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Abstract

In integer programming and combinatorial optimisation, people use
the term matheuristics to refer to methods that are heuristic in nature,
but draw on concepts from the literature on exact methods. We survey
the literature on this topic, with a particular emphasis on matheuristics
that yield both primal and dual bounds (i.e., upper and lower bounds
in the case of a minimisation problem). We also make some comments
about possible future developments.
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1 Introduction

Ever since the 1960s, integer programming and combinatorial optimisation
problems have received much attention from mathematicians, computer sci-
entists and operational researchers, due to the huge range of important prac-
tical applications (see, e.g., [62, 128, 189]). Unfortunately, many problems
of interest are NP-hard (see [9]), which means that large-scale instances can
be very challenging to solve.

In this context, a key distinction is between exact and heuristic methods.
Exact methods are guaranteed to solve instances to proven optimality, given
enough computing resources (i.e., time and memory). Heuristics are not
guaranteed to find optimal solutions, but they tend to be faster, and they
often yield solutions which are of “acceptable” quality. Although significant
progress has been made in exact methods (e.g., [62, 189]), heuristics remain
extremely useful in many cases (e.g., [147, 163]).

∗Department of Mathematics, University of Bologna, via dell’Università 50, Cesena,
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Many authors use the term metaheuristics to refer to general-purpose
heuristic frameworks, such as Simulated Annealing and Tabu Search (see
the textbooks [147, 163]). More recently, researchers started using the
term matheuristics to refer to (meta-)heuristics that draw on concepts from
the traditional mathematical programming literature (see [144, 178]). Such
heuristics may have subroutines that involve, for example, linear program-
ming, integer programming, dynamic programming, Lagrangian relaxation,
or Benders decomposition.

The first international matheuristics conference took place in Bertinoro,
Italy in 2006 (see [42]). Ever since then, the field of matheuristics has
been in rapid expansion. For details, we refer the reader to the surveys
[18, 42, 79, 165, 166] and the books [143, 144].

In this new survey, we approach the topic from a different viewpoint,
placing a particular emphasis on matheuristics that yield both primal and
dual bounds. For a minimisation problem, such matheuristics yield not only
a feasible integer solution (with an associated upper bound), but also the
solution to some kind of relaxed problem or dual problem (with an associated
lower bound). In our view, matheuristics of this kind are highly desirable,
since the bounds help one to evaluate the performance of the method with
higher precision, on any given instance.

The paper has the following structure. Section 2 covers matheuristics
that are based on linear programming (LP) relaxation and/or duality. Sec-
tion 3 deals with ones based on Lagrangian relaxation (LR), surrogate relax-
ation (SR), or closely-related methods. Section 4 concerns heuristics based
on decomposition techniques, such as Dantzig-Wolfe or Benders decompo-
sition. Then, in Section 5, we mention a few popular matheuristics that
do not necessarily yield dual bounds. Finally, in Section 6, we make some
remarks about the strengths and weaknesses of each approach, and suggest
some topics for future research.

Throughout, we write “ILP” for integer linear program and “COP” for
combinatorial optimisation problem. We assume that the reader is familiar
with the idea of formulating COPs as ILPs, along with the basics of integer
programming (see, e.g., [62, 189]). For ease of notation, we assume that an
ILP with n variables and m constraints takes the form

min
{
cTx : Ax ≥ b, x ∈ Zn

+

}
, (1)

where c ∈ Qn, A ∈ Qm×n and b ∈ Qm. We use the convention that all vectors
are column vectors. We sometimes also speak of mixed-integer programs
(MIPs), by which we mean problems that are similar to ILPs, except that
not all variables are required to take integer values.
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2 Methods Based on LP Relaxation and Duality

In this section, we survey matheuristics that are based on LP relaxation
and/or duality. Subsection 2.1 recalls the key concepts needed, such as
relaxation, primal and dual pairs, and reduced costs. Subsections 2.2 and
2.3 concern matheuristics that use only primal or reduced-cost information,
respectively. Subsection 2.4 covers matheuristics that explicitly use dual
information.

2.1 Recap on LP relaxation and duality

If we relax the integrality constraint in the ILP (1), we obtain the following
problem:

min
{
cTx : Ax ≥ b, x ∈ Rn

+

}
, (2)

This is an LP, which is typically much easier to solve. Trivially, the solution
to the LP gives a lower bound for the original COP.

The following facts can be found in any textbook on LP (e.g., [184]).
The dual of the above LP is:

max
{
bT y : AT y ≤ c, y ∈ Rm

+

}
. (3)

The original LP is called the primal. The strong duality theorem states
that, if x∗ and y∗ are optimal primal and dual solutions, respectively, then
cTx∗ = bT y∗. Moreover, the components of y∗ are the dual prices for the
primal constraints. The vectors s∗ = Ax∗−b ∈ Rm

+ and ρ∗ = c−AT y∗ ∈ Rn
+

are called the surplus vector and the reduced cost vector, respectively. The
conditions (ρ∗)Tx∗ = 0 and (s∗)T y∗ = 0, called complementary slackness,
always hold when x∗ and y∗ are optimal.

2.2 Heuristics that use primal information only

Among the many LP-based matheuristics, the easiest ones to understand are
those that use primal information only. The intuition behind these methods
is that an optimal (or near-optimal) LP solution x∗ is likely to contain
some information that could be exploited by a heuristic. For example, if all
variables in the ILP are binary, one might hope that variables with x∗-value
close to 1 will have a high probability of taking the value 1 in optimal (or
near-optimal) solutions to the ILP.

