
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Computation Offloading for Tasks with Bound
Constraints in Multi-access Edge Computing

Kexin Li, Xingwei Wang*, Qiang He, Qiang Ni, Mingzhou Yang, and Schahram Dustdar

Abstract—Multi-Access Edge Computing (MEC) provides task
offloading services to facilitate the integration of idle resources
with the network and bring cloud services closer to the end user.
By selecting suitable servers and properly managing resources,
task offloading can reduce task completion latency while main-
taining the Quality of Service (QoS). Prior research, however,
has primarily focused on tasks with strict time constraints,
ignoring the possibility that tasks with soft constraints may
exceed the bound limits and failing to analyze this complex task
constraint issue. Furthermore, considering additional constraint
features makes convergent optimization algorithms challenging
when dealing with such complex and high-dimensional situations.
In this paper, we propose a new computational offloading
decision framework by minimizing the long-term payment of
computational tasks with mixed bound constraints. In addition,
redundant experiences are gotten rid of before the training of the
algorithm. The most advantageous transitions in the experience
pool are used for training in order to improve the learning
efficiency and convergence speed of the algorithm as well as
increase the accuracy of offloading decisions. The findings of
our experiments indicate that the method we have presented is
capable of achieving fast convergence rates while also reducing
sample redundancy.

Index Terms—Multi-access edge computing, Computation
offloading, Bound constraints, Deep reinforcement learning,
Markov decision process.

I. INTRODUCTION

In recent years, there has been a proliferation of a large
variety of intelligent applications, which has contributed to
the increased focus on Multi-access Edge Computing(MEC).
It is an important piece of technology that can provide com-
putational resources for resource-constrained User Equipment
(UE) [1], and it involves a wide variety of fields that involve
offloading decision problems, such as Vehicular Networks and
the Internet of Health Things (IoHT) [2]. In greater detail,
MEC is utilized to offload the computational responsibilities of
the UE to the Edge Node (EN), which solves the inadequacies
that the devices have in terms of resource storage, computing
performance, and energy efficiency [3]–[5]. One of the primary

Manuscript received October 07, 2022; revised December 23, 2022.
K. Li is with the College of Computer Science and Engineering, North-

eastern University, Shenyang 110819, China.
X. Wang is with the College of Computer Science and Engineer-

ing and State Key Laboratory of Synthetical Automation for Process
Industries, Northeastern University, Shenyang 110819, China. E-mail:
wangxw@mail.neu.edu.cn

Q. He is with the College of Medicine and Biological Information Engi-
neering, Northeastern University, Shenyang, 110169, China.

Q. Ni is with the School of Computing and Communications, Lancaster
University, Lancaster, U.K

M. Yang is with the School of Information Science and Engineering,
Shenyang University of Technology, 110178

S. Dustdar is with Distributed Systems Group, TU Wien, Vienna, Austria.

topics of study in the MEC is the development of methods for
enabling low-latency and energy-efficient compute offloading
decisions. This area of research has attracted significant inter-
est from both academic and industrial researchers [6], [7].

Since the applications that have bound constraints, such
as Virtual Reality (VR), IoHT, and real-time video analytics,
have become incredibly common, a large amount of effort has
recently been put into the design of a computation offloading
policy for delay-sensitive computational tasks [8]–[10]. For
instance, Kovacevic et al. [11] develop a formulation for the
joint optimization of resource allocation for communication
and computation in response to computation offloading re-
quests that have stringent bounding restrictions. A similar
design problem is tackled in [12] presenting a priority-aware
computation offloading and deriving a lower latency of the
average response time for all tasks. Wu et al. [13] developed a
virtual queue by employing perturbed Lyapunov optimization
strategies in order to convert the challenge of ensuring task
deadlines into a problem of stable control for the virtual queue.
Tang et al. [14] proposed a new framework in which the task
cannot be finished within the bound constraints are dropped.
However, the research mentioned above only considered the
tasks with strict bound constraints. Some activities, such as
those using multimedia, might only need to be finished before
the deadlines on occasion. These tasks with a mixture of
soft and hard deadlines are more in line with the reality of
MEC computational offloading services, but this problem has
been ignored by most work. Therefore, we intend to study
the problem of computational offloading with mixed bound
constraints.

