
1 
 

Theory of Optical Generation and Detection of Propagating Magnons in an 1 

Antiferromagnet 2 

R.A. Leenders, R.V. Mikhaylovskiy* 3 

Department of Physics, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK 4 

 5 

We report a theory of optical generation and detection of the propagating spin 6 

waves in antiferromagnetic materials relevant for the ultrafast pump-probe 7 

experiments. We derive and solve the equations of motion for antiferromagnetic 8 

spins in response to the light-induced effective magnetic field in the linear regime. 9 

Different forms of the excitation and the properties of the generated spin waves are 10 

analysed. We theoretically show the selective detection of the spin waves by the 11 

magneto-optical Kerr effect. The developed formalism is readily applicable to 12 

inform future experiments on antiferromagnetic opto-magnonics.  13 
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I: Introduction  15 

The quest for the minimally dissipative processing of information has led to the search for an 16 

information carrier alternative to the traditional electric currents, suffering from ever growing 17 

energy losses1-3. In this way, the waves of the propagating spin precession, i.e. spin waves, in 18 

magnetically ordered materials have been identified as new means to carry information4,5. The 19 

spin waves, of which the quanta are also known as magnons, are magnetic excitations, which 20 

do not involve transport of charge and hence are free from Ohmic losses. Thus, in the last years 21 

a huge progress has been made in the area of magnonics, i.e. the study of spin waves and their 22 

practical applications6,7. However, most of the demonstrations and discoveries in this field are 23 

restricted to ferromagnetic materials with relatively low clock-rates (~ GHz). 24 

The use of antiferromagnetic materials with antiparallel spin alignment instead of conventional 25 

ferromagnets can potentially push operation frequencies into the THz regime and attain higher 26 

spin wave velocities8,9. However, until recently the lack of straightforward mechanisms to 27 

generate the spin excitations with such high frequencies was a main impediment for magnonics 28 

in antiferromagnets. The solution came with an advent of ultrafast laser technologies. For 29 

instance, the femtosecond laser pulses were shown to drive antiferromagnetic resonances both 30 

thermally10 and non-thermally11. In the former case the laser pulse affects the temperature 31 

dependent magnetic anisotropy and equilibrium orientation of spins, thereby exerting a 32 

displacive torque on the spins12,13. In the latter case the action of the laser pulse can be described 33 

as producing an impulsive effective magnetic field (and hence torque), acting on spins11,14. The 34 

microscopic mechanism for this effective magnetic field is impulsive stimulated Raman 35 

scattering15,16. Another way to directly drive antiferromagnetic spins is to use transient THz 36 

pulses. The THz magnetic field directly couples to magnetic excitations in the linear 37 

regime17,18, while the electric field can modify the magnetic anisotropy in a nonlinear manner19. 38 

Moreover, the femtosecond optical pulses allow for time resolved magneto-optical detection 39 

of sub-picosecond spin dynamics using magneto-optical effects20-22. In addition, coherent 40 

antiferromagnetic oscillations emit THz signals, which can also be detected using THz time-41 

domain spectroscopy methods23-29.  42 

Yet, despite all these achievements, the optical generation of the coherent propagating spin 43 

waves has remained a major challenge. The main problem is the huge mismatch between the 44 

wavelength and minimal spot size of the electro-magnetic radiation at optical (~ 100 nm) or 45 

THz (~ 100 μm) frequencies and the wavelength of spin waves in antiferromagnets (~ 10 nm). 46 
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Therefore, in the typical experiments only quasi-uniform precession modes are excited, while 47 

the practical applications call for propagating spin waves. In principle, the propagation can be 48 

achieved in the strong coupling regime between the electro-magnetic THz pulses and the 49 

antiferromagnetic modes30. In such a case the hybrid magnon-polariton modes are formed, 50 

propagating with the speed of light31. However, the wavelength of the magnon-polaritons lies 51 

in ~ 10 μm scale that inhibits miniaturization down to nanoscale. At the same time, excitation 52 

of the standing spin waves32-34 or so-called two-magnon modes35 can achieve nanoscale at the 53 

expense of zero group-velocities and lack of the desired propagation. As a result, recent 54 

experimental realizations of spin wave transport in antiferromagnets were limited to either 55 

diffusive propagation of incoherent magnons36-38 or evanescent modes39.  56 

In ferromagnets, in which magneto-static spin waves have microscale wavelengths, the 57 

propagating magnons can be excited by strongly focused laser pulses40-42. If the excitation 58 

torque is confined to a region with a size smaller than the magnon wavelength, this magnon 59 

will propagate away from the excitation spot. In an antiferromagnet with nanoscale spin waves, 60 

the simple focusing of a laser pulse cannot work. Only recently the excitation confinement was 61 

achieved across the sample thickness in antiferromagnetic ferrite DyFeO3 by pumping it with 62 

a laser pulse with photon energy in the regime of strong absorption43. The laser pulse 63 

penetration depth was about 50 nm that allowed the generation of the spin waves propagating 64 

away from the sample face with the wavelengths of this order. The excited spin waves also 65 

acted as an effective diffraction grating for the reflected probe pulse, enabling their selective 66 

detection. Taking inspiration from this pioneering experimental study, in this work we present 67 

a thorough theoretical analysis of the optical generation and detection of the antiferromagnetic 68 

magnons in pump-probe experiments.  69 

The paper is organized as follows. In Section II we introduce the basic mathematical formalism, 70 

