
Recursive averages and the renewal theorem

Introduction

Consider the sequence of numbers an defined by the iteration

an =
k∑

r=1

pran−r (1)

for n ≥ k, where pr (1 ≤ r ≤ k) are non-negative numbers with
∑k

r=1 pr = 1 and the starting

values a0, a1, . . . , ak−1 are given. So an is a weighted average of the previous k terms.

In the Gazette paper [1], it was shown that if each pr is strictly positive, then an

converges to a limit L, which can be expressed in terms of the given numbers pr and ar for

1 ≤ r ≤ k (our notation is slightly different, for reasons that will soon become apparent).

The article [2] gives an interesting geometrical illustration of essentially the same method.

A completely different proof was given in another Gazette note [3] for the special case where

pr =
1
k
for each r.

In at least one important application (which we describe shortly), some of the pr will

definitely be zero. In the method of [1], the condition that they are non-zero is unavoidable:

it cannot be removed by any kind of minor adjustment. In fact, without this condition, the

result amounts to a version (though not the most general one) of a deep result known as

the “renewal theorem”. Although this is purely a result of Analysis, it is recognised as an

important topic in Probability Theory. A proof of the full version can be seen in [4, pp.

335–338]: it cannot be described as easy. Here we will present three quite different methods

to prove our less general case, all much simpler than the one in [4], each offering its own

distinctive perspective on the problem. Two of them use complex numbers in an essential

way, one being a development of [3], while the third is a proof avoiding complex numbers,

somewhat related to [1]. Of course, no reader is obliged to work through all three!

A trivial example shows that �least one further condition must be needed. If p1 = 0

and p2 = 1, then the iteration is an = an−2. It is satisfied by an = (−1)n, which does not

tend to a limit. More generally, let K(p) be the set of r such that pr > 0, and let d be

the greatest common divisor of the members of K(p). If d > 1, then an could simply take

different constant values on each congruence class modulo d. We will say that (pr) satisfies

condition (GCD) if d = 1.

An application: population dynamics

In a population (human or otherwise), let an be the number of births occurring in year

n. Of those born, suppose that the proportion surviving to age r is sr, and that this does not
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change over time. The values of an and sr, once known, fully determine the total population

and its age structure in subsequent years. Suppose that in each year, a proportion br of

those age r (up to some limit r = k) give birth (this is the “age-specific fertility rate”, again

assumed to remain constant through time). So in year n (for n ≥ k), those of age r number

an−rsr: they generate an−rsrbr births. Hence an satisfies (1), with pr = brsr. It does not

matter that in real life fertility rates vary with time. This analysis addresses the question

of what would happen in the long term if the rates occurring in a particular year were to

persist indefinitely.

Let
∑k

r=1 pr = P : this is the “net reproduction rate”. Our theorem, once proved, will

state that if P = 1, then an will converge to a non-zero limit. It then follows easily that if

P < 1, then an will tend to 0, while if P > 1, then an will tend to infinity.

In practice, this analysis is actually applied to the female population. The outcome

for the male population (possibly with a different survival rate) can then be derived as an

afterthought!

Since, even in these uninhibited times, human females aged less than (say) eight do

not give birth, it is clear that in this application, pr will be zero for the first few values of r.

This application also shows why the notation pran−r arises naturally, in contrast to the

notation prar used in [1], [2] and [3].

This analysis was initiated by Lotka in a series of papers, e.g. [5], and continues to be

regarded as a central principle in Demography. He formulated the basic theorem and gave

heuristic reasoning that does not amount to a watertight proof. His informal reasoning has

often been reproduced in later works on the subject, e.g. [6].

Convolutions; products of series

The notion of convolution will enable us to rewrite the problem in a way that accom-

modates a more general result and also opens the way to two of our methods.

We write just a to denote a sequence (an) (regarding a as a function defined on the

non-negative integers, which is technically correct; we need this kind of notation). Given

sequences a = (an) and b = (bn) (defined for n ≥ 0), their convolution is the sequence a ∗ b
is defined by

(a ∗ b)n =
n∑

r=0

arbn−r.

