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ABSTRACT 
Head movement is widely used as a uniform type of input for 
human-computer interaction. However, there are fundamental dif-
ferences between head movements coupled with gaze in support 
of our visual system, and head movements performed as gestural 
expression. Both Head-Gaze and Head Gestures are of utility for 
interaction but difer in their afordances. To facilitate the treat-
ment of Head-Gaze and Head Gestures as separate types of input, 
we developed HeadBoost as a novel classifer, achieving high ac-
curacy in classifying gaze-driven versus gestural head movement 
(�1-Score: 0.89). We demonstrate the utility of the classifer with 
three applications: gestural input while avoiding unintentional in-
put by Head-Gaze; target selection with Head-Gaze while avoiding 
Midas Touch by head gestures; and switching of cursor control 
between Head-Gaze for fast positioning and Head Gesture for re-
fnement. The classifcation of Head-Gaze and Head Gesture allows 
for seamless head-based interaction while avoiding false activation. 

CCS CONCEPTS 
• Human-centered computing → Gestural input; Virtual re-
ality; 

KEYWORDS 
Head Gestures, Eye Tracking, Virtual Reality, Eye-head Coordina-
tion, Computational Interaction, Machine Learning, XGBoost 

ACM Reference Format: 
Baosheng James Hou, Joshua Newn, Ludwig Sidenmark, Anam Ahmad Khan, 
Per Bækgaard, and Hans Gellersen. 2023. Classifying Head Movements to 
Separate Head-Gaze and Head Gestures as Distinct Modes of Input. In 
Proceedings of the 2023 CHI Conference on Human Factors in Computing 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specifc permission 
and/or a fee. Request permissions from permissions@acm.org. 
CHI ’23, April 23–28, 2023, Hamburg, Germany 
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00 
https://doi.org/10.1145/3544548.3581201 

Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York, 
NY, USA, 14 pages. https://doi.org/10.1145/3544548.3581201 

1 INTRODUCTION 
Head movement is compelling as an input modality as it afords 
hands-free and non-verbal interaction. Head orientation is an im-
plicit cue for attention, and an approximation of where we look [49]. 
We can move our heads quickly over a wide motion range, and have 
more control over head movement than over gaze for precise in-
put [29, 44]. We are also expressive with head movement and use 
head gestures in everyday non-verbal communication [20]. Based 
on these properties, head movement has been leveraged for di-
verse purposes in interaction with computers, including viewpoint 
control and adaptive displays [34, 50, 52], pointing at desktops 
and in 3D [39, 45], and gestures to confrm input and issue com-
mands [53, 54]. While head movement has proven so versatile, it 
has been treated as a uniform type of input, tracked as a stream of 
coordinates, and not further qualifed. 

In this work, we propose to distinguish between head movements 
that are gaze-driven, and head movements that are expressions of 
the head in its own right. We refer to the two types of movement 
as Head-Gaze versus Head Gestures. The dichotomy is fundamental 
as it is grounded in how head movement and the visual system 
interact. Much of our head movement is completely driven by gaze 
behaviour, to support the eyes in directing visual attention to objects 
that are not already right in front of us, and to keep the eyes within 
a comfortable eye-in-head position [30, 44]. In contrast, when we 
move our heads independently of gaze, to describe a gesture, then 
it is the head that leads the interaction and the visual system that 
adapts, making it possible to use head movements as means of 
expression without disrupting vision. 

Both types of head movement are of utility for human-computer 
interaction (HCI), Head-Gaze as it approximates where we look, 
and Head Gestures as they aford more control and expressive-
ness. However, as current head-tracked interfaces treat all head 
movement as the same, head gestures have to be designed to avoid 
inadvertent trigger by Head-Gaze, and avoided altogether when 
head movement is used as proxy for gaze [12, 54, 55]. These prob-
lems can be overcome if Head-Gaze and Head Gestures are treated 
as distinct modes of input, while also enabling their use in tandem. 
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Our principal aim in this work is to classify head movements 
into Head-Gaze and Head Gestures, in order to enable their use as 
distinct modes of input. A previous work, BimodalGaze, explored 
refnement of gaze input with head gestures and proposed a heuris-
tic for switching between a gaze mode and head mode, to avoid 
unintended input from head movement associated with the initial 
gaze shift [46]. The work demonstrated the complexity of sepa-
rating Head-Gaze from Head Gestures. When the head supports 
gaze, it moves more slowly than the eyes, with most of the head 
movement typically occurring while gaze is already on target. As 
the head catches up, the eyes compensate for the head movement 
to fxate on the target. The same relative movement of head and 
eye is observed during head gestures, where the eyes compensate 
head movement to stabilise vision, making it difcult to distinguish 
gestural from gaze-driven behaviour. To overcome limitations ob-
served with a heuristic approach, we explore machine learning for 
the classifcation of Head-Gaze versus Head Gestures. 

The frst problem we address is producing a data set to train 
a classifer, as existing data sets of eye and head movement do 
not provide ground truth for the separation of gaze-driven from 
gaze-independent head movement. Therefore, we designed a new 
stimulus and task to elicit both types of movement under controlled 
conditions in virtual reality (VR). The task involves the presentation 
of a target the user needs to attain by a gaze shift, followed by the 
movement of a smaller object from the edge of the target onto its 
centre using a head gesture. A key goal for our data set was to 
include head gestures representative of the whole range from the 
smallest controllable head rotation to the largest comfortable rota-
tion relative to a gaze fxation. We initially tested the range in a pilot 
study to inform our data collection procedure. We also included the 
test when we ran the data collection, to validate our data collection 
design and to provide data to inform gesture design, for instance, 
with insights on choice of gain factors for head pointing and scale 
of gestures that are comfortable without disrupting gaze attention. 
The data collection itself was conducted with 18 participants and 
yielded over a million timestamped samples of head position, head 
orientation, eye-in-head orientation, and eye-in-world orientation 
as input for classifcation. 

With the data collected, we then developed HeadBoost as a novel 
classifer of Head-Gaze versus Head Gestures. HeadBoost is based 
on a wide range of features extracted from the data, including spec-
tral, shape-, noise-, time- and correlation-based features, and uses 
XGBoost [5] for classifcation. In evaluation, we found HeadBoost 
to perform with a high �1-����� of 0.89, demonstrating the feasibil-
ity of separating Head-Gaze from Head Gestures, and presenting 
signifcant improvement over the BimodalGaze heuristic classifer 
(�1-�����: 0.62). A user-independent model performed even better 
than a user-dependent model, showing that head movements can 
be classifed with a global approach without requiring individual 
training. We further show that the HeadBoost model overcomes key 
limitations of the heuristic baseline in detecting the onset of Head 
Gestures and Head Gestures performed with slow head movement. 