One strand of literature is concerned with the use of LP-based heuris-
tics for specific COPs. Two good early examples are the “LP-rounding”
heuristic for the set covering problem, due to Hochbaum [115], and the “ran-
domised rounding” heuristic for network design problems, due to Raghavan
and Tompson [164]. These two heuristics are also interesting because they
are approximation algorithms, which means that they are guaranteed to pro-
duce solutions whose cost is within a known factor of the optimum. Other
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notable examples include an “iterative rounding” heuristic for shift schedul-
ing, given in Thompson [180], and a similar heuristic for lot-sizing with
setups, in Maes et al. [139]. More recently, LP solutions have been used as
“seeds” for standard metaheuristic search [51].

A parallel strand of literature is concerned with LP-based matheuristics
for ILPs in general. A good early example, from 1969, is the “interior-path”
method of Hillier [114]. It starts at the LP optimum x∗, and then follows
a path from x∗ to the interior of the feasible region. As it goes along, an
attempt is made to find “nearby” integer solutions. For extensions to this
method, see [78].

In 1980, Balas & Martin [17] devised an LP-based heuristic for 0-1 LPs,
that they called “pivot-and-complement”. The method starts at x∗, and
then performs a sequence of primal simplex pivots that attempt to “push”
fractional variables out of the basis. Later on, several researchers suggested
improving pivot-and-complement by adding a tabu search phase at the end
(e.g., [1, 136]).

In the coming paragraphs, we mention some of the matheuristics based
on primal LP solutions that came out more recently.

OCTANE. “OCTANE” is a matheuristic for pure 0-1 LPs, developed in
2001 by Balas et al. [14]. The basic idea is as follows. First, we define
a polyhedron, called the n-dimensional octahedron, that circumscribes the
unit hypercube and has one facet for every vertex of the hypercube. We start
at a basic optimal LP solution x∗, and then move from it in some chosen
direction. Eventually, we “hit” a facet of the n-dimensional octahedron. We
then check the corresponding vertex of the hypercube. If it is feasible for
the original 0-1 LP, we have our desired heuristic solution. This procedure
is repeated for several “promising” directions.

Although OCTANE performed reasonably well, it does not seem to have
received much further attention. This may be because some of the alterna-
tive matheuristics mentioned below have tended to perform even better.

Relax-and-fix. “Relax-and-Fix” is a primal heuristic for general MIPs,
that works by solving a sequence of simpler MIPs. To our knowledge, it
was first defined explicitly in 1998 by Wolsey [189]. In its original format
[33, 189], it worked as follows. First, the set of integer variables is parti-
tioned into subsets, say S1, . . . , Sk. A simpler MIP is then solved, in which
only the variables in S1 are declared integer. The variables in S1 are then
permanently fixed at the values that they take in the solution to the simpler
MIP. The variables in S2 are then declared integer, and the resulting MIP
is solved, and so on.

This approach, while at times effective, limits the search to one pass
through the list of predefined subsets. A simple generalization is to make
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the subset choice dynamically adaptive, but other extensions are possible.

Diving heuristics. Diving heuristics [39] are a family of MIP heuristics
that iteratively fix variables to integer values until a feasible MIP solution
is obtained. They can be thought of as a heuristic for rapidly moving from
a given node of a branch-and-bound tree to a “leaf” node. The name comes
from the fact that they “dive” to a leaf node without any possibility of
backtracking.

A well-known and highly effective diving heuristic is relaxation induced
neighborhood search (RINS) [65]. When applied at a given branch-and-
bound node, RINS compares the fractional LP solution at the node with
the incumbent MIP solution. Typically, the two solutions will differ in the
values of some variables. RINS tries to force the two solutions to agree on
all variables, by fixing all variables that have the same values and letting the
solver try to solve optimally the residual MIP problem, called the sub-MIP.
The sub-MIP can in fact be quite large if too few variables were fixed, so its
solution could potentially take a time comparable with that of the original
problem. To remedy this, a limit on the computational resources available
for optimization is usually imposed.

Diving heuristics are also often used within branch-and-price algorithms
[172]. For more on branch-and-price, see Section 4.

The feasibility pump. The Feasibility Pump [80] was initially conceived
as a tool for finding initia feasible solutions to very challenging MIPs, and
in this capacity it is often included in general-purpose MIP solvers. In the
context of matheuristics, however, the feasibility pump can also be used to
bring to integer feasibility a fractional and/or LP-infeasible solution. Such
solutions arise not only in branch-and-bound, but also in some other ap-
proaches, such as Lagrangian heuristics or destroy-and-fix approaches.

The feasibility pump builds on the observation that an integer feasible
solution is coincident with its rounding. Formally, if P is the LP polytope
of the problem under study, an integer feasible solution x∗ corresponds to
a point in P such that x∗ = x̃, where x̃ denotes the rounding of x∗, i.e.,
the possibly infeasible solution where each variable that must be integer is
brought to the corresponding nearest integer.

The search for feasibility is based on the minimization of a function
measuring the distance between the two solutions, ∆(x∗, x̃). The search
starts from a point x∗ ∈ P and its rounding x̃. If x̃ is feasible, we have
found a feasible integer solution and we stop the search, Otherwise, we start
a pumping cycle. This means that we solve the linear problem min {∆(x, x̃) :
x ∈ P}. This yields a new point x∗, which we round to obtain a new point
x̃. If x̃ is feasible, we stop. Otherwise we perform another pumping cycle,
and so on.
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Figure 1 shows the evolution of ∆ in case of a simple ILP, which started
from an optimal LP value of 231.45 to eventually converge to a final feasible
solution of cost 333.

Figure 1: Feasibility pump: delta evolution

2.3 Heuristics that use reduced-cost information only

Now, recall from Subsection 2.1 the definition of the reduced-cost vector ρ∗.
There are also matheuristics that rely only on ρ∗. The idea is that, if ρ∗j is
very large, the variable xj is unlikely to appear in an optimal solution to the
ILP. Conversely, if ρ∗j is zero or near-zero, there is a good chance that there
is a (near-)optimal solution such that xj takes a positive integer value.

