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1 Introduction

The asset pricing literature has long been shaped by the idea that observable firm charac-

teristics convey information about the cross-section of expected stock returns. A common

practice in the literature is to extract the risk premium associated with these character-

istics by constructing long-short (LS) factor portfolios (Fama and French, 1993). Such

zero-investment, market-neutral portfolios have given rise to the so-called factor investing.

Yet, there are benefits over and above static factor investing. Studies such as Stambaugh

et al. (2012), Jacobs (2015), Akbas et al. (2016) and Keloharju et al. (2016) show that

the performance of LS portfolios, and therefore the benefits from factor investing, are

significantly time-varying. More importantly, such time variation in performance is not

harmonious across portfolios, allowing for substantial investment gains from timing factor

portfolio returns.1 As such, from an investor’s perspective timing is important and an

active factor allocation is needed in order to capitalize on the fluctuations in LS portfolio

returns.

In a factor timing context, several studies have emerged utilizing a variety of predictive

signals as a way to improve upon static factor investing. Valuation ratios, investor senti-

ment, issuer-repurchaser spread and technical indicators, such as factor momentum, are

the most prominent examples, among others. In this paper, we create an optimal factor

timing strategy, going over and above existing methods for predicting factor portfolio

returns. In doing so, we extend the predictability of stock returns from observable firm

characteristics to a portfolio level and predict factor portfolio returns using a collection

of portfolio characteristics. Specifically, the characteristics used to sort stocks into port-

folios are subsequently aggregated into portfolio characteristics and used as predictive

variables to forecast future factor portfolio returns. The use of multiple characteristics

to predict individual factor portfolio returns is motivated by the fact that many stocks

1For example, Haddad et al. (2020) find that the loadings of a size portfolio on the optimal factor
timing portfolio are pro-cyclical while those of a momentum portfolio are counter-cyclical.
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coexist in different factor portfolio legs simultaneously.2 Hence, it is sensible to assess the

joint predictability that arises from characteristics at a portfolio level and examine the

possibility that factor portfolios are predictable by characteristics other than their own.

A comparison of the collective characteristic-based predictability against alternative sets

of predictors documented in the literature highlights the joint importance of characteris-

tics in explaining the dynamics of factor portfolios.

A key aspect of our methodology is the use of different dimension reduction techniques

to reduce the dimensions of both sides of the predictability problem. In line with Haddad

et al. (2020), we begin by reducing the number of forecasting targets, recognizing the

underlying factor structure in factor portfolio returns. Instead of independently predict-

ing individual anomalies, we focus our attention on the main sources of return variation

by isolating the first five Principal Components (PCs). These PCs capture around 67%

of the variation in factor portfolio returns (see Figure IA.1 in the Internet Appendix),

allowing us to greatly reduce the dimensions of the problem at the expense of little return

variation foregone. Since the dominant PCs capture common variation in the underlying

risk premia, being able to accurately predict their performance leads to the detection of

robust predictive patterns across individual anomalies.3 In addition, PCs are not just

statistical factors but have an investable interpretation as well. As each PC is a linear

combination of the underlying variables, PC portfolios are portfolios of factor portfolios,

meaning that their returns and characteristics are calculable. To construct the PC port-

folios we use conventional PCA, as well as the Risk Premium PCA (RPPCA) proposed

by Lettau and Pelger (2020a).4 Unlike PCA, RPPCA utilises information of the mean

returns of the factor portfolios in addition to their variances and leads to the extraction of

2For example, the stocks with the highest asset growth are also the ones with the lowest book-to-
market ratio, the highest return on assets and the highest accruals (Cooper et al., 2008).

3Applying Principal Component Analysis (PCA) to a set of factor portfolio returns in order to achieve
dimension reduction has recently gained a lot of attention in asset pricing. For example, Haddad et al.
(2020) form PC portfolios by running PCA on a set of 50 anomalies and use their own book-to-market
ratio to predict their performance.

4Henceforth, “PC portfolios” refers to the estimation of the Principal Component portfolios using
either PCA or RPPCA.
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factors that may explain a smaller part of the time-series variation but are important in

pricing the cross-section. The resulting PCs have higher Sharpe ratios and in our context

help guiding the forecasting study around factor portfolios with higher average returns.

We then proceed by compressing the predictive information from the characteristics of

the PC portfolios. To achieve this, we do not only rely on PCA, but employ methods

that account for the covariance structure between predictors and forecasting targets, such

as Partial Least Squares (PLS) (Wold et al., 1984). Conventional PCA focuses on the

variance within the predictors and can lead to components that mix return-relevant and

irrelevant variation. By using PLS we aim to capture only the variation in the charac-

teristics that is relevant in predicting returns, potentially resulting in sparser and more

accurate models.

After rotating characteristics in space using PCA or PLS, we either use the first char-

acteristic component in standard predictive regressions or apply LASSO on the whole

set of characteristic components to identify the relevant subset of features.5 The first

case is used to investigate the predictability in the simplest case of a single predictive

factor, while the use of LASSO allows for successive components to be included in the

surviving subset of predictors, with the importance of each characteristic component be-

ing assessed based on its contribution to minimizing the forecasting error rather than the

magnitude of its eigenvalue. Our procedure is implemented recursively and the optimal

degree of coefficient shrinkage is identified separately for each PC portfolio based on a

cross-validation step. This approach has two important implications. First, the number

of factors can be different across PC portfolios, allowing for different sources of variation

in factor portfolio returns to be approximated by models of different complexity. For

instance, many characteristic components may be required to predict the first PC port-

folio but only a few for the second. Second, allowing for different values for the level of

5The combination of LASSO with PCA or PLS is particularly suitable in this case because the PC
portfolios are by construction orthogonal.
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coefficient shrinkage across time allows us to examine the time variation in the strength

of the characteristic signal overall.

In our empirical analysis we use a collection of 72 anomalies spanning the period from 1970

to 2019 and find that characteristics are particularly useful for factor timing purposes. We

distinguish factor portfolio predictability in terms of exact predictive accuracy (comparing

predicted with future realized returns) and ability to predict the cross-sectional dispersion

in returns (differentiating winners from losers). The characteristic-based models that in-

corporate LASSO are the most successful and consistently outperform existing methods

in both terms as they deliver smaller forecasting errors and higher cross-sectional correla-

tions between forecasted and realized returns. They also deliver average monthly returns

of up to 1.47% and annualized Sharpe ratios of up to 0.73, while the best benchmark

model delivers 1.06% and 0.55, respectively. Importantly, our factor timing strategies

show no decay in return performance over time, although many individual anomalies

have been found empirically to do so (McLean and Pontiff, 2016).

In terms of the different methods used, the implications of using PCA or RPPCA to

reduce the number of portfolios to predict are minimal. Yet, when it comes to reduc-

ing the number of predictors down to a single predictive factor, the dimension reduction

technique matters. In particular, PCA delivers slightly better exact predictability, but

severely underperforms PLS in terms of ranking the anomaly portfolios successfully. Es-

sentially, when a single-factor model is used, it is better to condense the information from

the predictors using a tool that is specifically designed for forecasting purposes.

Nonetheless, the difference between PCA and PLS disappears when multiple character-

istic components are considered in conjunction with LASSO, suggesting that the exact

rotation method of the predictors is less important once we account for the whole infor-

mation set. After employing LASSO results improve uniformly across models reflecting

4



the importance of accounting for further components and the benefits of regularization

in dealing with overfitting. Furthermore, the cross-validation step reveals that the re-

quired number of features varies significantly across time for all the PC portfolios. This

implies that characteristics work better in predicting returns in certain periods than oth-

ers, which is expected given the time-variation in factor risk premia. Our LASSO-based

factor timing strategies are flexible enough to downgrade (upgrade) information in the

characteristics when their informativeness is low (high).

The rest of the paper is structured as follows: Section 2 provides a discussion of the rel-

evant literature. Section 3 describes the general framework and our estimation approach

and Section 4 provides an assessment of the various models in terms of forecasting abil-

ity and investment performance. Section 5 modifies the baseline models and examines

alternative model specifications. Finally, Section 6 concludes.

2 Literature review

Our paper is related to several strands of the literature. Without attempting a full-scale

review, we discuss briefly how we contribute to two main categories, namely studies that

utilize dimension reduction techniques in the context of asset pricing and studies that

explore factor portfolio predictability.

Dimension reduction in asset pricing

Machine learning has surfaced in recent years in various asset pricing applications due to

the limitations of standard methodologies in a high dimensional setting. Gu et al. (2020)

compare various machine learning techniques in their effort to forecast stock returns using

a large collection of stock characteristics. Similarly, numerous studies attempt to identify

the extent to which characteristics are associated with expected returns by regularizing

the cross-sectional regressions or the characteristic-based portfolio sorts used in the esti-
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mation of risk premia. For instance, DeMiguel et al. (2020), Freyberger et al. (2020) and

Feng et al. (2020) employ LASSO regularization to create a stochastic-discount-factor

(SDF) with sparse characteristic exposure. However, imposing sparsity in the number of

return predictors under a LASSO approach may not be a realistic assumption after all

due to the diverse characteristic space (Kozak et al., 2020). Nevertheless, sparse models

allow for a parsimonious representation of the cross-section of expected stock returns and

an easier interpretation and link to economic theories. In our empirical application, we

apply LASSO on a set of characteristic PCs instead of raw characteristics. Hence, our

approach still encourages a sparse factor structure, while allowing multiple characteris-

tics to have an effect on expected factor portfolio returns through their exposure to the

characteristic PCs.

Another strand of the literature applies PCA on a set of stock or portfolio returns to

reduce their dimensions. Examples of PCA applications in asset pricing include Connor

and Korajczyk (1988), who apply Asymptotic PCA on asset returns to extract latent

factors, and Kozak et al. (2018), who form a low dimensional SDF using the first few

PCs of anomaly returns. Kozak et al. (2020) also find that a low dimensional specification

in terms of PC portfolios is feasible due to the high degree of common variation in factor

portfolio returns. In general, the use of PCA in this context is both economically and em-

pirically motivated. Economically, the existence of arbitrageurs in the economy implies

that near-arbitrage opportunities, meaning extremely high Sharpe ratios, are implausible

to achieve. Hence, high Sharpe ratios associated with low eigenvalue PCs should make

no contribution to explaining returns (Kozak et al., 2018).6 Empirically, returns possess

a spiked covariance structure, meaning the variance-covariance matrix is dominated by

a small number of large eigenvalues, separated from the rest. Combining these facts im-

plies that asset returns should be adequately explained by a small number of dominant

PCs. We contribute to this literature by constructing PC portfolios of LS portfolios and

6Still, this argument does not explicate whether high eigenvalue PCs reflect risk or mispricing.
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examining their predictability.

Several recent studies also focus on modifying conventional PCA with the purpose of

making it more suitable for asset pricing applications. Kelly et al. (2019) propose a

new method of Instrumental Principal Components, allowing latent factor loadings to

be time-varying and partially dependent on firm characteristics.7 They find that only

a small number of characteristic-based factors are important for identifying a successful

latent factor model. Lettau and Pelger (2020a) augment standard PCA by a cross-

sectional pricing error in order to extract factors that can simultaneously explain the

time-series variation and the cross-section of asset returns and Lettau and Pelger (2020b)

demonstrate the superiority of the estimator compared to standard PCA on a set of

37 factor portfolios. Finally, Giglio and Xiu (2021) account for omitted factors in the

estimation of risk premia by combining PCA with two-pass cross-sectional regressions.

We exploit the recent advancements in the literature by also using the RPPCA of Lettau

and Pelger (2020a) to extract factors from LS portfolio returns.

Factor portfolio predictability

In a factor timing context, factor momentum has emerged as a mechanism to time fac-

tor portfolio returns. Early contributors to this literature include Grundy and Martin

(2001), who document a momentum effect in the factor component of stock returns. The

momentum effect in factor portfolio returns is strong and has its own distinctive be-

haviour, different from that of stock momentum. For example, Arnott et al. (2021) and

Gupta and Kelly (2019) find that the effect is the strongest at the 1-month horizon, even

though stocks exhibit reversals in such short intervals. Nonetheless, factor momentum

captures the effect at its purest form as it subsumes stock, industry momentum as well

as momentum found in other well diversified portfolios (Arnott et al., 2021). Further-

7The method is an extension of the Projected-PCA by Fan et al. (2016) and can be thought of as
standard PCA on characteristic sorted portfolios.
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more, factor momentum is concentrated in the highest eigenvalue PCs of factor portfolio

returns, which implies that momentum is intertwined with the covariance structure of

factor portfolios (Ehsani and Linnainmaa, 2022). Whether looking at PC portfolios or

individual factors, factor momentum can accommodate factor timing simply by buying

(selling) portfolios that have performed well (poorly) in the recent past or relative to

their peers. Such strategies deliver strong return performance and are not susceptible to

crashes, as stock momentum (Gupta and Kelly, 2019). Nevertheless, using exactly the

same investment rule we show that characteristic-based forecasts provide superior infor-

mation and result in more profitable investment strategies compared to factor momentum.

Outside factor momentum, numerous studies attempt to predict the performance of indi-

vidual factor portfolios using a collection of potential predictors. Daniel and Moskowitz

(2016) forecast stock momentum using market indicators and volatility proxies in an ef-

fort to explain momentum crashes. Similarly, Huang (2022) finds that the return spread

between winners and losers negatively predicts stock momentum returns. Baba-Yara

et al. (2021) analyse the ability of the value spread to forecast the returns of the value-

minus-growth portfolio across asset classes. They find that the first principal component

of the value spread captures most of the variation in expected value returns. In a similar

manner, we also use the first principal component of multiple characteristics to predict

PC portfolio returns, even though we examine the possibility that further characteristic

components are required. In contrast to previous studies targeting only specific anoma-

lies, we examine factor portfolio predictability across a large set of factor portfolios.

Other studies also examine the predictability of multiple portfolios at once, using either

a single or multiple predictors. Asness et al. (2017) use the value spread to construct

timing strategies for value, momentum and betting-against-beta portfolios, though they

observe little improvement upon a constant multi-style strategy. Greenwood and Hanson

(2012) show that corporate share issuance can be used to forecast the performance of
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factor portfolios related to size and value. Stambaugh et al. (2012) find that LS strate-

gies appear to be stronger following periods of high investor sentiment. They find the

sentiment effect to be concentrated on the short leg of anomalies, which they base on

the short sale impediments that results in relatively higher overpricing compared to un-

derpricing. On a much larger scale, Jacobs (2015) confirms the findings of Stambaugh

et al. (2012) by examining the role of sentiment in a large set of 100 anomalies. Kelly and

Pruitt (2013) forecast four sets of characteristic-sorted portfolios using the cross-section of

book-to-market ratios and observe higher predictability at lower frequencies. Dichtl et al.

(2019) attempt to predict 20 equity factors using fundamental and technical indicators.

They distinguish between cross-sectional and time-series predictability which results in

factor-tilting and factor timing portfolio allocations, respectively. Haddad et al. (2020)

construct PC portfolios by running PCA on the time-series of 50 anomalies and find that

the largest eigenvalue PCs are the most predictable by their own book-to-market ratio.

We extend Haddad et al.’s (2020) framework by incorporating information across a large

set of observable characteristics to predict a large set of factor portfolio returns. Further-

more, we allow the effect of characteristics to be independently identified for every PC

portfolio, examining the possibility that different characteristics affect different sources

of variation in factor portfolio returns.