The ability to classify head movement into Head-Gaze and Head 
Gestures is signifcant for interaction, as it allows both types of 
head movement to be leveraged in improved and novel ways. We 
demonstrate the utility and practical relevance of the classifer 
with three applications. These show how the classifer supports 

gestural input with sideways head movement while avoiding Midas 
Touch [22] by Head-Gaze movements that are performed with 
similar direction and amplitude. Conversely, we demonstrate Head-
Gaze selection of input while avoiding false activation by gestures. 
Finally, we demonstrate the novel combination of both Head-Gaze 
and Head Gestures for cursor control, alternating between eye gaze 
with integral Head-Gaze for gross positioning and head gestures 
for refnement. In sum, we provide the following contributions: 

(1) An introduction to the HCI community of the fundamental 
diferences in head movements driven by gaze (Head-Gaze) 
and head movements independent of gaze (Head Gestures), 
to make the case for their treatment as distinct types of input. 

(2) A novel stimulus and task design to separate Head-Gaze and 
Head Gestures for automatic labelling of head movement. 

(3) HeadBoost – a novel head-movement classifer for classify-
ing head movements into Head-Gaze or Head Gestures and 
the results of its performance evaluation. Results show that 
HeadBoost achieved a �1-����� of 0.89 and outperformed a 
threshold-based baseline. We further show the benefts of 
HeadBoost in three VR applications. 

2 RELATED WORK 

2.1 Classifcation of Head-Gaze versus Head 
Gesture 

‘Head-Gaze’ and ‘Head Gesture’ are widely used notions in the 
literature, however, not to delineate diferent types of head move-
ment. ‘Head-Gaze’ is commonly used in eye tracking literature 
to describe the approximation of gaze by head pose, to contrast 
the fne-grained tracking of gaze with an eye tracker that tracks 
eye-in-head rotation [3]. ‘Head Gesture’ is a general notion for 
head movement behaviours associated with specifc meaning in 
human-computer interaction (HCI) literature broadly used for head 
movements adopted for computer control [26]. 

In this work, we use the terms to clearly distinguish between 
head movements that are gaze-driven from head movements that 
are independent of gaze. This is not inconsistent with the existing 
use of terms, but provides a basis for a more nuanced consideration 
of head movement for input. For example, head pointing as an input 
method implicitly leverages Head-Gaze to move the cursor toward 
a target when we look at it, but requires an additional Head Gesture 
to acquire the target [45]. 

This work is inspired specifcally by Sidenmark et al.’s Bimodal-
Gaze [46]. The work was not a priori concerned with the classi-
fcation of head movement, but aimed to use head movement for 
refnement of gaze input. A naive approach would switch cursor 
control from gaze to head as soon as a gaze saccade toward a target 
has been completed. However, if the gaze saccade is supported 
by head movement, then the head will usually still be in motion 
after target acquisition, compensated for by VOR eye movement 
that stabilises vision and rotates the eyes back to a more central 
position [44]. The continued head movement after gaze acquisition 
is pre-programmed with the eye-saccade and not under voluntary 
control until it has been completed. This led Sidenmark et al. to 
develop an algorithm to flter out ‘natural’ from ‘gestural’ head 
movement to avoid unintended input. This algorithm is based on 
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thresholds for eye velocity to detect a saccade (160◦/�), head veloc-
ity to detect head movement (15◦/�), divergence of eye and head 
trajectory (20◦), and delay time between head and eye movement 
(150ms), derived from eye-head coordination literature [44]. The 
work is excellent in analysing limitations of the algorithm, leading 
us to propose that the problem of classifying Head-Gaze versus 
Head Gesture may be better tackled by machine learning. 

There is a wide range of other work on classifcation of head 
movements and behaviours. Head movements play a signifcant 
role in interaction as a means of expressing intent and eliciting 
emotions. Previous work has demonstrated the potential of ma-
chine learning models for detecting and classifying head gestures 
in a wide range of application scenarios [4, 15, 40, 58]. For instance, 
Morency et al. leveraged visual features (e.g., head velocities or eye-
gaze estimates) to propose an SVM model to classify head gestures 
as feedback nods and headshakes during interaction [35]. Simi-
larly, Hachaj and Piekarczyk used PCA-based features to train and 
propose an artifcial neural network that can classify head move-
ments into seven diferent gestures (e.g., clockwise rotation and 
head nodding) in a VR environment [15]. Furthermore, researchers 
in the feld of afective computing have explored machine learning 
models to predict the emotional state of users by leveraging their 
head movements [58]. Our work is related in using machine learn-
ing to model behaviour, but our aim is to fundamentally separate 
Head-Gaze from Head Gesture. 

2.2 Head movement as Input 
Head movement has been considered widely for computer control, 
including pointing, continuous control, spatial selection, and sym-
bolic selection [26]. One major theme is the design of gesture sets, 
for instance, with recent work proposing nine gestures for select, 
drag, zoom, scroll, and other commands [54]. A principal problem 
in gesture design is that gestures need to be robustly distinguishable 
from any head movement occurring as natural behaviour, often 
leading to designs that require exaggerated movements [12, 54, 55]. 
The separation of Head-Gaze from Head Gesture that we propose 
provides a new route to address this problem and may enable ges-
ture designs of improved usability. 

Head movement also lends itself to input in combination with eye 
gaze, combining the accuracy of head movements with the speed of 
gaze movements for faster, precise and deliberate interaction [18, 23, 
28]. For instance, Kurauchi and Fang adopted Zhai et al.’s MAGIC 
technique [57] for gaze-assisted head pointing [28], and Sidenmark 
et al. designed a Look&Cross technique using to pre-select targets in 
a radial interface that are confrmed by head crossing [47]. Existing 
work combining the modalities has tended to associate gaze solely 
with the eyes and a priori separate from head movement. Our work 
recognises that head movement is integral to gaze, but provides a 
method to clearly separate those head movements that are part of 
gaze from those that are usable for complementary input. 

3 STUDY DESIGN 
Our work is novel in considering the separation of head movement 
as gaze-driven versus independent of gaze. To develop a classifer, 
we require data labelled accordingly with ground truth. We ap-
proach this with the design of a stimulus and task designed to elicit 

Figure 1: Stimulus (not to scale). Head movement is used to 
move the white ball into the black hole, over a distance of 
2.56◦ of visual angle in the display space. 

Head-Gaze and Head Gestures in consecutive phases, which we 
detail as a novel methodological contribution below. 