The first paper we found which mentions this idea explicitly is Mansini &
Speranza [145], which is concerned with a portfolio selection problem. The
problem is formulated as an MILP, and the LP relaxation is solved. In an
attempt to obtain a good integer solution, a smaller MILP is solved, which
contains all variables that have a positive value in the LP solution, plus
the variables whose reduced cost is below some threshold. If time permits, a
series of modified MILPs is solved, in which variables are added and dropped
according to a heuristic rule.

The above heuristic inspired a general-purpose matheuristic for 0-1 LPs,
called Kernel Search [6, 7]. Here is a brief overview of the approach. In the
first phase, called the initialisation phase, the LP relaxation is solved, and a
decision variable is called “promising” if it has a zero (or near-zero) reduced
cost. The set of all promising variables forms the kernel. The remaining
variables are partitioned into sets, called buckets, according to the value of
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their reduced cost. One then solves a simplified version of the 0-1 LP, in
which only the variables in the kernel are present. In most cases, this yields
a good feasible solution, with an accompanying upper bound.

If the gap between the lower and upper bounds is acceptable, the process
terminates. Otherwise, the variables in the first bucket are added to the 0-1
LP, along with a constraint stating that at least one of the variables in the
bucket must take the value 1. The simplified ILP is then re-solved. If the
resulting solution is better than the previous one, the variables that are in
the bucket and take the value of 1 in the solution are added to the kernel. If
the gap between the lower and upper bounds is now acceptable, the process
terminates. Otherwise, the variables in the second bucket are added to the
0-1 LP, and so on.

Kernel search has been applied with great success to the multi-dimensional
knapsack problem [6], a portfolio selection problem [7], the capacitated fa-
cility location problem [107], and an inventory routing problem [8]. It has
also been extended to general MILPs [106].

A variant of Kernel Search is the Incremental Core approach proposed
in [44, 45]. The idea is to select a parameter ρmax, and include in the 0-1
LP only the variables with ρ∗j ≤ ρmax. If ρmax is equal to the gap between
the upper and lower bounds, the 0-1 LP solution is optimal. Otherwise, it
is a heuristic solution. In the latter case, one can increase ρmax in the hope
of obtaining an improved heuristic solution (or even an optimal one).

Figure 2 shows a trace of an Incremental Core search on a resource-
constrained project scheduling problem (from [151]) based on an “additive”
lower bound (see Subsection 3.4). In this case, the problem could be solved
to proven optimality. The plot shows the incremental contributions of the
four successively computed bounds, together with the contribution of each
new bound to the computation of improved feasible solutions.

2.4 Dual-based heuristics

When dealing with large-scale COP instances, even solving the initial LP
relaxation (2) can be time-consuming. Fortunately, with the help of LP
duality, one can compute valid lower bounds without explicitly solving the
initial LP. Indeed, if ȳ is any feasible solution to the dual LP (3), then bT ȳ
is a lower bound for the original LP, and therefore for the original COP.
Thus, if we wish to obtain a lower bound quickly, we can solve the dual
approximately using some kind of heuristic. Moreover, as we will see, the
dual solution can then be used to drive a matheuristic.

This idea first appeared in [37, 77], in the context of the Uncapacitated
Facility Location Problem or UFLP. The authors of those papers proposed
to start with all dual variables equal to zero, and then iteratively increase
individual dual values until no further increases are possible. Perhaps sur-
prisingly, this approach gives quite good lower bounds for many UFLP in-
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Figure 2: Incremental Core, upper and lower bound evolution

stances.
Erlenkotter [77] called this procedure dual ascent. He also proposed a

simple local search procedure, called dual adjustment, which attempts to
modify the current dual solution y in order to improve the lower bound.

Now, for a given primal variable xj and a given dual solution ȳ, consider
the following quantity:

c̄j(ȳ) = cj −
m∑
i=1

ȳiAij .

If ȳ is an optimal dual solution, then c̄j(ȳ) is the standard reduced cost,
denoted by ρ∗j above. Even if ȳ is not an optimal dual solution, however, it
might still contain some useful information. In particular, one might expect
variables with small c̄ value to have a high probability of belonging to an
optimal solution of the original ILP. Thus, the c̄ values can be used within
a heuristic.

The above observations led Erlenkotter to propose a primal heuristic for
the UFLP, in which one iteratively opens facilities with zero c̄ values, until
certain “complementary slackness” conditions are met. The results were
very encouraging, and the method was subsequently improved in [118, 127,
131].

Later on, dual ascent and dual adjustment were successfully applied to
many other COPs, including (in roughly chronological order) the Steiner
tree problem [161, 190], the multi-dimensional knapsack problem [6, 140],
the set covering problem [13, 16, 26], the uncapacitated network design prob-
lem [12], the set partitioning problem [45, 91], the p-median problem [54],
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the design of railway networks [123], the multi-period assignment problem
[156], the capacitated multi-commodity flow problem [21], the hub location
problem [126], the quadratic assignment problem [112], and the fixed-charge
transportation problem [49].

Some authors have considered more sophisticated matheuristics, which
attempt to exploit primal and dual information in a more intelligent way.
For brevity, we mention just a few examples. Fisher & Kedia [91] improved
the approach to the set covering problem by using a local search phase to
improve the dual solution, along with an improved primal heuristic. Wedelin
[187] presented a primal-dual heuristic for a certain generalisation of the
set partitioning problem arising in crew scheduling. The dual is solved
heuristically via coordinate ascent. Later on, Hansen et al. [113] and Posta
et al. [162] improved the dual ascent approach to the UFLP by incorporating
sophisticated local search procedures for improving both primal and dual
solutions.

To close this section, we mention that there is a significant literature on
primal-dual approximation algorithms for NP-hard COPs. These algorithms
iteratively build heuristic solutions to the primal and dual in parallel, in such
a way that the gap between the corresponding upper and lower bounds is
bounded in a specified way. For details, see the textbooks [185, 188].