3 Methodology

This section begins by setting out the general framework, followed by our forecasting pro-

cedure and the benchmark models employed. Section IA.2 of the Internet Appendix intro-

duces the statistical methods used in this study and provides a comprehensive overview

of their functional form and statistical properties.
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3.1 General framework

The main objective is to predict a large set of factor portfolio returns using a large set of

portfolio characteristics. Let R be a (T ×N) matrix of N factor portfolio returns for T

periods. Equivalently, let Rt,. = (Rt,1, . . . , Rt,N) be a (1×N) vector of portfolio returns

at time t and Ct, a (N ×M) matrix of M characteristics for N factor portfolios at time

t. The base case arises from a conditional version of Cochrane’s (2011) framework for

modeling returns as a function of characteristics:

Rt+1,n = at,n +
M∑

m=1

bmt,nC
m
t,n + εt+1,n, (1)

where at,n and bmt,n denote the conditional alpha and beta at time t, and εt+1,n is the

pricing error at time t + 1. Entertaining time variation in bmt,n and at,n due to changes

in portfolio attributes is the essence of factor timing.8 By combining different dimension

reduction techniques, we essentially investigate the possibility that the conditional alphas

and betas are a function of the covariance of returns, the covariance of the characteristics,

or even the covariance of returns with the characteristics. The covariance of returns comes

into play by focusing on the dominant components of factor portfolio returns instead of

predicting each factor portfolio separately. More concretely, assuming a linear latent

factor specification, excess asset returns can be expressed as:

Rt+1,. = Zt+1,.W
′
t +Θt+1, (2)

where Zt+1,. = (zt+1,1, zt+1,2, . . . , zt+1,K) is a (1×K) vector of factor returns withK << N ,

Wt = (wt,1, wt,2, . . . , wt,K) is a (N ×K) matrix of factor loadings and Θt+1 is a (1 × N)

vector of idiosyncratic errors. The time dimension in this context arises by the recursive

estimation of eigenvectors and principal components. The first term of the right-hand-

8Cochrane (2011) uses the formulation in Equation (1) to model the returns of an individual stock in
excess of the risk-free rate. In our setting, we model factor returns, i.e., the returns of a long portfolio
in excess of the returns of a short portfolio. Getting from individual stocks to factor portfolios is
straightforward and hence we focus directly on the latter to simplify the exposition of our framework.
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side reflects compensation for the exposure on systematic risk factors while the second

term reflects asset specific risk. Under the assumption that the factors and the errors

are uncorrelated, the variance-covariance matrix of asset returns can be decomposed into

a systematic and idiosyncratic part. A common practice is to estimate Zt+1,. and Wt

directly, by applying PCA on the variance-covariance matrix of R and retaining the dom-

inant components (e.g., Connor and Korajczyk (1986) and Kozak et al. (2018)). Provided

that time variation in asset risk premia is driven by exposure to time-varying aggregate

risk, being able to accurately predict the dominant components Zt+1,. allows to form fore-

casts for individual anomalies through Wt. By only focusing on Zt+1,., we isolate common

sources of predictability across factor portfolios and ignore spurious predictability asso-

ciated with smaller PCs.

In order to forecast Zt+1,., we model PC portfolio returns as a function of observable

characteristics. Specifically, lagged characteristics are used to predict next-period PC

portfolio returns. The characteristics of the PC portfolios are computed by combining

factor portfolio characteristics according to their weights given by the ith eigenvector wt,i.

The cross-section of characteristics for the ith i = (1, . . . , K) PC portfolio is calculated as

Ht,i = w′
t,iCt. Repeating the process for every t and every i results in a (T ×M) matrix

Hi of characteristics for each PC portfolio.

However, using raw characteristics as inputs in standard predictive regressions would be

suboptimal due to high correlations and lack of predictive information for some of them.

Therefore, we transform the characteristics of PC portfolios into scores by using PCA

and PLS. This is achieved by multiplying the matrix of characteristics Hi with a matrix

of eigenvectors, such as:

Xi = HiQt,i, (3)

where Xi is a (T × M) matrix of component scores, or linear combinations of the un-
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derlying characteristics, of the ith PC portfolio. Similarly, Qt,i = (q1t,i, q
2
t,i, . . . , q

M
t,i ) is an

(M × M) matrix of eigenvectors estimated at time t and sorted by their correspond-

ing eigenvalues. For PCA, Qt,i is estimated based on the eigenvalue decomposition of

V ar(Hi), while for PLS it is based on the eigendecomposition of cov(Z.,i, Hi); more in-

formation on how to obtain Qt,i and Xi under the different methods is provided in the

Internet Appendix. Dominant PCA components capture most of the variation within the

characteristics, while dominant PLS components capture most of the covariation between

lagged characteristics and next-period returns. Making a connection to the conditional

betas, the use of PCA for the characteristics introduces their covariance into the con-

ditional beta function, while the use of PLS introduces the covariance of PC portfolio

returns with their characteristics.

Next, we model PC portfolio returns using the characteristic components:

zt+1,i = β0
t,i +

M∑
m=1

βm
t,iX

m
t,i + ϵt+1,i, (4)

where Xm
t,i is the m

th characteristic component of the ith PC portfolio at time t, and zt+1,i

is the one-month ahead return of the same portfolio. Equations (1) to (4), lead to:

Rt+1,. =
K∑
i=1

w′
t,iβ

0
t,i +

K∑
i=1

M∑
m=1

w′
t,i(β

m
t,iw

′
t,iCtq

m
t,i) + ηt+1,., (5)

where ηt+1,. is a (1 × N) vector of composite errors capturing both the unexplained

return variation from the characteristics, as well as the variation from potentially omitting

higher-order PC components. Equation (5) shows that at,n and bmt,n from Equation (1) end

up being functions of the eigenvectors of the covariance of factor portfolio returns, wt,i, the

eigenvectors of the covariance of characteristics, qmt,i, and the betas, βm
t,i, from regressing

PC portfolio returns on their characteristic components. Specifically, multiplying the

(1 × N) vector w′
t,i with the (N ×M) matrix Ct gives the cross-section of PC portfolio
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characteristics while multiplying that product with the (M × 1) vector qmt,i gives the mth

characteristic component of the ith PC portfolio. Further multiplying that new product

with βm
t,i and summing over M gives the value for the ith PC. Finally, multiplication with

w′
t,i and summation over K generates a return vector for the whole cross-section of factor

portfolio returns. Note that all the objects have time t subscripts since they can be

estimated recursively.

3.2 Forecasting procedure

We use at least 20 years (240 months) of information to estimate the PC portfolios and

their characteristics to then make return predictions at t+1. Our forecasts employ an ex-

panding estimation window, with the estimation sample always starting at the beginning

of the sample period and incorporating additional observations as they become available.

PC portfolios are recursively re-estimated at each point in time, using an updated wt,i

with i = 1, . . . , K based on the in-sample variance-covariance matrix of factor portfolio

returns.9 Notice that PC portfolio characteristics Hi do not only change because of the

change in the underlying factor portfolio characteristics Ct, but because of the change in

the weighting vectors wt,i as well. Overall, our approach is flexible enough to account for

a potentially unstable correlation structure in the factor portfolio returns.

In a similar fashion, the matrix of characteristic components is obtained as follows; for

PCA, which only utilizes information contained in the characteristics to extract the latent

factors, characteristics up to t are used to estimate Xi. For PLS, which uses information

in both characteristics and returns, characteristics up to t−1 and PC portfolio returns up

to t are used to estimate Xi. The βs in Equation (4) are always estimated using returns

up to t and values in Xi up to t − 1. Values of Xi at t are then plugged into Equation

(4) to obtain forecasts for each PC portfolio return at t + 1. Hence, our forecasts are

9When RPPCA is used for the left-hand side, we use a constant value of γ = 10 for the weight on the
cross-sectional pricing error.
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completely out of sample and do not suffer from any look-ahead bias.

Another subtle but important detail is the cross-sectional standardization of Ct to ac-

count for the difference in the scale of the characteristics. Running raw PCA or PLS on

Ct would tilt the PCs towards the larger characteristics, as those will have significantly

higher variance. For this reason, we standardize the matrix of factor portfolio charac-

teristics Ct cross-sectionally before calculating Hi and ultimately Xi by subtracting the

cross-sectional characteristic mean and dividing by the cross-sectional characteristic stan-

dard deviation at each time t. Apart from ensuring a reasonable covariance matrix for

the characteristics, such an approach allows us to focus on the cross-sectional differences

in the data. As long as factor portfolio characteristics coincide with factor portfolio re-

turns in cross-sectional terms, PC portfolio characteristics should coincide with returns

across time, as they are both linear combinations of the cross-section and thus making a

predictive regression approach sensible.10

The first decision being made is on the optimal number of factors in Equation (2). Spec-

ifying the optimal number of PCs is ultimately an empirical question as it depends on

the underlying factor structure. Bai and Ng (2002), Onatski (2010) and Haddad et al.

(2020), all develop critical value thresholds for determining the number of factors. We

follow a simple approach and focus on the first five PCs as they capture about 67% of

the variation in factor portfolio returns. Selecting the first five PC portfolios is also con-

sistent with similar studies performing PCA on a set of factor portfolios, e.g., Haddad

et al. (2020) and Lettau and Pelger (2020b). Hence, let Zt,5 = (zt,1, zt,2, . . . , zt,5) and

Wt,5 = (wt,1, wt,2, . . . , wt,5) be the set of the 5 largest PC portfolios and eigenvectors.

The second decision to be made is on how to estimate βm
t,i in Equation (4). Here, we

examine two different cases, one that imposes sparsity and one that is data-driven. In

10In Section IA.3 of the Internet Appendix, we provide a detailed description of the standardization
approach and explain the drivers of variation in the PC characteristics across time.
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the first case, we only use the first characteristic component of each PC portfolio (i.e.,

the first column of Xi) in standard bivariate predictive regressions. Although this is the

sparsest specification possible, multiple characteristics can have an effect on PC portfolio

returns through their weights on the first characteristic PC. As an alternative, we apply

LASSO on the whole set of characteristic components for each PC portfolio (i.e., the

whole matrix Xi) to identify a subset that is useful for our forecasting objective. Hence,

βs in Equation (4) for the first case are obtained through OLS for a single predictive fac-

tor (m = 1) and in the second case the βs are obtained through LASSO form = 1, . . . ,M .

When performing LASSO the optimal amount of coefficient shrinkage is selected by con-

ducting cross-validation on a rolling basis. In particular, before every forecasting step

we separate the in-sample period into a training and a validation sample. The training

sample is used to estimate the PC portfolios and characteristic PCs and the validation

sample is used to identify the degree of model complexity that delivers reliable out-of-

sample performance.11 At the start, the training sample is used to forecast the first

period in the validation sample subject to a geometric sequence of shrinkage values.12

The actual value of the forecasted data point is then used as part of the next training set

to forecast the subsequent point in the validation sample. After repeating this procedure

for every period in the validation sample, we pick the level of shrinkage that minimizes

the mean-squared error. We then re-estimate the PC portfolios and characteristic PCs

using the whole in-sample period (training and validation) and apply LASSO using the

fixed value for the shrinkage parameter to estimate βm
t,i and predict PC portfolios at t+1.

Depending on the magnitude of the shrinkage, our approach examines the possibility that

none of the characteristic components are relevant in predicting PC portfolio returns, in

which case returns forecasts shrink down to a constant term.

11The validation sample covers the last five years (60 months) of the in-sample period while the training
sample increases by one at each forecasting step.

12The sequence of shrinkage values is strictly positive and terminates at a value for which all coefficients
are equal to zero.
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As already discussed, LASSO is applied separately on each PC portfolio, meaning that

the number of features can be different across PC portfolios. Essentially, our method

allows for different sources of variation in factor portfolio returns to be approximated by

models of different complexity, examining the possibility that characteristic importance

varies across the main sources of return variation. Furthermore, since LASSO is applied

iteratively, the number of features can also vary across time for each PC portfolio de-

pending on how strong the characteristic signal has been in the recent past. Lastly, it is

important to highlight that LASSO can select low eigenvalue characteristic PCs, as long

as they contribute to minimizing the forecasting error in the validation period.

To summarize, we attempt to regularize both the left (LHS) and the right-hand side

(RHS) of the predictability problem by combining different dimension reduction tech-

niques. Regularization in the number of forecasting targets is achieved with the use of

PCA or RPPCA and in the number of predictors with the use of PCA or PLS, resulting

in four base models that we define as PCA, RPPCA, PCA-PLS, RPPCA-PLS.13 Figure

1 provides a visual depiction of our procedure that can be summarized in the following

steps:

1. Reduce a set of factor portfolios to their first five components using PCA or RPPCA.

2. Estimate the characteristics of the PC portfolios using their loadings from the first

step.

3. Rotate PC portfolio characteristics using either PCA or PLS.

4. Either select the first characteristic PC or apply LASSO on the whole set of char-

acteristic PCs of each PC portfolio.

5. Produce separate forecasts for each PC portfolio using the selected number of fea-

tures.
13All models are estimated using either single or multiple predictors (via LASSO), resulting in a total

of eight forecasting models. Panel A of Table IA.2 includes the listing of the four main models which
are estimated using either a single predictor or multiple predictors in combination with LASSO.
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6. Expand these forecasts to individual factor portfolios using their loadings on each

PC portfolio.

Figure 1: Visual depiction of our modeling procedure. The figure presents the process of forecasting
factor portfolio returns using their portfolio characteristics. PC portfolios are calculated as linear combi-
nations of factor portfolios. The same weighting vectors are used to decompose the three-dimensional set
of characteristics into 5 independent matrices of characteristics (one for each PC portfolio). The matrices
of predictors are transformed to components and either the first component is retained or LASSO is ap-
plied on the whole set of components to pick those that are the most informative. Individual forecasts for
each PC portfolio are produced and those forecasts are aggregated into factor portfolio return forecasts
using the weighting vectors that were used to aggregate factor portfolios into PC portfolios.

3.3 Benchmark Models

To examine whether characteristic-based models provide superior information compared

to different approaches, we employ alternative information sets to predict factor portfolio

returns. Panel B of Table IA.2 includes a listing of all the benchmark models used. In
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a general setting, we form the baseline benchmark models following the methodological

framework proposed by the original authors. Section 5 modifies the original models in

various ways in order to examine the robustness of our results.

Factor Momentum

The first benchmark, is the 1-month momentum strategy (1mMOM), which forms the

momentum signal based on a look-back-window of 1 month. Essentially, the return at

time t becomes the prediction for the return at time t + 1. The second benchmark is

the 12-month momentum strategy (12mMOM), which forms the momentum signal based

on a look-back-window of twelve months. In this case, the prediction for the return at

time t + 1 is the average monthly return of the previous twelve months. In order to

improve consistency across characteristic and momentum models, in Section 5 we also

apply both momentum strategies to the PC portfolios and then extend the forecasts to

individual anomalies as in Equation (5). Hence, we also examine the possibility of a

stronger momentum effect on the main sources of variation of factor portfolio returns.14

Valuation Ratios

As a third benchmark, we use only the book-to-market ratio of factor portfolios as a return

predictor. Specifically, we follow Haddad et al. (2020) in predicting the first five PCs by

their own book-to-market ratio and then extending the forecasts to individual anomalies.

In order to keep things consistent with our framework, we estimate the PC portfolios

recursively rather than using the first half of the sample. In Section 5, we simultaneously

use the book-to-market ratio of all dominant PC portfolios in combination with LASSO

as an alternative to the baseline model.

14For instance, Ehsani and Linnainmaa (2022) observe that momentum is highly concentrated among
the first five PC portfolios.
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Issuer-Repurchaser Spread

Following Greenwood and Hanson (2012), we estimate the issuer-repurchaser spread of

each portfolio and use it to predict next period factor portfolio returns. The issuer-

repurchaser spread is defined as the average characteristic decile difference between is-

suers and repurchasers. Repurchasers are defined as firms that have reduced their shares

outstanding by more than 0.5% during the fiscal year and issuers are firms that have

increased their shares outstanding by more than 10% during the fiscal year. The metric

can take values from −9 to 9, with low values implying that issuers are located in the low

leg and repurchasers in the high leg of each factor portfolio (and vice versa). In Section

5, we generalize this approach by considering the issuer-repurchaser spreads of the PC

portfolios.

Investor Sentiment

We explore the role of investor sentiment in predicting factor portfolio returns. Stam-

baugh et al. (2012) and Jacobs (2015) find that anomaly performance is stronger following

periods of high sentiment. To examine the effect of sentiment, we use the investor senti-

ment index of Baker and Wurgler (2006), which captures the common component in five

sentiment proxies, with each proxy being orthogonalized with respect to six macroeco-

nomic indicators. Specifically, next period factor portfolio returns are regressed on the

lagged values of the index and forecasts for individual anomalies are formed based on a

standard regression setting. In Section 5, we also form forecasts for individual PC port-

folios and employ LASSO to examine potential time variability in the sentiment signal.

