm2]

Cost
[e/metre]

Current
[Amps]

Resistance
[Ohm/km]

Voltage
[kV]

1 300AL Aluminium 300 145 450 0.13 66
2 400AL Aluminium 400 160 530 0.1 66
3 630AL Aluminium 630 190 650 0.06 66
4 800AL Aluminium 800 210 700 0.05 66
5 240Cu Copper 240 190 540 0.1 66
6 630Cu Copper 630 335 760 0.04 66
7 800Cu Copper 800 390 810 0.03 66

Each turbine is capable of a maximum of 9.5MW power output in perfect
conditions. As no turbine cost data was provided, an estimate has been
made based upon information available, for which the estimated cost of
each turbine is e10,000,000.

For the data highlighted above, two problem instances are given of vary-
ing siting sizes. Both relate to a windfarm named ‘Borssele 4’ and one of the
instances (Borssele 100) is a smaller sample of the larger windfarm (Borssele
300). Two additional instances have been created by splitting Borssele 100
in half, allowing for an increased sample to test algorithms on and verify re-
sults. In addition, for each instance, the lower and upper turbine placement
limits have been defined based upon the size of the windfarm area, with an
increase in maximum turbine placements for a larger area (see Table 2 and
Figure 4).

3.4. Windfarm Wake Model

For this optimisation study engineering wake models are considered to
estimate the wake losses in the windfarm. Engineering wake models used in
this study are based on 1D or 2D analytic descriptions of wind turbine wakes
and a super-position to calculate the effect of merging wakes. Steady-state

2Data have been modified due to confidentiality requirements
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Table 2: Windfarm problem Instances derived from Borssele 4 located within the Dutch
part of the North Sea

Instance Name
Siting

Positions
Size (sq km)

Lower
Turbine Limit

Upper
Turbine Limit

4 Borssele 300 283 179.599192 20 40
3 Borssele 100 110 23.4259816 10 20
2 Borssele 100 (1) 55 10.41154639 5 10
1 Borssele 100 (2) 55 10.41154639 5 10

CFD type models could be used instead, but that reduces the reproducibility
of this paper.

The two analytic wake models considered are the hat-shaped Jensen
model described in (Jensen, 1983; Katic et al., 1986) and the Gaussian-
shaped model developed by Bastankhah and Porté-Agel (2014); Niayifar
and Porté-Agel (2016).

The Jensen model is one of the oldest analytic wake models and is based
on three key assumptions. First it assumes that the far (turbulent) wake
starts immediately after the rotor disk. Therefore, instead of using the rotor
disk velocity at the start of the wake, it uses the near wake velocity, unw,
obtained from 1D momentum theory:

unw
u∞

=
√
1− CT (4)

Here, CT = CT (uin) is the wind turbine’s thrust coefficient, which is a
function of the incoming wind speed. The second key assumption is that
there is only an axial velocity component and that the velocity deficit is
constant across the wake. It is therefore sufficient to consider only the mass
conservation equation:

D2
dunw +

(
D2

fw −D2
d

)
u∞ = D2

fwufw (5)

where Dd is the rotor disk diameter, Dfw is the diameter of the wake, u∞ is
the free stream velocity and ufw is the velocity in the wake. The resulting
velocity deficit for the Jensen model becomes:

udef
u∞

=
(
1−

√
1− CT

)(
Dd

Dfw

)2

(6)

The third key assumption in the Jensen model is that it considers a linear
expansion of the wake diameter, with a uniform velocity deficit in radial
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Figure 4: Windfarm problem instances tested within this paper. Instances 1, 2 and 3 are
extracts of the whole windfarm

direction (known as the ”top-hat” profile). The wake expansion is given by:

Dfw

Dd
= 1 + 2kw

x

Dd
(7)

where x is the downstream distance and the parameter kw is the wake decay-
ing constant, which represents how the wake breaks down due to turbulence
by specifying the growth of the wake width. The value of the wake decay
coefficient is typically chosen based on the site location, e.g., 0.04 for off-
shore and 0.075 for onshore. Alternatively, in (Peña et al., 2016) it is shown
that the wake decay coefficient can be made a function of the incoming
turbulence intensity or surface roughness length.