Computation offloading for MEC systems requires taking
into consideration the dynamics of the environment, such as
time-varying network states [15]. Chen et al. [16] formulated
a dynamic optimization problem as an infinite-horizon MDP
model to maximize the long-term utility performance. Wu
et al. [17] created a technique for energy-efficient dynamic
task offloading (EEDTO) by selecting the most appropriate
computing location in an online manner. The implementation
of the algorithm was successful in meeting the computation
performance requirements because it required nothing more
than the successful resolution of a deterministic challenge
during each time slot. When the number of heterogeneous
UEs grows, however, the dimensionality and computational
complexity that were formerly a trivial barrier become a
significant one.

As reinforcement learning (RL) or deep reinforcement
learning (DRL) is gradually applied in various industrial
scenarios, mainstream researchers try to solve the computa-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

tional offloading problem using the above algorithms. Scal-
able schemes for learning binary offloading judgments from
experience are used to escape the predicament of high-
dimensional states and computational complexity [18]. For
instance, to demonstrate the potential of a distributed online
reinforcement learning system, Chen et al. provided a case
study on resource orchestration in computation offloading.
Hermit et al. [19] expressed the multi-user computation of-
floading as linear programming of mixed integers problem
through hierarchical deep actor-critic reinforcement learning.
Conventionally, DRL works on the principle of many trials and
iterations of states and actions to optimize the computational
offloading strategy. Nevertheless, it is challenging to converge
an optimization algorithm for computational offloading tasks
with bound constraints because additional features make the
state space complex and high-dimensional.

In this system, tasks generated by UEs need to be finished
within their mixed bound constraints, making it more difficult
to develop a rational and effective computational offloading
mechanism. In addition, with the gradual increase of edge net-
work users, dynamic network environments, and the explosion
of state spaces, traditional reinforcement learning algorithms
need to be revised to handle such complex scenarios. Inspired
by mentioned above, We present a new computation offloading
scheme for tasks with mixed bound constraints based on
experience-based reinforcement learning in the MEC system.
The main contributions are as follows:

• We have developed an offloading framework in the MEC
system for delay-sensitive tasks with mixed bound con-
straints. The goal of this framework is to minimize the
long-term payment of the task. Specifically, long-term
payment should include delay, energy consumption, and
reasonable penalty terms to obtain the most efficient
offloading strategy.

• We devise a scheme for learning the optimal computation
offloading policy with experience-based reinforcement
learning, which involves two parts: experience trimming
and priority experience replay. It improves learning ef-
ficiency and convergence speed by removing similar
transitions in the experience pool and selecting the most
significant transition.

• Numerical experiments are conducted to verify that our
proposed learning scheme outperforms other baseline
schemes considering the tasks with mixed bound con-
straints.

The remainder of this paper is organized as follows. In
Section II, the system model is presented. The problem is
transformed into an MDP-based computation offloading prob-
lem. In Section III, we propose an Experience-based RL com-
putation offloading scheme to minimize the users’ payment
in the MEC. Simulation results are presented in Section IV.
Finally, Section V concludes the paper and provides insights
into possible future work.

II. SYSTEM MODEL

In this section, we present the framework and detail the role
of each module in the framework. Then, the workflow and the
problem formulation are described as follows.

Fig. 1. An overview of MEC system

A. System Description

We consider a set of User Equipments (UEs) M =
{1, 2, ...m} and a set of Edge Nodes (ENs) N = {1, 2, ...n}
in this MEC system. The set of time slots indexed is defined
as T = {1, 2,t}, with each decision occurring within the
same time slot. An overview of this system is given in Fig. 1.
In this system, each UE makes an optimal offloading method
in combination with the characteristics of the task and the
network conditions. After submitting the decision to the UE,
the EN executes the offloading strategy.

Moreover, as a practical application, UEs may form part of
an intelligent device or Inter of Things (IoT) system appli-
cation. In this paper, we focus only on the computationally
intensive tasks of UEs and assume that they are generated on
UEs at the rate of Poisson distribution λ. The connectivity be-
tween each UE and EN is assumed to be wireless fidelity with
a finite computation capability. It depends on the offloading
decision whether these tasks should be processed locally or
offloaded to an EN n. ach EN consists of a base station (BS)
and an edge server (ES) as shown in Fig.1. The BS provides
communication services, and tasks are uploaded to the ES over
a wireless channel. The ES offers computational resources to
the UE, assuming that the computational capacity of the ES
far exceeds that of the UE. at the beginning of each time slot,
a new task arrives at the UE m. The control center deployed
on the edge service obtains global information, such as data
size and computational capacity of UE m and EN n. Then it
makes a computational offloading decision based on the above
information.