Historical Sample Mean

Finally, we use the in-sample average of factor portfolio returns as a forecast for the next

period, as in Campbell and Thompson (2008). Such a simple non-parametric technique

utilizes information in the returns only, allowing us to examine the incremental effect of

sophisticated statistical techniques and different information sets.
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4 Empirical results

4.1 Data

We replicate a large set of 72 characteristics, also considered by Green et al. (2017).

The characteristics are calculated using data from the Center of Research on Securities

(CRSP) and Compustat. Our dataset covers the 50-year period from January 1970 to

December 2019. The stock universe includes common stocks listed on NYSE, AMEX,

and NASDAQ that have a record of month-end market capitalization on CRSP and a

non-missing and non-negative common value of equity on Compustat. Additional infor-

mation about the characteristics, including origination and characteristic description, can

be found in Table IA.3 of the Internet Appendix.

For every month in our sample, stock returns at month t are matched against their re-

spective characteristics at month t−1. For accounting data, we allow at least six months

to pass from the firms’ fiscal year end before they become available and at least four

months to pass for quarterly data. We also winsorize characteristics cross-sectionally at

a 99% confidence level to account for extreme outliers. Finally, to isolate the effect of mi-

crocaps, we remove stocks with price below $5 at the portfolio formation period and use

NYSE-breakpoints to split stocks into deciles, following Fama and French (2008). These

adjustments help us robustify our inferences, since many anomalies have been found to

work better on small stocks (Fama and French, 2008).

We then move to the construction of the factor portfolios. For each anomaly, we first

group stocks into value-weighted deciles based on their characteristic exposure in the pre-

vious month and then go long decile ten and short decile one,15 even if the characteristic

15In the early years of the sample period, there are few characteristics, such as characteristics based
on research and development expenses, which do not have enough variation in order to form ten separate
portfolios. To account for this, we allow the number of quantiles to be less than ten for months in which
the required number of cut-off points is not reached. In other words, LS portfolio returns are calculated
as long as there are at least two different values for the same characteristic in a particular month.
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is negatively related to future returns. Such an approach requires no ex-ante information

about the relationship between characteristics and returns and results in the highest dis-

persion in factor portfolio returns. Furthermore, given that factor timing strategies can

take long and short positions on factors, the sign of factor portfolio returns is irrelevant.16

Similarly to computing factor portfolio returns, the characteristics of factor portfolios can

be computed by value-weighting characteristics of stocks within each decile portfolio and

then subtracting the value of the bottom from the top decile. Notice that the portfolio

constructed based on a particular characteristic sort will also have the highest character-

istic score by construction.17

Figure 2 displays the average monthly returns of the factor portfolios together with

the 95% confidence intervals. Out of all the factor portfolios, 12-month momentum

(mom12m) has the highest average return, followed by 6-month momentum (mom6m).

Out of the 72 portfolios, only 22 have significant average returns, confirming a high de-

gree of redundancy among the documented factors (Hou et al., 2020). When we focus on

the out-of-sample period only, this number goes down to 10, reflecting the decay in the

performance of the anomalies over time (McLean and Pontiff, 2016). Further descriptive

statistics for the factor portfolios can be found in Table IA.4 in the Internet Appendix.

16Hence, strategies with a negative risk premium, such as asset growth, should on average be allocated
in the short side of our factor timing portfolio.

17For example, the momentum portfolio will always have the highest momentum score compared to
all the other factor portfolios.
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Figure 2: Average monthly returns of factor portfolios with 95% confidence intervals for the period
01/1970-12/2019.

As already discussed, we proceed by constructing recursively five PC portfolios, i.e., linear

combinations of the 72 factor portfolios using either PCA or RPPCA. These PC portfolios

are by construction affected by all factor portfolios in a time-varying fashion; as a result,

at a first glance they might look as if they do not have any economic interpretation.

In order to tackle this, we regress recursively each PC portfolio return on each of the

72 anomalies and estimate the monthly time-series of R2 values for each anomaly. The

analysis, which is detailed in Section IA.6 of the Internet Appendix, shows that the

constructed PC portfolios have in fact a quite clear economic interpretation. For example,

the first PC portfolio (based on PCA) loads heavily on volatility characteristics, the

second one loads more on value characteristics, while the third one is mostly driven by

momentum characteristics. Moreover, despite the recursive construction procedure of the
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PC portfolios, these economic relations are very stable over time.

4.2 Predictive performance

We examine the out-of-sample performance of our predictive models using standard fore-

cast evaluation measures and a monthly holding period as in Campbell and Thompson

(2008). We use an in-sample window of at least 240 months, with the initial in-sample pe-

riod covering the period 01/1970-12/1989 and forecasts being obtained out-of-sample for

the period 01/1990-12/2019. As a first indication of the out-of-sample fit of our models,

we estimate the out-of-sample R2 for each individual PC portfolio as:

OOS R2 = 1−
∑T−1

t=240 (zi,t+1 − ẑi,t+1)
2∑T−1

t=240 (zi,t+1 − z̄i,t+1)
2
, (6)

where ẑi,t+1 is the PC portfolio return forecast at time t+ 1 and z̄i,t+1 is the average PC

portfolio return using information up to period t. We also estimate a Total OOS R2,

which pools squared errors across factor portfolios and across time:

Total OOS R2 = 1−

∑N
i=1

∑T−1
t=240

(
Ri,t+1 − R̂i,t+1

)2

∑N
i=1

∑T−1
t=240

(
Ri,t+1 − R̄i,t+1

)2 . (7)

Total OOS R2 assesses the predictive ability of each model under a grand panel frame-

work and therefore is a bulk measure of the accuracy of the model-based predictions

of future factor portfolio returns. Table 1 presents the OOS R2 results for individual

PC portfolios, as well as the Total OOS R2 under the various models. Apropos Panel

A, characteristic-based models with one predictive factor deliver negative OOS R2, with

only the second PC portfolio being predictable. With regards to the different dimension

reduction techniques used, models that use PCA for the RHS outperform their PLS coun-

terparts in terms of Total OOS R2, although someone would expect the opposite given

that PCA factors capture variation among returns-related and unrelated variables.
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PC1 PC2 PC3 PC4 PC5 Total

Panel A: Single factor
PCA −1.00 0.24 −1.33 0.36 0.28 −0.55
PCA-PLS −3.29 0.76 −2.89 0.60 −0.95 −1.55
RPPCA −0.75 0.90 −0.13 −1.15 −0.74 −0.38
RPPCA-PLS −3.00 1.80 −3.28 −3.94 −1.60 −1.54

Panel B: Time-varying number of factors using LASSO
PCA 2.71 2.85 1.23 3.24 −0.78 1.46
PCA-PLS 1.70 5.34 1.78 3.87 3.75 1.53
RPPCA 0.80 0.60 1.71 0.41 2.64 0.52
RPPCA-PLS 1.17 6.97 0.92 0.20 2.30 1.17

Panel C: Benchmark models
1mMOM −88.98
12mMOM −6.61
PCA-BM 0.40 3.47 −0.20 0.89 −0.62 0.43
IR Spread 0.13
Sentiment 0.42

Table 1: OOS R2 for PC portfolios and Total OOS R2 across all anomalies for the period 01/1990-
12/2019 in percentage terms. Panel A displays results using a single latent factor to predict PC portfolio
returns. Panel B shows the results where the optimal number of factors is selected by applying LASSO
on the set of latent factors. Panel C displays results for the benchmark models.

Moving to Panel B, the combination of dimension reduction techniques with LASSO sig-

nificantly improves results for all models delivering positive Total OOS R2s. The predic-

tive performance improves almost uniformly across all PCs, highlighting the importance

of accounting for further characteristic components and the benefits of regularization on

out-of-sample performance. The use of LASSO in particular allows the models to under-

weight (overweight) information in the characteristics in periods where the characteristic

signal diminishes (becomes stronger).18 Overall, results in Panel B confirm that imposing

a sparse or constant factor structure may not be a realistic assumption in the context of

asset return prediction.

Finally, Panel C displays the Total OOS R2 for the benchmark models.19 With regards to

factor momentum, previous month returns provide unreliable forecasts in exact terms, as

18It is also important to highlight that LASSO may select characteristic components other than the
first, potentially resulting in considerably different forecasts compared to the single factor case.

19The historical sample mean is not included as it has a zero Total OOS R2 by construction.
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implied by the highly negative Total OOS R2. When returns are averaged over the past

twelve months, results improve significantly, although the Total OOS R2 remains on the

negative side. Conversely, models based on the book-to-market ratio, issuer-repurchaser

spread and investor sentiment deliver positive Total OOS R2, though they still fall behind

the characteristic-based models that employ LASSO.

Ultimately, we are interested in the predictability of individual factor portfolios based

on PC portfolio forecasts. As a measure of individual factor portfolio predictability, we

estimate the individual OOS R2 for all anomalies under the different models. Apropos

Figure 3, expanding PC portfolio return forecasts to individual anomalies reveals pre-

dictive patterns in a robust and systematic way. In line with Haddad et al. (2020), we

observe substantial anomaly predictability and find many predominant anomalies, such

as value (bm) and sales-to-price ratio (sp) to be highly predictable by observed character-

istics. However, almost all characteristic-based models fail to predict anomalies that are

based on a % change in accounting variables, such as % change in sales minus % change

receivables (pchsale pchrect) and % change in the current ratio (pchcurrat) among oth-

ers, located in the lower half of the heat-map. These portfolios have returns statistically

indistinguishable from zero and low covariance with the rest of the anomaly universe.

As a result, they do not load heavily on the first five components and their performance

is not adequately captured by PC portfolio forecasts. With regards to the benchmark

models, only factor momentum results in high forecasting errors and therefore negative

OOS R2 for almost all anomalies. The remaining benchmark models perform sufficiently

well, delivering positive OOS R2 for the majority of the anomaly universe.
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Figure 3: OOS R2 for individual anomalies under the characteristic-based models that employ LASSO
and benchmark models (historical sample mean is inferred by the R2 metric). Negative values (in red)
show lack of predictive ability while positive values (in green) show predictive ability of the underlying
model for a given factor portfolio.

Whereas OOS R2 accommodates a general quantitative comparison of the predictive

performance of the various models, it is also important to assess the statistical significance

of the differences among model forecasts. To make pairwise comparisons of the out-of-

sample predictive accuracy we use the modified Diebold and Mariano (DM) test by Gu

et al. (2020), which compares the cross-sectional average error differential between two

models. The DM test statistic between two models (1) and (2) is defined as DM1,2 =

d̄1,2/σ̂d̄1,2 , where d̄1,2 and σ̂d̄1,2 are the mean and standard deviation of the error differential,

defined as:
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d1,2;t+1 =
1

N

N∑
n=1

((
ê
(1)
n,t+1

)2

−
(
ê
(2)
n,t+1

)2
)
, (8)

where
(
ê
(1)
n,t+1

)2

and
(
ê
(2)
n,t+1

)2

denote the prediction error of factor portfolio return n at

time t+ 1 under models (1) and (2), respectively.

PCA PCA-PLS RPPCA RPPCA-PLS 1mMOM 12mMOM PCA-BM IR Spread Sentiment

PCA-PLS −0.10
RPPCA 1.35* 1.26
RPPCA-PLS 0.34 0.61 −0.93
1mMOM 7.05*** 7.19*** 6.94*** 7.17***
12mMOM 2.73*** 2.99*** 2.40*** 2.93*** −6.73
PCA-BM 1.17 1.06 0.13 0.78 −6.88 −2.21
IR Spread 1.40* 1.32* 0.56 1.25 −6.85 −2.32 0.39
Sentiment 1.16 1.08 0.19 0.94 −6.72 −2.30 0.02 −0.74
Historical Sample Mean 1.75** 1.56* 0.89 1.35* −6.83 −2.08 1.65* 0.31 0.94

Table 2: Modified Diebold-Mariano test for models that employ LASSO and benchmark models. The
table displays the modified DM-statistic that compares the predictive performance of the column model
with the row model. A positive value indicates that the column model outperforms the row model. The
asterisks, indicate statistical significance at a 10% (single), 5% (double) and 1% (triple) level.

Table 2 reports the results from the DM-test for pairwise comparisons between the dif-

ferent models. For conciseness, we only consider the characteristic-based models that

employ LASSO as they outperform the single-factor models in terms of Total OOS R2. A

positive value for the DM test statistic indicates that the column model outperforms the

row model and the asterisks indicate statistical significance at a 10% (single), 5% (dou-

ble) and 1% (triple) level, respectively. We observe that the characteristic-based models

provide significantly higher predictive accuracy than the factor momentum models and

the historical sample mean model, even though the results are less strong in the latter

case. In contrast, the higher predictive accuracy compared to the other benchmark model

is not translated into statistical significance.

Nevertheless, predicting anomaly returns is of interest as long as it accommodates the

construction of a profitable investment strategy. Specifically, in asset pricing the focus

of interest is not so much on obtaining accurate predictions for individual returns, but

rather on constructing portfolios with good risk-return properties (Nagel, 2021). Put dif-
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ferently, we are more interested in predicting cross-sectional differences in returns rather

than predicting individual returns in exact terms. In that sense, Total OOS R2 is just

a distance measure that does not reflect whether models can distinguish strong from

weak performers. Consider, for example, a stylized hypothetical scenario with three fac-

tor portfolios and a forecasting period of only one month. If the realized returns of the

portfolios are 3%, 2% and 1%, the estimated historical samples means are 0%, 1% and

2%, and the model-implied predictions are 6%, 5% and 4%, respectively, then the pre-

dictive model will end up having a very negative OOS R2 (–145.45%) even though it will

be able to rank the portfolios perfectly. Consequently, models that yield higher Total

OOS R2 do not necessarily yield better portfolios in terms of average returns or Sharpe

ratios. This argument explains, for example, why the 1-month factor momentum has

been found empirically to be particularly profitable even though our results show that

it has a very negative Total OOS R2. The disconnect between OOS R2 and investment

performance is discussed in detail both theoretically and empirically in Kelly et al. (2022).

Given that predictive accuracy in relative terms might be more important than predictive

accuracy in exact terms, we proceed by exploring two alternative measures, namely the

percentage of times that the sign of future factor portfolio returns is identified correctly

and the average cross-sectional correlation between forecasted and realized returns. The

former measure examines the ability of the models to predict the direction of individual

factor portfolio returns and the latter measure examines whether model-based forecasts

capture the cross-sectional dispersion in factor portfolio returns. Table 3 presents the

results.
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Proportion of Average cross-sectional
correct sign correlation

Panel A: Single factor
PCA 49.90 0.70
PCA-PLS 52.74 9.12
RPPCA 50.40 2.31
RPPCA-PLS 52.75 9.17

Panel B: Time-varying number of factors using LASSO
PCA 52.19 7.83
PCA-PLS 51.95 9.04
RPPCA 52.23 7.74
RPPCA-PLS 52.24 8.51

Panel C: Benchmark models
1mMOM 51.88 5.98
12mMOM 52.40 5.43
PCA-BM 51.45 5.81
IR Spread 51.22 4.26
Sentiment 51.27 4.71
Historical Sample Mean 50.50 3.24

Table 3: Percentage of correct sign identifications and average cross-sectional correlation. Panel A
displays results using a single latent factor to predict PC portfolio returns. Panel B shows the results
where the optimal number of factors is selected by applying LASSO on the set of latent factors. Panel
C displays results for the different benchmark models.