A chief concern for the data collection is to include gestural head 
movements from the very small that may be useful for fne position-
ing to movements describing larger gestures without disrupting 
vision. We, therefore, designed a test for head movement range 
to identify the range from the smallest controllable to the largest 
comfortable movement. We used this test in a pilot study that we 
reported as it informed the data collection. 

3.1 Stimulus and Task Design 
Figure 1 shows the stimulus we designed for data collection, and 
Figure 2 the task and interaction sequence for eliciting frst Head-
Gaze and then Head Gestures in two directions relative to the 
participant’s gaze. The interaction sequence follows four phases: 

(1) From a neutral forward-looking position, participants per-
formed a gaze shift with associated Head-Gaze movement 
toward the stimulus. 

(2) While their gaze remained on the target, participants per-
formed a Head Gesture to move a ball from the edge of the 
target onto its centre, using a golfng metaphor. 

(3) Participants performed a Head Gesture in the opposite direc-
tion, to ensure that we collect both gestural head movement 
that rotates the head away from the direction of gaze, and 
toward the direction of gaze. 

(4) Participants reset the head position to the neutral, forward-
looking position. 

With reference to Figure 2, we further elaborate the interaction 
sequence in the following subsections. The interaction sequence 
and stimulus design enable automatic labelling of Head-Gaze and 
Head Gesture data points for the subsequent machine learning 
classifcation. 

3.1.1 Phase 1: Head-Gaze. Each trial starts from a neutral, forward-
looking position. A target appeared in the feld of view (FOV) as 
illustrated in Figure 2a. Participants were tasked to acquire and 
fxate on the target by gaze, indicated by colour feedback (Figure 2b). 
To ensure that gaze jitter has no efect on the fxation condition, the 
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Figure 2: Sequence of events in a trial. Stimulus onset (white inner circle) cues for gaze shift. The inner circle turns green when 
the participant’s gaze hits the target to provide visual feedback. When fxation condition is met, a white ball and a black hole 
are rendered, which cues the participants to use Head Gesture movement to move the white ball into the black hole while 
maintaining eye-gaze fxation on the black hole. This is followed by a Head Gesture movement cued in the opposite direction. 
Finally, the target disappears, and the participant reset to the neutral head position by aligning the white ball to the black ball. 
The red arrow is used for illustration purposes only. 

target is considered fxated on if it is within an area twice the size 
of the target area. However, the gaze has to be within the target 
area to start the fxation. While gaze is on target, the Head-Gaze 
phase continues until head velocity has dropped below 1◦/s. We 
defne head velocity as the fve-point smoothed velocity [11, 43] of 
the HMD’s Fick-angles [19]. The Head-Gaze phase completes when 
both conditions are satisfed for 200 milliseconds to ensure that the 
head is no longer in motion before we prompt gestural movement. 

All samples collected in this phase are labelled as ‘Head-Gaze’. 
During this phase, the participant will frst move their eyes toward 
the target, followed by eye and head movement in the same direc-
tion during the saccade toward the target. Finally, the eyes and 
head move in opposite directions when the head is moving to a 
comfortable position, and the eyes move to remain on target (VOR). 

3.1.2 Phase 2: Head Gesture. The second phase of the sequence 
starts with the appearance of a black hole in the target centre and 
a white ball at the edge of the target (Figure 2c). The white ball is 
randomly placed on one of the eight cardinal axes. The participant 
is then tasked to move the ball towards the hole by turning their 
head while fxating on the black hole. See Figure 2d, the cued head 
rotation is illustrated by red arrows. 

This golf metaphor requires the participants to monitor the posi-
tions of the ball and hole for successful completion. To collect small 
and precise Head Gesture and larger swiping Head Gesture during 
this phase, we vary the control-display (CD) gain between the ball 
on the display and the head-mounted display as the controller: 

����� 
������ = (1)

�ℎ�� 

����� and �ℎ�� are the velocity of the ball and HMD, respectively. 
The size of the stimulus is kept constant for data collection. With a 
larger CD gain, the participant must perform precise pointing head 
movement to complete the task, while with a smaller CD gain, less 
precise swiping movement is performed. Note that larger CD gains 
efectively increases the target width in motor space, such that it 
can be reached without careful aiming. 

Task completion is defned by the following rules and conditions. 
First, eye-gaze must main fxated on the black hole. Second, the 

white ball will only move if the performed head rotation is within 
±45◦ of the direction between the white ball and the black hole. This 
condition enforces that participants pay attention to and perform 
the head movement in the correct direction. Third, the ball is holed 
if the position of the ball is within ±0.26◦ from the centre hole on 
the display, and the ball’s velocity is less than 0.5◦/� visual angles. 
We calculate the distance between the ball and the hole via the 
trapezoidal rule for numerical integration, using the previous and 
current ball velocities, the previous ball location, and the elapsed 
time as input. The velocity of the ball is calculated as the head veloc-
ity multiplied by the CD gain. When the ball is holed, an animation 
is shown as visual feedback (Figure 2e). This completes the second 
phase, during which all data collected are labelled ‘Head Gesture’. 
During this phase, the participant performs head movements and 
stabilising VOR eye movements to keep the gaze on target. 

3.1.3 Phase 3: Head Gesture (Return). The previous phase includes 
a Head Gesture where the head and gaze align. As such, we include 
a second Head Gesture phase, where the head moves away from 
gaze. In this phase, the participant performs the same task as in 
Phase 2 but in the opposite direction (Figure 2f-h). The head will 
then return to the starting position of Phase 2. As in Phase 2, all 
samples are labelled as ‘Head Gesture’. 

3.1.4 Phase 4: Reset. Finally, participants are guided to reset their 
head and gaze position to the neural starting position with visual 
guidance (Figure 2i). This concludes a trial. 

3.2 Head Movement Range 
We designed a test to assess the range of head movement of interest 
for gestural input, from smallest controllable to largest comfortable. 
The test uses the stimulus described above, placed in the centre 
of the participant’s FOV (neutral head position). The independent 
variable is CD gain, which we manipulate to test head movements 
that require a diferent amount of angular rotation to move the ball 
from the edge of the stimulus into the hole in the centre. 