Of course, this can equally be written as
∑n

r=0 an−rbr or
∑

r+s=n arbs. Convolutions arise nat-

urally in the context of multiplication of polynomials or power series. Let A(z) =
∑∞

n=0 anz
n

and B(z) =
∑∞

n=0 bnz
n (in which the variable z could be real or complex). For the moment,
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assume that a and b have only finitely many non-zero terms (we will say that such sequences

are “finitely non-zero”). Then the sums are finite (but we will continue to write them as

infinite sums) and A(z), B(z) are polynomials. Collecting the zn terms in the product, we

have at once

A(z)B(z) =
∞∑
n=0

(a ∗ b)nzn (2)

for all z. The case z = 1 says:

If
∑∞

n=0 an = A and
∑∞

n=0 bn = B, then
∑∞

n=0(a ∗ b)n = AB. (*)

In the case when a and b have infinitely many non-zero terms, statement (*) still holds

provided that the series are absolutely convergent: this is a standard result in Analysis

courses [7, p. 376–377]. A(z) and B(z) are now power series, with respective radii of conver-

gence R1, R2 (possibly ∞). Let R = min(R1, R2). Power series are absolutely convergent

within their radius of convergence, so (*) now applies to show that (2) holds for |z| < R.

The converse also holds, in the following sense. If a, b are two sequences such that

A(z) = B(z) within their common radius of convergence, then an = bn for all n: this is the

uniqeness theorem for power series. Consequently, if we have three sequences a, b, c such

that A(z)B(z) = C(z) within the common radius of convergence, it follows that c = a ∗ b.

(Note in passing. The Dirichlet convolution of sequences (an), (bn) (defined for n ≥ 1)

has nth term
∑

rs=n arbs. This arises from the multiplication of Dirichlet series
∑∞

n=1 an/n
s.

By contrast, our a ∗ b is sometimes called the Cauchy convolution.)

We will need a few more facts about convolutions. First, the sequence e = (1, 0, 0 . . .) is

the identity for convolution: a∗e = a for all a. If a0 ̸= 0, then a has an inverse b: take b0 =
1
a0

and define bn recursively by: a0bn = −
∑n−1

r=0 an−rbr. For example, the inverse of (1, 1, 0, 0, . . .)

is (1,−1, 1,−1, . . .), corresponding to the series identity (1 + z)(1− z + z2 − · · ·) = 1.

Lemma 1: If an = 0 for n > k1 and bn = 0 for n > k2, then (a ∗ b)n = 0 for n > k1+ k2.

Proof: If n > k1 + k2 and r ≤ n, then either r > k1 or n − r > k2. In either case,

arbn−r = 0.

Lemma 2: Write Bn =
∑n

r=0 br. Then
∑n

r=0(a ∗ b)r =
∑n

r=0 arBn−r.

Proof: Reversing the order of summation, we have

n∑
r=0

(a ∗ b)r =
n∑

r=0

r∑
s=0

asbr−s =
n∑

s=0

as

n∑
r=s

br−s =
n∑

s=0

as

n−s∑
t=0

bt.

By another routine exercise in reversing the order of summation (which we leave to any

reader who is so inclined), one can show that convolution is associative: (a∗b)∗c = a∗ (b∗c)
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for sequences a, b, c. Consequently, we can write a∗ b∗ c (and indeed longer strings) without

brackets. In particular, it makes sense to consider the convolution of m copies of a, which we

denote by am∗. Of course, the notation (am∗)n simply means the nth term of this sequence.

Lemma 3: If an → L as n → ∞ and
∑∞

n=0 bn is absolutely convergent, with
∑∞

n=0 bn =

B, then (a ∗ b)n → LB as n → ∞.

Proof: It is enough to prove this statement for the case where L = 0, for then if an → L,

we have
n∑

r=0

an−rbr =
n∑

r=0

(an−r − L)br + LBn → 0 + LB as n → ∞.

So suppose that an → 0. Then (an) is certainly bounded: there exists M such that |an| ≤ M

for all n. Also, let
∑∞

n=0 |bn| = B∗. Choose ε > 0. There exists N such that |an| ≤ ε for

n > N and also
∑∞

n=N+1 |bn| ≤ ε. For n > 2N , we then have∣∣∣∣∣
N∑
r=0

an−rbr

∣∣∣∣∣ ≤ ε
N∑
r=0

|br| ≤ εB∗,

∣∣∣∣∣
∞∑

r=N+1

an−rbr

∣∣∣∣∣ ≤ M
∞∑

r=N+1

|br| ≤ εM.