The assumptions show that the Jensen model is very limited in its be-
haviour. Therefore several other analytic wake models have been introduced
over time. A more recent and fairly popular analytic wake model is the Gaus-
sian wake model developed by Bastankhah and Porté-Agel (2014). Other
than Jensen’s model the Gaussian model is derived from the simplified mo-
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Figure 5: Jensen wake

Figure 6: Example of Gaussian wake visualised through its velocity field and wake diameter
(dashed lines) for CT = 0.8

mentum equation:∫
Ad

ρufw (u∞ − ufw) dA = T, with T =
1

2
CTρAdu

2
∞ (8)

where T is the thrust force of the rotor, Ad is the rotor swept area and ρ
is the air density at hub height. The Gaussian wake model considers an
axisymmetric Gaussian velocity deficit distribution in radial direction. As
observed in wind tunnel tests and numerical simulations, especially the time-
averaged far wake is well represented by the Gaussian shape. The Gaussian
assumption leads to a self-similar solution for the far wake velocity in (8).
As a result, the expression for normalised velocity deficit can be given in
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closed form:

udef
u∞

=

1−

√
1− CT

2

(
Dd

2σ

)2
 exp

(
−1

2

( r

σ

)2
)

(9)

where the first term between brackets represents the maximum normalised
velocity deficit in the wake at each downwind location, where r is the radial
distance from the wake’s centre, and σ is the standard deviation of the
Gaussian-like velocity deficit profiles at each axial distance x.

Similar to the Jensen model, also the Gaussian wake model by Bas-
tankhah & Porté-Agel assumes a linear expansion of the wake:

σ

Dd
= k∗

x

Dd
+ ε (10)

where k∗ is the wake growth rate (∂σ/∂x) (not directly comparable with
kw (∝ ∂Dfw/∂x) of the Jensen model) and ε is equivalent to the value of
σ/Dd as x approaches zero. Following Niayifar and Porté-Agel (2016), the
Gaussian model is closed by selecting the parameter ε based on mass conser-
vation and the parameter k∗ based on Large Eddy Simulations. The wake
growth rate k∗ is chosen to be a function of the incoming turbulence inten-
sity, which for waked wind turbines deviate from the free-stream turbulence
intensity. For this the same added turbulence intensity model by Crespo &
Hernandez is used as was used in (Niayifar and Porté-Agel, 2016). Merg-
ing wakes are modelled using a super-position model. There are a range of
super-position models, all with their pro’s and con’s, and none fully repre-
sentative for all cases, as shown in (Bastankhah et al., 2021). In this study
we limit ourselves to the sum-of-squares approach, which is most commonly
used in commercial codes:

(u∞ − ūj)
2 =

∑
∀i<j

(u∞ − ūj,i)
2 (11)

Here, for each individual wake inside the windfarm, the kinetic energy deficit
of multiple wakes is assumed to be equal to the sum of the energy deficits
from the relevant upwind turbines.

4. Methodology

The primary aim of this paper is to investigate the application of combin-
ing optimisation of turbine positions and cable routing simultaneously whilst
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also determining if a simultaneous or sequential design of a windfarm is
more optimal. To do this, selection hyper-heuristics are implemented across
a range of selection methods (SM) and move acceptance criteria (MA). The
selection hyper-heuristics control a group of pre-defined low-level heuristics
(LLH) with the aim to minimise the objective function defined in Section 3.1
subject to the constraints within Section 3.2.

To evaluate if the simultaneous method of optimisation differs or out-
performs the current widespread use of the sequential model, two models
were developed and tested on each instance. The first model followed the
sequential process and the second implemented the combined optimisation
approach. The results from all instances, and combinations of MA and SM
for both models, were then compared. These two models are referred to as
‘sequential’ and ‘simultaneous’. The sequential model was developed using
basic metaheuristics and some of the defined low-level heuristics, the rea-
son past literature was not used was because of the considerable complexity
found in replicating methods used. Therefore, the aim of this model was to
provide some quantitative ability to compare.

4.1. Low-level Heuristics

The selection hyper-heuristic is responsible for selecting which low-level
heuristic to implement based upon its own set of criteria. Ten low-level
heuristics were created which aim to allow for a wide range of moves and
solutions. These are defined below and visualised in Figure 7.

• LLH1 Move a turbine within a set range and keep its current cabling
path.

• LLH2 Place a new turbine and connect it to the nearest turbine and
remove one elsewhere and migrate its cabling.

• LLH3 Remove one turbine and migrate its cabling.

• LLH4 Place a new turbine and connect it to the nearest turbine.

• LLH5 Connect an endpoint to the nearest endpoint.

• LLH6 Connect an endpoint to the nearest point (any).

• LLH7 Swap two end cables around.

• LLH8 Connect a point (any) to another point (any).
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• LLH9 Identify a branch of turbines and connect one of the turbines
direct to the substation instead.