Table 1 shows the 12 levels we used, for each level showing the 
required amount of head rotation, the CD gain and the efective 
width of the target in motor space. The total head rotation is the 
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Table 1: Range of CD gains and their corresponding total head rotation and control target width for assessment of the head 
movement range usable for gestural input 

Total head rotation (◦) 50.0 45.0 40.0 32.0 16.0 8.0 4.0 2.0 1.0 0.5 0.25 0.2 

CD gain 0.051 0.057 0.064 0.08 0.16 0.32 0.64 1.28 2.56 5.12 10.24 12.8 

Control Target Width (◦) 10.196 9.123 8.125 6.5 3.25 1.625 0.812 0.406 0.203 0.102 0.051 0.041 

range between the minimum and maximum head position angles 
and is useful for investigating the largest comfortable head rotation. 
The control target width is the range of head (i.e. control) positions 
corresponding to the ball (i.e. cursor) locations within the target [1, 
2], it represents the range that the head can move while still keeping 
the ball inside the target area, and is useful for investigating the 
smallest controllable head rotation. 

Participants perform four trials per CD block, for a total of 12 
blocks. The Head Gesture directions are randomly sampled out of 
the eight cardinal directions. Sidenmark and Gellersen [45] investi-
gated the efect of movement orientation on head-eye movement 
coordination, whereas we randomise movement orientation to iden-
tify the general functional movement range. Participants returned 
to the neutral head position using visual guidance at the end of each 
trial. After the fourth trial and before the next CD gain block, par-
ticipants completed a seven-point Single-Ease Questionnaire (SEQ): 
“Overall, how difcult or easy was the task to complete?”, with “1” 
being the most difcult. Participants started with the middle CD 
gain to calibrate participants to the SEQ scale. To counterbalance, 
half of the participants frst moved up the CD gain scale before 
returning to the middle and proceeding to decrease CD gains, while 
the other half completed the decreasing CD gain scale before pro-
ceeding to the increasing CD gains. Then the following sequence 
starts with a new CD gain and Head Gesture direction. 

We conducted a pilot study involving six participants (4M, 2F) to 
(1) identify a CD gain range suitable for data collection, and (2) to 
check that our stimulus design works. To manage the complexity 
of the data collection, we aimed to identify three representative CD 
gains. We chose the lowest and highest CD gains at which most 
participants completed the pilot trials with 100% success. The lower 
bound CD gain was chosen to be 0.08, with a control target width 
of 6.5◦, prompting head movements that are large (32◦) and less 
comfortable to perform. An upper bound CD gain was chosen to 
be 1.73 with a control target width of 0.3◦, the same head-pointing 
accuracy as reported by Kytö et al. [29], prompting head movements 
that are small (1.48◦) and difcult to control. A third CD gain of 
0.32 was chosen to prompt a head movement from the range in 
which participants had higher accuracy, speed, and SEQ rating. 

4 USER STUDY AND DATA COLLECTION 

4.1 Participants 
We collected data from 18 participants (10F, 8M, 27.7±7.0 years) 
recruited from our local university. Seven participants had no prior 
VR experience, 10 reported occasional, 1 reported weekly, and 0 
reported daily VR experience. Ten participants had previously used 
eye tracking as participants in a research setting. Eleven participants 
wore glasses and seven had good vision without correction. 

4.2 Procedure 
Before starting the session, participants were asked to sit comfort-
ably and given a written overview of the study, a consent form 
and a basic demographic questionnaire to complete. Participants 
were briefed on the task, which requires head movement while 
maintaining gaze on the target, for moving the ball into the hole for 
each trial. Participants were asked to keep their bodies stationary 
and only rotate the head to complete the trials as fast and accurately 
as possible. Further, they were instructed not to touch the HMD 
or hold it with their hands. Participants were then asked to wear 
the HMD, adjust the placement of the HMD and the interpupillary 
distance (IPD), and perform a fve-point eye tracking calibration. 
The details of the headset employed are in the following section. 

Participants completed a short practice session to verify that 
the eye tracking worked for them and that they could comfortably 
perform the putting task using the three CD gains determined in 
the pilot study. After completing the practice session, participants 
performed the Head Movement Range test (subsection 3.2), which 
took approximately 15 minutes to complete. Once completed, par-
ticipants were allowed to take a break before continuing with the 
data collection for our classifer. 

We conducted the data collection using three CD gains identifed 
in the pilot study: 0.08, 0.32, 1.73. Participants again completed 
an eye-tracker calibration task at the start and were reminded to 
remain still while using the head and focus on the target. Each 
participant performed three blocks of 25 trials, each block with a 
diferent CD gain, in counterbalanced order. In each block, stimuli 
are placed at a fve×fve grid of ±30◦ and were shown in random 
order. Participants performed one trial per stimulus location, re-
turning to the neutral head position before the next trial began. The 
direction of the cued Head Gesture was randomised. Participants 
were allowed to take a break at any time. The data collection took 
approximately 25 minutes to complete. The study procedure was 
approved by our institution’s ethics board. 

4.3 Dataset Description 
The study environment and tasks were implemented in Unity ver-
sion 2020.3.32f1. We collected the eye and head position and direc-
tional 3D vectors, relative to the world and head using an HTC Vive 
Pro Eye (120 Hz). The HMD has a FOV of 100◦ in the horizontal 
plane, 110◦ in the vertical plane and a frame rate of 90Hz. We col-
lected 1192288 time-stamped samples from a total of 81 trials, where 
each sample is labelled as Head Gesture (Head Gesture (Away): 21%, 
Head Gesture (Towards): 28%) or Head-Gaze (50%) during data col-
lection. On average per participant, 50.8 ± 5.4% of the sample labels 
are Head Gesture and 49.2 ± 5.4% are Head-Gaze. The relevant raw 
data for the classifcation sections are the head position 3D vector, 
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(a) Completion time (b) Error rate (c) Single-Ease questionnaire 

Figure 3: Measure to determine the head movement range 

head directional 3D vector, eye-in-world directional 3D vector, and 
eye-in-head directional 3D vector. 

4.4 Results on Head Movement Range 
From the measure completion time, error rate, and SEQ scores, we 
estimate a usable range from the smallest controllable head rota-
tion at 0.3◦ to the largest comfortable rotations at 40◦ from the 
gaze position as a general rule of thumb design guide. As every 
interaction application will have its own intrinsic limitations, we de-
termined this range quantitatively from Figure 3, without applying 
threshold-based cutofs. 

Task completion time increases as the CD gain is too sensitive 
(low control target width) or too large, causing the target to exit the 
FOV (Figure 3a). The error rate increases as the control target width 
decreases, or as the total head rotation is exaggerated (Figure 3b). 
In the latter case, Head Gesture (Away) is more afected because it 
causes the target to exit the FOV. Participants found the task easy 
to complete when the head movement is moderate (Figure 3c). We 
observed that the error rate becomes impractical and rises steeply 
after ∼ 40◦ of total head rotation, and in line with previous research, 
below approximately 0.3◦ of control target width. 