describing the excitation of magnons by laser pulses in an antiferromagnet. In Section III we 71 

apply this general formalism to various experimental configurations, calculating the laser-72 

driven spin dynamics in the cases of impulsive and displacive excitations and different 73 

boundary conditions. We compare the results of most simplistic approximations such as 74 

reducing the effective magnetic field pulse to a Delta-function and the more complete models 75 

of propagating Gaussian pulses. We also study the role of material parameters like laser 76 

penetration depth, spin pinning, spin wave velocity and damping. Section IV exposes the theory 77 

describing the detection of the spin waves by means of the magneto-optical Kerr effect, while 78 
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Section V demonstrates the selective detection observed in the experiment. We draw 79 

conclusions in Section VI.  80 

II. Model and Mathematical Formalism  81 

A schematic illustration of the modelled system is depicted in Figure 1. We consider a canted 82 

antiferromagnet (for generality, our theory is also applicable for zero canting), consisting of 83 

two sublattices containing magnetizations M1 and M2. In our model, we assume that the 84 

antiferromagnetic vector L=M1-M2 is oriented along the x-axis, and the ferromagnetic vector 85 

M=M1+M2 is oriented along the z-axis. When an antiferromagnet is excited by a laser pulse, 86 

the excitation leads to a change in magnetic parameters.29 We take this into our model by 87 

considering that the laser pulse acts as an effective magnetic field on the spin system.11 The 88 

effective field may arise from the light-induced magnetic anisotropy44,45, exchange 89 

interaction,46,47 or other internal magnetic interactions. Thus, the spin waves are launched by 90 

the effective magnetic field component of a laser pulse h(z,t), travelling in the z-direction, 91 

which we define as the direction normal to the sample surface. As the characteristic 92 

wavelength of the spin waves (~100 nm) is much shorter than the typical diameter of a laser 93 

spot (~ 1 μm and larger), the lateral Gaussian distribution of a laser pulse is neglected, and 94 

the excitation of the surface may be assumed to be uniform. We account for absorption of the 95 

laser pulse as it propagates from the sample boundary, resulting in an exponential spatial 96 

decay of the amplitude of the effective field ℎ(𝑧, 𝑡)~ exp (−
𝑧

𝑑
) (see Figure 1a). Only the spin 97 

wave propagation from the first boundary is considered, as the penetration depth of the 98 

excitation is assumed to be much smaller than the sample thickness. Additionally, we assume 99 

the lifetime of the spin wave to be short enough for the spin wave to fully decay before 100 

reaching the boundary at the back of the sample.  After describing the generation of 101 

propagating magnons, we also model their detection in a typical pump probe experiment, 102 
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where the polarization rotation of a probe pulse induced by the dynamic magnetization is 103 

tracked as a function of time delay after excitation by the pump pulse (Figure 1b).  104 

 105 

Figure 1: a) Schematic of the modelling of spin dynamics in a (canted) antiferromagnet. The spin dynamics is 106 

excited by the effective magnetic field induced by a laser pulse h(z,t), which is assumed to have an exponential 107 

decay into the medium as it is absorbed. The spin excitations near the boundary propagate into the medium as 108 

waves with velocity vsw. b) The spin waves are magneto-optically detected by a second laser pulse arriving after 109 

a time delay Δt. The dynamic magnetization gives rise to the Faraday rotation ΔθF in the transmission 110 

configuration, or the Kerr rotation ΔθK in the reflective configuration.   111 

In antiferromagnets spin dynamics is described by the Lagrangian formalism.48 The 112 

formalism yields two eigen-modes of antiferromagnetic resonance. As the modes are normal 113 

to each other and hence non-interacting in the linear regime, we can focus on dynamics of 114 

one of the modes (the other one is described in a similar way). In the linear regime, assuming 115 

the amplitude of the dynamic magnetization is small, the dynamics of the antiferromagnetic 116 

mode is described by the Klein-Gordon equation49: 117 

 𝜕2𝜑(𝑧,𝑡)

𝜕𝑡2 + 2𝛼
𝜕𝜑(𝑧,𝑡)

𝑑𝑡
+ (𝜔0

2 − 𝑐2∇2)𝜑(𝑧, 𝑡) = −𝜔ℎ
𝜕ℎ(𝑧,𝑡)

𝜕𝑡
 , (1) 
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where 𝜑(𝑧, 𝑡) denotes the angle of deflection of the antiferromagnetic vector 118 

 𝐿𝑧 = 𝐿cos𝜑, 𝐿𝑦 = 𝐿sin 𝜑. The damping of the precession of magnetization is given by 𝛼. 119 

The spin wave velocity limit is given by 𝑐, and 𝜔0 = √𝜔𝐸𝜔𝐴 is the resonance frequency, 120 

which is determined by the exchange constant J (𝜔𝐸 = 𝛾𝐿0𝐽) and anisotropy constants Kx and 121 

Ky (𝜔𝐴 = 𝛾𝐿0(𝐾𝑦 − 𝐾𝑥)), and 𝜔ℎ = 𝛾ℎ0 is a parameter containing the amplitude of the 122 

effective magnetic field ℎ0. In these parameters, 𝛾 is the electron gyromagnetic ratio.  123 

The spin wave dispersion relation is found by considering the plane wave solution to equation 124 

(1) in the absence of an excitation, ℎ(𝑧, 𝑡) = 0.  125 

 𝜔2 = 𝜔0
2 + 2𝑖𝛼𝜔 + 𝑐2𝑘sw

2 . (2) 