• LLH10 Identify a branch of turbines and swap the final cable (to the
substation) to the closest point in the branch.

 

Figure 7: Visualisation of low-level heuristics and the impact upon a section of a wind-
farm’s layout

Within the described low-level heuristics, the first four (LLH1-LLH4),
are primarily focused on the movement and changes to the turbine positions
selected and excluded from the sequential model. Whilst the remaining six
(LLH5-LLH10) purely re-arranged the current cable routing to find a more
optimal layout. All heuristics are available to the simultaneous model.
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4.2. Initialisation Methods

An initial windfarm was constructed so that it met all constraints laid
out in Section 3.2. The construction process used the sequential stages
widely used in previous literature. This process differed for each of the two
model types explained below.

4.2.1. Sequential Model Initialisation

An initial model was constructed in two phases, firstly turbines were
placed using a local search algorithm with three simple heuristics. One
changes a chosen site for another, the second removes a turbine and the third
adds another turbine. These are visualised in Figure 8, showing an initial
selection of six random turbine placements and how the three heuristics
impacted them.

 

Figure 8: Initialisation of turbine placement heuristics, orange indicates a change in the
solution

The limit on the number of turbines placed is subject to the turbine
count limits. This heuristic algorithm was initialised by a random number
of arbitrary turbines being chosen. The number of total reps the algorithm
is run for is equal to the number of potential turbine positions multiplied
by one hundred (see Algorithm 1 for detail).

After the turbine positions were optimised, a simple feasible cabling
structure was placed. All turbines were directly connected to the substation
and no-inter array cabling occurred. For each cable, the correct type is
selected based upon the expected power load.

4.2.2. Simultaneous Model

Within the simultaneous model, two types of turbine initialisation were
examined (cabling remains the same as in Section 4.2.1):

1. Optimised turbine placement as detailed in Section 4.2.1, with cabling
direct to the substation.

2. Randomised initial turbine placement with cabling direct to the sub-
station.
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Algorithm 1: Sequential model initialisation algorithm (turbines)

1 Let Site List[S1, S2, ..., SN ] be the list of available sites;
2 Let Interference be an interference matrix;
3 Let Power be a power matrix;
4 Let TUpper, TLower be the upper and lower cap on turbines placed;
5 Let S be the initial randomly selected sites between TLower, TUpper;
6 Let H = [h1, h2, h3] be the list of heuristics;
7 SBest ← S;
8 objBest ← Obj(SBest); /* Obj returns the total power minus total

interference */

9 for i← 0 to total reps do
10 h← Random(H);
11 S ← Apply(h, SBest);
12 obj ← Obj(S);
13 if obj > objBest then
14 objBest ← obj;
15 SBest ← S;

16 end

17 end
18 return SBest

The aim of testing both of these initialisations was to determine if a
randomised model, with potentially more freedom to optimise turbine place-
ment, could develop a better solution or if a strong initial turbine placement
benefits the selection hyper-heuristics later. The randomised turbine place-
ment chose several turbines to place randomly, between the lower turbine
limit and upper turbine limit. Once done, a simple random selection of
turbine positions was conducted until the chosen number was placed.

4.3. Selection Method

As mentioned previously, this paper focused on utilising and comparing
a range of heuristic selection methods to determine the most applicable to
the windfarm optimisation problem. These were as follows; simple random
(SR), sequence-based selection (SS) and a range of selection heuristics la-
belled ‘best choice’ (BC). Simple random chooses an LLH based on pure
randomness. Sequence-based selection is inspired by (Kheiri, 2020), which
identifies the next LLH based upon a probability matrix choosing the next
LLH with the highest chance of improvement given the previous LLH used;
this process is defined within Algorithm 2.

Four further selection methods named ‘best choice’ (BC1, BC2, BC3 and
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Algorithm 2: Sequence-based selection algorithm

1 Let LLH be a list of possible low-level heuristics;
2 Let SInitial be the initialised solution;
3 Let objInitial be the initialised solution’s objective value;
4 Let ProbM be the probability matrix initialised with 1’s;
5 Let RepM be the repetition matrix initialised with 1’s;
6 Let ImproveM be the improvement matrix initialised with 1’s;
7 Let h, hprevious be the current LLH and previous LLH;
8 SBest ← SInitial;
9 objBest ← objInitial;

10 for i← 0 to total reps do
11 if (hprevious = null) & (i ̸= 0) then
12 hprevious ← h;
13 h← Random(LLH);