5 CLASSIFICATION OF HEAD MOVEMENTS 
INTO HEAD-GAZE AND HEAD GESTURE 

This section describes the pre-processing, feature extraction, and 
classifcation methods employed to classify head movements into 
Head-Gaze and Head Gesture. 

5.1 Preprocessing 
We pre-processed the raw data before extracting features for classi-
fcation according to best practices [7, 8]. First, we removed data 
samples with the calculated velocity of > 800◦/� according to phys-
iological limits in eye rotation. Second, we interpolated the data 
samples to a constant sampling rate of 125Hz. Next, we transformed 
the 3D directional gaze vectors into 2D Fick angles via the Fick-
gimbal, where the eye (or head) position is characterised by a ro-
tation about the vertical axis (Azimuth, or Az angle) followed by 
a second rotation about the nested horizontal axis (Polar, or Pol 
angle) [19]. Lastly, we calculated the velocities and accelerations of 
the eye-in-world and eye-in-head vectors, head angles, and head 
positions using cubic spline derivatives. 

5.2 Feature Extraction 
We employed common features for eye- and head-based classi-
fcation [9, 21, 31, 37, 41, 48, 51, 56]. Table 2 summarises these 
features, which could be categorised into shape-, noise-, spectral-, 
correlation-, and timing-based features, interested readers can fnd 
their precise implementations in the original papers cited in Table 2. 
Previous work using gaze-based features for classifcation [25, 27] 
suggests that window length signifcantly afects the performance 
of the classifcation model. Therefore, we experimented with fve 
diferent window lengths to generate the features for the classif-
cation: 128ms, 256ms, 312ms, 384ms, 512ms. We chose a window 
length of 512ms, as it gave the highest classifcation performance 
using 5-fold cross-validation, reaching a plateau. 

5.2.1 Feature Selection. Research suggests that training a machine 
learning model on a large feature set results in high computational 
costs and potentially leads to overftting the model [10]. Therefore, 
various feature selection strategies [6, 33, 42] are deployed that 
select a small subset of relevant features by removing redundant 
and noisy features from the original feature set. Consistent with 
this observation, we used the correlation-based feature selection 
method [16] to select relevant features for the classifcation task. For 
this purpose, we frst calculated the correlation distance between 
each feature. We then used the calculated correlation distances 
to cluster features using hierarchical clustering [36]. Lastly, we 
selected a single feature from each feature cluster to obtain 81 
relevant features to classify each head movement. 

5.3 Classifcation 
After feature engineering and selection, we combined the feature 
vector in a machine learning model that could classify the type of 
head movement. We modelled this task as a binary classifcation 
problem. For each head movement trial, the selected features were 
fed into a classifer to predict the type of head movements as either 
Head-Gaze or Head Gesture. To train a machine learning model, we 
experimented with eXtreme Gradient Boosted (XGBoost), SVM and 
Random Forest models by training them on the collected dataset. 
We selected XGBoost as the fnal model for the classifcation task, 
as it gave the highest performance score across the testing folds. 
XGBoost is an optimised distributed implementation of the gradient-
boosted decision tree algorithm specifcally designed to be highly 
accurate, fast, and fexible [5]. The XGBoost model primarily solves 
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Table 2: HeadBoost features. 

Category Features 

Shape-based Slope, Range, Mean Velocity, Peak Velocity, Mean Acceleration, Peak Acceleration, Integral, Energy, Wavelength [51], 
Spatial features in the positional signal (�� , ��� , ��� , �� ) defned by Larsson et al. [31] 

Noise-based Dispersion [41], Standard Deviation, RMS, BCEA [21, 48, 56], 
RMS-dif, BCEA-dif, Mean-dif, Median-dif [37, 56], Rayleightest [31, 56] 

Spectral Rollof, Centroid, Entropy [9], Flatness 
Correlation-based Correlation 

Timing-based Time since last saccade (200 ◦/�) 

the classifcation problem by combining an ensemble of estimates 
from a set of simpler and weaker tree models. We built the XGBoost 
classifer with 20 trees on the whole dataset of 18 participants. 

As in previous work, we evaluated HeadBoost using the �1-
Score and Area Under the Receiver Operating Characteristics Curve 
metrics (AUC) [14]. The �1-Score [13] is the weighted average of 
Precision and Recall and calculated as 2 × ���������×������ , where 

���������+������ 
�� �� ��������� = and ������ = 

� � +� � , and � � , �� , and �� 
� � +��

represent the number of true positives, false positives, and false 
negatives, respectively. The Receiver Operating Characteristics 
(ROC) curve represents the relationship between the true positive 
rate and the false positive rate at diferent classifcation thresholds. 
AUC measures the area under the ROC curve and represents the 
ability of a classifer to distinguish between classes [17]. �1-Score 
and AUC scores range from 0 to 1, where 1 represents the high-
est and 0 represents the lowest possible performance values the 
classifer could attain. A score of 0.5 is typical of random guessing. 

To capture the temporal history of participant behaviour, for each 
observation of the head movement, we included the feature vector 
from the last � ms, sampled at every � Hz. We experimented with 
diferent combinations of temporal history windows (� = 256ms, 
512ms, 640ms and 1024ms) and sampling rates (i.e., � = 12.5Hz, 
6.25Hz, 3.13Hz, 1.56Hz and 0.98Hz) for building our classifer. Fi-
nally, we selected a temporal history window (� ) of 1024 ms with a 
sampling rate of 6.25Hz because the model gave the highest classi-
fcation performance on the testing folds for this combination and 
reached a performance plateau for � >1024ms and �>6.25Hz. 

We evaluated our classifcation approach in two ways. We frst 
performed a user-dependent classifcation by training and evaluat-
ing the classifer on the data from the same participant but from a 
diferent head movement trial. We build the user-dependent classi-
fers using fve-fold cross-validation. For example, if a participant 
conducted 75 head movements trials, we trained the classifer fve 
times, each time training on the data of four folds–containing 60 
trials each—and evaluated it on the data of the remaining fold, 
which includes 15 data trials. The reported results (see Table 3) are 
averaged across the fve folds and the total number of participants. 

To avoid overftting the classifer to the behaviour of a particular 
participant and propose a generic classifer, we further conducted a 
user-independent evaluation. We evaluated the classifer by training 
it 17 times using leave-one-participant-out cross-validation. For 
this purpose, each time we trained the classifer on the data of 16 

Table 3: Performance of the baseline [46] and our proposed 
approach (HeadBoost) to classify head movements. 