When considering the single factor predictive models in Panel A, we observe that the

models that use PLS for the RHS are far superior to the models that use PCA for the

RHS, even though Table 1 shows that they exhibit worse OOS R2. In order to under-

stand this discrepancy, we can take the example of the PCA-PLS model. This model

has a forecasting error that is lower than that of the historical sample mean model in

54% of the times. In those cases, it exhibits an OOS R2 of 12.24% and an average cross-

sectional correlation of 41%. In the remaining 46% of the cases, it exhibits an OOS R2 of

–17.17% and an average cross-sectional correlation of –28%. This means that, while the

model’s low overall OOS R2 is driven by some large forecasting errors, its high overall

cross-sectional correlation is due to the fact that in the majority of the cases it is par-

ticularly informative for the ranking of next period portfolio returns. Importantly, Panel

B reveals that accounting for further components under a LASSO approach harmonizes
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the performance across all four characteristic-based models. Finally, Panel C shows that

the benchmark models display slightly lower proportions of correct sign and markedly

lower average cross-sectional correlations compared to the models in Panel B.20 Overall,

results confirm that characteristic-based models can better distinguish anomaly perfor-

mance compared to alternative approaches.

Recall from Section 3.2 that our predictive approach entails cross-sectional standardiza-

tion of each characteristic in each month. Therefore, given the success of the approach, a

natural question that arises is what is the source of variation in the characteristics of the

factor portfolios that leads to predictability. This issue is discussed in detail in Section

IA.3 of the Internet Appendix. We show that the main source of time variation comes

from the higher moments of the cross-sectional distribution of the characteristics. This

is intuitive given that the literature with respect to stock return predictability already

establishes that the predictive power of several characteristics is closely related to their

non-normal distribution. For example, Cooper et al. (2008) show that asset growth is

highly positively skewed and accordingly its predictive power is mainly driven by the

high- rather than the low-asset growth stocks. Another source of variation comes from

the time-varying correlations across the different characteristics. For example, it is pos-

sible that for a given month the correlation between stock momentum and value is high

and hence the standardized momentum score of the respective factor portfolios is similar,

while in another month the correlation might be low and hence the momentum score of

the respective factor portfolios will be completely different. In the latter case, there is

additional information content that can be exploited.21

20It is noteworthy that, similar to the case of the PLS single factor models, the factor momentum
models perform reasonably well despite their negative OOS R2 values. In fact, the 1-month factor
momentum has a forecasting error that is lower than that of the historical sample mean model in only
20% of the times. In those cases, it exhibits an OOS R2 of 38.93% and an average cross-sectional
correlation of 60%. In the remaining 80% of the cases, it exhibits an OOS R2 of –153.32% and an
average cross-sectional correlation of –7%. This means that the good overall performance of the 1-month
factor momentum is driven by only a small subsample of observations during which it can predict future
factor portfolio returns particularly well in terms of both exact and relative terms.

21Obviously, another source of variation stems from the recursively estimated weighting vector wi,t.
However, we show that this vector remains relatively stable across time.
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Finally, we examine the implications of applying LASSO on the sets of characteristic com-

ponents in terms of model complexity. Our approach allows for the number of features

to vary across factor portfolios and across time, enabling us to see when the character-

istic signal is strong and when it diminishes. Figure 4 displays the number of non-zero

coefficients for the characteristic PCs of each anomaly PC portfolio when PCA and PLS

are used for the RHS in the out-of-sample period. Each line chart shows the number of

characteristic-based components that minimize the mean-squared error in the validation

period.

Results from Figure 4 confirm the existence of significant time variability in the required

number of features across time and across PC portfolios. The time variation in the num-

ber of features by itself implies that the predictive ability of characteristics is not constant,

something that is expected given the time variation in factor portfolio risk premia. In-

terestingly, at certain periods the number of features falls down to zero, implying that at

times characteristics provide no predictive information at all and the PC return forecasts

shrink down to an intercept term. Conversely, a high number of features implies that a

lot of the variation in the characteristics is useful in predicting PC portfolio returns. Such

peaks and troughs in the number of features are observed at different points in time for

the different PC portfolios, which implies that the importance of characteristics is also

unstable across the main sources of variation and that each source should be approached

independently in terms of model specification. Finally, with regards to the different meth-

ods used for the RHS, it is evident that PCA uses on average more features and has higher

variability in the number of features across time compared to PLS. PCA components mix

return-relevant and irrelevant information, making the selection of the optimal number of

features more sensitive to the validation sample and as a result less stable. PLS condenses

the characteristic information into fewer PCs than PCA and is more stable over time,

although there is still significant time variability in the number of components being used.
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Figure 4: Number of features for each PC portfolio under the different models. The number of features
is identified by recursively applying LASSO on the set of components and picking the penalty factor that
minimizes the mean-squared-error in the validation period.

4.3 Investment performance

In this section, we assess the performance of each model in terms of economic rather than

statistical contribution and examine how return forecasts can be translated into factor

timing strategies. We construct three different strategies and assess their performance

using a monthly holding period and standard portfolio evaluation measures. The first

strategy is a simple long-short strategy (LSS), or an LS portfolio of factor portfolios. Fac-

tor portfolios are grouped into equally-weighted deciles based on their return forecasts

and a long-short strategy is constructed that goes long the top 10% and short the bottom
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10% of the anomalies. Such a strategy focuses on the extremes of the conditional returns

distribution and neglects factor portfolios that lie in the middle. Hence, LSS will work

well as long as the models can identify anomalies with very high or very low expected

returns at each period, even if they are indecisive about anomalies with conditional re-

turns close to zero.

The second investment strategy is similar to the time-series factor momentum (TSFM)

strategy by Gupta and Kelly (2019). TSFM scales factor portfolio returns Rt+1,. according

to return forecasts R̂t+1,.. The scaling vector st,n is obtained by dividing return forecasts

by individual factor in-sample monthly volatility and capping them at ±2, as shown

below:

st,n = min

(
max

(
1

σt,n

R̂t+1,n,−2

)
, 2

)
. (9)

The strategy goes long in factors with positive scores and short in factors with negative

scores. The scores are rescaled to form unit dollar weights for the long and the short

leg.22 Multiplying next period factor portfolio returns by their respective weights reveals

the return of the strategy:

TSFMt+1 =

∑
n 1{st,n>0}Rt+1,n × st,n∑

n 1{st,n>0}st,n
−

∑
n 1{st,n≤0}Rt+1,n × st,n∑

n 1{st,n≤0}st,n
. (10)

The main difference between LSS and TSFM is that, while both are technically long-

short, TSFM invests in the whole universe of factor portfolios and not in factor portfolios

with extreme return forecasts only. Furthermore, the number of factor portfolios in each

leg, as well as the relative weights, can differ for TSFM while remaining constant under

LSS. More concretely, the sign of the return forecast determines whether the anomaly

will be bought or sold, while the magnitude of the forecast determines the relative weight.

Hence, under TSFM the long and the short legs can have a disproportional number of

constituents and in extreme cases, the strategy can converge to long or short only.

22Specifically, positive scores are divided by the sum of the positive scores and the negative scores are
divided by the sum of negative scores.
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The last strategy, also in Gupta and Kelly (2019), is the cross-sectional version of TSFM

(CSFM). The main difference between CSFM and TSFM is that the cross-sectional me-

dian is subtracted from the return forecasts before scaling with volatility. This strategy

takes positions in factor portfolios that have outperformed or underperformed relative

to their peers. For example, if return forecasts are positive for all factor portfolios then

TSFM will take a long position in all of them, while CSFM will go long only in those

with above median return forecasts and short the rest. Hence, even if the models cannot

identify the sign correctly, this strategy will still be profitable if forecasts are consistent

in relative terms, similarly to LSS:

st,n = min

(
max

(
1

σt,n

R̂t+1,n −median(R̂t+1,.),−2

)
, 2

)
. (11)

Table 4 presents the portfolio evaluation measures for the various models under the three

strategies. First, we find that LSS delivers the highest average return among the three

strategies across almost all the models, while CSFM and TSFM tend to have higher

Sharpe ratios. Turning to Panel A, results confirm the superiority of PLS over PCA for

the RHS in the single factor case, as also presented in Table 3. Evidently, models based

on a single factor that concentrates the variation among multiple characteristics are
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Average Return Standard Deviation Sharpe Ratio t-statistic Hit-Rate Max Drawdown

LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM

Panel A: Single factor
PCA -0.10 -0.03 -0.01 7.23 4.14 4.09 -0.01 -0.01 -0.00 -0.26 -0.13 -0.02 52.37 52.92 52.65 80.99 47.64 43.94
PCA-PLS 1.16 0.74 0.76 8.57 5.27 5.25 0.13 0.14 0.14 2.55 2.65 2.75 57.66 59.05 59.61 41.09 33.83 33.01
RPPCA 0.20 0.20 0.21 5.64 3.11 3.15 0.03 0.06 0.07 0.66 1.21 1.29 54.32 54.32 56.55 46.54 27.73 26.68
RPPCA-PLS 1.12 0.73 0.74 8.28 4.81 4.81 0.13 0.15 0.15 2.55 2.87 2.93 55.15 58.22 60.17 37.46 30.31 29.79

Panel B: Time-varying number of factors using LASSO
PCA 1.47 0.97 0.95 8.16 5.01 4.96 0.18 0.19 0.19 3.40 3.65 3.64 55.71 56.82 55.99 16.76 13.93 12.16
PCA-PLS 1.38 0.96 0.97 8.22 4.99 4.98 0.17 0.19 0.19 3.18 3.66 3.68 61.00 62.67 61.56 15.00 13.19 12.70
RPPCA 1.21 0.84 0.83 7.06 4.01 4.00 0.17 0.21 0.21 3.26 3.99 3.93 57.66 60.72 59.89 38.11 22.24 22.25
RPPCA-PLS 1.23 0.84 0.86 6.89 4.04 4.09 0.18 0.21 0.21 3.39 3.96 3.98 60.72 61.84 61.00 26.77 17.26 17.16

Panel C: Benchmark models
1mMOM 1.06 0.56 0.58 8.81 4.95 4.96 0.12 0.11 0.12 2.28 2.13 2.22 57.10 56.82 57.10 18.45 16.94 17.32
12mMOM 0.84 0.67 0.67 8.69 5.08 5.12 0.10 0.13 0.13 1.84 2.51 2.48 55.43 55.99 56.82 25.96 17.89 18.28
PCA-BM 0.79 0.59 0.61 6.16 3.79 3.79 0.13 0.16 0.16 2.43 2.96 3.03 57.10 57.66 57.66 31.65 21.59 20.61
IR Spread 0.87 0.54 0.54 6.49 3.92 3.92 0.13 0.14 0.14 2.49 2.63 2.61 52.87 52.65 52.92 34.74 25.51 25.71
Sentiment 0.74 0.47 0.46 5.29 3.13 3.22 0.14 0.15 0.14 2.60 2.82 2.72 56.32 53.48 52.92 21.80 20.15 19.80
Historical Sample Mean 0.48 0.35 0.35 3.47 2.59 2.61 0.14 0.14 0.13 2.64 2.59 2.56 58.22 57.94 58.22 19.19 19.22 19.03

Table 4: Portfolio evaluation measures for long-short (LSS), time-series (TSFM) and cross-sectional (CSFM) strategies under the different models for the
sample period 1990-2019. Panel A displays results using a single latent factor to predict PC portfolio returns. Panel B shows the results where the optimal
number of factors is selected by applying LASSO on the whole set of latent factors. Panel C displays results for the benchmark models. Average Return:
average monthly return, Standard Deviation: monthly standard deviation, Sharpe ratio: monthly Sharpe ratio, t-statistic: t-statistic on H0: Average
Return = 0, Hit-Rate: percentage of the total number of occasions that the strategy resulted in positive returns, Maxdrawdown: maximum cumulative
loss. The best performing model for each metric under each strategy is highlighted in bold.
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unable to predict the cross-sectional dispersion of factor portfolio returns, implying again

that a lot of variation in the characteristics is irrelevant in asset return prediction. As a

result, strategies based on PCA and RPPCA deliver returns indistinguishable from zero,

with returns for PCA even becoming negative. Conversely, when PLS is used for the RHS

all strategies deliver positive and significant returns, reflecting the ability of the method

to concentrate return-relevant variation into a single predictor.

Panel B of Table 4 shows that the use of further components in combination with LASSO

uniformly improves investment performance across all models. This result is again con-

sistent with the results reported in Table 3. In particular, all strategies deliver highly

significant returns, surpassing the t-value threshold of three by Harvey et al. (2016).

Turning to the specifics, the use of PCA for the LHS leads to investment strategies with

higher average returns while the use of RPPCA leads to higher Sharpe ratios, irrespective

of the strategy or the RHS model. Furthermore, although strategies that utilize PCA

for the LHS have higher volatility, they also exhibit a higher hit-rate and a lower max

drawdown, reflecting higher consistency and lower downside risk. Overall, results are

now similar across models, suggesting that once further components are considered, no

significant difference arises across methods.

Panel C displays the results for the benchmark models. In line with prior literature (e.g.,

Gupta and Kelly (2019)), factor momentum using a 1-month formation period achieves

the highest return among the benchmark models for the LSS strategy, while the 12-

month signal delivers higher returns for TFSM and CFSM. Using the book-to-market

ratio, issuer-repurchaser spread or investor sentiment as predictors results in strategies

with moderate return performance and Sharpe ratios. The historical sample average

strategy delivers low average returns, albeit statistically significant. Such a strategy pro-

duces conservative return forecasts and as a result, takes more static positions compared

to the rest of the models. Comparing results across panels, characteristic-based models
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that employ LASSO outperform all benchmark models under all three strategies, demon-

strating the benefits of conditioning factor portfolio returns on observable characteristics

under a regularized framework.

In order to compare the performance of the various models across time, Figure 5 presents

the cumulative return performance of the factor timing portfolios under the three invest-

ment strategies. For conciseness, we only display the performance for the characteristic-

based models employing LASSO together with the benchmark models. Graphs to the left

show the cumulative performance over the whole out-of-sample period and graphs to the

right focus on the last ten years. As it can be seen from the graphs, the 1-month factor

momentum outperforms the characteristic-based models in the early years of the out-of-

sample period, up until the late 90s. A spike in performance occurs for all strategies

around 2000, i.e., during the buildup of the dot-com bubble. Unlike the majority of the

benchmarks, characteristic-based models do not plummet after the burst and continue to

outperform thereafter. Furthermore, the performance of the characteristic-based models

is relatively unaffected by the 2008 financial crisis and a second spike in performance is

observed as the economy enters the recovery phase in 2009. Hence, our strategies work

well in periods of financial turmoil while still enjoying the upside potential of a bull mar-

ket.

Finally, factor timing portfolios based on characteristics exhibit strong return perfor-

mance in the post-2010 period. Looking at the graphs in the right panel of Figure 5,

characteristic-based models display a positive trend in later years, while strategies based

on issuer-repurchaser spread, investor sentiment, factor momentum and in-sample aver-

age remain relatively stagnant. Out of all benchmark models, the historical sample mean

remains the most stagnant, especially throughout the later years.
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Figure 5: Cumulative return performance of factor timing strategies. The figure displays the performance of LSS, TSFM and CSFM for characteristic-
based models using LASSO and the benchmark models. Graphs to the left display the cumulative return performance over the whole sample period
(1990-2019) and graphs to the right display the cumulative performance over the last ten years of the sample period (2010-2019). All strategies begin with
a zero dollar investment.
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Notably, the book-to-market approach works equally well with the characteristic-based

models in later years. Both approaches isolate the first five PCs of factor portfolio returns

and use a characteristic-based measure to create forecasts. As such, results highlight the

importance of focusing on the main sources of variation and the ability of characteristics

to explain the dynamics of factor portfolios. Characteristic-based models outperform the

rest of the benchmarks under all three strategies, with the difference being more pro-

nounced for the LSS strategy, as it focuses solely on the most prominent subset of factor

portfolios. Overall, the profitability of the benchmark strategies erodes significantly in

later years, suggesting that the informativeness of alternative predictors about future

factor portfolio returns has faded.

It is also important to note that factor timing strategies based on observed characteristics

yield positive returns in the most recent period, even though most factors have been found

empirically to die out over time (Chordia et al., 2014; McLean and Pontiff, 2016; Green

et al., 2017). Corroborating this evidence, a comparison between Table 4 and Table IA.4

reveals that characteristic-based factor timing strategies exhibit investment performance

superior to that of unconditional factor portfolios. In that sense, our paper acknowledges

the fact that unconditional risk premia lack robustness and shows that focusing on the

predictability of conditional risk premia can help an investor expand her investment op-

portunity set. In a similar vein, Haddad et al. (2020) find that strong factor portfolio

predictability implies a stochastic discount factor that is much more volatile than previ-

ously thought.