Another way in which convolutions arise has to be mentioned, though it will not be used

in our proofs (so readers may ignore it). Let X be a random variable taking the values r (for

integers r ≥ 0) with probability pr, so that
∑∞

r=0 pr = 1. Let Y be another random variable

taking the value r with probability qr. If X and Y are independent, then the probability

that X + Y = n is (p ∗ q)n. Further, the “expectation” E(X) is
∑∞

r=1 rpr: denote it by µ.

Let E(Y ) = ν. Then E(X + Y ) =
∑∞

n=1 n(p ∗ q)n. One can verify (again by reversing the

order of summation) that this equals µ+ ν: this is a standard result in Probability Theory.

So it follows, for example, that
∑∞

r=1 r(p
m∗)r = mµ.

Identification of a possible limit, and statements of the theorems

Returning to our problem, let us restate it in convolution notation. Extend the defi-

nition of pr by setting pr = 0 for r > k, also p0 = 0. Then (1) says that an = (p ∗ a)n for

n ≥ k. Meanwhile for n < k, we have

an − (p ∗ a)n = an −
n∑

r=1

pran−r.

This is a combination of the given values as far as an, and there is no reason why it should

be zero. Denoting it by gn for 0 ≤ n ≤ k − 1, and setting gn = 0 for n ≥ k, we can state

an =
n∑

r=1

pran−r + gn (3)
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for all n ≥ 0, in other words, a = p ∗ a+ g.

This reproduces all the original information. It also gives us a useful alternative for-

mulation of the problem. Regard gn as given, rather than an (with gn = 0 for n ≥ k). Then

define an recursively by (3) for all n ≥ 1, starting with a0 = g0. This opens the possibility of

generalisation to the case where (pr) and (gn) are not finitely non-zero. (In the population

example, gn equates to the contribution to an of the population present in year 0.)

Now let

qr = pr+1 + · · ·+ pk

for 0 ≤ r ≤ k − 1, also qr = 0 for r ≥ k. Then q0 = 1, 0 ≤ qr ≤ 1 for all r and qr = 1− Pr,

where Pr = p1 + · · ·+ pr. Also,

k−1∑
r=0

qr =
k−1∑
r=0

k∑
s=r+1

ps =
k∑

s=1

ps

s−1∑
r=0

1 =
k∑

s=1

sps.

Denote this by µ (as seen above, it is the expectation of the probability distribution (pr).)

Also, write Gn =
∑n

r=0 gr. Of course, Gn = Gk−1 for all n ≥ k: denote this by γ. The

next Lemma is pivotal in our development. It is similar to the reasoning in [1], in different

notation.

Lemma 4: With q and G defined this way, we have q ∗ a = G.

Proof: Write also An =
∑n

r=0 ar. By (3) and Lemma 2,

Gn = An −
n∑

r=0

(p ∗ a)r = An −
n∑

r=0

arPn−r

= An −
n∑

r=0

ar(1− qn−r)

=
n∑

r=0

arqn−r.

This algebra is reversible: q ∗ a = G is actually equivalent to a = p ∗ a+ g.

By Lemma 3, if an tends to a limit L, then Gn tends to L
∑k−1

r=0 qr = Lµ. But Gn has

the constant value γ for all n ≥ k. So the only possible candidate for L is γ/µ.

Further, γ = (q ∗ a)k−1 =
∑k−1

r=0 qrak−1−r, a combination of the values a0, a1, . . . , ak−1.

For our original version of the problem, it is natural to express our candidate limit in this way.

The fact that Gn = γ for n > k expresses the fact that the limit is the same if an−k, . . . , an−1

are regarded as the starting values. Obviously, any combination of values that is supposed

to represent the limit has to pass this test.
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We are now ready to set out the exact statement of our Theorems.

Theorem 1: Suppose that pr ≥ 0 for 1 ≤ r ≤ k, that
∑k

r=1 pr = 1 and that (pr) satisfies

condition (GCD). Let
∑n

r=1 rpr = µ. Suppose also that numbers gn are given, with gn = 0

for n ≥ k and
∑k−1

n=0 gn = γ. Let an be defined recursively by a0 = g0 and

an =
n∑

r=1

pran−r + gn

for all n. Then

an → γ

µ
as n → ∞.

As we have seen, this implies the following variant, in line with our original version of

the problem.

Theorem 2: Suppose that (pr) is as in Theorem 1. Write qr = pr+1 + · · · + pk for

0 ≤ r ≤ k− 1. Suppose also that a0, a1, . . . , ak−1 are given and an =
∑k

r=1 pran−r for n ≥ k.