3 Lagrangian and Surrogate Relaxation

In this section, we consider matheuristics that are based on Lagrangian
relaxation (LR), surrogate relaxation (SR), or closely related methods. Sub-
section 3.1 recalls the basics of LR and SR. Subsections 3.2 and 3.3 review
some LR-based and SR-based matheuristics. Subsection 3.4 mentions some
related methods, such as Lagrangian dual ascent, semi-Lagrangian relax-
ation and additive bounding.

3.1 Recap on Lagrangian and surrogate relaxation

Some COPs of interest can be formulated as ILPs of the form

min
{
cTx : Ax ≥ b, Cx ≥ d, x ∈ Zn

+

}
, (4)

where the constraints Ax ≥ b are “easy” and the constraints Cx ≥ d are
“hard”. By this, we mean that, if the “hard” constraints are dropped, the
problem becomes significantly easier to solve.

Let us suppose that the number of “hard” constraints is t. In LR, we
pick a vector λ ∈ Rt

+ of Lagrangian multipliers, and then solve the following
simpler ILP:

min
{
cTx+ λT (d− Cx) : Ax ≥ b, x ∈ Zn

+

}
. (5)
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Geoffrion [98] showed that, for any choice of λ, LR yields a lower bound for
the original ILP. We will call this bound L(λ).

The problem of finding the vector λ which maximises L(λ) is called the
Lagrangian dual (LD). The LD is a piecewise-linear concave maximisation
problem, and there exist several algorithms for solving it, either exactly or
approximately (see, e.g., [109, 130]).

Surrogate relaxation, proposed in [99, 105], is similar to LR. The differ-
ence is that, instead of modifying the objective function in the ILP (4), we
replace the complicating constraints Cx ≥ d with a single linear constraint.
More precisely, for a given multiplier vector λ, we solve the following ILP:

min
{
cTx : Ax ≥ b, (λTC)x ≥ λTd, x ∈ Zn

+

}
. (6)

In most applications of SR, the system Ax ≥ b takes a very simple form. As
a result, the ILP (6) is usually some kind of knapsack problem, and solved
in pseudo-polynomial time by dynamic programming.

Let us denote by S(λ) the lower bound obtained with SR. It is proved in
[105] that S(λ) ≥ L(λ) for any given λ. The problem of finding the vector λ
which maximises S(λ) is called the surrogate dual (SD). The SD is a quasi-
concave maximisation problem, and is typically somewhat harder to solve
than the LD (see, e.g., [72, 121, 125]).

3.2 Lagrangian heuristics

For a given multiplier vector λ, let x̄(λ) be the solution to the relaxed prob-
lem (5). By definition, x̄(λ) is integer and satisfies the constraints Ax ≥ b,
but it might fail to satisfy the constraints Cx ≥ d. For some specific families
of ILPs, it is possible to “repair” x̄(λ), with not much effort, in order to ob-
tain a heuristic solution for the original ILP. (For example, in the generalised
assignment problem, each job must be assigned to exactly one machine. If
x̄(λ) does not satisfy this condition, one can attempt to convert it into a fea-
sible solution by eliminating multiple assignments and then trying to assign
any unassigned jobs to machines having enough free capacity [120].) This
can be repeated at each iteration with the corresponding multiplier vector,
and one can select the best heuristic solution found.

Fisher [87] called heuristics of this kind “Lagrangian heuristics”, but one
can view them as a particular kind of matheuristic. They have been applied
with great success to several classical combinatorial optimisation problems,
such as single machine scheduling [85], the set covering problem [16, 27],
the capacitated vehicle routing problem [88], the generalised assignment
problem [120], the many-to-many assignment problem [135], and various
facility location problems [19, 28, 97, 159].

Lagrangian matheuristics have also been developed for a huge array of
more realistic practical problems, such as manpower planning [102], schedul-
ing of energy generators [20, 129], product distribution [29, 183], lot sizing
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[38, 182], school timetabling [55], aircraft assignment [67], railway network
design [122], fixed-charge problems [191], hybrid flowshop scheduling [146],
capacitated network design [116], and the closest string problem in compu-
tational biology [179].

We remark that, for a given primal variable xj and a given multiplier
vector λ, the quantity

cj −
t∑

i=1

λiCij

can be viewed as a “Lagrangian reduced cost”. These values can be used
to guide heuristics, just as we saw for the LP reduced costs in Subsection
2.3 and the “approximate” reduced costs in Subsection 2.4. This idea has
been used to particularly good effect in Lagrangian matheuristics for the set
covering problem [13, 16, 27, 53, 57] and the capacitated facility location
problem [10].

3.3 Heuristics based on surrogate relaxation

As far back as 1977, Glover [100] suggested using SR to drive heuristics. As
in the case of LR, the idea is to take the solution to the relaxed problem and
“repair” it, to make it feasible for the original problem. Although this idea
has received less attention than the Lagrangian approach, it has been applied
to several problems, such as loading problems [93], manpower planning [102],
single-machine scheduling [92], the multidimensional knapsack problem [74,
95, 160], resource-constrained scheduling [71] and a variant of the quadratic
knapsack problem [132].

More recently, Dokka et al. [73] proposed a general framework for de-
signing matheuristics based on SR. The idea is to exploit the fact that the
relaxed problem (6) is usually solved via dynamic programming (DP). The
nature of DP is that it constructs and stores a large number of “intermedi-
ate” x vectors as it goes along. These x vectors are integral, but unlikely to
be feasible for the original ILP. Accordingly, Dokka et al. propose to take
some or all of the x vectors and “repair” them in the usual way.

Some authors have also experimented with “hybrids” of Lagrangian and
surrogate relaxation. See [137], [138] and [96] for applications to the set
covering problem, the generalised assignment problem and the maximal cov-
ering location problem, respectively.