Lastly, a question that arises is what are the trading positions that our characteristic-

based models take over time. The analysis presented in Section IA.7 of the Internet

Appendix provides some interesting insights. First, even though prominent anomalies

such as mom12m and retvol are heavily traded, the factor timing strategies rotate among

multiple anomalies and do not focus on only a small subset with high unconditional
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returns. Second, several anomalies appear almost equally often in the long and the short

legs. Finally, anomalies that have only a small impact on the PC portfolios are hardly

considered by our factor timing strategies, which is expected given that their return

forecasts are by construction tilted towards zero.

5 Alternative approaches

In this section, we examine different estimation approaches. Our method uses a large

collection of characteristics and combines different dimension reduction and regulariza-

tion techniques to achieve robust out-of-sample predictability. As such, it is important to

examine where the predictability stems from by evaluating the incremental effect of each

contributor on the out-of-sample performance. Furthermore, it is important to assess

whether the benchmark models can beat our characteristic-based models once dimension

reduction and regularization techniques are also used in their cases.

Starting with the characteristics, the simplest approach is to forecast each anomaly us-

ing the time-series of its own characteristic spread. Alternatively, one can forecast each

anomaly individually using the whole collection of characteristics and can further employ

a dimension reduction technique, such as PLS, or a regularization technique, such as

LASSO, for the RHS. Finally, one can create PC portfolios on the LHS without using

any dimension reduction technique (but potentially using LASSO) for the RHS. More-

over, the benchmark models can also be modified in various ways. For instance, factor

momentum, issuer-repurchaser spread and investor sentiment can be applied on the PC

portfolios. For book-to-market ratio and issuer-repurchaser spread, the dataset can be

expanded by using all the ratios and spreads simultaneously to predict each PC portfolio

or individual anomaly. Finally, LASSO can be applied on these richer information sets

to account for overfitting. A detailed description of the models discussed in this section

can be found in Panel C of Table IA.2.
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Table 5 reports the Total OOS R2 and average cross-sectional correlation for the modified

forecasting methods. Panel A shows that, in line with Haddad et al. (2020), predicting

each anomaly by its own spread is not particularly successful as it provides negative

OOS R2 and relatively low average cross-sectional-correlation. When we incorporate the

full set of characteristics for each anomaly, the OOS R2 metric worsens possibly due to

overfitting, but the average cross-sectional correlation improves in two out of the three

cases (the exception being the model that uses PLS on the RHS). When we further

condense the information content of the anomalies into five PC portfolios the average

cross-sectional correlation increases even more. Nevertheless, the OOS R2 remains neg-

ative and the cross-sectional correlation is still at the levels of 6%, clearly lower than

the 8%-9% provided by our main models using dimension reduction also on the RHS

(Panel B of Table 3). Overall, the results of Panel A corroborate the importance of using

the full set of characteristics for factor timing purposes, while they further highlight the

additional benefits that arise when incorporating dimension reduction and regularization

techniques on both sides of the forecasting exercise.

Panel B shows the results for the alternative specifications of the benchmark models.

Applying the momentum signal on the PCs instead of individual anomalies has an in-

consistent effect on forecasting performance as it improves the OOS R2 but reduces the

cross-sectional correlation. Using the book-to-market ratios of all PC portfolios to pre-

dict each single of them individually is not particularly fruitful with both performance

measures worsening compared to the main PCA-BM model. Predicting each anomaly by

its own book-to-market ratio delivers a positive OOS R2 and higher cross-sectional corre-

lation, but it still falls behind the baseline BM model. In terms of the issuer-repurchaser

spread, using the spreads of all portfolios instead of the spread of each individual portfo-

lio, as in the baseline IR Spread model, reduces the OOS R2 but improves considerably
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the cross-sectional correlation.23 Nevertheless, the use of LASSO does not make any

substantial contribution in this case, with the OOS R2 still being on the negative side

and the cross-sectional correlation decreasing. Finally, using the investor sentiment in-

dex to predict the PC portfolios or in combination with LASSO to predict individual

anomalies has little effect compared to the baseline Sentiment model. Overall, we find

mixed results for the modified benchmark models, with the dimension reduction and reg-

ularization additions improving the models only occasionally. In any case, even the best

modified models exhibit clearly worse performance than our main characteristic-based

models.

Average
Total OOS R2 cross-sectional correlation

Panel A: Modified characteristic-based models
Anom-Own Characteristic −0.78 3.77
Anom-1 PLS −2.51 2.94
Anom-All Characteristics −93.60 4.48
Anom-All Characteristics LASSO −2.09 5.82
5 PCs-All Characteristics −53.93 6.19
5 PCs-All Characteristics LASSO −1.14 6.26

Panel B: Modified benchmark models
5 PCs-1mMOM −57.99 5.77
5 PCs-12mMOM −4.72 3.73
5 PCs-5 BMs −0.75 2.61
5 PCs-5 BMs LASSO −0.44 1.97
Anom-Own BM 0.20 4.29
Anom-All IR Spreads −31.73 7.11
Anom-All IR Spreads LASSO −2.91 3.06
5 PCs-IR Spread −3.04 0.91
5 PCs-All IR Spreads −1.19 2.31
5 PCs-Sentiment 0.39 3.55
Sentiment-LASSO 0.27 4.70

Table 5: Total OOS R2 and average cross-sectional correlation of factor portfolio return forecasts based
on various forecasting methods.

23Using the collection of issuer-repurchaser spreads can be justified by considering the different factor
portfolios as substitutes for the same investor. In that sense, time-varying characteristic mispricing can
propagate from one factor to the rest due to changes in demand and supply for the different factors,
making the issuer-repurchaser spreads of other factors important.
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Average Return Standard Deviation Sharpe Ratio t-statistic Hit-Rate Max Drawdown

LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM

Panel A: Modified characteristic-based models
Anom-Own Characteristic 0.46 0.34 0.32 4.04 2.48 2.53 0.11 0.14 0.13 2.17 2.57 2.40 60.72 60.72 61.00 33.44 21.02 21.76
Anom-1 PLS 0.46 0.30 0.30 4.33 2.96 2.97 0.11 0.10 0.10 2.03 1.95 1.93 56.82 57.66 58.50 29.95 25.56 25.41
Anom-All Characteristics 0.74 0.52 0.51 4.71 2.76 2.77 0.16 0.19 0.18 2.98 3.54 3.49 57.38 58.77 59.05 11.65 8.74 9.16
Anom-All Characteristics LASSO 1.02 0.81 0.81 5.54 4.05 4.06 0.18 0.20 0.20 3.49 3.78 3.79 58.77 59.05 57.38 19.40 16.62 16.50
5 PCs- All Characteristics 1.02 0.67 0.65 7.98 4.65 4.72 0.13 0.14 0.14 2.42 2.72 2.60 54.04 54.60 54.60 33.36 25.60 26.61
5 PCs- All Characteristics LASSO 1.09 0.70 0.72 7.59 4.64 4.63 0.14 0.15 0.16 2.71 2.88 2.95 54.60 55.99 55.99 19.23 16.62 16.32

Panel B: Modified benchmark models
5 PCs-1mMOM 1.13 0.64 0.65 9.24 5.52 5.54 0.12 0.12 0.12 2.32 2.20 2.22 57.38 55.71 54.60 25.74 19.89 19.82
5 PCs-12mMOM 0.76 0.58 0.58 9.40 5.90 5.85 0.08 0.10 0.10 1.53 1.88 1.89 52.65 53.76 53.20 36.46 28.19 27.61
5 PCs-5 BMs 0.28 0.22 0.25 7.37 4.86 4.81 0.04 0.05 0.05 0.73 0.86 0.98 55.99 52.37 55.15 47.72 37.71 36.62
5 PCs-5 BMs LASSO 0.35 0.26 0.27 7.85 5.01 5.00 0.04 0.05 0.05 0.85 0.99 1.03 53.76 53.48 53.76 46.79 37.78 37.21
Anom-Own BM 0.70 0.48 0.48 4.37 2.60 2.69 0.16 0.18 0.18 3.05 3.50 3.37 57.10 56.27 55.99 28.28 21.53 21.61
Anom-All IR Spreads 1.24 0.80 0.81 7.70 4.47 4.49 0.16 0.18 0.18 3.06 3.38 3.43 60.17 58.22 59.33 21.60 14.53 14.61
Anom-All IR Spreads LASSO 0.67 0.50 0.51 6.88 4.85 4.87 0.10 0.10 0.10 1.84 1.95 1.98 56.27 55.99 56.27 24.21 20.57 20.46
5 PCs-IR Spread 0.07 -0.14 -0.09 6.28 4.52 4.22 0.01 -0.03 -0.02 0.22 -0.59 -0.39 48.19 47.08 47.08 77.69 99.97 87.40
5 PCs-All IR Spreads 0.51 0.29 0.28 7.99 4.89 4.82 0.06 0.06 0.06 1.20 1.12 1.11 52.65 52.65 52.65 57.43 33.41 32.55
5 PCs-Sentiment 0.56 0.35 0.33 6.86 3.89 3.97 0.08 0.09 0.08 1.54 1.70 1.59 54.87 53.76 52.37 57.10 27.64 29.55
Sentiment-LASSO 0.67 0.46 0.46 5.37 3.22 3.25 0.12 0.14 0.14 2.35 2.72 2.69 55.15 56.27 56.55 17.90 19.22 19.13

Table 6: Portfolio evaluation measures for long-short (LSS), time-series (TSFM) and cross-sectional (CSFM) strategies under the alternative specifications
for the sample period 1990-2019. Average Return: average monthly return, Standard Deviation: monthly standard deviation, Sharpe ratio: monthly Sharpe
ratio, t-statistic: t-statistic on H0: Average Return = 0, Hit-Rate: percentage of the total number of occasions that the strategy resulted in positive
returns, Maxdrawdown: maximum cumulative loss.
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Table 6 presents the portfolio evaluation results for the modified models. Starting with

Panel A, the investment performance of the modified characteristic-based models is

broadly in line with the cross-sectional correlations from Table 5. In particular, all

strategies exhibit good investment performance, while the average returns and Sharpe

ratios tend to improve when, on top of using the whole set of portfolio characteristics,

we further incorporate PCA and/or LASSO in the forecasting exercise. Still, even the

best performing modified models fall behind the main ones presented in Panel B of Table

4. Therefore, it is confirmed again that using multiple portfolio characteristics is indis-

pensable for forming a successful factor timing strategy, but the dimension reduction and

regularization techniques provide additional benefits. Turning to Panel B, the PCA-based

momentum models, the model that uses all issuer-repurchaser spreads, the model that

uses each portfolio’s book-to-market ratio, and the model that employs LASSO together

with market sentiment appear to be the strongest ones. This is unsurprising given that

these models also deliver the highest cross-sectional correlations in Table 5. Importantly,

even these alternative benchmark models exhibit weaker investment performance than

our preferred characteristic-based models in Panel B of Table 4. Overall, the alterna-

tive information sets have lower factor timing ability compared to the set of portfolio

characteristics even if they are enhanced by employing dimension reduction or LASSO.

6 Conclusion

We investigate the predictability of factor portfolios from their own portfolio character-

istics, going over and above existing methods for predicting factor portfolio returns and

examining the possibility that factor portfolios are predictable by characteristics other

than their own. Our approach offers a natural continuation to the stock return pre-

dictability problem and our findings shed light on the evolution of the underlying return

drivers over time. Under our empirical framework, a large collection of stock charac-

teristics is used to initially construct the LS portfolios and subsequently predict their

44



performance. A key aspect of our methodology is the reduction of the dimensions of the

predictability problem, which we achieve by independently shrinking the number of pre-

dictors and forecasting targets. Our approach provides a new framework for dealing with

panel data, allowing each source of variation to be approximated by models of different

complexity. By using a flexible model specification that combines LASSO with dimension

reduction techniques, we allow the number of predictors to vary across PC portfolios and

over time. We find this approach to be especially fruitful, as it considerably improves

results over a static single latent factor model.

In terms of factor portfolio predictability, we observe significant benefits from timing

factor portfolio returns using observed characteristics. These benefits go over and above

existing methods documented in the literature, highlighting the importance of considering

the information in the characteristics in a collective way. Specifically, the dominant PC

portfolios are highly predictable by the information contained in their characteristics

and this predictability can be easily extended to individual anomalies. In that sense,

dimension reduction techniques not only accommodate the computational tractability

of the estimation problem, but also improve forecasting and investment performance

by enabling us to focus on the sources of variation that are most predictable. The

performance of our factor timing strategies is superior to that of any individual anomaly

and persistent over the later years of the sample period, demonstrating the benefits of

timing over static factor investing. Hence, in the context of anomaly return prediction

it is important to (1) account for the information contained in mutliple characteristics,

(2) focus on the main sources of variation in factor portfolio returns since those are the

most predictable and (3) apply some kind of time-varying regularization on the set of

predictors to account for the time variability in characteristic informativeness. Overall,

our findings have important implications for the use of machine learning methods in

asset pricing applications and help justify the importance of observable characteristics in

explaining the dynamics of factor portfolios.

45



References

Akbas, F., Armstrong, W. J., Sorescu, S. and Subrahmanyam, A. (2016), ‘Capital mar-
ket efficiency and arbitrage efficacy’, Journal of Financial and Quantitative Analysis
51(2), 387–413.

Arnott, R. D., Clements, M., Kalesnik, V. and Linnainmaa, J. T. (2021),
‘Factor momentum’, Available at SSRN: https://ssrn.com/abstract=3116974 or
http://dx.doi.org/10.2139/ssrn.3116974 .

Asness, C., Chandra, S., Ilmanen, A. and Israel, R. (2017), ‘Contrarian factor timing is
deceptively difficult’, Journal of Portfolio Management 43(5), 72–87.

Baba-Yara, F., Boons, M. and Tamoni, A. (2021), ‘Value return predictability across
asset classes and commonalities in risk premia’, Review of Finance 25(2), 449–484.

Bai, J. and Ng, S. (2002), ‘Determining the number of factors in approximate factor
models’, Econometrica 70(1), 191–221.

Baker, M. and Wurgler, J. (2006), ‘Investor sentiment and the cross-section of stock
returns’, Journal of Finance 61(4), 1645–1680.

Campbell, J. Y. and Thompson, S. B. (2008), ‘Predicting excess stock returns out
of sample: Can anything beat the historical average?’, Review of Financial Studies
21(4), 1509–1531.

Chordia, T., Subrahmanyam, A. and Tong, Q. (2014), ‘Have capital market anomalies
attenuated in the recent era of high liquidity and trading activity?’, Journal of Ac-
counting and Economics 58(1), 41–58.

Cochrane, J. H. (2011), ‘Presidential address: Discount rates’, Journal of Finance
66(4), 1047–1108.

Connor, G. and Korajczyk, R. A. (1986), ‘Performance measurement with the arbi-
trage pricing theory: A new framework for analysis’, Journal of Financial Economics
15(3), 373–394.

Connor, G. and Korajczyk, R. A. (1988), ‘Risk and return in an equilibrium APT: Ap-
plication of a new test methodology’, Journal of Financial Economics 21(2), 255–289.

Cooper, M. J., Gulen, H. R. and Schill, M. J. (2008), ‘Asset growth and the cross-section
of stock returns’, Journal of Finance 63(4), 1609–1651.

Daniel, K. and Moskowitz, T. J. (2016), ‘Momentum crashes’, Journal of Financial Eco-
nomics 122(2), 221–247.

DeMiguel, V., Martin-Utrera, A., Nogales, F. J. and Uppal, R. (2020), ‘A transaction-
cost perspective on the multitude of firm characteristics’, Review of Financial Studies
33(5), 2180–2222.

46



Dichtl, H., Drobetz, W., Lohre, H., Rother, C. and Vosskamp, P. (2019), ‘Optimal timing
and tilting of equity factors’, Financial Analysts Journal 75(4), 84–102.