Then an → L as n → ∞, where

L =

∑k−1
r=0 qrak−1−r∑k−1

r=0 qr
.

For the special case where pr =
1
k
for 1 ≤ r ≤ k, one can easily deduce the well-known

formula L = [2/k(k + 1)]
∑k

r=1 rar−1.

The formulation of Theorem 1, unlike Theorem 2, points to the full version of the

renewal theorem. For this, (pr) and (gn) are given infinite sequences satisfying
∑∞

r=1 pr = 1,∑∞
r=1 rpr = µ and

∑∞
n=0 gn = γ. The conclusion is the same as before. As we progress, we

will consider the extent to which our methods stretch to this case.

The sub-unital case and an easy special case

Let
∑k

r=1 pr = P . We call the case P = 1 “unital”, and the case where P < 1 “sub-

unital”. Of course, the unital case is our main concern, but we can make good use of the

sub-unital one. Observe next that in the unital case, if |an| ≤ M for 0 ≤ n ≤ k − 1, then,

by an obvious induction, |an| ≤ M for all n. We can deduce the following very easy result

for the sub-unital case (condition (GCD) is not needed):

Lemma 5: Suppose that an satisfies (1) for n ≥ k, with
∑k

r=1 pr = P < 1. Then for

some M and λ > 1, we have |an| ≤ M/λn for all n, hence an → 0 as n → ∞.

Proof: Let cn = λnan, where λ is to be chosen. Then for n ≥ k,

cn = λn

k∑
r=1

pran−r = λn

k∑
r=1

prλ
r−ncn−r =

k∑
r=1

prλ
rcn−r.
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By the intermediate value theorem, there exists λ > 1 such that
∑k

r=1 prλ
r = 1. By the

preceding remark, (cn) is bounded, say |cn| ≤ M for all n. So |an| ≤ M/λn for all n.

Of course, it follows, not only that an → 0, but that
∑∞

n=0 an is convergent: let its sum

be A. We can actually identify A. Recall our basic equation a− p ∗ a = g. By (*), we have∑∞
n=0(p ∗ a)n = PA. Hence A− PA = γ, so A = γ/(1− P ).

More importantly, the case of Theorem 1 where pr > 0 for 1 ≤ r ≤ k now follows very

easily (in fact, a little more easily than in [1]). Let bn = an − L, where L = γ/µ. Then for

n ≥ k,
k∑

r=1

prbn−r =
k∑

r=1

pran−r − L = an − L = bn (4)

and
k∑

r=1

qr−1bn−r =
k−1∑
s=0

qsan−1−s − Lµ = Gn−1 − Lµ = γ − Lµ = 0. (5)

For some δ > 0, we have pr ≥ δ for 1 ≤ r ≤ k. Then pr − δqr−1 ≥ 0 for each r, and∑k
r=1(pr − δqr−1) = 1− δµ. But by (4) and (5),

bn =
k∑

r=1

(pr − δqr−1)bn−r.

for n > k. So by Lemma 5, bn → 0 as n → ∞.

Without further refinement, this reasoning does not adapt to the case where some pr

are zero. For example, if p5 = p6 =
1
2
, then q has a block of six non-zero terms: no translation

of them can be covered by non-zero pr. The refinement needed is substantial: we describe it

in Method 3 below.

Method 1: complex power series

This certainly the slickest of our methods. It is a rather striking example of Complex

Analysis being applied to prove a result in Real Analysis. The scheme is as follows. Recall

that q ∗ a = G. Since q0 = 1, we know that q has an inverse with respect to convolution:

denote it by c, so c ∗ q = e, the identity. Hence a = (c ∗ q) ∗ a = c ∗ (q ∗ a) = c ∗ G. Now

Gn = γ for all n ≥ k, so if we can show that
∑∞

n=0 cn is absolutely convergent, then Lemma

3 shows that an tends to γ
∑∞

n=0 cn.

Let P (z) =
∑k

r=1 prz
r and Q(z) =

∑k−1
n=0 qrz

r. Note that P (1) = 1 and Q(1) = µ.

Lemma 6: We have (1− z)Q(z) = 1− P (z).

Proof: Since q0 = 1 and qr−1 − qr = pr for r ≥ 1,

(1− z)Q(z) = q0 +
k∑

r=1

(qr − qr−1)z
r = 1−

k∑
r=1

prz
r = 1− P (z).
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We now deploy the assumption that (pr) satisfies (GCD): this is to be understood in

the following Lemmas.