3.4 Variants

We now mention some variations of LR that have also been used to drive
heuristics. These variations are presented in more-or-less chronological or-
der.
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Lagrangian dual ascent Lagrangian dual ascent (also known as multi-
plier adjustment) is a hybrid of LR and dual ascent [86, 110]. It is basically
a greedy constructive heuristic for the Lagrangian dual, just as dual ascent
is a greedy constructive heuristic for the LP dual. The idea is to set the
Lagrangian multipliers to some simple initial values (e.g., zero), and then
increase them one at a time, in such a way that the lower bound L(λ) is guar-
anteed to increase monotonically. This approach to solving the Lagrangian
dual tends to be much faster than the subgradient method, though it may
come at the expense of a weaker lower bound. The method has been used
to derive matheuristics for the capacitated vehicle routing problem [89], the
generalised assignment problem [90, 111], the uncapacitated facility loca-
tion problem [108], the segregated storage problem [157], capacity planning
in manufacturing [133], the management of cross-docking terminals [155],
and various problems in telecommunications [58, 134].

The restricted Lagrangian approach The restricted Lagrangian ap-
proach was introduced by Balas and Christofides [15], in the context of the
asymmetric travelling salesman problem (ATSP). Suppose once more that
we have an ILP in the form (9), where the problem becomes much easier
to solve when the constraints Cx ≥ d are dropped. The first step in the
approach is to solve the relaxed problem, obtaining a primal vector x∗ ∈ Zn

+

and a lower bound. After that, we apply a “restricted” form of Lagrangian
relaxation, in an attempt to increase the lower bound. We are permitted to
assign positive Lagrangian multipliers to one or more of the constraints in
the system Cx ≥ d, but only under the condition that x∗ remains optimal
for the relaxed problem (or, equivalently, that the Lagrangian reduced cost
remains at zero for any variable xj taking a positive value at x∗). Balas and
Christofides provide two fast procedures for determining the multipliers.

An interesting feature of the restricted Lagrangian approach is that the
set of x variables having zero Lagrangian reduced cost grows during the
course of the algorithm. At the end of the procedure, Balas and Christofides
use an enumerative procedure to search for an ATSP solution that uses only
arcs of zero reduced cost. This last step can be viewed as yet another early
example of a matheuristic.

Additive bounding A generalisation of the restricted Lagrangian ap-
proach, called additive bounding, was proposed by Fischetti and Toth [83].
Let us assume for simplicity that our COP has been formulated as an ILP
of the form (1). We suppose that there are several fast lower-bounding pro-
cedures for our COP, each of which exploits a different substructure of the
problem. We also assume that each such procedure returns a dual vector.
The procedures are then applied in some chosen sequence. Suppose the first
procedure terminates with dual vector y1. We store the corresponding lower
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bound bT y1, and replace the original cost vector c with the reduced cost
vector c1 = c−AT y1. We then feed the reduced cost vector into the second
procedure, yielding a new dual vector y2. We then increase our lower bound
by bT y2, and replace the vector c1 with the new vector c2 = c1−AT y2. This
process is repeated until all procedures have terminated.

The additive bounding procedure has been mainly used to fathom nodes
within branch-and-bound algorithms. It has however also been used to de-
velop matheuristics. Fischetti and Toth [84] proposed an additive bounding
procedure for the ATSP that generates heuristic solutions using an approach
similar to the one proposed by Balas and Christofides [15]. Later on, Vigo
[186] proposed a heuristic for the asymmetric capacitated vehicle routing
problem that makes use of an additive bounding procedure for generating
an initial solution. Later still, Caprara [52] used additive bounding to devise
an approximation algorithm for the breakpoint median problem, a well-known
problem in computational biology. We remark that additive bounding was
also been used for generating good dual solutions within the Incremental
Core approach described at the end of Subsection 2.3.

Relaxation adaptive memory programming Relaxation adaptive mem-
ory programming (RAMP) was proposed by Rego [167]. It is similar to the
hybrid Lagrangian/surrogate approaches mentioned above, but one is per-
mitted to improve both primal and dual solutions along the way, using pre-
viously existing metaheuristics (such as scatter search and path relinking
[103]). The method has been applied to the capacitated minimum span-
ning tree problem [168], resource constrained project scheduling [169] and
capacitated facility location problems [158].

Semi-Lagrangian relaxation Semi-Lagrangian relaxation [31] is designed
for COPs that have a natural ILP formulation of the form

min
{
cTx : Ax = b, x ∈ X

}
,

where A, b and c are non-negative and X is a “reasonably simple” subset of
Zn
+. The idea is that we split the equation system Ax = b into two inequality

systems, Ax ≤ b and Ax ≥ b. We then relax the latter in Lagrangian fashion.
The relaxed problem takes the form:

min
{
cTx+ λT (b−Ax) : Ax ≤ b, x ∈ X

}
. (7)

For some COPs, the relaxed ILP can be solved much more easily than the
original. In particular, this happens if variables with a positive objective
coefficient in (7) must take the value zero in an optimal solution to (7). In
this case, it often happens that a large proportion of the variables can be
eliminated.
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As usual, one can often repair the solution of the relaxed problem to
obtain heuristic solutions for the original COP. Matheuristics of this kind
have been developed for the p-median problem [31], facility location prob-
lems [32, 50, 119, 154], the quadratic assignment problem [192], and the
design of multi-commodity distribution centres [193].

4 Methods Based on Decomposition

Another important family of matheuristics is composed by those that are
based on Dantzig-Wolfe decomposition [66] or Benders decomposition [34].
We recall the basic ideas of these decomposition schemes in Subsections 4.1
and 4.2. Matheuristics based on the schemes are reviewed in Subsections 4.3
and 4.4. The reader interested in more details is referred to [43, 143, 166].