Ehsani, S. and Linnainmaa, J. T. (2022), ‘Factor momentum and the momentum factor’,
Journal of Finance 77(3), 1877–1919.

Fama, E. F. and French, K. R. (1993), ‘Common risk factors in the returns on stocks and
bonds’, Journal of Financial Economics 33(1), 3–56.

Fama, E. F. and French, K. R. (2008), ‘Dissecting anomalies’, Journal of Finance
63(4), 1653–1678.

Fan, J., Liao, Y. and Wang, W. (2016), ‘Projected principal component analysis in factor
models’, Annals of Statistics 44(1), 219.

Feng, G., Giglio, S. and Xiu, D. (2020), ‘Taming the factor zoo: A test of new factors’,
Journal of Finance 75(3), 1327–1370.

Freyberger, J., Neuhierl, A. and Weber, M. (2020), ‘Dissecting characteristics nonpara-
metrically’, Review of Financial Studies 33(5), 2326–2377.

Giglio, S. and Xiu, D. (2021), ‘Asset pricing with omitted factors’, Journal of Political
Economy 129(7), 1974–1990.

Green, J., Hand, J. R. and Zhang, X. F. (2017), ‘The characteristics that provide inde-
pendent information about average U.S. monthly stock returns’, Review of Financial
Studies 30(12), 4389–4436.

Greenwood, R. and Hanson, S. G. (2012), ‘Share issuance and factor timing’, Journal of
Finance 67(2), 761–798.

Grundy, B. D. and Martin, J. S. (2001), ‘Understanding the nature of the risks and the
source of the rewards to momentum investing’, Review of Financial Studies 14(1), 29–
78.

Gu, S., Kelly, B. and Xiu, D. (2020), ‘Empirical asset pricing via machine learning’,
Review of Financial Studies 33(5), 2223–2273.

Gupta, T. and Kelly, B. (2019), ‘Factor momentum everywhere’, Journal of Portfolio
Management 45(3), 13–36.

Haddad, V., Kozak, S. and Santosh, S. (2020), ‘Factor timing’, Review of Financial
Studies 33(5), 1980–2018.

Harvey, C. R., Liu, Y. and Zhu, H. (2016), ‘. . . and the cross-section of expected returns’,
Review of Financial Studies 29(1), 5–68.

Hou, K., Xue, C. and Zhang, L. (2020), ‘Replicating anomalies’, Review of Financial
Studies 33(5), 2019–2133.

Huang, S. (2022), ‘The momentum gap and return predictability’, Review of Financial
Studies 35(7), 3303–3336.

47



Jacobs, H. (2015), ‘What explains the dynamics of 100 anomalies?’, Journal of Banking
& Finance 57, 65–85.

Kelly, B. and Pruitt, S. (2013), ‘Market expectations in the cross-section of present
values’, Journal of Finance 68(5), 1721–1756.

Kelly, B. T., Malamud, S. and Zhou, K. (2022), ‘The virtue of complexity in return
prediction’, Journal of Finance, forthcoming.

Kelly, B. T., Pruitt, S. and Su, Y. (2019), ‘Characteristics are covariances: A unified
model of risk and return’, Journal of Financial Economics 134(3), 501–524.

Keloharju, M., Linnainmaa, J. T. and Nyberg, P. (2016), ‘Return seasonalities’, Journal
of Finance 71(4), 1557–1590.

Kozak, S., Nagel, S. and Santosh, S. (2018), ‘Interpreting factor models’, Journal of
Finance 73(3), 1183–1223.

Kozak, S., Nagel, S. and Santosh, S. (2020), ‘Shrinking the cross-section’, Journal of
Financial Economics 135(2), 271–292.

Lettau, M. and Pelger, M. (2020a), ‘Estimating latent asset-pricing factors’, Journal of
Econometrics 218(1), 1–31.

Lettau, M. and Pelger, M. (2020b), ‘Factors that fit the time series and cross-section of
stock returns’, Review of Financial Studies 33(5), 2274–2325.

McLean, R. D. and Pontiff, J. (2016), ‘Does academic research destroy stock return
predictability?’, Journal of Finance 71(1), 5–32.

Nagel, S. (2021), Machine Learning in Asset Pricing, Princeton University Press.

Onatski, A. (2010), ‘Determining the number of factors from empirical distribution of
eigenvalues’, Review of Economics and Statistics 92(4), 1004–1016.

Stambaugh, R. F., Yu, J. and Yuan, Y. (2012), ‘The short of it: Investor sentiment and
anomalies’, Journal of Financial Economics 104(2), 288–302.

Wold, S., Ruhe, A., Wold, H. and Dunn, III, W. J. (1984), ‘The collinearity problem
in linear regression. the partial least squares (pls) approach to generalized inverses’,
SIAM Journal on Scientific and Statistical Computing 5(3), 735–743.

48



Internet Appendix

for

Factor Timing with Portfolio Characteristics

Anastasios Kagkadis∗ Ingmar Nolte† Sandra Nolte‡ Nikolaos Vasilas§

∗Lancaster University Management School, Bailrigg, Lancaster LA1 4YX, Lancaster, email:
a.kagkadis@lancaster.ac.uk

†Lancaster University Management School, Bailrigg, Lancaster LA1 4YX, Lancaster, email:
i.nolte@lancaster.ac.uk

‡Lancaster University Management School, Bailrigg, Lancaster LA1 4YX, Lancaster, email:
s.nolte@lancaster.ac.uk

§Corresponding author: Lancaster University Management School, Bailrigg, Lancaster LA1 4YX,
Lancaster, email: n.vasilas@lancaster.ac.uk



IA.1 Factor variation explained by the PC portfolios

One of the key elements of our predictive approach is condensing the information of

the factor portfolios using either conventional PCA or the RPPCA of Lettau and Pelger

(2020). While the estimation of the PC portfolios is straightforward, the number of

PC portfolios to be retained remains an empirical question. Figure IA.1 shows that

irrespective of whether we use PCA or RPPCA the variation explained by the principal

components is very similarly. In particular, the first component captures around 37%

of the total variation, the second component captures around 13%, the third component

captures around 8%, while the fourth and fifth components capture around 4%. After the

fifth component the decrease in explained variation is quite gradual but the components

contribute very little to the total variation. Given the aforementioned pattern and in order

to be consistent with Haddad et al. (2020), we focus our analysis on five PC portfolios.
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Figure IA.1: Percentage of the variation explained by each PC of factor portfolio returns under PCA
and RPPCA for the sample period January 1970 to December 2019.
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IA.2 Details of the dimension reduction and regular-

ization techniques

For exposition purposes we omit the time dimension when explaining the different sta-

tistical methods. In the methodology section of the main manuscript the time subscript

t indicates the recursive estimation of the different objects.

Principal Component Analysis (PCA)

The first and most popular dimension reduction method is PCA. The method produces

linear combinations of the original data (PCs) while best preserving the covariance struc-

ture among the variables. Each PC successively contains as much new information about

the observed variables and dimension reduction can be accommodated by focusing on the

first few (dominant) PCs, while omitting the rest which are usually noise-related. Let Σ,

be the (N ×N) variance-covariance matrix of the (T ×N) factor portfolio return matrix

R. Consider the eigendecomposition of Σ:

Σ = WΛW ′ =
N∑
i=1

λiwiw
′
i, (1)

where W is a (N × N) matrix whose ith column wi is the eigenvector of Σ and Λ is a

diagonal matrix whose diagonal elements are the corresponding eigenvalues in decreasing

order. The ith eigenvector wi, solves:

w1 = argmax
∥w1∥=1

{w′
1Σw1} ,

w2 = argmax {w′
2Σw2}

∥w2∥=1

s.t. w′
1Σw2 = 0,

...

wN = argmax
∥wN∥=1

{w′
NΣwN} s.t. w′

MΣwN = 0 ∀ M < N. (2)

Practically, the solution in Equation (2) is obtained via a singular value decomposition
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(SVD) R. The (T×N) matrix of PCs is then obtained by multiplying the matrix of factor

portfolio returns with the eigenvectors, Z = RW . Notice that since W is an orthogonal

matrix, this is equivalent to regressing the factor portfolio returns on the eigenvectors.

PCA is also used to regularize the characteristics of each PC portfolio, Hi. This logic is

identical to Principal Component Regression (PCR) where the predictors are transformed

to their PCs and the coefficients of low variance PCs are set to zero.

Risk Premium PCA (RPPCA)

In general, PCA extracts factors that best explain time-series variation in the data.

The variance-covariance matrix of factor portfolio returns can also be written as Σ =

1
T
R′R− R̄R̄′, where R̄ is an (N × 1) vector of average portfolio returns. Since average re-

turns are subtracted, PCA utilizes information from the second moment while it neglects

information from the first moment of the data. Some factors may have weak explanatory

power in terms of variance if they only affect a small proportion of assets, but may still

be important in an asset pricing context. In this case, conventional PCA is unable to

detect the true factors (Onatski, 2012). Under an Arbitrage Pricing Theory framework,

exposure to systemic risk factors should be able to explain the cross-section of expected

asset returns (Ross, 1976). As such, latent factors should be able to simultaneously cap-

ture time-series variation and explain the cross-section of average returns.

Lettau and Pelger (2020) propose a new estimator by augmenting PCA with a penalty

term to account for pricing errors in average returns. RPPCA is a generalization of

PCA, regularized by a cross-sectional pricing error and can be implemented by simple

eigenvalue decomposition of the variance-covariance matrix of asset returns after a simple

transformation:

1

T
R′R + γR̄R̄′. (3)

Essentially, the method applies PCA to the variance-covariance matrix with over-weighted
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means. The resulting PCs jointly minimize the unexplained variation and the cross-

sectional pricing error. The choice of the tuning parameter γ determines the relative

weight of the cross-sectional pricing error compared to the time-series error. For conven-

tional PCA γ = −1, while γ = 0 is equivalent to applying PCA to the second moment

matrix. Values of γ > −1 can lead to the detection of weak factors with high Sharpe

ratios. We opt for a constant value of γ = 10, as it provides a balance between explaining

time-series variation and detecting weak factors.1 The use of RPPCA should help us

focus on factor portfolios with high average returns as by definition those will have a

higher weight on dominant components.

Again, we apply SVD on 1
T
R′R+10R̄R̄′ and retain the first five eigenvectors to calculate

the PC portfolios Zi ∈ R(T×1), i = 1, . . . , 5. Since the purpose of RPPCA is to detect

weak factors within asset returns and given that characteristics are standardized due to

their difference in scale, it would be insensible to apply it on Hi ∈ R(T×M), i = 1, . . . , 5.

Instead, we apply SDV on each 1
T
H ′

iHi − H̄iH̄
′
i, which converges back to conventional

PCA.

Partial Least Squares (PLS) One of the limitations of PCA is that it focuses on

condensing the covariation within the predictors. However, some of the characteristics

may have no predictive power, meaning that PCA-based PCs can contain information

that is ultimately useless in the forecasting exercise. In contrast, PLS constructs linear

combinations of the characteristics based on their relationship with future returns by

directly exploiting the covariance between the two. The method can be used to rotate Hi

into linear combinations that best explain Zi while still being orthogonal to each other.

1A value of γ = 10 is also consistent with what the authors identify as optimal in their empirical
exercise.
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The vector of weights for the ith PC is estimated recursively by solving:

qi1 = argmax
∥qi1∥=1

{
qi′1H

′
iZiZ

′
iHiq

i
1

}
,

qi2 = argmax
{
q2′i H

′
iZiZ

′
iHiq

2
i

}
∥q2i∥=1

s.t. q1′i H
′
iZiZ

′
iHiq

2
i = 0,

...

qiN = argmax
∥qNi ∥=1

{
qN ′
i H ′

iZiZ
′
iHiq

N
i

}
s.t. qM ′

i H ′
iZiZ

′
iHiq

N
i = 0 ∀ M < N. (4)

Equation (4) highlights the distinction between PLS and PCA. Specifically, by making

a comparison between Equation (2) and Equation (4), it is clear that PCA finds linear

combinations that maximize the variance of Hi while PLS finds combinations of weights

that maximize the squared covariance between Zi and Hi, or the product of the variance

of the predictors with the squared correlation with the forecasting target. In other words,

PLS diverges from the solution that best describes Hi in order to find components that

can better predict future returns. Practically, Equation (4) can be efficiently solved using

the SIMPLS algorithm by De Jong (1993). Again, we calculate the PLS components

Xi = HiQi and either retain the first component or apply LASSO on Xi to predict each

Ẑt+1,i.

LASSO

Another important aspect of our estimation procedure is the use of LASSO to account

for overfitting and control for model complexity. LASSO imposes sparsity by selecting

a subset of features and setting the remaining coefficients to zero. This is achieved by

slightly modifying the OLS objective function to incorporate a penalty for the sum of the

absolute value of the coefficients. For instance, at each time t we estimate the β ∈ R1×M+1

of PC portfolio Zi ∈ RT×1 on a set of characteristic PCs Xi ∈ RT×M as:

min
β0,β

T∑
t=1

(Zi − β0
i −

M∑
m=1

βm
i Xm

i )2 + δ

M∑
m=1

|βm
i |, (5)
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where δ is a hyperparameter that determines the degree of regularization such as:

M∑
m=1

|βm
i |≤ δ. (6)

High values for δ result in solutions that set many coefficients exactly equal to zero,

delivering parsimonious models. Using the coordinate decent algorithm by Friedman

et al. (2010), we fit many values of δ simultaneously and pick the one that minimizes the

forecasting error in the validation period.

IA.3 Sources of variation in the PC characteristics

The characteristics of long-short factor portfolios are initially calculated by value-weighting

characteristics of stocks within each decile portfolio and then subtracting the value of the

bottom decile from the top. At this stage no standardization is applied, meaning that the

average characteristic across factor portfolios still preserves its time series trend and the

cross-sectional variance for any given characteristic changes over time. The factor port-

folio characteristics are then standardized cross-sectionally by subtracting each month

the cross-sectional characteristic mean and dividing by the cross-sectional characteristic

standard deviation. These standardized characteristics are then transformed into PC

portfolio characteristics by being multiplied with wt,i, allowing us to focus on the cross-

sectional dispersion in the data.

Table IA.1 presents a stylized hypothetical example with three characteristics and one

PC portfolio for one time period. Each factor portfolio has its own characteristic and two

other characteristics. As in our empirical exercise, the characteristics are cross-sectionally

standardized to have zero cross-sectional mean and unit cross-sectional variance. In this

example, the PC portfolio loads positively on momentum and value and negatively on

reversal. Momentum and value characteristics are positively related to returns, while re-

versal is negatively related. As a result, the PC portfolio has high momentum and value
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scores and low reversal score, resulting in a high return for that month. Provided that

characteristics jointly explain returns and that this relationship holds on average over

time, PC portfolio returns will be high when PC momentum and value characteristics

are high and PC reversal is low.

Momentum Value Reversal PC
Portfolio Portfolio Portfolio Portfolio

PC Portfolio Weights 0.75 0.5 −0.25

Momentum Characteristic 1 0 −1 1
Value Characteristic 0 1 −1 0.75
Reversal Characteristic −1 0 1 -1

Return t+ 1 1.0% 0.8% −0.2% 1.2%

Table IA.1: Stylized example of estimating PC portfolio characteristics and returns using three anoma-
lies.

Given our procedure, it is important to understand the sources of variation in the char-

acteristics of each PC portfolio that ultimately lead to PC portfolio return predictability.

Let us start with the diagonal elements in the characteristic matrix in Table IA.1 (e.g.,

the momentum of the momentum portfolio). The diagonal elements will always have the

highest scores across rows (1 in our hypothetical example), since factor portfolios have the

highest score for their own characteristic by construction. Still, the diagonal elements

would remain constant across time only if each characteristic’s distribution across the

portfolio cross-section remained identical in terms of skewness and kurtosis. However, we

observe significant variability in those higher moments for all characteristics over time.