Evaluation 
Measures 

Baseline 
Approach [46] Proposed Models 

user-dependent user-independent 

�1-Score .62 ± .06 .87 ± .05 .89 ± .06 
AUC .66 ± .03 .94 ± .02 .96 ± .02 

Precision .71 ± .09 .86 ± .05 .88 ±.01 
Recall .58 ± .11 .88 ± .04 .91 ± .04 

participants (one participant was removed from the training set 
due to noise but was used in the evaluation set) and then evaluated 
it on the head movement trials of the last participant. The reported 
results in Table 3 are averaged by the total number of participants. 

6 EVALUATION OF THE CLASSIFIER 
In this section, we frst report the performance of the user-dependent 
and user-independent models trained to classify head movements. 
Then we compare our proposed approach with the threshold-based 
approach proposed by Sidenmark et al. [46]. Lastly, we explore 
the features that signifcantly impact the performance of the user-
independent classifer for head movement classifcation. 

6.1 Model Performance 
We computed the AUC, �1-Score, recall and precision to evaluate 
the performance of the built classifers (see Table 3). Our results 
suggest that it is generally feasible to classify head movements into 
Head-Gaze and Head Gesture (�1-Score = 0.89). Furthermore, we 
observed that the user-independent classifer could more accurately 
classify head movement compared to the user-dependent classifer 
(see Table 3). This is because, in contrast with the user-dependent 
classifer, the user-independent classifer is trained on a much larger 
volume of data. Thus, it learns patterns from a wide range of head 
movements depicted by various participants, consequently classify-
ing new head movements more precisely. 

Further, we observed that although the generic user-independent 
model has a high classifcation performance (�1-Score = 0.89), it 
fails to predict the correct label of head movement for a few trials. 
An exploratory analysis of the data suggests that one of the reasons 
for misclassifcation was when participants made an unintentional 
head movement in the trials. In some cases, the user-independent 



CHI ’23, April 23–28, 2023, Hamburg, Germany Baosheng James Hou, et al. 

Figure 4: Slow head movement (< 15◦/�) caused the baseline method to miss the Head Gesture. Single-trial visualization of the 
eye and head rotation and velocities. At the top of the graphs, the green bar shows the ground truth label for Head Gesture; the 
pink bar shows the predicted Head Gesture by the HeadBoost model. 

Figure 5: The HeadBoost model detects the onset of Head Gesture earlier than the baseline method. Single-trial visualization 
of the eye and head rotation and velocities. At the top of the graphs, the green bar shows the ground truth label for Head 
Gesture; the pink bar shows the predicted Head Gesture by the user-independent XGBoost classifer. The purple bar shows the 
prediction by the baseline method. Az and Pol refer to the Fick angles that characterize the gaze direction (see subsection 5.1) 

classifer would incorrectly predict the head movement as Head 
Gesture, even though a natural Head-Gaze movement has occurred. 
In other cases, the Head Gesture is predicted correctly, but the 
ground truth is corrupted by the unintentional Head Gesture during 
data collection when they were instructed to perform Head-Gaze. 
This behaviour of the classifer increases the false-positive rate of 
the model. However, the efect is difcult to quantify due to the 
subjective nature of interpreting the ground truth labels and human 
behaviour, which we will elaborate in the discussion. 

6.2 Comparison with Baseline Method 
To demonstrate the efectiveness of HeadBoost, we compared the 
performance of our approach with the threshold-based approach 
of Sidenmark et al. [46]’s BimodalGaze. The �1-Score is increased 
from 0.62 to 0.89, indicating a substantial improvement in overcom-
ing limitations in classifcation sensitivity and speed. This increase 
in performance could be explained by the fact that our approach 
learns the pattern of head movement using additional head-, gaze-, 
and time-based features to perform the classifcation task. However, 
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Sidenmark et al. use fxed thresholds for various features to clas-
sify head movement. Consequently, their method may break if the 
feature values deviate from the fxed thresholds. For example, we 
observed that whenever participants’ head velocity was constantly 
below a fxed threshold of 15◦/� , the baseline method incorrectly 
classifed the head movement as Head-Gaze. However, as shown in 
Figure 4 this error is resolved in our proposed approach as it uses 
a machine learning model to learn the pattern of head movement 
rather than relying on a fxed head velocity value. 

We further observed that our proposed method was able to pre-
dict the onset of Head Gesture much earlier than the threshold-
based method [46] (avg. 119ms earlier for all trials). For example, 
Figure 5 shows that the proposed method detected the onset of Head 
Gesture between the time stamp of 1726s and 1727s (depicted by the 
horizontal pink bar). However, the baseline method detected Head 
Gesture at a later timestamp—between 1727s and 1728s (illustrated 
through the horizontal purple bar). 

6.3 Feature Importance 
We used the SHapley Additive exPlanations (SHAP) algorithm [32] 
to explore the importance of each feature in classifying head move-
ment. Figure 6 illustrates the feature importance plot, where the 
features are ordered in decreasing importance from top to bottom. 
As seen in Figure 6, no single feature is solely responsible for clas-
sifcation. Rather, a combination of head-based and timing-based 
features contributed to predicting the types of head movement. 

We observed that the historical value of Rayleightest, which 
captures whether the head movement was uniform 1024 ms ago, 
contributes the most to correctly predicting the type of head move-
ment. This is because, for Head-Gaze observations, a uniformly 
distributed sample-to-sample head direction pattern is often ob-
served, resulting in a high value of this feature. On the other hand, 
for Head Gesture observations, the sample-to-sample head direction 
distribution is non-uniform, resulting in low feature values. 

Furthermore, we observed that some shape-based head features 
(e.g., head wavelength and �� value that shows the relationship 
between successive principal components of head movement) are 
important for predicting the head movement types. Similarly, some 
noise-based head features, such as the RMS-Dif feature, which 
refects the diference in the root mean square value of head move-
ment between successive feature-generation windows, also got 
high importance for the head movement classifcation task. 

Lastly, we observed that the timing-based feature, total time 
since the last saccade, played a signifcation role in distinguishing 
head movements. This observation could be explained by the fact 
that Head Gestures generally occur after the gaze shift is completed 
and a target is acquired. Therefore, the time since the last saccade 
would be much longer for Head Gestures than for Head-Gaze. 

Further, we observed that HeadBoost correctly detected Head 
Gesture very early for some trials, as shown in Figure 5. To iden-
tify the features that highly impacted the decision of HeadBoost 
for early detection, we performed a SHAP analysis using the frst 
detected Head Gesture period illustrated in Figure 5. We observed 
that for early Head Gesture detection, Head (Az-Pol combined) wave-
length was the most important feature, followed by the historical 

Figure 6: SHAP value feature importance of a user-
independent classifer 

values of Rayleightest, wavelength, and eye-in-world combined abso-
lute slope features. This observation suggests that the early detection 
of the Head Gesture is impacted by the temporal evolution of the 
features and the current head and eye movement. 