B. Task Model

Without loss of generality, we assume that each UE has
only one computational task to process at a time and that
tasks cannot be further partitioned. Therefore, the computation
offloading decision is dichotomous, and tasks can only be
executed locally or on EN. To make the tasks more visible
and intuitive, let Cm and fm (cycles per second) are the
data size of the task and the computation rate of UE m,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

respectively. Specifically, we consider the task of UE m with
mixed deadlines boundm = {tsm, thm}, where tsm, and thm
means the task of UE m’s soft bounds and hard bounds,
respectively.

C. Computation Model

Depending on the current state, the computation offloading
policy of UE m only in two cases, ”local” or ”offload”. The
two computational models are described in detail as follows.

1) Processing Locally: At time t, the task of UE m’s
execution delay in this case is defined as Dl

m(t). And we
assume that each UE’s computational capabilities can be
different, defined as fm. Then the execution delay in this case
can be expressed as:

Dl
m(t) =

Cm

fm
(1)

Another point to consider is that according to the circuit
theory [20], the amount of energy consumed by the CPU is
directly proportional to the circuit supply voltage performance.
Additionally, when the processor works at low voltage limits,
the circuit-supplied voltage is linearly proportional to the com-
puting speed of the processor. In consequence, it is possible
to express the energy consumption per CPU cycle as follows:

El
m(t) = ϵCm(Dl

m)2 (2)

where ϵ is defined as the effective switching capacitance,
which depends on the chip structure according to [21].

Based on (1), (2), the payment plm(t) for the computing task
of UE m locally is calculated as:

plm(t) =

T∑
t=1

ω1D
l
m(t) + ω2E

l
m(t) (3)

where 0 < ω1 < 1 and 0 < ω2 < 1 are set as the weights of
probability.

2) Processing via Offloading: If UE m offloads the task
to EN n, the delay is composed of three components: (i) the
transfer delay for uploading the task to EN n, (ii) the execution
delay, and (iii) the transfer delay for returning the execution
result to UE m. These three components will be explained in
detail below.

(i) Task Uploading. We assume that the wireless channel
is different between time slots as it has independent and
identically distributed block fading same as [22]. We define
Gup

mn as the small range of channel power gain from UE m to
EN n. About all, we can calculate the corresponding channel
power gain ht,up

mn based on

ht,up
mn = Gup

mnφ(dref/dmn) (4)

where φ, dref and dmn are defined as the passing loss
constant, the reference distance and the actual distance from
UE m to EN n, respectively. We set bt,upmn ∈ [Bmin, Bmax]
as the network bandwidth, where Bmin and Bmax are the
minimum and maximum network bandwidths, respectively.

Based on the above description, the communication rate can
be expressed as follows:

rupmn = bt,upmn log2(1 +
ht,up
mn · Pmn

INσ2
) (5)

where Pmn is the transport power of communication, σ2 is
the unit distance path loss, and IN is set as the signal to
interference noise ratio.

If UE m offloads its computational task to EN n at time t,
the task completion delay shall include the data transfer delay
to the EN. We define Cm as the task size allocation from UE
m to EN n. Thus, the transfer delay from UE m to EN n at
time t can be expressed as follows:

Dup
mn(t) =

Cm

rupmn
(6)

Furthermore, the transmission energy consumption at EN n
is given by

Eup
mn(t) = PmnD

up
mn(t) (7)

(ii) Task Execution. EN n’s computing speed can be calcu-
lated as fn. Consequently, the computation delay in this case
is:

Dex
mn(t) =

Cm

fn
(8)

Suppose that UE m keeps an idle state while the EN
executes the task, and the energy consumption of UE m in the
idle state needs to be considered, which is defined as P idle

m .
The energy consumption can be obtained as

Eidle
mn (t) =

P idle
m · Cm

fn
(9)

(iii) Results Downloading. Let consider the symmetric chan-
nel, and the transmission rate of the wireless downlink from
the EN n to UE m is calculated as rdown

mn = bt,down
mn · log2(1+

ht,down
mn ·Pmn

IN ·σ2). ht,down
mn denotes the received channel power gain

from EN n to UE m, I is the signal to interference noise ratio
set. The data size of the task of UE m execution result is
represented as zm. As a result, the expression for the transfer
delay for downloading execution results from EN n is

Ddown
mn (t) =

zm
rdown
mn

(10)

In addition, define P down
mn as the energy consumption of UE

m to download the execution results from EN n. The energy
consumption of UE m during the downloading of results can
be obtained by the following equation

Edown
mn (t) =

P down
mn · zm
rdown
mn

(11)

Without loss of generality, the total completion time for EN
and energy consumption of UE m can be calculated with the
following formulas:

Do
mn(t) = Dup

mn(t) +Dex
mn(t) +Ddown

mn (t) (12)

Eo
mn(t) = Eup

mn(t) + Eidle
mn (t) + Edown

mn (t) (13)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Based on (12), (13), the payment pom(t) for the offloading
task of UE m is calculated as:

pom(t) =

T∑
t=1

ω1D
o
mn(t) + ω2E

o
mn(t) (14)

where 0 < ω1 < 1 and 0 < ω2 < 1 are set as the weights of
probability.