In particular, Figures IA.2 and IA.3 display the cross-sectional skewness and kurtosis of

the 72 characteristics across all the factor portfolios over the whole sample period. As it

can be seen, there is significant variation in the skewness and kurtosis of the characteris-

tics across time, which suggests that the diagonal elements do change affecting also the

characteristic scores of the PC portfolio.

With regards to the off-diagonal elements of the characteristic matrix in Table IA.1
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(e.g., the momentum characteristic of the value portfolio), those can further change from

month to month depending on the characteristics of stocks within each factor portfo-

lio. Provided that different factor portfolios do not contain the exact same stocks, each

characteristic can differ significantly across factor portfolios and can vary over time in

non-standard ways. For example, it is possible that for a given month the correlation

between stock momentum and value is high and hence the standardized momentum score

of the two factor portfolios is similar, while in another month the correlation might be

low and hence the momentum score of the two factor portfolios will be completely dif-

ferent. To shed light on the time-varying interrelations arising among characteristics,

we display in Figures IA.4 and IA.5 the mean and standard deviation of the monthly

cross-sectional correlation across all the different characteristic pairs. Apropos Figure

IA.4, average cross-sectional correlations across characteristics are fairly low (typically

between –0.2 and 0.2), with the exception being market friction and volatility proxies.

Figure IA.5 further shows that there is significant time variability on those correlations

(standard deviation values mostly range from 0.2 to 0.4), with again volatility proxies

being the most profound exception, while, as expected, correlations also remain relatively

constant for characteristic pairs with similar economic interpretation. Overall, our results

suggest that time variation in correlations among stock characteristics is another reason

for which the characteristics of the PC portfolios exhibit significant time-series variability.

The above analyses show that, despite the fact that we use the same weighting vector

wt,i for all the months of a given in-sample period, the PC characteristics naturally vary

across months even within the same predictive iteration/in-sample period. Obviously, an

additional source of variation in the characteristics of the PCs arises from the recursive

estimation of the weighting vector wt,i across predictive iterations. Because of the vari-

ability in the covariance structure of factor portfolio returns (and the change in their

average returns in the case of RPPCA), the weighting vectors change across time, affect-

ing the characteristic construction process, as the PC characteristics are calculated by
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multiplying factor portfolio characteristics with wi,t. To visualise how much the weighting

vectors vary, Figures IA.6 and IA.7 display heatmaps that correspond to the (absolute

value of the) factor loadings of each PC on the different anomalies across time, for PCA

and RPPCA respectively. As expected, there is some time variability in the weights.

However, we observe that in most of the cases the loadings (especially the most impor-

tant ones) remain quite stable throughout the whole sample period.

Overall, the PC characteristics change across months (within the same predictive it-

eration) because the characteristic distributions across portfolios exhibit time-varying

skewness and kurtosis and because the characteristic themselves have time-varying cor-

relations. An additional but less important source of variation stems from the recursive

estimation of PC portfolios and consequently weighting vectors.

Figure IA.2: Monthly cross-sectional skewness of 72 characteristics across factor portfolios. The sample
period is 01/1970-12/2019.
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Figure IA.3: Monthly cross-sectional kurtosis of 72 characteristics across factor portfolios. The sample
period is 01/1970-12/2019.

Figure IA.4: Average monthly cross-sectional correlations across 72 characteristics. The sample period
is 01/1970-12/2019.
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Figure IA.5: Standard deviation of monthly cross-sectional correlations across 72 characteristics. The
sample period is 01/1970-12/2019.

11



Figure IA.6: Recursively estimated PC portfolio weights on 72 factor portfolios for the out-of-sample period 01/1990-12/2019. PC portfolios are
constructed using PCA.
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Figure IA.7: Recursively estimated PC portfolio weights on 72 factor portfolios for the out-of-sample period 01/1990-12/2019. PC portfolios are
constructed using RPPCA.
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IA.4 Details of the predictive models

The main analysis of the paper focuses on four models that incorporate PCA or RPPCA

for condensing the variation in factor portfolio returns and PCA or PLS for condensing

the variation in the portfolio characteristics. We further consider two cases, one where

we retain only a single latent factor from the characteristics and another one where we

retain all the characteristic factors but employ LASSO to select the important ones at each

forecasting period. In addition, we select a series of alternative benchmark models that

rely on predictors such as the past return of the factor portfolios, the issuer-repurchaser

spread, market sentiment etc. Finally, we modify our main models in order to investigate

what the most important pillars of our successful predictive method are, and also modify

the benchmark models in order to examine whether adding additional statistical features

to them delivers performance similar to the one provided by the portfolio characteristics.

For convenience, Table IA.2 presents the list with all the different models used in the

study, together with a detailed description of how we handle the left-hand-side and the

right-hand-side of the forecasting problem.

IA.5 Factor database and statistics

Our empirical analysis uses 72 factor portfolios based on stock characteristics considered

by Green et al. (2017). We provide a detailed description of each characteristic in Table

IA.3. In particular, we present the acronym of the characteristic, the paper that iden-

tifies the characteristic, and the exact definition. In Table IA.4, we further report some

summary statistics for the 72 factor portfolios that are based on our stock characteris-

tics. Specifically, we report the average monthly return with the respective t-statistic, the

monthly volatility, and the monthly Sharpe ratio of each portfolio. As discussed in the

main paper, there is high cross-sectional variation in the performance of the portfolios

with only 22 of them having an average return significantly different from zero.
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Acronym Left-hand-side Right-hand-side

Panel A: Characteristic-based models (with and without LASSO)
PCA PCA PCA
PCA-PLS PCA PLS
RPPCA RPPCA PCA
RPPCA-PLS RPPCA PLS

Panel B: Baseline Benchmark models
1mMOM No dimension reduction. No dimension reduction. Each anomaly is predicted by its past month return.
12mMOM No dimension reduction. No dimension reduction. Each anomaly is predicted by its 12-month average past return.
PCA-BM PCA No dimension reduction. Each PC portfolio is predicted by its own book-to-market ratio.
IR Spread No dimension reduction. No dimension reduction. Each anomaly is predicted by its own issuer-repurchaser spread.
Sentiment No dimension reduction. No dimension reduction. Each anomaly is predicted by the investors sentiment index.
Historical Sample Mean No dimension reduction. No dimension reduction. Each anomaly is predicted by its in-sample average return.

Panel C: Alternative Specifications
Anom-Own characteristic No dimension reduction. No dimension reduction. Each anomaly is predicted by its own characteristic spread.
Anom-1 PLS No dimension reduction. PLS. One characteristic-based component is retained.
Anom-All characteristics No dimension reduction. No dimension reduction. Each anomaly is predicted by the collection of all its characteristics.
Anom-All characteristics LASSO No dimension reduction. LASSO is applied on the collection of characteristics.
5 PCs-All characteristics PCA No dimension reduction. Each PC portfolio is predicted by the collection of its characteristics.
5 PCs-All characteristics LASSO PCA LASSO is applied on the collection of characteristics.
5 PCs-1mMOM PCA No dimension reduction. Each PC portfolio is predicted by its past return.
5 PCs-12mMOM PCA No dimension reduction. Each PC portfolio is predicted by its 12-month average past return.
5 PCs-5 BMs PCA No dimension reduction. The 5 book-to-market ratios of all PC portfolios are used to predict each one individually.
5 PCs-5 BMs LASSO PCA LASSO is applied on the collection of the 5 book-to-market ratios.
Anom-Own BM No dimension reduction. No dimension reduction. Each anomaly is predicted its own book-to-market ratio.
Anom-All IR Spreads No dimension reduction. No dimension reduction. Each anomaly is predicted by the collection of all issuer-repurchaser spreads.
Anom-All IR Spreads LASSO No dimension reduction LASSO is applied on the collection of all issuer-repurchaser spreads.
5 PCs-IR Spread PCA No dimension reduction. Each PC portfolio is predicted by its own IR Spread.
5 PCs-All IR Spreads PCA No dimension reduction. Each PC portfolio is predicted by the collection of PC IR Spreads.
5 PCs-Sentiment PCA No dimension reduction. Each PC is predicted by the investor sentiment index.
Sentiment-LASSO No dimension reduction. LASSO is applied to the investor sentiment index.

Table IA.2: Detailed description of all the predictive models used in the study. The table includes the acronym for each model and the description of
the modelling approach for each side of the return predictability exercise.
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Acronym Author(s) Journal Definition
absacc Bandyopadhyay, Huang, & Wirjanto 2010, WP Absolute value of acc.
acc Sloan 1996, TAR Annual income before extraordinary items (ib) mi-

nus operating cash flows (oancf) divided by aver-
age total assets (at); if oancf is missing then set
to change in act – change in che – change in lct +
change in dlc + change in txp–dp.

age Jiang, Lee, & Zhang 2005, RAS Number of years since first Compustat coverage.
agr Cooper, Gulen & Schill 2008, JF Annual percentage change in total assets (at).
baspread Amihud & Mendelson 1989, JF Monthly average of daily bid-ask spread divided

by average of daily spread.
beta Fama & MacBeth 1973, JPE Estimated market beta from weekly returns and

equal weighted market returns for 3 years ending
month t-1 with at least 52 weeks of returns.

betasq Fama & MacBeth 1973, JPE Market beta squared.
bm Rosenberg, Reid, & Lanstein 1985, JPM Book value of equity (ceq) divided by fiscal year

end market capitalization.
bm ia Asness, Porter & Stevens 2000, WP Industry adjusted book-to-market ratio.
cashdebt Ou & Penman 1989, JAE Earnings before depreciation and extraordinary

items (ib+dp) divided by avg. total liabilities (lt).
cashpr Chandrashekar & Rao 2009, WP Fiscal year end market capitalization plus long-

term debt (dltt) minus total assets (at) divided by
cash and equivalents (che).

cfp Desai, Rajgopal & Venkatachalam 2004, TAR Operating cash flows divided by fiscal year end
market capitalization.

cfp ia Asness, Porter & Stevens 2000, WP Industry adjusted cfp.
chatoia Soliman 2008, TAR 2-digit SIC fiscal year mean adjusted change in

sales (sale) divided by average total assets (at).
chcsho Pontiff & Woodgate 2008, JF Annual percentage change in shares outstanding

(csho).
chempia Asness, Porter & Stevens 1994, WP Industry-adjusted change in number of employees.
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Acronym Author(s) Journal Definition

chinv Thomas & Zhang 2002, RAS Change in inventory (inv) scaled by average total
assets (at).

chmom Gettleman & Marks 2006, WP Cumulative returns from months t-6 to t-1 minus
months t-12 to t-7.

chpmia Soliman 2008, TAR 2-digit SIC fiscal year mean adjusted change in
income before extraordinary items (ib) divided by
sales (sale).

currat Ou & Penman 1989, JAE Current assets / current liabilities.
depr Holthausen & Larcker 1992, JAE Depreciation over PPE.
dolvol Chordia, Subrahmanyam, & Anshuman 2001, JFE Natural log of trading volume times price per share

from month t-2.
dy Lanstein 1982, JF Total dividends (dvt) divided by market capital-

ization at fiscal year end.
egr Richardson, Sloan, Soliman & Tuna 2005, JAE Annual percentage change in book value of equity

(ceq).
ep Basu 1977, JF Annual income before extraordinary items (ib) di-

vided by end of fiscal year market capitalization.
gma Novy-Marx 2013, JFE Revenues (revt) minus cost of goods sold (cogs)

divided by lagged total assets (at).
grcapx Anderson & Garcia-Feijoo 2006, JF Percentage change in capital expenditures from

year t-2 to year t.
grltnoa Fairfield, Whisenant & Yohn 2003, TAR Growth in long term net operating assets.
herf Hou & Robinson 2006, JF 2-digit SIC fiscal year sales concentration (sum of

squared percentage of sales in industry for each
company).

hire Bazdresch, Belo & Lin 2014, JPE Percentage change in number of employees (emp).
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Acronym Author(s) Journal Definition

idiovol Ali, Hwang, & Trombley 2003, JFE Standard deviation of residuals of weekly returns
on weekly equal weighted market returns for 3
years prior to month end.

ill Amihud 2002, JFM Average of daily (absolute return / dollar volume).
indmom Moskowitz & Grinblatt 1999, JF Equal weighted average industry 12-month re-

turns.
invest Chen & Zhang 2010, JF Annual change in gross property, plant, and equip-

ment (ppegt) + annual change in inventories (invt)
all scaled by lagged total assets (at).

lev Bhandari 1988, JF Total liabilities (lt) divided by fiscal year end mar-
ket capitalization.

lgr Richardson, Sloan, Soliman & Tuna 2005, JAE Annual percentage change in total liabilities (lt).
maxret Bali, Cakici & Whitelaw 2011, JFE Maximum daily return from returns during calen-

dar month t-1.
mom12m Jegadeesh 1990, JF 11-month cumulative returns ending one month

before month end.
mom1m Jegadeesh & Titman 1993, JF 1-month cumulative return.
mom36m Jegadeesh & Titman 1993, JF Cumulative returns from months t-36 to t-13.
mom6m Jegadeesh & Titman 1993, JF 5-month cumulative returns ending one month be-

fore month end.
mve Banz 1981, JFE Natural log of market capitalization at end of

month t-1.
mve ia Asness, Porter, & Stevens 2000, WP 2-digit SIC industry-adjusted fiscal year end mar-

ket capitalization.
operprof Fama & French 2015, JFE Revenue minus cost of goods sold - SG&A ex-

pense - interest expense divided by lagged common
shareholders’ equity.

pchcapx ia Abarbanell & Bushee 1998, TAR 2-digit SIC fiscal year mean adjusted percentage
change in capital expenditures (capx).
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Acronym Author(s) Journal Definition

pchcurrat Ou & Penman 1989, JAE Percentage change in currat.
pchdepr Holthausen & Larcker 1992, JAE Percentage change in depreciation.
pchgm pchsale Abarbanell & Bushee 1998, TAR Percentage change in gross margin (sale-cogs) mi-

nus percentage change in sales (sale).
pchquick Ou & Penman 1989, JAE Percentage change in quick.
pchsale pchinvt Abarbanell & Bushee 1998, TAR Annual percentage change in sales (sale) minus an-

nual percentage change in inventory (invt).
pchsale pchrect Abarbanell & Bushee 1998, TAR Annual percentage change in sales (sale) minus an-

nual percentage change in receivables (rect).
pchsale pchxsga Abarbanell & Bushee 1998, TAR Annual percentage change in sales (sale) minus an-

nual percentage change in SG&A (xsga).
pchsaleinv Ou & Penman 1989, JAE Percentage change in saleinv.
pctacc Hafzalla, Lundholm & Van Winkle 2011, TAR Same as acc except that the numerator is divided

by the absolute value of ib; if ib = 0 then ib set to
0.01 for denominator.

pricedelay Hou & Moskowitz 2005, RFS The proportion of variation in weekly returns for
36 months ending in month t explained by 4 lags
of weekly market returns incremental to contem-
poraneous market return.

ps Piotroski 2000, JAR Sum of 9 indicator variables to form fundamental
health score.

quick Ou & Penman 1989, JAE (current assets – inventory) / current liabilities.
rd mve Guo, Lev & Shi 2006, JBFA R&D expense divided by end of fiscal year market

capitalization.
rd sale Guo, Lev & Shi 2006, JBFA R&D expense divided by sales (xrd/sale).
retvol Ang et al. 2006, JF Standard deviation of daily returns from month

t-1.
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Acronym Author(s) Journal Definition

roic Brown & Rowe 2007, WP Annual earnings before interest and taxes (ebit)
minus non-operating income (nopi) divided by
non-cash enterprise value (ceq+lt–che).

salecash Ou& Penman 1989, JAE Annual sales divided by cash and cash equivalents.
saleinv Ou& Penman 1989, JAE Annual sales divided by total inventory.
salerec Ou& Penman 1989, JAE Annual sales divided by accounts receivable.
sgr Lakonishok, Shleifer & Vishny 1994, JF Annual percentage change in sales (sale).
sp Barbee, Mukherji, & Raines 1996, FAJ Annual revenue (sale) divided by fiscal year end

market capitalization.
std dolvol Chordia, Subrahmanyam, & Anshuman 2001, JFE Monthly standard deviation of daily dollar trading

volume.
std turn Chordia, Subrahmanyam, & Anshuman 2001, JFE Monthly standard deviation of daily share

turnover.
tang Almeida & Campello 2007, RFS Cash holdings + 0.715 × receivables + 0.547 ×

inventory + 0.535 × PPE/total assets.
tb Lev & Nissim 2004, TAR Tax income, calculated from current tax expense

divided by maximum federal tax rate, divided by
income before extraordinary items.

turn Datar, Naik, & Radcliffe 1998, JFM Average monthly trading volume for most recent
3 months scaled by number of shares outstanding
in current month.

zerotrade Liu 2006, JFE Turnover weighted number of zero trading days for
most recent 1 month.