 Here 𝜔 is the angular frequency of spin precession, ksw is the wavevector of the spin wave, 126 

and 𝑐 is the maximal propagation velocity of the spin wave.  127 

We can find the solution to equation (1) analytically by performing a Fourier transformation 128 

of the equation to the frequency domain:  129 

 −𝜔2�̃�(𝑧, 𝜔) + 2𝑖𝛼𝜔�̃�(𝑧, 𝜔) + (𝜔0
2 − 𝑐2∇2)�̃�(𝑧, 𝜔) = −𝑖𝜔𝜔ℎℎ̃(𝑧, 𝜔) , (3) 

where �̃�(𝑧, 𝜔) is the Fourier transform of the spin deflection angle and ℎ̃(𝑧, 𝜔) is the Fourier 130 

transform of the effective magnetic field. Only those pulse profiles are considered here, 131 

which can be written as a product of time- and space-dependent functions that, as we show 132 

below, describe the most typical excitation mechanisms. The spatial dependence is defined by 133 

the absorption of the pulse, resulting in an exponential decay, such that the magnetic field 134 

excitation in the frequency domain can be written as 135 

 ℎ̃(𝑧, 𝜔) = �̃�(𝜔) exp(−
𝑧

𝑑
) . (4) 

Here 𝑑 is the penetration depth of the laser excitation. We assume here that the spin waves 136 

propagate unidirectionally (since the lateral size of the laser spot is much larger than all other 137 

characteristic dimensions), along the direction of the propagation of the laser pulse. The full 138 

solution for the spin deflection is then given by  139 

 �̃�(𝑧, 𝜔) = 𝑓(ω) exp(−𝑖𝑘sw(𝜔)𝑧) + 𝑝(𝜔)exp (−
𝑧

𝑑
) . (5) 

The first term corresponds to the solution for freely propagating magnons, where 𝑓(𝜔) is the 140 

spectral amplitude of the freely propagating waves and 𝑘sw(𝜔) is the wavevector determined 141 

by the dispersion relation (2). Its value is complex, with the imaginary part being responsible 142 

for the spatial decay of the spin wave. The value of 𝑘sw is therefore defined as 𝑘sw = 𝜅 − 𝑖𝜂, 143 
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where 𝜅 and 𝜂 are real. The second term in equation (5) corresponds to the forced solution of 144 

spin precession driven by the effective magnetic field of the laser pulse. The spectral 145 

amplitude 𝑝(𝜔) of this driven spin precession is directly obtained from equation (3):  146 

 
𝑝(𝜔) =

−𝑖𝜔𝜔ℎ�̃�(𝜔)

−𝜔2 + 𝜔0
2 + 2𝑖𝛼𝜔 −

𝑐2

𝑑2

 . 
(6) 

To determine the amplitude of the freely propagating spin wave, it is required to specify the 147 

boundary conditions. The exchange boundary condition is applied here, which in its general 148 

form reads50  149 

 𝜕𝜑

𝜕𝑧
(𝑧 = 0) + 𝜉𝜑(𝑧 = 0) = 0 , (7) 

where ξ is a pinning parameter determining how strongly the spins are pinned to the surface. 150 

In the case of ξ=0, spin deflections can occur freely at the boundary whereas for ξ→∞, spin 151 

deflections at the boundary are forbidden. Applying these boundary conditions to expression 152 

(5) allows us to determine the relation between the amplitude of the free and forced solutions:  153 

 
𝑓(𝜔) = 𝑝(𝜔)

1

𝑑
−𝜉

𝜉−𝑖𝑘sw(𝜔)
 . 

(8) 

Finally, one can apply inverse Fourier transformed numerically to equation (5) in order to 154 

obtain the evolution of the spin wave in the time domain. We perform this calculation for 155 

several indicative effective magnetic field profiles, which will be separately discussed in the 156 

following sections.   157 

III. Spin wave generation results 158 

A. Impulsive excitation 159 

The simplest case to be considered is the impulsive excitation, where the laser pulse is 160 

modelled to be infinitesimally short in time: ℎ(𝑡) = 𝜏ℎ0𝛿(𝑡), where the typical laser pulse 161 

duration 𝜏 = 0.1 ps is used to normalize the Dirac-delta function. This approximation 162 

describes well typical experiments with femtosecond pump pulses acting as opto-magnetic 163 

fields, which are much shorter than the period of antiferromagnetic modes. Performing the 164 

Fourier transform of the effective field ℎ(𝑡) we obtain for the driven solution: 165 

 𝑝(𝜔) =
−𝑖𝜔𝜏√𝜋𝜔ℎ

−𝜔2+𝜔0
2+2𝑖𝛼𝜔−

𝑐2

𝑑2

 . (9) 
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In the simulation, we choose the following set of parameters: 𝜔0 = 0.15 THz, 𝛼 = 10−2𝜔0, 166 

𝑑 = 50 nm, 𝑐 = 20 nm/ps.49 The results of the simulations for perfectly pinned spins are 167 

shown in Figure 2a (see also Supplementary movie 1 51). In Figure 2b (Supplementary movie 168 