14 end
15 else if hprevious = null then
16 h← Random(LLH);
17 end
18 else
19 h = ProbM [hprevious].max(); /* Return h with the highest

probability of improve */

20 end
21 S ← Apply(h, SBest);
22 obj ← Obj(S);
23 if obj < objBest then
24 objBest ← obj;
25 SBest ← S;
26 ImproveM [hprevious, h]← ImproveM [hprevious, h] + 1;

27 end
28 RepM [hprevious, h]← RepM [hprevious, h] + 1;
29 ProbM ← ImproveM/RepM ;

30 end
31 return SBest
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BC4) were developed to investigate different criteria for choosing an LLH.
BC1 and BC2 used real-time information from all previous repetitions run to
choose the LLH with the largest improvement rate and average improvement
amount respectively. The improvement rate is defined as the number of
times an LLH choice resulted in a better solution (less than the previous
best) divided by the number of times that LLH has occurred in the run. For
example, if LLH1 has occurred 50 times within the run and resulted in four
better solutions, the improvement rate is 4/50 = 0.08 or an 8% rate of finding
an improvement on average. The average improvement amount follows the
same methodology but is the sum of the total improvement amounts found
by the respective LLH, divided by the number of times the LLH has occurred
in the run. The two remaining selection heuristics, BC3 and BC4 utilise both
average improvement rate and average improvement amount, but only kept
the information for the most recent five iterations of each respective LLH.
These methods aim to test if keeping more recent information provided a
better selection of LLH and an overall better solution.

4.4. Move Acceptance Criteria

To evaluate the impact of each selection heuristic, each was tested using
different move acceptance criteria. The move acceptance (MA) defines if
a new solution is accepted as compared to the current best solution. Two
categories of MA were used; deterministic (only improve, improve or equal
and the great deluge) and stochastic (simulated annealing).

Only improve (OI) accepts solutions that are better (reduction in the
objective value), improve or equal (IE) will accept solutions that are better
or equal to the current best. The great deluge algorithm was first proposed
by Dueck (1993) and imposes a ‘tolerance value’ (water level) for which a
solution may still be accepted if below. All improvements are accepted but
some non-improvements may still be accepted if below the tolerance value.
This changes over time based upon the initial solution value and expected
end solution value, this tolerance level is determined as follows:

GDt,rep = Send + (Sinitial − Send)× (1− rep

total reps
) (12)

where: GDt,rep is the current tolerance (water level) at a specific rep; Send is
the expected best possible final solution; Sinitial is the initial solution value
after the initialisation method; and rep, total reps is the current rep and
the total number of reps the algorithm is run for. For this study, an end
value equal to 75% of the initial solution was used.
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Simulated annealing (SA) was also implemented as the final move ac-
ceptance method. SA utilises a ‘temperature’ to try to move away from
local optimums and to find the global optimum value. All improvements
are accepted in the same manner as the great deluge, but the acceptance of
non-improvements is now a stochastic process as opposed to deterministic.
The method of acceptance is determined by a probability at a given repe-
tition compared to a random number, whereby if the random float is less
than the probability, a solution is accepted. The probability of acceptance
can be found by:

probability = e−
difference

t (13)

where: difference is equal to the objBest minus the objCurrent; t is the
temperature, calculated as the maximum of {min(1, 1 − rep

total reps), 0.01};
and probability is the chance of accepting a given solution.

4.5. Overall Algorithm

The methodology for developing a final windfarm design is shown within
the flow chart in Figure 9. An initial solution was generated based upon the
methods introduced in Section 4.2; from this, dependent upon the chosen
selection hyper-heuristic, a low-level heuristic is chosen and applied to the
initial solution. This was then evaluated for feasibility, and if feasible, it is
accepted if it improves upon the initial objective value (reduction in value).
If not, then the move acceptance criteria determine whether it is still ac-
cepted. The accepted solution then becomes the current solution and the
process restarts. If not feasible, the new solution is discarded. This process
repeats until the termination criteria (set number of iterations) is met.

In the sequential model, and from the initialised solution detailed in
Section 4.2.1, the secondary stage, cable routing, is optimised. For this
stage, the solution is iteratively developed following the process in Figure 9.
However, the pool of available low-level heuristics is restricted to just those
that impact cabling, with no changes or movements of the current turbine
positions. In contrast to the sequential model, the simultaneous models had
access to the entire group of low-level heuristics that control both turbine
and cable placements.