Lemma 7: P (z) ̸= 1 for complex z ̸= 1 with |z| = 1.

Proof: Recall that K(p) denotes the set of r such that pr > 0. Suppose that |z| = 1 and

P (z) = 1, so also Re P (z) = 1. If Re zr < 1 for some r inK(p), then Re P (z) <
∑k

r=1 pr = 1.

So for each r in K(p), we have Re zr = 1, so in fact zr = 1.

By the generalised Bezout identity in number theory, there exist r1, . . . , rj in K(p)

and integers n1, . . . , nj (some positive, some negative) such that
∑j

i=1 niri = 1. Then z =∏j
i=1 z

niri = 1.

Lemma 8: Q(z) ̸= 0 for all complex z with |z| ≤ 1.

Proof: First, Q(1) = µ > 0. For z ̸= 1, Lemma 6 shows that Q(z) = 0 if and only if

P (z) = 1. By Lemma 7, this does not occur for z ̸= 1 with |z| = 1. If |z| < 1, then |zr| < 1

for all r, so |P (z)| <
∑k

r=1 pr = 1.

Lemmas 6,7 and 8 appear in [4, chap. 13], but our final step does not. We apply the fol-

lowing theorem of Complex Analysis: if a function f(z) is differentiable (alias holomorphic)

for |z| < R, then it is given by a power series for |z| < R.

Lemma 9: There exist R > 1 and a sequence c = (cn) such that
∑∞

0 cnz
n = 1/Q(z)

for |z| < R. Further, c ∗ q = e and
∑∞

n=0 cn is absolutely convergent, with sum 1/µ.

Proof: Let the complex zeros of the polynomial Q(z) be z1, z2, . . . , zk. By Lemma 7,

|zi| > 1 for each i, so if R is the smallest |zi|, then R > 1. Then for all z with |z| < R,

we have Q(z) ̸= 0, so 1/Q(z) is well defined and differentiable: denote it by C(z). By the

theorem just quoted, C(z) is given by a power series
∑∞

n=0 cnz
n for such z. So C(z)Q(z) = 1:

as explained earlier, this implies that c ∗ q = e. Also,
∑∞

n=0 cn = C(1) = 1/Q(1) = 1/µ.

Convergence is absolute, as always with power series.

By Lemma 3, it follows that an → γ/µ as n → ∞, completing the proof of Theorem 1.

One might be tempted to suppose that this method will extend easily to the case where

(pr) and (gn) are infinite sequences. Lemmas 6, 7 and 8 do indeed extend with no trouble.

The snag is that Q(z) may well have radius of convergence 1, and fail to be defined for

|z| > 1. For example, this happens with qr = 2/(r+1)(r+2). In this situation, we can only

conclude that
∑∞

n=0 cnz
n converges for |z| < 1, giving no information about the case z = 1,

which is what we want. This might seem like a small distinction, but it is critical. In fact,

convergence of
∑∞

n=0 |cn| equates to a deep result known as “Wiener’s Tauberian theorem”:

which is best proved using the spectral theory of Banach algebras (e.g. see [8, p. 333]).
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Method 2: an explicit expression for an

This is a familiar method in the context of difference equations. We consider the

scenario of Theorem 2 rather than Theorem 1. The recurrence (1) will be satisfied by

an = zn if f(z) = zk, where

f(z) =
k∑

r=1

prz
k−r = p1z

k−1 + · · ·+ pk−1z + pk.

With qr = pr+1 + · · ·+ pk, we have zk − f(z) = (z − 1)g(z), where

g(z) =
k−1∑
r=0

qrz
k−1−r = q0z

k−1 + · · ·+ qk−2z + qk−1.

Let the complex factorisation of g(z) be
∏k−1

i=1 (z−zi). Also, let z0 = 1. Then any linear

combination of the form
∑n

i=0 ciz
n
i satisfies (1). As we now show, if the zi are all distinct,

then an can be expressed as such a combination.

Theorem 3: Let an satisfy (1) for n ≥ k, with a0, a1, . . . , ak−1 given. Suppose that

z1, z2, . . . , zk are distinct. Let
∑k−1

r=0 qr = µ. Then there exist ci (0 ≤ i ≤ k − 1) such that

an = c0 +
k−1∑
i=1

ciz
n
i (6)

for all n. Also, c0 =
1
µ

∑k−1
r=0 qrak−1−r.