7 APPLICATIONS 
We developed three applications to demonstrate the utility of our 
classifer. The applications and their features are summarised in 
Table 4. In Application 1, we demonstrate that, in contrary to the 
complex and repetitive gestures used in previous works, simple 
head gestures can be used as input commands without accidental 
activation from Head-Gaze. As shown in Figure 7, the user performs 
simple swiping gestures to the left or right to sort cards into the 
appropriate bin. Later, the user performs a gaze shift in reaction 
to external stimuli. HeadBoost then recognises the movements as 
part of the Head-Gaze and flters out the movement. Therefore, no 
swipe interaction is performed. 

In Application 2, we build on the separation of Head-Gaze and 
Head Gesture and demonstrate that multiple, separate head-based 
interactive systems can coexist without accidentally triggering each 
other. As shown in Figure 8, the application consists of a virtual 
workspace where the user is surrounded by multiple virtual dis-
plays in a horizontal layout [34]. The current display is mapped 
to the head direction. If the user performs Head-Gaze far enough 
in either horizontal direction, the system will change the current 
attended display. Users can interact with content within each dis-
play using their head, in this case, the same swiping interaction 
as in Application 1. As multiple interactive systems depend on the 
head, it is important to separate horizontal swiping gestures within 
a window from Head-Gaze performed to switch displays. We show 
that Head-Gaze can aford attention-based workspace switching 
while allowing Head Gesture as control input within the attended 
workspace without accidentally switching displays. 

In Application 3, we demonstrate how the classifcation of Head-
Gaze and Head Gesture afords seamless mode-switching from 
gaze pointing to head pointing and that HeadBoost is relevant for 
fne-grained interaction beyond simple swipe-style applications. As 
shown in Figure 9, this application is an adaptation of the Bimodal-
Gaze pointing technique by Sidenmark et al. [46]. The pointer is 
primarily controlled by gaze, but when the user has to refne the 
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Table 4: The diferent afordances of Head-Gaze and Head Gesture in applications and the beneft provided by HeadBoost. 

Application Head-Gaze Head Gesture Beneft 

1 Filtered out and ignored Swipe interaction to sort cards Avoid accidental activation by Head-Gaze 
Switch between multiple 2 windows 

Head movement refnes Head-Gaze and Head Gesture can be used in 3 Gaze pointing cursor position the same application, depending on user needs 

Swipe interaction to sort cards Separate head-based applications can coexist in the attended window 

(a) Task: sorting a deck of cards according to species. (b) Head Gesture swipes the card to the left. 

(c) Head Gesture swipes the card to the right. (d) Head-Gaze to look at an already sorted card to the left without 
triggering a swipe action. 

Figure 7: Application 1: The participant sorts a stack of cards of animals of avians and mammals using Head Gesture. When a 
Head-Gaze is performed to look at an already sorted card to the left (or right), it does not trigger a swipe action. Head-Gaze is 
suppressed to allow simple head gestures in interactions without false-active activation. The green circle is the eye position. 
The red cross-hair is the head position. These are for illustration purposes only. 

cursor position when selecting small targets or due to tracking 
difculties [29], the head can perform small gestural movements 
to move the cursor to the correct position. With HeadBoost, head 
refnement is activated when the classifer identifes a Head Gesture. 
A switch back to gaze-pointing occurs when the user performs a 
saccade or a head movement triggered by gaze. This application 
shows how HeadBoost’s classifcation of Head-Gaze and Head Ges-
ture can be leveraged in the same interaction technique to switch 
interaction modes depending on current needs. 

8 DISCUSSION 

8.1 Head-Gaze versus Head Gesture 
We introduced the problem of classifying Head-Gaze and Head 
Gestures, motivated by fundamental diferences in the nature of the 
underlying head movements, and their afordances for interaction. 

In existing work, head movement is treated as a uniform input type, 
whereas we argue for their treatment as distinct modes. 

Previous research has demonstrated that head input can improve 
the user experience by making input more seamless and efortless 
[15, 38, 54]. However, these may use unusual gestures, repetitions, 
or dwell to avoid false activation by Head-Gaze. HeadBoost shows 
the potential for simpler and more natural gestures to be used as 
inputs with low false activation. In our applications, we demonstrate 
that diferent types of input can be assigned to Head-Gaze and 
Head Gesture to capitalise on their respective advantages, e.g., 
naturally adjusting the interface according to Head-Gaze as input 
focus changes or using Head Gesture for fne control of UI elements. 

As eye tracking enabled AR/VR devices to evolve to provide low-
friction, always-on assistance [24], we anticipate the ability to dis-
tinguish Head-Gaze and Head Gesture to become more relevant to 
HCI. HeadBoost supports this notion by being device-independent, 
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(a) Task: interacting with cards via Head Gesture, switching windows 
with Head-Gaze. The current workspace is the Avians window (centre). 

(b) User wishes to switch to the Mammals window and performs a 
Head-Gaze to it without accidentally triggering a card swipe. 

(c) Head-Gaze to the Mammals window moves it to the centre. (d) User performs Head Gesture to view the next card without acciden-
tally switching to the Avians window. 

Figure 8: Application 2: Two windows are presented to the user, the central window is the current workspace. Head-Gaze is 
used to switch the attended window to the centre, and Head Gesture is used to view the cards inside the current workspace 
without accidentally switching to another window. The green circle is the eye position. The red cross-hair is the head position. 
These are for illustration purposes only and are not visible to the user. 

enabling easy transfer between devices by only requiring the f-
nal output of the eye and head trackers without device-specifc 
parameters such as eye images. As modern eye trackers provide 
a sample-wise classifcation of fxations, saccades, and other gaze 
events, we anticipate it would be useful to also provide the classif-
cation of Head-Gaze and Head Gesture. This classifcation would 
be helpful to enable activity recognition and behavioural studies 
beyond the desktop. 

8.2 HeadBoost 
We proposed classifying head movements into Head-Gaze versus 
Head Gesture to facilitate their treatment as diferent input types. 
We developed and evaluated HeadBoost, an XGBoost classifer on 
the collected dataset. Our proposed method achieved a high classi-
fcation performance for the user-independent model (�1-Score = 
0.89), promising a global approach where a new head movement 
can be classifed without individual training. Furthermore, we ob-
served that our proposed method outperforms the threshold-based 
baseline method [46] by an �1-Score of 0.27, and detects the onset 
of Head Gesture 119 ms earlier than the baseline method. Our ap-
proach boosts performance because it aims to learn the pattern of 
eye-head movement to make predictions instead of relying on a 
fxed threshold of features. Furthermore, AR/VR developers may 
fnd our work informative as a guide for the future development 
of head gesture-controlled interfaces. We found a head movement 

range between the smallest controllable (0.3◦) and the largest com-
fortable (40◦), where participants had a lower error rate, shorter 
task completion time, and a higher SEQ score. 