2 52), the results for the completely free boundary condition are shown. The main panels show 169 

snapshots of the evolution of the spin waves at various time points, as obtained by the 170 

numerical inverse Fourier transform of equation (5). The plots are normalized to the 171 

maximum (absolute) value of the magnetization of the snapshot at 𝑡 =  1 ps. In the insets, 172 

the spectra are shown at a point of 𝑧 = 0.2 μm from the boundary. We notice that the 173 

spectrum in the pinned boundary condition is much wider than in the free boundary 174 

condition, giving rise to higher frequency components. This gives rise to more pronounced 175 

spin waves in the pinned boundary condition as compared to the free boundary condition.  176 
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B. Displacive Excitation 178 

The next pulse profile we consider corresponds to the displacive excitation, where the spin 179 

deflection is continuously excited, but the excitation amplitude decays over time: ℎ(𝑡) =180 

𝜗(𝑡)exp (−𝛽𝑡), where 𝜗(𝑡) is the Heaviside step function and β is the decay parameter. This 181 

models the abrupt photoinduced change in magnetic anisotropy, which may slowly decay in 182 

time.53 The modelling parameter values are equal to the case of impulsive excitation. We find 183 

a similar form of the forced solution as the impulsive excitation, however with a modified 184 

frequency distribution:  185 

Figure 2: Snapshots of spin waves for an impulsive excitation profile. a) The spin waves at various time points 

for the pinned boundary condition. b) The spin waves at various time points for the free boundary condition. In 

both panels, the insets show the corresponding spectra at a distance z=0.2 μm from the boundary. All signals are 

normalised to the maximum absolute value of spin deflection at t =1 ps. 
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 𝑝(𝜔) =
−𝑖𝜔𝜔ℎ

(𝛽+𝑖𝜔)(−𝜔2+2𝑖𝛼𝜔+𝜔0
2−

𝑐2

𝑑2)
 . (10) 
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Figure 3: Snapshots of spin waves excited by a displacive excitation for a) the pinned boundary condition and b) 187 

the free boundary condition. The excitation damping parameter is 0.001ω0. The insets show the corresponding 188 

spectra at a distance z=0.2 μm from the boundary. The spin waves are normalized to the maximum absolute 189 

value of the spin wave at   t =1 ps. 190 

For a value of β >> ω0 the decay of the excitation occurs over a much shorter time scale than 191 

a single oscillation, such that the excitation can again be approximated by a delta-function. 192 

We indeed confirmed that for such values of the lifetime of the effective field, the exact same 193 

spin wave profile is obtained as for an impulsive excitation. If β << ω0, the excitation decays 194 

slowly and is present over many spin oscillations. The resulting spin waves for 𝛽 = 0.001𝜔0 195 

are shown in Figure 3a (Supplementary movie 3 54) and Figure 3b (Supplementary movie 4 196 

55) for the pinned and free boundary conditions respectively.  197 

C. Propagating Gaussian Excitation 198 

Finally, we consider the most general Gaussian laser pulse profile, propagating through the 199 

medium with the velocity of light 𝑣 = 𝑐opt/𝑛. Again, we account for the absorption of this 200 

pulse near the boundary. The refractive index of the medium is approximated here to be 𝑛 ≈201 

 2.3, typical for many antiferromagnetic oxides such as DyFeO3. For the case of a propagating 202 

Gaussian pulse, some of the previously discussed equations must be modified. The propagating 203 

Gaussian profile is modelled as 204 

 
ℎ(𝑧, 𝑡) = ℎ0 exp(−

(𝑡−
𝑧

𝑣
)2

𝜏2 ) . 
(11) 

The resulting solution in the Fourier domain is then given by 205 
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 �̃�(𝜔, 𝑧) = 𝑓(𝜔) exp(−𝑖𝑘sw𝑧) + 𝑝(𝜔) exp (−
𝑧

𝑑
) exp (

𝑖𝜔𝑧

𝑣
) . (12) 

The relation between 𝑓(𝜔) and 𝑝(𝜔) through the boundary conditions is now slightly 206 

modified:  207 

 

𝑓(𝜔) = 𝑝(𝜔) 

1
𝑑

− 𝜉 +
𝑖𝜔
𝑣

𝜉 − 𝑖𝑘sw(𝜔)
 

(13) 

 and 𝑝(𝜔) is now determined by the Fourier transform of the Gaussian envelope of the laser 208 

pulse:  209 

 𝑝(𝜔) =
−𝑖𝜔𝜔ℎ𝜏√𝜋 exp(−𝜔2𝜏2/4) 

𝜔0
2−𝜔2−

𝑐2

𝑑2+2𝑖𝛼𝜔
 . (14) 

To illustrate the effect of propagation, we consider a transparent configuration in a thick 210 

sample by increasing the value of 𝑑 to 𝑑 = 0.5 cm. We take an experimentally realistic 211 

duration of the Gaussian pulse of 𝜏 = 100 fs. The results of the simulation are shown in 212 