Proof: We need to choose the ci so that (6) holds for 0 ≤ n ≤ k−1, matching the given

starting values an. This is possible, because the vectors (1, zi, z
2
i , . . . , z

k−1
i ) for 0 ≤ i ≤ k− 1

are linearly independent: they form the “van der Monde matrix”. Also,

k−1∑
r=0

qrak−1−r = c0µ+
k−1∑
i=1

cig(zi) = c0µ.

Of course, non-real zi occur in conjugate pairs zi, zi. The sum in (6) becomes real

when ciz
n
i is combined with cizi

n. Also, any real zi is negative, because g(x) > 0 for x > 0.

Lemma 10: If (pr) satisfies (GCD), then |zi| < 1 for 1 ≤ i ≤ k − 1.

Proof. First, observe that g(1) > 0, so zi ̸= 1. If |z| > 1, then |z|r < |z|k for r < k, so

|f(z)| < |z|k. Hence |zi| ≤ 1. If |z| = 1 and z ̸= 1, then, as in Lemma 7, zr = 1 for each r in

K(p), and hence z = 1.

Theorem 2 now follows for the case where the zi are distinct: each zni tends to 0, so

an → c0.
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It was shown in [3] that the zi are distinct in the special case where pr = 1
k
for

each r. But in general they may well fail to be distinct. An actual example is easily

constructed by choosing the zi first and deducing the pr: let k = 3 and z1 = z2 = −1
3
. Then

g(z) = (z + 1
3
)2 = z2 + 2

3
z + 1

9
, given by q1 =

2
3
and q2 =

1
9
, so by p3 =

1
9
, p2 =

5
9
, p1 =

1
3
.

In [1, p. 220], it is stated that the method of [3] can be “easily modified” to prove the

general result, apparently overlooking the possibility of repeated zi. In fact, this case requires

quite a bit more work. First, we describe the solution when one zi (say z1) is repeated just

once.

Lemma 11: If z1 is a repeated zero of g(z), then (1) is satisfied by an = nzn1 .

Proof: Write F (z) = zk − f(z) = (z − 1)g(z). Since F (z1) = 0, we have f(z1) =∑k
r=1 prz

k−r
1 = zk1 . Also, g

′(z1) = 0, so F ′(z1) = 0, hence

0 = z1F
′(z1) = kzk1 −

k∑
r=1

(k − r)prz
k−r
1 ,

so

k∑
r=1

pran−r =
k∑

r=1

(n− r)prz
n−r
1

= zn−k
1

k∑
r=1

[(n− k) + (k − r)]prz
k−r
1

= (n− k)zn−k
1

k∑
r=1

prz
k−r
1 + zn−k

1

k∑
r=1

(k − r)prz
k−r
1

= (n− k)zn−k
1 zk1 + kzn−k

1 zk1

= nzn1 = an.

Suppose now that z2 = z1, while the other zi are distinct. In (6), replace zn2 by nzn1 .

The resulting set of vectors is still linearly independent, so can still be matched with the

starting values a0, a1, . . . , ak−1.

The reader will not be surprised to hear that if zi occurs three times, then n2zni satisfies

(1), and so on. The verification becomes increasingly complicated as we progress to higher

numbers of repetitions, and we will refrain from spelling it out in detail. If zi is repeated

m times, then we obtain mi corresponding vectors, which are inserted into (6). By a fairly

simple extension of the van der Monde result, the resulting set of vectors is still linearly

independent. Theorem 2 still follows, because for any r ≥ 1, nrzni → 0 as n → ∞.

Of course, there is no possibility of this method extending to infinite sequences.
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Method 3: repeated convolutions, reduction to the sub-unital case

We have seen two proofs of this theorem of Real Analysis using complex numbers in an

essential way. When this happens, it is a natural challenge to find a proof avoiding complex

numbers. A particularly famous instance where this occurs is the prime number theorem.

The idea of this method (which, I think, is not well known) was already seen in the

“easy special case” described earlier. With bn = an −L, the aim is to show that b satisfies a

condition like the one in Lemma 5, so tends to zero.