4.1 Recap on Dantzig-Wolfe decomposition

Consider a MIP of the form

min cTx

s.t. Ax ≥ b

xs ∈ Xs (s = 1, . . . , t) (8)

x ∈ Rn
+,

where the vector x has been partitioned into sub-vectors x1, . . . , xs.
Dantzig-Wolfe decomposition works as follows. For s = 1, . . . , t, let

P s be the convex hull of Xs, and let ps(1), . . . , ps(ns) denote the extreme
points of P s. We add a new continuous variable, say λs

k, for s = 1, . . . , t and
k = 1, . . . , ns. We then reformulate the MIP by replacing the constraints
(8) with:

xs =
∑ns

k=1 p
s(k)Tλs (s = 1, . . . , t)∑ns

k=1 λ
s
k = 1 (s = 1, . . . , t)

λs ∈ Rns
+ (s = 1, . . . , t).

The x variables can then be eliminated if desired.
It can be shown (using a similar argument to the one that Geoffrion [98]

used for Lagrangian relaxation) that the LP relaxation of the new MIP gives
a lower bound that is at least as strong as the one from the LP relaxation of
the original MIP. Moreover, the LP relaxation of the new MIP can be solved
by an iterative procedure that starts with a subset of the λ variables and
uses dual prices to generate other λ variables as needed. This procedure is
called column generation.

If desired, the whole procedure can be embedded within a branch-and-
bound framework. This overall approach is called branch-and-price [22].
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4.2 Recap on Benders decomposition

Now consider a MIP of the form

min
{
cT1 x+ cT2 y : Ax+By ≥ b, x ∈ X, y ≥ 0

}
. (9)

We assume for simplicity that this MIP is feasible and bounded.
Benders [34] noted that one can write the MIP as:

min
{
cT1 x+ f(x) : x ∈ X

}
,

where f(x) is the optimal solution to the following subproblem:

min
{
cT2 y : By ≥ b−Ax, y ≥ 0

}
.

By LP duality, we have

f(x) = max {(b−Ax)Tw : BTw ≤ c2, w ≥ 0}. (10)

Now, let p1, . . . , pt be the extreme points of the feasible region of (10). By
definition, we have

f(x) = max
1≤s≤t

{(b−Ax)T ps}.

Thus, the original MIP can be reformulated as:

min cT1 x+ z (11)

s.t. z ≥ bT ps − (BT ps)Tx (s = 1, . . . , t) (12)

x ∈ X, (13)

where (11)-(13) is the master problem and constraints (12) are the so-called
Benders’ cuts. Since t is usually huge, the master problem is initially solved
with only a small number of Benders’ cuts, and the others are generated as
needed with an iterative procedure.

4.3 Dantzig-Wolfe decomposition heuristics

There are several ways in which one can use Dantzig-Wolfe decomposition
within a matheuristic scheme. One way is to use diving heuristics instead of
branch-and-price, as we mentioned in Subsection 2.2. Another way is to stop
when a desired number of columns has been generated, and then feed the
current master MIP into a branch-and-bound solver. An early example of
this approach is Agarwal et al. [3], who applied it to the capacitated vehicle
routing problem.

A third option is to use a fast heuristic for the pricing subproblem,
instead of an exact method. One of the first proposals along these lines is
presented in [56], where the authors deal with a lot sizing problem with setup
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times and costs and where columns correspond to suboptimal production
plans. It turns out that even the pricing subproblem is NP -hard for this
problem. Given that optimal solutions to the subproblem are not necessarily
needed to produce negative-cost columns, a corridor method (see 5.5) is used
to generate them. The overall method is heuristic in nature, given the fact
that the pricing subproblem is solved heuristically.

Another work [64], related to lot-sizing, proposes to include in the heuris-
tic column generation scheme outlined above a “fix-and-optimize” procedure
(related to relax-and-fix, 2.2), that fixes the non-integer variables produced
by the column generation component.

Several other works apply column generation for heuristic search without
explicitly mentioning DW decomposition. The addressed range of problems
is wide, including technician routing [75], train timetabling [148], electric
vehicle routing [76], city logistics [41] and planning in bulk ports [68] among
others.

4.4 Benders decomposition heuristics

Recently, there has been a surge of interest in heuristics based on Benders
decomposition (BD), which is well suited to modelling problems that can be
decomposed into two interacting subproblems. Until recently, the possibility
of using BD to design efficient heuristics was limited by the need to solve
the master problem to optimality in order to obtain at least a valid bound,
a task that becomes increasingly complex as newly generated Benders’ cuts
are added. The increased efficiency of MIP solvers now allows BD to be used
as a valuable technique for exploiting problem separability in the design of
primal heuristics.

Several real-world applications based on Benders’ matheuristics have
been described. A first approach attempts to address the inability to pro-
duce a feasible solution before the end of cut generation. For example, [124]
describes an application to chemotherapy production and delivery, a prob-
lem that can be decomposed into two stages, a parallel machine scheduling
problem combined with a multi-trip traveling salesman problem. The mas-
ter problem consists in finding the sequence of trips, and the slave problem
is a parallel machine scheduling problem. A solution of the master problem
is given to a tabu search heuristic, which derives a heuristic solution.

Another example deals with the identification of the economic operating
point of power systems [171]. Here, BD verifies a security criterion through
an LP-based master problem, and the subproblem involves the solution of
a non-linear program to compute the system energy for transient stability
evaluation.

Taking a less problem-dependent approach, [141] describes how the gen-
eral BD framework of the MIP solver SCIP was extended with two heuristics,
a trust region-based heuristic and a large neighborhood search, to improve
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the BD algorithm and the ability to find primal feasible solutions.
Another notable contribution related to BD was the introduction of the

so-called combinatorial Benders’ cuts [61]. These follow the same structure
as classical BD, but the subproblem is an ILP rather than an LP. In case of
an infeasible master solution, the subproblem returns combinatorial inequal-
ities to be added as cuts to the master. The method was originally intended
for exact MIP solutions, but it has been adapted, possibly more easily than
classical BD, to design matheuristics. For example, [11] describes a combi-
natorial Benders’ cut approach to minimizing the number of required toll
facilities in a transportation network, and [63] deals with the strip packing
problem, where the master problem cuts items into unit-width slices and
packs them into the strip, while the subproblem tries to reconstruct the
rectangular items by fixing the vertical positions of their unit-width slices.