Table IA.3: Listing of firm characteristics used in the study, including the source and the exact definition.
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Average Return Standard Deviation Sharpe Ratio t-statistic
absacc −0.111 3.982 −0.028 −0.680
acc −0.419 3.009 −0.139 −3.410
age −0.031 3.896 −0.008 −0.196
agr −0.399 3.143 −0.127 −3.110
baspread −0.235 6.796 −0.035 −0.846
beta −0.153 7.854 −0.020 −0.478
betasq −0.146 7.851 −0.019 −0.456
bm 0.377 4.480 0.084 2.061
bm ia 0.250 3.642 0.069 1.677
cashdebt 0.101 3.884 0.026 0.635
cashpr −0.336 3.545 −0.095 −2.323
cfp 0.298 4.181 0.071 1.744
cfp ia 0.328 2.889 0.114 2.781
chatoia 0.269 2.647 0.102 2.490
chcsho −0.588 2.901 −0.203 −4.963
chempia 0.065 2.874 0.023 0.553
chinv −0.537 2.955 −0.182 −4.448
chmom −0.574 4.628 −0.124 −3.037
chpmia 0.028 3.094 0.009 0.220
currat −0.052 3.975 −0.013 −0.322
depr 0.058 4.376 0.013 0.322
dolvol −0.210 3.495 −0.060 −1.471
dy −0.060 5.823 −0.010 −0.254
egr −0.429 3.292 −0.130 −3.191
ep 0.613 4.691 0.131 3.198
gma 0.090 3.832 0.023 0.573
grcapx −0.358 2.941 −0.122 −2.979
grltnoa −0.270 3.010 −0.090 −2.199
herf 0.053 3.508 0.015 0.371
hire −0.217 3.135 −0.069 −1.694
idiovol −0.196 6.923 −0.028 −0.692
ill 0.051 3.688 0.014 0.340
indmom 0.175 4.837 0.036 0.887
invest −0.395 3.003 −0.132 −3.223
lev 0.098 4.550 0.022 0.529
lgr −0.189 2.638 −0.072 −1.758
maxret −0.367 5.778 −0.063 −1.554
mom12m 1.080 6.492 0.166 4.071
mom1m −0.353 5.089 −0.069 −1.696
mom36m −0.204 4.891 −0.042 −1.019
mom6m 0.624 5.896 0.106 2.590
mve −0.161 4.015 −0.040 −0.982
mve ia −0.131 3.212 −0.041 −0.997
operprof 0.248 3.001 0.083 2.021
pchcapx ia 0.066 2.932 0.022 0.549
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Average Return Standard Deviation Sharpe Ratio t-statistic

pchcurrat −0.202 1.906 −0.106 −2.597
pchdepr 0.158 2.518 0.063 1.536
pchgm pchsale 0.125 2.723 0.046 1.126
pchquick −0.063 2.042 −0.031 −0.761
pchsale pchinvt 0.256 2.513 0.102 2.489
pchsale pchrect 0.004 2.399 0.001 0.036
pchsale pchxsga −0.078 3.005 −0.026 −0.632
pchsaleinv 0.224 2.457 0.091 2.230
pctacc −0.175 3.127 −0.056 −1.366
pricedelay −0.077 2.717 −0.028 −0.695
ps 0.250 2.337 0.107 2.614
quick −0.099 3.777 −0.026 −0.641
rd mve 0.243 4.748 0.051 1.253
rd sale −0.109 4.541 −0.024 −0.585
retvol −0.406 6.782 −0.060 −1.464
roic 0.283 3.725 0.076 1.859
salecash 0.019 3.327 0.006 0.141
saleinv 0.146 3.040 0.048 1.175
salerec 0.252 3.486 0.072 1.770
sgr −0.112 3.374 −0.033 −0.809
sp 0.377 4.183 0.090 2.208
std dolvol 0.175 3.080 0.057 1.391
std turn 0.090 5.163 0.017 0.425
tang 0.155 3.423 0.045 1.105
tb 0.195 2.852 0.068 1.676
turn −0.073 5.779 −0.013 −0.308
zerotrade −0.052 5.454 −0.010 −0.235

Table IA.4: Descriptive statistics of factor portfolios for the sample period January 1970 to December
2019. Average Return: Average monthly return, Standard Deviation: Monthly standard deviation,
Sharpe Ratio: Monthly Sharpe ratio, t-statistic: t-statistic for the null hypothesis that the average
monthly return is equal to zero.

IA.6 Interpreting the PC portfolios

One disadvantage of extracting latent common factors from factor portfolio returns is

that the resulting PC portfolios do not have a straightforward economic interpretation.

In order to tackle this problem, we regress recursively each PC portfolio return on each

of the 72 anomalies and retain the R2. Next, we estimate the average R2 across months

for each PC portfolio and each anomaly. As an example, we present in Figure IA.8 the
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results of the PCs stemming from PCA. We observe that the first PC portfolio loads more

on volatility variables such as beta, idiovol, maxret, retvol and std turn. The second PC

portfolio loads more on value variables such as bm, bm ia and sp, as well as on prof-

itability and leverage variables such as gma, cashdebt and lev. The third PC portfolio is

clearly affected by the momentum characteristics, while the fourth PC portfolio is mainly

driven by r&d variables. The fifth portfolio loads more on salerec and to a lesser extent

on gma.

The above results stem from a time-series aggregation of the estimated R2s. Another

interesting question that arises is whether the relation between the PCs and the under-

lying characteristics is stable across time. To this end, we select the most important

characteristic for each PC portfolio and plot the R2 of all of them across time in Figure

IA.9. In particular, we plot the R2 values of beta, bm, mom12m, rd sale, and salerec.

Each characteristic dominates a respective PC portfolio and it is evident from Figure IA.9

that all the loadings are remarkably stable across time. Overall, we conclude that the PC

portfolios extracted with statistical techniques have reasonable economic interpretation

and the recursive estimation does not impact negatively this interpretation.

23



PC1

ab
sa

cc ac
c

ag
e

ag
r

ba
sp

re
ad

be
ta

be
ta

sq bm
bm

_i
a

ca
sh

de
bt

ca
sh

pr cf
p

cf
p_

ia
ch

at
oi

a
ch

cs
ho

ch
em

pi
a

ch
in

v
ch

m
om

ch
pm

ia
cu

rra
t

de
pr

do
lv

ol dy eg
r
ep

gm
a

gr
ca

px
gr

ltn
oa he

rf
hi

re
id

io
vo

l ill
in

dm
om

in
ve

st le
v lg
r

m
ax

re
t

m
om

12
m

m
om

1m
m

om
36

m
m

om
6m m
ve

m
ve

_i
a

op
er

pr
of

pc
hc

ap
x_

ia
pc

hc
ur

ra
t

pc
hd

ep
r

pc
hg

m
_p

ch
sa

le
pc

hq
ui

ck

pc
hs

al
e_

pc
hi

nv
t

pc
hs

al
e_

pc
hr

ec
t

pc
hs

al
e_

pc
hx

sg
a

pc
hs

al
ei

nv
pc

ta
cc

pr
ic

ed
el

ay ps
qu

ic
k

rd
_m

ve
rd

_s
al

e
re

tv
ol

ro
ic

sa
le

ca
sh

sa
le

in
v

sa
le

re
c

sg
r

sp
st

d_
do

lv
ol

st
d_

tu
rn

ta
ng tb
tu

rn
ze

ro
tra

de

0

0.5

1

PC2

ab
sa

cc ac
c

ag
e

ag
r

ba
sp

re
ad

be
ta

be
ta

sq bm
bm

_i
a

ca
sh

de
bt

ca
sh

pr cf
p

cf
p_

ia
ch

at
oi

a
ch

cs
ho

ch
em

pi
a

ch
in

v
ch

m
om

ch
pm

ia
cu

rra
t

de
pr

do
lv

ol dy eg
r
ep

gm
a

gr
ca

px
gr

ltn
oa he

rf
hi

re
id

io
vo

l ill
in

dm
om

in
ve

st le
v lg
r

m
ax

re
t

m
om

12
m

m
om

1m
m

om
36

m
m

om
6m m
ve

m
ve

_i
a

op
er

pr
of

pc
hc

ap
x_

ia
pc

hc
ur

ra
t

pc
hd

ep
r

pc
hg

m
_p

ch
sa

le
pc

hq
ui

ck

pc
hs

al
e_

pc
hi

nv
t

pc
hs

al
e_

pc
hr

ec
t

pc
hs

al
e_

pc
hx

sg
a

pc
hs

al
ei

nv
pc

ta
cc

pr
ic

ed
el

ay ps
qu

ic
k

rd
_m

ve
rd

_s
al

e
re

tv
ol

ro
ic

sa
le

ca
sh

sa
le

in
v

sa
le

re
c

sg
r

sp
st

d_
do

lv
ol

st
d_

tu
rn

ta
ng tb
tu

rn
ze

ro
tra

de

0

0.5

1

PC3

ab
sa

cc ac
c

ag
e

ag
r

ba
sp

re
ad

be
ta

be
ta

sq bm
bm

_i
a

ca
sh

de
bt

ca
sh

pr cf
p

cf
p_

ia
ch

at
oi

a
ch

cs
ho

ch
em

pi
a

ch
in

v
ch

m
om

ch
pm

ia
cu

rra
t

de
pr

do
lv

ol dy eg
r
ep

gm
a

gr
ca

px
gr

ltn
oa he

rf
hi

re
id

io
vo

l ill
in

dm
om

in
ve

st le
v lg
r

m
ax

re
t

m
om

12
m

m
om

1m
m

om
36

m
m

om
6m m
ve

m
ve

_i
a

op
er

pr
of

pc
hc

ap
x_

ia
pc

hc
ur

ra
t

pc
hd

ep
r

pc
hg

m
_p

ch
sa

le
pc

hq
ui

ck

pc
hs

al
e_

pc
hi

nv
t

pc
hs

al
e_

pc
hr

ec
t

pc
hs

al
e_

pc
hx

sg
a

pc
hs

al
ei

nv
pc

ta
cc

pr
ic

ed
el

ay ps
qu

ic
k

rd
_m

ve
rd

_s
al

e
re

tv
ol

ro
ic

sa
le

ca
sh

sa
le

in
v

sa
le

re
c

sg
r

sp
st

d_
do

lv
ol

st
d_

tu
rn

ta
ng tb
tu

rn
ze

ro
tra

de

0

0.5

1

PC4

ab
sa

cc ac
c

ag
e

ag
r

ba
sp

re
ad

be
ta

be
ta

sq bm
bm

_i
a

ca
sh

de
bt

ca
sh

pr cf
p

cf
p_

ia
ch

at
oi

a
ch

cs
ho

ch
em

pi
a

ch
in

v
ch

m
om

ch
pm

ia
cu

rra
t

de
pr

do
lv

ol dy eg
r
ep

gm
a

gr
ca

px
gr

ltn
oa he

rf
hi

re
id

io
vo

l ill
in

dm
om

in
ve

st le
v lg
r

m
ax

re
t

m
om

12
m

m
om

1m
m

om
36

m
m

om
6m m
ve

m
ve

_i
a

op
er

pr
of

pc
hc

ap
x_

ia
pc

hc
ur

ra
t

pc
hd

ep
r

pc
hg

m
_p

ch
sa

le
pc

hq
ui

ck

pc
hs

al
e_

pc
hi

nv
t

pc
hs

al
e_

pc
hr

ec
t

pc
hs

al
e_

pc
hx

sg
a

pc
hs

al
ei

nv
pc

ta
cc

pr
ic

ed
el

ay ps
qu

ic
k

rd
_m

ve
rd

_s
al

e
re

tv
ol

ro
ic

sa
le

ca
sh

sa
le

in
v

sa
le

re
c

sg
r

sp
st

d_
do

lv
ol

st
d_

tu
rn

ta
ng tb
tu

rn
ze

ro
tra

de

0

0.5

1

PC5

ab
sa

cc ac
c

ag
e

ag
r

ba
sp

re
ad

be
ta

be
ta

sq bm
bm

_i
a

ca
sh

de
bt

ca
sh

pr cf
p

cf
p_

ia
ch

at
oi

a
ch

cs
ho

ch
em

pi
a

ch
in

v
ch

m
om

ch
pm

ia
cu

rra
t

de
pr

do
lv

ol dy eg
r
ep

gm
a

gr
ca

px
gr

ltn
oa he

rf
hi

re
id

io
vo

l ill
in

dm
om

in
ve

st le
v lg
r

m
ax

re
t

m
om

12
m

m
om

1m
m

om
36

m
m

om
6m m
ve

m
ve

_i
a

op
er

pr
of

pc
hc

ap
x_

ia
pc

hc
ur

ra
t

pc
hd

ep
r

pc
hg

m
_p

ch
sa

le
pc

hq
ui

ck

pc
hs

al
e_

pc
hi

nv
t

pc
hs

al
e_

pc
hr

ec
t

pc
hs

al
e_

pc
hx

sg
a

pc
hs

al
ei

nv
pc

ta
cc

pr
ic

ed
el

ay ps
qu

ic
k

rd
_m

ve
rd

_s
al

e
re

tv
ol

ro
ic

sa
le

ca
sh

sa
le

in
v

sa
le

re
c

sg
r

sp
st

d_
do

lv
ol

st
d_

tu
rn

ta
ng tb
tu

rn
ze

ro
tra

de

0

0.5

1

Figure IA.8: Average R2 across month from recursive regressions of each PC portfolio on each anomaly. The PC portfolios are constructed using PCA.
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Figure IA.9: R2 across months from a recursive regression of each PC portfolio on each of the following
anomalies: beta, bm, mom12m, rd sale, and salerec. Each anomaly loads heavily on one PC portfolio
and contributes little to the rest. The PC portfolios are constructed using PCA.

IA.7 Factor timing strategy constituents

In this section we examine the trading positions of our factor timing portfolios. Specifi-

cally, using the forecasts from the LASSO-based models and the LSS, we investigate how

often each anomaly is traded. The anomalies traded under LSS are also the ones with

the highest absolute weights under TSFM and CSFM, so focusing on this case only is

representative of the general investing approach. Figure IA.10 displays the percentage

trading frequency of each anomaly. Blue bars imply long and orange bars imply short

positions. Clearly, the benefits of factor timing strategies arise from rotating among mul-

tiple anomalies and not by focusing on a handful of picks. Yet, all strategies tend to go

long on anomalies with high average returns, such as mom6m and mom12m, and short

anomalies with negative average returns, like beta, chmom and retvol. Furthermore,

some anomalies appear almost equally often in the short and the long legs of our factor

timing portfolio, implying higher volatility in conditional returns. For the models that

use PCA, these anomalies are usually related to market frictions, which also have higher

volatility and thus load more heavily on the first PCs. When RPPCA is used for the

left-hand-side, the anomalies more regularly traded are those with higher absolute aver-
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age returns. Finally, anomalies that do not load heavily on the dominant components,

using either PCA or RPPCA, stay out of the investable universe as their small loadings

compress their individual return forecasts close to zero. Consequently, the use of PCs for

the left-hand-side has an impact on the factor timing portfolio formation.
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Figure IA.10: Percentage frequency of LSS constituents over the out-of-sample period. Blue bars suggest long and orange bars suggest short positions. (a)
PCA (b) RPPCA (c) PCA-PLS (d) RPPCA-PLS.
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