Given our iteration an =
∑k

r=1 pran−r+gn, a natural idea is to substitute for an−r using

the same identity again, thereby obtaining a double sum expressing an in terms of certain

previous values. Convolution notation describes this step very neatly: given a = g + p ∗ a,
apply p again and substitute to find a = g + p ∗ g + p ∗ p ∗ a. Repeating this, we obtain:

Lemma 12: For each m ≥ 1,

a = g + p ∗ g + · · ·+ p(m−1)∗ ∗ g + pm∗ ∗ a. (7)

Proof. Induction on m. Assuming the statement for m, apply p again to obtain

p ∗ a = p ∗ g + p ∗ p ∗ g + · · ·+ pm∗ ∗ g + p(m+1)∗ ∗ a.

Since a = g + p ∗ a, this implies the identity for m+ 1.

We remark that any attempt to express this identity without convolution notation

would involve increasingly complicated multiple sums, a nightmare even to contemplate!

Write formula (7) as a = t+ pm∗ ∗ a, where t = g + p ∗ g + · · ·+ p(m−1)∗ ∗ g. This is an
identity of the same sort as the original a = g + p ∗ a, with pm∗ replacing p. By Lemma 1,

(pj∗ ∗ g)n = 0 for n > (j + 1)k, so for n > mk, we have tn = 0, hence (pm∗ ∗ a)n = an.

Now let us come back to bn = an − L. We can restate (4) as b − p ∗ b = h, where all

that matters is that hn = 0 for n ≥ k (actually, h = g − Lq, but we do not need this.) By

Lemma 12, applied to b and h instead of a and g, we see that (pm∗ ∗ b)n = bn for n > mk.

We now incorporate condition (GCD). From the definition of convolution, it is obvious

that if u, v are non-negative sequences with r ∈ K(u) and s ∈ K(v), then r + s ∈ K(u ∗ v).
Applying this repeatedly, we see that if ri ∈ K(p) and ci are positive integers for 1 ≤ i ≤ I,

with
∑I

i=1 ci = c, then
∑I

i=1 ciri ∈ K(pc∗).

Lemma 13: If (pr) satisfies (GCD), then there exist positive integers c, d, N such

that if u = 1
2
(pc∗ + pd

∗
), then both N and N + 1 are in K(u). Further, n ∈ K(uk∗) for

kN ≤ n ≤ k(N + 1).
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Proof: Separating the positive and negative terms in the Bezout identity, we see that

there exist ri, sj inK(p) and positive integers ci, dj such that
∑I

i=1 ciri = N and
∑J

j=1 djsj =

N +1 for some N . Let
∑I

i=1 ci = c and
∑J

j=1 dj = d. Then N ∈ K(pc
∗
) and N +1 ∈ K(pd∗).

Hence both are inK(u). Now let n = kN+r, where 0 ≤ r ≤ k. Then n = (k−r)N+r(N+1),

hence n ∈ K(uk∗).

(Of course, if K(p) itself contains two consecutive integers, we just take u = p.)

Clearly, (u ∗ b)n = bn for all large enough n. Write uk∗ = v. Then, as with a and p,

we have (v ∗ b)n = bn for all large enough n. Also, the non-zero values of v occur for r ≤ R

(for some R) and
∑R

r=1 vr = 1. Our final step is to use a translation of q to replace this by

a sum less than 1. Recall that (5) says, in convolution notation, that (q ∗ b)n = 0 for n ≥ k.

Let q̃n = qn−kN for n ≥ kN , also q̃n = 0 for n < kN . Then for n ≥ k(N + 1),

(q̃ ∗ b)n =
n∑

r=kN

q̃rbn−r =
n−kN∑
s=0

qsbn−kN−s = (q ∗ b)n−kN = 0.

Completion of the proof of Theorem 1. By Lemma 13, there exists δ > 0 such that

vr ≥ δ for kN ≤ r ≤ kN + 1. Let w = v − δq̃. Then wr = 0 for r > R and (w ∗ b)n = bn

for large enough n. To conclude that bn → 0 using Lemma 5, we need to know that wr ≥ 0

and
∑R

r=1wr < 1. Now q̃r ≤ 1 for all r and q̃r is only non-zero for kN ≤ r ≤ k(N + 1), so

wr ≥ 0 for all r. Since
∑R

r=1 q̃r = µ, we have
∑R

r=1 wr = 1− δµ.

With a little extra effort, this method can be modified to deal with infinite sequences.

Wherever we previously had finitely non-zero sequences, we now have sequences that have

to be shown to tend to 0, usually using Lemma 3. This applies also to differences between

two sequences. Some proofs, especially Lemma 5 and the final step, become a little more

delicate. Even with these further refinements, the method is still arguably more elementary

than the proof in [4].
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