Figure 4.  213 
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Figure 4: Snapshots of spin waves for a Gaussian propagating excitation with pinned boundary conditions on 215 

different length scales. a) The propagation of the spin wave in a micrometer range to the boundary. The inset 216 

shows the spectrum at z=0.2 μm. b) The effect of propagation of the pump pulse, driving homogeneous spin 217 

precession in the bulk on a centimeter length scale. The inset shows the spectrum at z=0.4 cm. The spin waves 218 

are normalized to the maximum absolute value of the spin wave at t =1 ps.  219 

As the propagation of the laser pulse is much faster than the propagation of the magnon, 220 

oscillations due to the free propagation of the magnon and the driven spin precession by the 221 

effective magnetic field appear on very different length scales. Hence, in Figure 4 the 222 

solution is shown separately close to the boundary (Figure 4a, Supplementary movie 5 56) and 223 
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in the bulk (Figure 4b, Supplementary movie 6 57). From these results, it is confirmed that the 224 

freely propagating spin waves only exist close to the boundary (these waves can be seen as 225 

magnonic analogue to electro-magnetic transition radiation, arising from discontinuity in the 226 

media)58. On the other hand, the forced oscillations only appear on long length scales and are 227 

negligible close to the boundary. However, in the transmission pump probe experiments the 228 

forced oscillations in the bulk dominate the measured response. Hence, in most experiments 229 

to date the spin oscillations with the zero wavenumber were reported.  230 

We note that in the absorptive configuration (𝑑 = 50 nm), we retrieve the spin wave profiles 231 

shown in Figure 2 for the impulsive excitation. Hence, we conclude that an experimentally 232 

realistic Gaussian laser pulse can be well approximated to act as an instantaneous impulsive 233 

excitation.   234 

 235 

D. Effect of various parameters 236 

In this section, the effect of various parameters is investigated. The impulsive excitation is 237 

considered here, for various values of 𝑑, 𝑐, and 𝜉. In addition, spin waves are shown for 238 

various values of the excitation lifetime parameter 𝛽 for the case of the displacive excitation. 239 
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The spin waves for various values of these parameters are compared in Figure 5. 240 
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 241 

These figures confirm expectations about the behavior of magnons. Firstly, we see in Figure 242 

5a that confinement of the excitation to the boundary affects the profile in the spin wave, as 243 

for reducing values of d, the exponential decay arising from the driven precession disappears, 244 

and a stronger contribution of the freely propagating spin waves from the boundary emerges. 245 

In the limit of 𝑑 ≪ 𝜆sw, we see that the contribution of the driven spin precession disappears, 246 

and only the freely propagating wave remains. As the reduction in excitation depth also 247 

results in a diminished amplitude, the inset shows the normalized result for the magnon for 248 

the excitation depth of 𝑑 = 0.1 nm.  Secondly, from Figure 5b we see expected behavior 249 

when changing the velocity of the spin wave: a higher velocity results in further propagation 250 

of the spin wave from the boundary. Thirdly, in Figure 5c the effect of the pinning parameter 251 

is shown. From this one can see that the spin wave profile depends on the pinning parameter. 252 

For free boundary conditions (𝜉 = 0) spins can precess freely at 𝑧 = 0, whereas in the limit 253 

of the perfectly pinned boundary condition (𝜉 → ∞, approximated in our numerical code as 254 

Figure 5: Spin waves under variation of several parameters: a) Variation of the optical excitation depth d. The 

inset shows a zoom-in of the spin wave for d=0.1 nm. b) Variation of the spin wave velocity limit c. c) Variation 

of the pinning parameter ξ. d) Variation of the optical excitation decay parameter 𝛽, for the case of the displacive 

excitation. Spin waves are shown at time delay t=30 ps. 
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𝜉 = 1040) precession there is restricted. We see that the ratio of the amplitudes of the 255 

propagating wavepacket and the driven spin precession depends on the pinning parameter. 256 

When the pinning parameter equals the inverse of the penetration depth, 𝜉 = 1/𝑑, (in the 257 

simulation, 𝜉 = 2 × 105 cm-1 and 𝑑 = 50 nm), no propagating wavepacket is observed. This 258 

is directly explained by equation (8), where the amplitude of the freely propagating solution 259 

is completely suppressed. Finally, in Figure 5d we see that wavelength and amplitude of the 260 

magnon depend on the lifetime parameter of the displacive excitation 𝛽. For larger values of 261 

𝛽, i.e. shorter excitation lifetimes, the spin wave amplitude is strongly diminished, and the 262 

central wavelength increases slightly.   263 

E. Excitation at infinitesimal region near the boundary 264 

As our interest is primarily on the spin waves propagating from the boundary of the material, 265 

and we have seen that the width of an experimentally realistic Gaussian laser pulse can be 266 

neglected, we now model the excitation to be a Dirac-delta function at the boundary at 𝑧 = 0, 267 

ℎ(𝑧, 𝑡) = 𝛿(𝑧)𝛿(𝑡). This ensures that the driven solution of the spin wave is non-existent 268 

except at 𝑧 = 0 and allows us to focus solely on the freely propagating wave. To couple the 269 

driven solution at the boundary and the freely propagating spin wave, we consider slightly 270 

altered boundary condition. We assume that the spin wave is reflected at a distance 𝛿𝑧 from 271 

the boundary, such that we can write:  272 

 
{
𝜑(𝑧, 𝜔) = 𝐴exp(−𝑖𝑘sw𝑧) + 𝐵exp(𝑖𝑘sw𝑧)     𝑧 < 𝛿𝑧

𝜑(𝑧, 𝜔) = 𝐶exp(−𝑖𝑘sw𝑧)                                   𝑧 > 𝛿𝑧
 . 