5. Experimental Results

5.1. Expectations and Hypothesis

The main investigative aim of this work is to evaluate if simultaneous
optimisation of turbine placement and cable routing can provide any benefit
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Figure 9: Overall solution process flowchart

over a sequential optimisation. This is on top of the objective to identify
the best selection hyper-heuristic and move acceptance criteria for both of
these optimisation types. To achieve these aims, a statistical evaluation was
undertaken for the different models: sequential (M1), simultaneous (M2),
and a variant of M2, referred to as simultaneous with an optimised start
(M3). For these three models, the determination of the ‘best’ algorithm was
as follows: For each of the first three problem instances (samples of Instance
4) run all combinations of selection hyper-heuristics and move acceptance
criteria for a set number of repeats to ensure reliable results. The non-
parametric Mann-Whitney U test was conducted between each pair of SM
and MA at the 5% significance level. Where an algorithm is considered to
have statistically significantly outperformed another if the average value of
its repeats is less than another and the p-value from the non-parametric
test is less than or equal to 5%. The algorithm with the best performance
(statistically better than the greatest number of others) from each instance
was then selected. From these algorithms, the best overall performer(s) were
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determined. Once the ‘best’ algorithm(s) from each model had been chosen,
this was then applied to Instance 4 (the entire windfarm) for a longer number
of iterations to allow for comparison between each model type.

The hypotheses set for this study are as follows:

• H0 (Null Hypothesis): Sequential optimisation outperforms any method
of simultaneous optimisation.

• H1 (Alternate Hypothesis): Simultaneous optimisation outperforms
traditional sequential methods.

5.2. Experiment Setup

Each model (M1, M2 and M3) was applied to each of the smaller prob-
lem instances (1, 2 and 3, Figure 4). This was run for every combination of
selection method and move acceptance criteria. Each combination was run
for ten repeats of 1,000 iterations each time and the average, standard devi-
ation and minimum values were measured over those repeats. Experiments
were carried out on a computer with specifications: Intel Core i7 7700HQ
(3.5GHz) and 16GB of 2400MHz DDR4 memory. Each algorithm was com-
pared against all other algorithms using the Mann-Whitney U test with a
5% significance level. This allowed for comparison to determine if, over the
ten repeats, an algorithm is statistically different to another. Further iden-
tifying comparisons were made between each algorithm. Given algorithm A
and algorithm B:

• A is statistically better than B (>)

• A is statistically worse than B (<)

• A is better than B but with no statistical significance (≥)

• A is worse than B but with no statistical significance (≤)

5.3. Model 1 (Sequential Optimisation)

Table 3 shows the results from Model 1 concerning the objective func-
tion previously defined (Equation 3). Across Instance 1 and 2, selection
method ‘BC3’ statistically outperformed all other algorithms when using
GD or OI move acceptance criteria in Instance 1 and 2 respectively. The
global minimum for Instances 1 and 2 also occurred when pairing BC3 with
IE (Figure 10). Within Instance 3, however, the best algorithm was using SR
and SA, outperforming 18 of the other 23 selection hyper-heuristic combina-
tions (Figure 11). The min value found by SR:SA was also within 0.17% of
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the global minimum for Instance 3. This indicates that a wide equal usage,
that a random selection brings, was most optimal in this instance size.

An interesting observation is an overall reduction in average objective
value across all algorithms in Instance 3, a larger windfarm, in comparison
to the smaller windfarm Instances 1 and 2. It indicates there could be a
non-linear relationship (within Model 1) for the larger the windfarm the
lower the ratio of cost to net power produced, potentially due to increased
numbers of turbines allowing a wider range of cabling configurations.

Based upon the findings within Instances 1 and 2, selection method BC3
combined with move acceptance IE performs best. Due to the considerable
difference in findings in Instance 3 compared to 1 and 2, a second algorithm
SR combined with SA was also carried forward for application to Instance
4, the whole windfarm.