5 Some Other Matheuristics

In this section, we consider some matheuristics that do not necessarily yield
dual bounds, yet have proven to be very successful in some applications.

5.1 Local branching

Local Branching [81] is a method that solve MIPs to perform local search.
For brevity, we explain how it works only for pure 0-1 LPs. Let xh ∈ {0, 1}n
be the current incumbent heuristic solution, and let k be a given positive
integer parameter. We wish to explore the k-opt neighbourhood of xh, by
which we mean the set of all feasible solutions that can be obtained by
changing the value of no more than k variables. To do this, we define the
set S = {j ∈ {1, . . . , n} : xhj = 1}, and add the following constraint to the
0-1 LP: ∑

j /∈S
xj +

∑
j∈S

(1− xj) ≤ k.

Provided k is small enough, it is likely that the modified 0-1 LP can be
solved much more quickly than the original. For this purpose, one can use
any decent ILP solver. If the solution to the modified 0-1 LP is cheaper
than xh, it takes the place of xh, and the process is repeated.

5.2 Very large-scale neighbourhood search

Local branching can be viewed as a special case of very large-scale neigh-
bourhood (VLSN) search, which means local search based on neighborhoods
whose cardinality is permitted to be huge, and possibly even exponentially
large in the number of variables [4, 5].

Broadly speaking, VLSN heuristics can be put into three categories: (i)
those that use a heuristic to perform a partial search of the neighborhood;
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(ii) those that solve a classic COP (such as a matching problem or network
flow problem) to explore the neighborhood fully in polynomial time; and
(iii) those that explore the neighbourhood by solving an auxiliary MIP, as
we saw above in the case of local branching.

A good example of the first type is the approach in [181], which is based
on a one-to-one correspondence between “improving cyclic exchanges” and
negative-cost cycles in a certain auxiliary graph. This idea has been applied
to vehicle routing problems [181], parallel machine scheduling [94], the graph
coloring problem [59] and timetabling problems [150], among others. Other
influential approaches of the first type are “large neighborhood search” [175]
and “adaptive large neighborhood search” [170].

A good example of the second type of VLSN approach is the “matching”
neighborhood for the TSP [173], which was later adapted to several other
problem, such as scheduling problems [46, 47] and the generalised assignment
problem [152, 153].

As for the third type, we already mentioned local branching above. An-
other excellent example of the third type is the heuristic for the capacitated
vehicle routing problem in [69]. It iteratively removes edges (and short
paths) from the incumbent solution, and then solves a small ILP to find the
cheapest way to add edges and restore feasibility.

We remark that MIP solvers have become increasingly efficient over the
past couple of decades, and now incorporate a variety of advanced techniques
to tackle hard problems. Thus, using a MIP solver to explore a neighbour-
hood is now a perfectly reasonable approach. Using complete MIP models
for solving subproblems has been called “MIPping” [82]. The current liter-
ature contains several other examples of this. For instance, one can use a
MIP solver to solve to optimality a Benders’ master problem, in order to
obtain a valid lower bound. Figure 3 shows some results that we obtained
with such an approach.

To close this subsection, we remark that the “ejection chain”, a well-
known meta-heuristic proposed by Glover [101] sharing similarities with
relax-and-fix (sec. 2.2), with “construct, merge, solve and adapt” (CMSA,
[40]) and with “adaptive large neighborhood search” (ALNS, [170]), has also
been extended with MP modules ([2, 48]), making it convergent with VLSN
and with other similar approaches based on decomposition into subproblems
[60].

5.3 Dynamic programming heuristics

Dynamic Programming (DP), created by Bellman [30], is a classical tech-
nique for solving optimisation problems that have a certain “sequential”
structure. Although DP was originally intended to be an exact method,
it has been used to devise heuristics for a range of COPs, including ma-
chine grouping in cellular manufacturing [177], the capacitated minimum
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Figure 3: Benders’ heuristic, upper and lower bound per iteration

spanning tree problem [104], the TSP with precedence constraints [36], the
time-dependent TSP [142], the p-median problem [117], the pallet loading
problem [174], the multidimensional knapsack problem [35, 149], assembly
line balancing [25], and the quadratic knapsack problem [70]. Moreover,
as already mentioned in Subsection 3.3, matheuristics have been devised by
exploiting the fact that DP is often used when applying surrogate relaxation.

5.4 Fore-and-back

Fore-and-Back (FB) was devised by Bartolini et al. [23]. It is suitable for
NP-hard problems that have a “natural” DP formulation. (For example, we
can formulate the generalised assignment problem (GAP) as a DP, by or-
dering the jobs and then having one stage for each job, in which we allocate
the given job to one of the machines [143].) If FB is given enough compu-
tational resources (memory and time), FB is actually an exact method. It
was however intended to be a matheuristic, having been designed for quickly
finding high quality integer solutions.

FB is an iterated primal-only constructive method, but it computes
bounds on the cost of completing partial solutions. This permits it to dis-
card partial solutions from consideration, and sometimes even to compute
lower bounds for the entire problem. The basic idea is to perform a series
of DP computations, while imposing a restriction on the amount of memory
used. The first DP is performed in a “forward” direction, whereas the second
is in the “reverse” direction. (In the GAP example, this could correspond
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to considering jobs in the order 1, 2, . . . , n in the forward phase, but in the
order n, n− 1, . . . , 1 in the backward phase.)

Following this, a third DP is performed in the forward direction again,
and so on until some termination condition is met. Along the way, “promis-
ing” partial solutions are stored in memory. In either direction, partial
solutions can be tentatively extended to feasible ones using the information
stored in the previous DP computation.