(15) 

To find the amplitudes, we start by integrating equation (3) over an infinitesimal region 273 

around the material boundary. From this we find that 𝜑(𝑧, 𝜔) is continuous and its derivative 274 

𝜕𝜑(𝑧, 𝜔)/𝜕𝑧 is discontinuous at the boundary, with the discontinuity determined by the 275 

amplitude of the excitation. We also apply the pinning boundary condition as given by 276 

equation (7). Finally, we take the limit 𝛿𝑧 → 0. As a result, we find that the spin wave 277 

propagating into the material is given by 278 

 𝜑(𝑧, 𝜔) =
𝑖𝜔𝜔ℎℎ̃(𝜔)

𝑐2(𝜉−𝑖𝑘𝑠𝑤)
exp(−𝑖𝑘𝑠𝑤𝑧) . (16) 
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Figure 6 shows the result of this simulation279 
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Figure 6: Snapshots of the propagating spin wave in a) the pinned boundary condition and b) the free boundary 281 

condition. The excitation exists solely at the boundary z=0 (ℎ(𝑧, 𝑡)~𝛿(𝑧)𝛿(𝑡)). Insets show the corresponding 282 

spectra at z=0.2 μm. 283 

We see a large difference in the spectra for the pinned and the free boundary condition. For 284 

the pinned boundary condition, the spectral weight increases above the resonance frequency, 285 

whereas in the free boundary condition the spectral weight diminishes above the resonance 286 

frequency. As expected, we found that the results of the spin waves profiles match excellently 287 

with the case of the exponential decay considered above, for very small absorption depths of 288 

the excitation such that 𝑑 ≪ 𝜆𝑐 (see inset Figure 5a). Thus, the waveforms shown in Figure 6 289 

correspond to the largest k-vectors range, which can be excited by the laser pulse in the case 290 

of its strongest localization.  291 

The situation modeled here can be realized in an antiferromagnet capped by a thin (a few nm) 292 

ferromagnetic metal layer coupled to the antiferromagnetic order via e.g. exchange bias.59 293 

The pump laser pulse can instantaneously heat the metal and destroy its magnetization, hence 294 

exerting a torque to the antiferromagnet at the interface. We actually believe that the modes 295 

with ‘unusual’ frequencies observed in the pump probe studies of metal-antiferromagnetic 296 

bilayers and tentatively attributed to magnetic impurities in Ref. 60 could in fact be the 297 

propagating spin waves excited at the metal-antiferromagnet interface.   298 

IV. Model for magneto-optical detection 299 

Spin dynamics can be detected by laser pulses with magneto-optical effects. We have shown 300 

above that the spin waves are localized in a region close to the excited boundary. Therefore, 301 

we consider a detection scheme in reflective geometry as used in the experiment in Ref. 43. 302 



15 
 

We calculate here the rotation of the plane of polarization as a result from the magneto-303 

optical Kerr effect. This phenomenon originates from a helicity dependent refractive index in 304 

materials with broken time reversal symmetry. For simplicity, the probe pulse is assumed to 305 

be perfectly linearly polarized along the x-axis. The normalized incident electric field vector 306 

𝒆𝑖 in the (xy) plane can then be decomposed in circularly polarized components: 307 

 𝐞𝑖 =
1

2
𝐞+ +

1

2
𝐞− , (17) 

where 𝐞± = (
1

∓𝑖
). Then the reflected field is:  308 

 𝐞𝑟 =
1

2
𝑟+𝐞+ +

1

2
𝑟−𝐞− . (18) 

The helicity dependent reflectivity results in a small rotation of the polarization 309 

 𝜃 ≈
𝑖(𝑟−−𝑟+)

𝑟−+𝑟+
 . (19) 

The change in reflection coefficients originates from the presence of magnetization, affecting 310 

the refractive indices for right-handed and left-handed helicity. In a medium that has 311 

magnetization along the z-axis, two electromagnetic eigenmodes exist, with left-handed and 312 

right-handed polarization, experiencing different refractive indices. From these effective 313 

refractive indices, the effective permittivity modulation Δε can be obtained:61 314 

 𝑛±
2 = 휀 ± 𝑔 = 휀 + ∆휀 , (20) 

where 𝑔 is the gyration term. Typically, this gyration term is proportional to the 315 

magnetization: 𝑔 = 𝑎𝑀. From this it is found that: 316 

 ∆휀(𝑧, 𝑡) = ±𝑎𝑀(𝑧, 𝑡) . (21) 

To find the change in reflectivity as a function of the modulation in the permittivity, we take 317 

a similar approach that was used for the ultrafast detection of acoustic phonons, in which the 318 

phonon-induced strain affects the reflectivity. We employ the following expression that was 319 

derived in Ref. 62:  320 

 𝑟 = 𝑟0 +
𝑖𝑘0

2

2𝑘
𝑡0�̃�0 ∫ 𝑑𝑧′𝑒2𝑖𝑘𝑧′

∆휀(𝑧, 𝑡) 
∞

0
. (22) 

Here, 𝑟0 is the static reflection coefficient in the absence of a perturbation in the permittivity, 321 

𝑡0 is the transmission coefficient of the light into the medium and �̃�0 is the transmission 322 

coefficient into free space, 𝑘0 is the wave-vector of the light in free space, and 𝑘 is its wave-323 

vector in the medium. For simplicity, we consider the case of a pure antiferromagnet, such 324 
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that the difference in reflection- and transmission-coefficients and wave vectors for both 325 

helicities in statics is negligible, simplifying equation (22) to 326 

 𝑟± = 𝑟0 ± ∆𝑟 , (23) 

where 327 

 ∆𝑟 = 𝑖
𝑎𝑘0

2

2𝑘
𝑡0�̃�0 ∫ 𝑑𝑧′𝑒2𝑖𝑘𝑧′

𝑀(𝑧′, 𝑡) 
∞

0
. (24) 