 

Figure 10: Box plot from 10 repeats for selection method Best Choice 3 ‘BC3’ for Model
1, Instance 1 and 2, combined with all four move acceptance criteria

5.4. Model 2 (Simultaneous Optimisation with Random Turbine Start)

Table 4 presents the results from a simultaneous optimisation; utilising
all low-level heuristics to move both turbines and cabling at the same time
with a randomised initial turbine layout. Results from the Mann-Whitney U
pairwise comparison showed that across Instances 1 and 2, the SR selection
method performed the overall best, with other notable results showing IE
to contain both the global minimums for each Instance (1 and 2) (see Fig-
ure 12). However, in the larger Instance 3, BC1 paired with OI performed
the best in terms of average run value, minimum value and statistical outper-
formance of other algorithms. Part of this trend can also be found within
Instances 1 and 2 where both the minimum values occurred within BC1
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Figure 11: Box plot for 10 repeats using selection method Best Choice 3 ‘BC3’ (left)
and Simple Random ‘SR’ (right) for Model 1, Instance 3, combined with all four move
acceptance criteria

paired with IE (see Figure 13). The pairing of BC1 and IE within Instances
1 and 2 also outperformed 13 other algorithms in each case compared to the
best which outperformed 15. Based upon these findings, two methods were
tested on Instance 4; SR:IE and BC1:OI.

 

Figure 12: Model 2 boxplot for selection method Simple Random for Instance 1, 2 and 3

5.5. Model 3 (Simultaneous Optimisation with Optimised Turbine Start)

Table 5 summarises the results from Model 3, which initially generated
an optimised turbine layout and then applied a variety of selection meth-

29
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Figure 13: Model 2 boxplot for selection method Best Choice 1 for Instance 1, 2 and 3

ods and move acceptance criteria to both turbine positions and the cabling
layout. From the statistical pair-wise tests, there is no clear overall best
algorithm. Instances 1 and 3 show the strongest performance from selection
method BC2 paired with move acceptance GD and SA respectively (see Fig-
ure 14). However, the best minimum run values from these two Instances,
appear when using the SS selection method. Contrasting this, Instance 2
showed more consistency in run results with the best average, minimum and
overall performance present within BC4, where move acceptance OI is the
best performer. It was not clear from Instance 1 and 3 which combination is
most successful so BC2 paired with both GD and SA was included within the
algorithms tested upon Instance 4 (entire windfarm). Therefore, BC4:OI,
BC2:GD and BC2:SA were tested further on Instance 4.

5.6. Further Experiments

Table 6 summarises the results employing the best algorithms found
from each of the three model types. These are applied for a longer length
of iterations to the complete windfarm instance described as Instance 4
to identify and allow for a comparison of the overall performance between
model types. Both deterministic and stochastic methods are included with
all move acceptance criteria appearing. Selection Sequence (SS) is the only
selection method not carried forward, this may be due to the difficulty in
identifying appropriate sequences with the high randomness present and a
great number of potential cabling layouts.
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Figure 14: Model 3 boxplot for selection method Best Choice 2 for Instance 1 and 3

The table shows that in the long-run results for the two best-performing
algorithms within Model 1, both methods can improve upon the initially gen-
erated solution, improving both cable costs and overall net power. Selection
method ‘BC3’ combined with IE performed slightly better overall compared
to SR:SA and was able to reduce cabling costs by a further 7,000,000 euros.
Figure 15 demonstrates the difference of using simulated annealing against
improve or equal, with simulated annealing identifying significantly more
local optimums, but this still underperformed compared to the combination
of BC3 and IE. The usage of each low-level heuristic is shown in Figure 16,
there are only slight differences between utilisation rates, suggesting that
within Model 1, a wide even selection of LLH is most effective.

 

(a)
 

(b)

Figure 15: Model 1 with (a) Simple Random:Simulated Annealing objective value over
10000 iterations, combined with the simulated annealing temperature, and (b) Best Choice
3:Improve or Equal best objective value over 10000 iterations

In Model 2, Table 6 indicates that selection method SR paired with
move acceptance IE outperformed the pairing of BC1:OI by an objective
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Table 6: Long-run experiment results on Instance 4 over 10000-20000 iterations using
algorithms identified as top performers from initial experiments. Costs are in euros and
power is in MW. M1 is run for fewer iterations as it only utilises half the available low-level
heuristics. Best values and algorithm highlighted in bold