Another challenge for machine learning classifcation problems 
is the data’s ground truth labels. We introduced a task that automat-
ically separates the Head-Gaze and Head Gesture phases instead of 
relying on costly and subjective manual labour. In previous work, 
gestural head movements can be clearly separated based on their 
repetitive and unusual nature [15, 38, 54], and the classifcation out-
put is often not available until the gesture motion is completed or 
has been happening for a period. Our work aims to separate simple 
gestures from Head-Gaze in real-time. Therefore, it is more difcult 
to distinguish whether a movement is a Head Gesture, and man-
ual labelling will likely involve more subjectivity. Simply swiping 
an object sideways compounds the Head-Gaze and Head Gesture 
movements, as the participant has to monitor the object’s position 
with their foveal vision. The golf metaphor, in contrast, requires 
the participant to fxate on the centre hole and monitor the ball 
position using their periphery vision, clearly separate Head-Gaze 
and Head Gesture. It also allows us to investigate the usable head 
movement range, as participants must accurately control the ball 
position while fxating on the target. Furthermore, we manipulated 
the CD gains to draw out Head Gesture of diferent amplitudes and 
velocities to create a data set with more variance. 
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(a) Task: point the cursor to the card to view more information. Cursor 
is initially attached to gaze. Head Gesture refnes cursor position. 

(b) User looks at the last card on the right, but the cursor is ofset due 
to eye tracking inaccuracy, so the card’s information is not shown. 

(c) Head Gesture attaches cursor to head movement for fne-grained 
cursor refnement to select and view the card’s information. 

(d) Head-Gaze to look at the information at the bottom switches cursor 
control to gaze pointing. 

Figure 9: Application 3: Users point at cards to view more information. Initially, the cursor is attached to gaze. Due to eye 
tracker inaccuracy, an ofset prevents the selection of the intended card. Head Gesture is used to switch to head pointing for 
fne-grained cursor refnement. Cursor control is switched back to gaze pointing when Head-Gaze is detected. The green circle 
is the eye position. The red cross-hair is the head position. The white square is the cursor position. These are for illustration 
purposes only and are not visible to the user. 

8.3 Limitations and Future Work 
We acknowledge fve limitations of our work. First, participants in 
our study were asked to keep the body stationary and only rotate 
the head to complete the trials. Hence, our result is limited to a 
sitting position, with targets in the ±30 range in both vertical and 
horizontal directions of the FOV. Future work would investigate 
standing users with free torso movements. During motion, the 
VOR is involved in stabilising gaze on the object of interest. Even 
though the head itself may not be rotating, we may observe eye-
head movement patterns, which may be confused as Head Gesture 
due to the translation of the torso in the world. The dynamics of 
in-the-wild use are more complex. Therefore, classifcation during 
movement would present another challenge for future work. 

Second, we employed a VR headset with base station tracking. 
In-the-wild systems may not have as accurate tracking systems as 
in a lab environment. We should investigate whether this afects the 
use of the world-coordinate related features, which were found to 
be important for HeadBoost. Future research should aim to collect 
and train on in-the-wild data and utilise sensor fusion methods 
and scene recognition for anywhere position inference without a 
defned tracking area. 

Third, while the online classifer showed promising application, 
it is limited to 30Hz due to having to calculate a large number of 
features. We plan to improve the classifcation process by further 
dimensionality reduction. A reduced feature set without loss of 
accuracy could lead to a lighter-weight classifer that may run on 
untethered headsets. 

Fourth, the generalisability of HeadBoost could be further eval-
uated with user studies in natural applications. Although carried 
out in a controlled experiment, the tasks on which HeadBoost was 
trained capture any intended head stroke about an intended target. 
However, every application will have its own infuences and needs 
for optimisation. Our three applications serve as proof of concept to 
show how the classifer could beneft real-life scenarios. However, 
we have yet to formally evaluate them with user studies, which we 
aim to conduct in future work. 

Further, in future work, the efect of unintentional head move-
ment could be investigated. HeadBoost separates diferent types of 
head movement as gaze-driven or gaze-independent. Either type 
can involve intention depending on context. We do not classify 
whether a head movement is performed with an intention. As such, 
classifed Head Gestures can be “intentional” for interacting with 
the interface or “unintentional” while still being unrelated to gaze 
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(e.g., looking up while thinking). We observed that if the partici-
pant performed an unintentional Head Gesture during the period 
they were instructed to perform Head-Gaze, the ground truth label 
would confict with the actual movement type, which caused mis-
classifcation. The extent of this efect is difcult to quantify because 
it is challenging to collect and label movements as intentional or 
unintentional. Any manual labelling of the data set would likely be 
time-consuming and pose another challenge of evaluating human 
judgement of intentions. Our tasks aim to collect intentional Head 
Gesture, although random, unintentional head movement that is 
independent of gaze can still occur during the Head-Gaze phase, 
the portion of these data samples is small compared to correctly 
performed movement. As supported by the �1 and AUC scores, 
the classifer likely captured the patterns of Head-Gaze and Head 
Gesture. Hence, we could further characterise the efect of uninten-
tional movement on the classifer through a user study. 

9 CONCLUSION 
In this work, we demonstrate that it is feasible to distinguish two 
fundamentally diferent head movements – Head-Gaze, which sup-
ports the eyes in gaze shift, and the gaze-independent Head Gesture, 
and that they can be treated as diferent inputs. We proposed Head-
Boost, a user-independent XGBoost classifer based on shape, noise, 
spectral, correlation, and temporal features that achieved a �1-Score 
of 0.89, signifcantly above the baseline (�1-Score = 0.62). We demon-
strate its online utility and practicality in three applications: the 
classifer supports gestural input while avoiding Midas Touch by 
Head-Gaze; Head-Gaze selection of input focus while avoiding false 
activation by gestures; and switching of cursor control between eye 
gaze (with integral Head-Gaze) and Head Gesture for refnement. 
Furthermore, we report the fnding that the smallest controllable 
head rotation is about 0.3◦, and the largest comfortable rotation 
is approximately 40◦. The classifcation of Head-Gaze and Head 
Gesture enables designers to create a more seamless and natural 
way of interaction using simple head movements while avoiding 
false activation. 
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