For the magnetization 𝑀(𝑧, 𝑡) we use the full solution that was obtained as the inverse 328 

Fourier transform of equation (12). We note that the Kerr rotation is caused by the out of 329 

plane component of the ferromagnetic component Mz, whereas our modelled spin deflections 330 

were modelled for the antiferromagnetic Ly components. Therefore, we need to convert the 331 

previously obtained amplitudes of spin deflections of the dynamic ly [L=L0+l(t)] component 332 

to the normal ferromagnetic spin deflection. By writing the Landau-Lifshitz equations for a 333 

two-sublattice antiferromagnet, we can relate the dynamics of the ferromagnetic mz 334 

component to the dynamics of the antiferromagnetic ly component.29 335 

 𝜕𝑚𝑧(𝑡)

𝜕𝑡
= (𝜔𝐴 −

𝑐2

𝜔𝐸
∇2) 𝑙𝑦(𝑡) . (25) 

We can rewrite this expression in the Fourier domain to relate the spectral amplitudes of the 336 

normal ferromagnetic component to the spectral amplitudes of the antiferromagnetic 337 

component  338 

 �̃�𝑧(𝜔) =
1

𝑖𝜔
(𝜔𝐴 −

𝑐2

𝜔𝐸
∇2) 𝑙𝑦(𝜔) . (26) 

We employ this expression subsequently for the freely propagating part of the solution and 339 

the driven part of the solution. The obtained expressions for the dynamic magnetization  is 340 

inserted in (24) and subsequently combined with equations (23) and (19). We recall that the 341 

wave-vector of the spin wave is complex and is written as 𝑘sw = 𝜅 − 𝑖𝜂. In the case of 342 

𝜂 ≠  0, the spin waves decay when they are propagating away from the boundary, and the 343 

integral (24) over 𝑧 converges. As a result, the following expression for the rotation angle is 344 

obtained: 345 

 𝜃(𝑡) =
𝑎𝑘0

2

2𝑘𝑟0
𝑡0�̃�0 ∫ 𝑑𝜔𝑒𝑖𝜔𝑡 (𝑓(𝜔)

1

2𝑘−𝑘sw(𝜔)
+ 𝑝(𝜔)

1

2𝑘+𝑖/𝑑
)

∞

−∞
 , (27) 

with the integral over the frequency representing the Inverse Fourier Transform. Now 𝑓(𝜔) 346 

represents the amplitude of the mz-component of the freely propagating spin wave and 𝑝(𝜔) 347 

represents the amplitude of the mz-component of the particular solution for the magnon that is 348 

driven by the effective field. The freely propagating solution term in equation (27) has a pole 349 
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for 2𝑘 = 𝑘sw(𝜔), implying a selective detection of free spin waves with wave-vectors 350 

satisfying 2𝑘 − 𝑘sw(𝜔) ≈ 0.  If one rewrites this condition for detection in terms of 351 

wavelengths 2𝜆sw = 𝜆opt, the well-known Bragg condition is obtained. We can interpret the 352 

emergence of this Bragg condition by considering the propagating spin wave to effectively 353 

act as a diffraction grating due to the spatial modulation of the permittivity, enhancing 354 

reflectivity of certain wavelengths of the probe pulse.63 355 

V. Results of magneto-optical spin wave detection 356 

To illustrate how this affects the detection, we obtain the predicted spectrum of the Kerr 357 

rotation angle by evaluating the integrand in equation (27) for various wavelengths of the 358 

probe pulse. The time domain signal may then be obtained by an inverse Fourier 359 

transformation. As discussed before, the width of the Gaussian and the propagation of the 360 

pulse are negligible, so we can model the excitation to be impulsive. We model the detection 361 

of spin waves for both the pinned and free boundary condition, for an excitation depth of 𝑑 =362 

50 nm. The results are shown in Figure 7a for the pinned boundary condition and Figure 7b 363 

for the free boundary condition.  The results are shown for a variety of probe wavelengths.   364 
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Comparison of the results in Figure 7 shows a difference in detected signal for the pinned and 366 

the free boundary conditions. The spectral amplitude at the fundamental resonance frequency 367 

of 0.15 THz disappears completely in the case of the pinned boundary condition, whereas in 368 

the free boundary condition a feature at the fundamental resonance frequency is still visible. 369 

In addition to the peak at fundamental resonance frequency, we find a second feature in the 370 

Figure 7: Spectra for an impulsive spin wave excitation as would be detected in a MOKE experiment. The 

spectra are calculated for multiple probe wavelengths 𝜆. a) Calculated spectrum in the pinned boundary 

condition. The inset shows the dispersion relation, with the colored points indicating the selected frequency by 

the various probe wavelengths. b) Spectrum in the free boundary condition.   