Model 1 Obj Value Turbine Costs Cabling Costs Initial Power Net Power Iterations

SR:SA
Initial 1215651.941 400000000 39553772.98 380 361.579

10000
Final 1165973.054 400000000 25072631.06 380 364.565

BC3:IE
Initial 1220731.388 400000000 40456068.52 380 360.813

10000
Final 1144670.286 400000000 18202570.88 380 365.348

Model 2 Obj Value Turbine Costs Cabling Costs Initial Power Net Power Iterations

SR:IE
Initial 1246198.183 230000000 20775423.47 218.5 201.2323778

20000
Final 1134551.794 290000000 11517439.13 275.5 265.7590783

BC1:OI
Initial 1291983.711 360000000 37433156.93 342 307.6146808

20000
Final 1149372.179 400000000 16306408.95 380 362.2033112

Model 3 Obj Value Turbine Costs Cabling Costs Initial Power Net Power Iterations

BC2:GD
Initial 1228532.417 400000000 39910328 380 358.0779163

20000
Final 1151705.025 400000000 15901043.5 380 361.1176772

BC2:SA
Initial 1214633.283 400000000 39704217.89 380 362.005738

20000
Final 1172362.878 400000000 19082779.61 380 357.4684829

BC4:OI
Initial 1216328.864 400000000 40684725.73 380 362.307217

20000
Final 1142579.182 400000000 18057543.06 380 365.8893402

value of nearly 15,000. However, both algorithms had different initialised
numbers of turbines due to the random start element of Model 2, therefore
the difference may not be significant with BC1:OI having a larger number
of initial turbines, possibly adding complexity to the ability to solve the
problem efficiently. This additional complexity can be seen within the final
layout for both algorithms in Figure 17. Figure 18 shows, as expected, LLH
utilisation rates are even when using simple random (SR) however when
using best choice 1 (BC1) there was a clear preference toward LLH1, which
moved turbines within a nearby space.

For Model 3, Table 6 shows that none of the three algorithms tested
added or removed any turbines from the initial starting number of 40.
Within the final objective value, it can be seen that BC4:OI outperformed
the other two algorithms, even with BC2:SA having a slight advantage with
a lower initial objective value. However, BC2:GD was able to find signifi-
cantly cheaper cabling costs, but this was at the expense of net power with
an increase in losses due to the wake effect as turbines got closer together
(minimising cable distance). Figure 19 highlights that BC2:SA got stuck
within two local optima, consistently going back and forth between them.
Whilst BC2:GD successfully use the GD acceptance threshold to move away
from a local optimum. From these results, the overall best algorithm was
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Figure 16: Model 1 algorithm heuristic utilisation rates Simple Random:Simulated An-
nealing (left) and Best Choice 3:Improve or Equal (right)

BC4:OI with the lowest objective value.
Best pairings of selection method and move acceptance criteria for Model

1, 2 and 3 from the further experiments conducted upon Instance 4 are:
BC3:IE, SR:IE and BC4:OI. Figure 20 shows the utilisation rates for each
of the three selection hyper-heuristics where the LLH chosen resulted in an
improvement (reduction in solution objective). Model 1 was restricted to
just LLHs that impact cabling and within those, LLH6 (connect endpoint
to nearest turbine) proved most successful in finding improvements. With
LLH8 (connect any point to nearest turbine) second. Within Model 2, which
had a randomised turbine start, the movement of turbines, LLH1, provided
the most improvements as expected because this heuristic allows for min-
imisation of the wake effect to occur. Model 3 benefited most from LLH6
in the same fashion as Model 1, LLH6 was also the second most successful
within Model 2. These results indicate that the simpler the low-level heuris-
tic the more accessible it was to bring about an improvement in the solution
objective value.

The results show that the customised selection methods were unable, in
this instance and run, to beat a simple random selection (SR) method paired
with improve or equal (IE) (layout shown in Figure 17). With an overall
objective value of 0.88% and 0.7% better than BC3:IE, BC4:OI respectively.
In terms of model type (sequential against simultaneous), the results do not
give a clear decisive answer. With a very small variation recorded between
each final objective, it cannot conclusively determine if either outperforms
the other. In addition, the randomness of each low-level heuristic must be
considered and that some selection hyper-heuristics may have been ‘lucky’
with the improvements found by each LLH.

35



 Figure 17: Windfarm layout for Model 2 algorithms Simple Random:Simulated Annealing
(top) and Best Choice 1:Only Improve (bottom) after 20000 iterations on Instance 4

Li et al. (2017) implemented a range of hyper-heuristics to control state-
of-the art low-level metaheuristics to solve each aspect of the windfarm lay-
out. Their findings showed that random choice (referred to as simple random
on this paper) performed better than the implemented choice function (sim-
ilar to BC1,2,3 and 4 in this paper). These findings are consistent with
findings when applied to Instance 4 from the long-run experiments, where
simple random prevailed as the most effective in finding an optimal solu-
tion. The Borselle 4 problem instances have also been solved by Fischetti
(2017). This was solved in stages and used a range of methodologies in-
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Figure 18: Low-level heuristic usage for each algorithm within Model 2 applied to Instance
4 for 20000 iterations

cluding heuristics and MILP. However, it is not possible to directly compare
results due to the varying constraints, power data, turbine costs considered
and complexity of the windfarm optimisation problem, alongside the diffi-
culty in replicating the cable routing optimisation undertaken within the
paper.