FB has been successfully applied to network design problems [24] and
generalised assignment problems [143]. Figure 4 shows a trace of an FB
run, where at each DP expansion stage we plot the upper and lower bounds
computed with the data available at that stage (green and orange dots,
respectively). The figure also shows the evolution of the overall best upper
and lower bounds as solid lines (red and blue lines, respectively). Note
how the lower bounds computed during the forward and backward passes
are clearly distinguishable, forming a sort of vertical stripes in the plot. For
this particular instance, the first feasible solution is obtained during the first
backward pass, and most of the improving feasible solutions are obtained
during subsequent backward passes.
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Figure 4: Fore-and-back, upper and lower bound evolution

5.5 The corridor method

The Corridor Method (CM) [176] is a well-established matheuristic paradigm
that originated as a DP adaptation, though it was later extended to other
exact approaches such as branch-and-bound. The name comes from the idea
of directing the dynamics of expansions in dynamic programming, channel-
izing them as in a corridor, where the walls are represented by additional
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constraints imposed on the instance. CM can thus be used to solve problems
for which we know an exact method (dynamic programming, also branch-
and-bound, branch-and-cut, etc.) that can solve them effectively, but only
on smaller instances than the one we are interested in. CM then applies the
exact method over successive restricted parts of the solution space, enforcing
bounds on the possible expansions of the current state or partial solution,
i.e., defining reduced neighborhoods of the current partial solution. Exten-
sions of other search techniques, such as branch-and-bound, may involve
searching in the space of feasible solutions, where a first solution is some-
how generated and then constraints on its possible adaptations are added.
These constraints can be diving like on the absolute number of variables that
can be changed, or they can be more problem related, such as the number
of facilities that can be opened/closed in facility location problems, or the
number of jobs that can be rescheduled in a scheduling problem. In this
case, the corridor constraints define local search neighborhoods. A proce-
dure such as that proposed by relax-and-fix (see 2.2) can be seen as working
on the linear relaxation of the problem, with the integrality requirements
acting as corridor constraints.

Search often results in having to deal with neighborhoods that are ex-
ponentially large, but that correspond to instances that can be efficiently
solved by the core exact method. The execution is heavily influenced by a
control parameter, δmax, which specifies the maximum “width of the cor-
ridor”, which is a measure somehow quantifying the maximum size of the
subproblems passed to the exact method. It is commonly implemented a
simple extension that supports dynamic corridor widths, adjusting the width
of the corridor depending on whether or not improving solutions have been
found in the current neighborhood. If an improving solution is found in a
small neighborhood, the incumbent solution is updated and a new corridor
is defined around this new solution. Otherwise, the width of the corridor is
increased in the hope of helping to find feasible solutions. Figure 5 shows a
trace of a run, showing the iteration upper and lower bounds.

6 Discussion

The field of matheuristics has only recently emerged as an independent area
of research, but it draws on a rich and extensive body of contributions.
In this survey, we have argued that matheuristics offer a key advantage
over other meta-heuristics; namely, the use of dual bounds to enable one
to terminate early and/or to evaluate the quality of the best-found primal
solution. Another nice feature of matheuristics is that they enable one to
exploit the relevant progress that has been made in theory, algorithms and
software for integer programming.
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Figure 5: Corridor, upper and lower bound per iteration

Generally speaking, we believe that there is no dominance relation be-
tween matheuristics and the more widely used, “mathematics-free” meta-
heuristics. Nevertheless, relative superiorities can be found on a per-problem
basis. In particular, a greater effectiveness of matheuristics has been re-
ported for highly constrained problems, where the feasible solutions are very
sparse and thus simple local search becomes expensive and ineffective [143].

We remark that many of the approaches mentioned, such as Lagrangian
relaxation, dual ascent and additive bounding, do not rely on the solution
of large-scale integer programs at all. For this reason, they are particularly
attractive when one is dealing with large-scale problem instances. Moreover,
methods such as Lagrangian relaxation and Dantzig-Wolfe decomposition
often involve the solution of several independent subproblems, which means
that they can exploit parallel processors, and possibly even lead to fully
distributed algorithms. Finally, heuristics based on surrogate and semi-
Lagrangian relaxation have received relatively little attention so far, and we
believe that they merit further study.
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A kernel search heuristic for the multivehicle inventory routing prob-
lem. Int. Trans. Oper. Res., 28:2984–3013, 2021.

[9] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation.
Springer, Heidelberg, 1999.

[10] P. Avella, M. Boccia, A. Sforza, and I. Vasil’ev. An effective heuristic
for large-scale capacitated facility location problems. J. Heuristics,
15:597–615, 2009.

[11] L. Bai and P.A. Rubin. Combinatorial Benders cuts for the minimum
tollbooth problem. Oper. Res., 57:1510–1522, 2009.

[12] A. Balakrishnan, T.L. Magnanti, and R.T. Wong. A dual-ascent proce-
dure for large-scale uncapacitated network design. Oper. Res., 37:716–
740, 1989.

[13] E. Balas and M.C. Carrera. A dynamic subgradient-based branch-
and-bound procedure for set covering. Oper. Res., 44:875–890, 1996.

[14] E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. OCTANE:
A new heuristic for pure 0–1 programs. Oper. Res., 49:207–225, 2001.

[15] E. Balas and N. Christofides. A restricted Lagrangean approach to
the traveling salesman problem. Math. Program., 21:19–46, 1981.

23



[16] E. Balas and A. Ho. Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study.
Math. Program. Study, 12:37–60, 1980.

[17] E. Balas and C.H. Martin. Pivot and complement—a heuristic for 0-1
programming. Manag. Sci., 26:86–96, 1980.

[18] M.O. Ball. Heuristics based on mathematical programming. Surv.
Oper. Res. Manag. Sci., 16:21–38, 2011.
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