18 
 

spectra at a frequency depending on the wavelength of the probe pulse. We see that with 371 

increasing photon energy, the detected spin wave is blue shifted, as a result of the Bragg 372 

condition that was imposed in equation (27). The inset in Figure 7a shows the dispersion 373 

relation. The colored points indicate the spin wave wavevectors that are probed by the optical 374 

probe pulse (𝑘sw = 2𝑘opt) and the matching frequencies. We see that the frequencies 375 

observed in the spectrum match the Bragg-selected frequencies in the dispersion relation. The 376 

results of our model are in excellent agreement with the experimental data reported in Ref. 377 

43. 378 

We also investigate the effect of the excitation localization to the boundary, by performing 379 

the simulation for various excitation depths. The results are shown in Figure 8 using both the 380 

pinned (Figure 8a) and free (Figure 8b) boundary conditions, for a probe wavelength of 𝜆 =381 

800 nm. 382 
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 383 

Figure 8: Spectra of the spin waves for various values of excitation depth d. a) Spectra in the pinned boundary 384 

condition. b) Spectra in the pinned boundary condition. The probe wavelength in these figures is 800 nm. 385 

We see again the diminished spectral amplitude at the fundamental resonance frequency of 386 

0.15 THz in the pinned boundary condition. The amplitude of the peak arising from the 387 

Bragg condition does not seem to be strongly affected by the value of the excitation depth. 388 

On the other hand, we see that the ratio of amplitudes of the two peaks are strongly dependent 389 

on the excitation depth for the free boundary condition. While the value of 𝑑 increases, the 390 

contribution of the fundamental frequency is enhanced and the contribution from the Bragg 391 

reflection is reduced. As a result, for extremely short excitation depths, the detected signal 392 

will be dominated by the Bragg-selected frequencies. For long excitation depths, the detected 393 

dynamics is expected to be at the fundamental resonance frequency. For intermediate 394 
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excitation depths and the free boundary condition, beating in the time domain of the signal is 395 

expected, which depends on the exact value of 𝑑. This implies that if a proper excitation 396 

depth 𝑑 is chosen, the character of the boundary condition can be experimentally determined.  397 

Finally, we investigate the effect of the pinning parameter on the detection scheme. As was 398 

already discussed before, in the case of completely pinned boundary condition, no peak at the 399 

fundamental frequency is observed. In the case of completely free spins, a dominant feature is 400 

seen at the finite ksw peak, but in addition a smaller feature remains at the fundamental 401 

frequency of the ksw=0 mode. As we saw before in section III.D. in the special case of 
1

𝑑
= 𝜉, 402 

the freely propagating solution is fully suppressed and as a result, only a peak at the ksw=0 403 

frequency is observed in the MOKE spectrum. For intermediate pinning parameters, when the 404 

pinning parameter is in a similar order of magnitude as the inverse penetration depth, we 405 

observe a redshift in the ksw=0 peak. We understand this as the emergence of an extra pole in 406 

the detection equation (27). This additional pole appears in 𝑓(𝜔). As seen from equation (8) 407 

if 𝜉 ≈ 𝑖𝑘𝑠𝑤(𝜔) there will be another maximum in the detected MOKE spectrum. We confirm 408 

that the frequency at which this peak appears matches exactly with the frequency at which the 409 

imaginary part of the wavevector is equal to the pinning parameter.  In our calculation, this 410 

indeed matches to the frequencies 𝜔 < 𝜔0. Note that the imaginary part of the spin wave 411 

wavevector arises from the fact that we calculate the magnon wavevector from the frequency 412 

through the dispersion relation (equation (2)), which has an imaginary part for 𝜔 < 𝜔0. 413 

 414 

VI. Conclusions 415 

To summarize, we have derived a model for the optical generation and detection of spin 416 

waves in an antiferromagnet. By considering different excitation profiles, among which the 417 

most general propagating Gaussian pulse, we found that for experimentally realistic 418 

parameters, the laser excitation can be appropriately modelled to be an infinitesimally short 419 

excitation. Also, we have revealed that the spin wave remains localized to the boundary, and 420 

that spin waves travel much slower than the laser excitation, so that we can neglect the 421 

propagation of the pump pulse for the generation of the spin waves. Furthermore, we have 422 

derived a formalism for the magneto-optical detection of these spin waves. In reflective 423 

pump-probe geometry we have calculated the magneto-optical Kerr effect and have shown 424 

that the spin waves are selectively detected through the arising of the Bragg condition. As a 425 

result, we have demonstrated that the detected frequency of the spin waves blue shifts for 426 
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increasing probe frequency. These observations in the models can be confirmed 427 

experimentally by scanning over the probe frequency and variation of the penetration depth 428 

of the pulse, for example by varying the angle of incidence. We find that our results are in 429 

excellent agreement with a recently performed experiment of optical generation and detection 430 

of propagating magnons in an antiferromagnet.43 431 

Furthermore, we have identified differences in the detection of spin waves in the pinned and 432 

free boundary conditions, implying that it should be possible to experimentally identify these 433 

boundary conditions. Further insight in the boundary conditions may provide additional 434 

information on the properties of materials, as the pinning of spins to the boundary depends on 435 

the surface anisotropy of the material and the non-uniformity of the exchange field.50 436 

In conclusion, we note that the developed formalism can be easily extended to describing 437 

experiments with THz and infrared pump pulses simply by appropriate choice of the effective 438 

magnetic field profile (e.g. by digitizing the actual waveform of the THz magnetic field). We 439 

believe it will serve as a basic theoretical framework in the emerging field of 440 

antiferromagnetic magnonics, helping to guide the future experimental work. We also note 441 

that in the present model we considered only small spin deflection in the linear regime of 442 

excitation. This is thus only the first step in theoretical modeling of laser-driven magnon 443 

dynamics in antiferromagnets. The further development of the formalism will allow to 444 

include nonlinear effect by replacing linearized equation (1) with the fully nonlinear 445 

Lagrangian equation of motion.  446 
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