6. Conclusion

This paper investigated the application of selection hyper-heuristics to
solving the windfarm optimisation problem; specifically, the proposal to
combine both the turbine optimisation problem and cable routing problem
simultaneously, rather than sequentially. Objectives included the maximi-
sation of the expected net power, minimisation of both turbine costs and
cabling costs. The aim was to solve this complex problem computationally
using selection hyper-heuristics that combined a selection method with a
move acceptance criteria. Several previously documented selection methods
and move acceptance were used alongside the development of customised
selection methods. These selection hyper-heuristics were applied to three
different models: M1 - sequential optimisation, M2 - simultaneous optimi-
sation with random start and M3 - simultaneous optimisation with an opti-
mised start. Further experiments run on the best selection hyper-heuristic
combinations found within the initial experiments, identified the following
three algorithms as the best for each model type BC3:IE (M1), SR:IE (M2)
and BC4:OI (M3). Empirical results indicated that there was no clear best
model with all three solutions less than 1% apart. M2 performed the best
using a combination of simple random as the selection method and improve
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Figure 19: Objective over 20000 iterations for Model 3 with algorithms Best Choice
2:Great Deluge (top), Best Choice 2:Simulated Annealing (middle) and Best Choice 4:Only
Improve (bottom)

or equal as the move acceptance. The custom selection methods, BC3 and
BC4, performed almost as well. To summarise, the findings did not meet
the expectations laid out in Section 5.1, with no clear difference between
each model type.

To conclude, it was found selection hyper-heuristics can effectively find
feasible windfarm layouts with the combined optimisation shown to be a
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Figure 20: Low-level heuristic utilisation that resulted in improvements for Model 1 (Best
Choice 3:Improve or Equal), Model 2 (Simple Random:Improve or Equal) and Model
3 (Best Choice 4:Only Improve). Shades of red indicate heuristics that aim to impact
turbines, shades of blue represent those that impact cabling

potential method for future windfarm design. However, it is not conclusive in
determining whether sequential optimisation or simultaneous optimisation
was better overall; further experiments are required to arrive at a decisive
outcome. Therefore, one cannot reject or accept the null hypothesis defined
in Section 5.1.

6.1. Study Limitations

Whilst selection hyper-heuristics are relatively easy to implement, there
were some limitations due to the scope of this paper. Firstly, the cabling data
was modified for confidentiality reasons and subsequently is not reflective
of the true cost. Additionally, turbine costs were estimated at 10 million
however, these may differ in the real-world scenario. The initial decision to
reduce the overall complexity of the model involved removing consideration
of flexible cabling (non-straight lines), cable hang, ocean floor conditions or
varying foundation costs at each site. Whilst reducing complexity for the
purpose of this study, it also reduced accurate representation of the true
situation.

The objective function used further limited the scope of the study insofar
as it included the initial costs of the layout but did not take into account
the long-term benefits of producing power, which could be sold. Introducing
this factor would enable a more accurate reflection of the long-term costs
and rewards of constructing the windfarm.

The range of low-level heuristics available was restrictive. The complex-
ity of an electrical cabling layout, with many inputs, meant it was difficult
to develop low-level heuristics to successfully manipulate some layouts of
cabling running the risk of a worse optimisation overall.
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Reflecting upon the work undertaken, the following areas are recom-
mended as of potential research interest: (i) Consideration of more factors
within the optimisation (foundation costs, flexible cabling, obstacles and var-
ious turbine capacities); (ii) Introduction of additional low-level heuristics
that are capable of better modifying the cabling layout; and (iii) Potentially
fix the number of turbines and modify the objective function to have a min-
imum expected power production, with the inclusion of a required power
threshold for each site to be placed.
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Li, W., Özcan, E., John, R., 2017. Multi-objective evolutionary algorithms
and hyper-heuristics for wind farm layout optimisation. Renewable Energy
105, 473–482.

Marge, T., Lumbreras, S., Ramos, A., Hobbs, B.F., 2019. Integrated offshore
wind farm design: Optimizing micro siting and cable layout simultane-
ously. Wind Energy 22, 1684–1698.

Marmidis, G., Lazarou, S., Pyrgioti, E., 2008. Optimal placement of wind
turbines in a wind park using Monte Carlo simulation. Renewable energy
33, 1455–1460.

41
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