D. Problem formulation

Since the MEC problem is a temporal decision problem, ex-
isting work has demonstrated that the computational offloading
problem can be solved as an MDP problem [23]. Specifically,
a decision-capable agent can observe the environment state
S, i.e., network information, and perform an action A for a
task based on the state information, i.e., whether the task is
offloaded or not, which determines the next global state. The
task of UE m is rewarded with R, which is used to determine
the excellence of the action. Typically, an intelligence maxi-
mizes its expected reward by optimizing the policy mapping
from states to actions; in the system we consider, our goal is
to minimize long-term payments. Next, we introduce the three
essential elements in this system: state, action, and reward.
Then, we construct the payment minimization problem for the
system.

State: In this system, before the start of each time slot, the
UE m obtains the state information, including the data size of
the task, the task boundary constraints, and the computational
power of the EN. The state can be represented as a triple st =
{Cm, boundm, fn}. Let S denote the discrete and finite state
space of each UE, i.e. S = Cm×boundm×{f1, f2,fN}N ,
where Cm is the size of the data for task m at time t, boundm
is the constraint of the task, and fn is the computational speed
(number of cycles per second) of EN n.

Action: To represent the manner in which the task is
executed, we define the action as At = at = {xm(t)},
m ∈ {1, · · ·,M}, xm(t) ∈ {0, 1}. xm(t) = 0 means that
the task of UE m will be assigned to the EN; and vice versa.

Reward: If a task has been processed, the task latency
is the time between task arrival and task completion, and
the energy consumption is the total payment of computing
energy and communication payment. We set a binary variable
xm(t) = {0, 1} to denote the unique index of the task at the
beginning of time slot t ∈ T . If the task will be processed
locally, xm(t) = 1, and vice versa. Based on (3) and (14), we
defined Ptotal(t) as the total task payment of UE m, i.e.,

Ptotal(t) =
∑

t∈T ,m∈M
xm(t)plm(t) + |1− xm(t)|pom(t) (15)

The reward function of a model is usually related to the
system’s objective. In this situation, the offloading framework
makes decisions by minimizing the system’s payment. There-
fore, we find a utility function u(st, at) that can be used to
quantify the reward calculated for the tasks of the UE in the
current model. In this case, we define the service reward in
this system as u(st, at), which can be defined as follows:

u(st, at) = argminst,at
Ptotal(t) (16)

We design an incentive mechanism to encourage them to
prioritize important tasks. Specifically, if the task of UE m
is completed before its soft bounds tsm, the agent receives
reward R(st, at). If the task of UE m is completed before
its hard bound thm but exceeds its soft bounds tsm, the agent
receives penalty ςsoftm . Otherwise, the agent receives penalty
ςhardm . Generally, the failure to complete a task with a hard
deadline incurs a higher penalty than that of a task with a soft
deadline, i.e., ςsoftm ≤ ςhardm .

Then, the long-term reward can be formulated as:

R(st, at) =
∑
m∈M

{1− f(gm)

2
·u(st, at)−[1−

1− f(gm)

2
]·ςm}

(17)
where function f(x) used in (17) is defined as f(x) = A·1(x),
A is a unit step function, g(m) = xm(t)Dl

m+|1−xm(t)|Do
m−

tdm. Once task of UE m is completed before its soft bounds,
f(x) = −1 and 1−f(gm)

2 = 1. Therefore, the reward will
be produced. On the contrary, once the mixed bounds of the
task are missed, f(x) = 1 and 1−f(gm)

2 = 0, the penalty
ςm = {ςsoftm , ςhardm } is incurred.

In addition, policy πm of UE m is a mapping from its
states st to its action at. The objective of this system is to
search the policy strategy πm for each UE m and minimize the
agent’s reward. Based on (15)-(17), our optimization objective
is defined as minimizing the expectation of reward:

π∗
m = argminπm

E[
1

T

T∑
t=1

γt−1R(st, at)|πm] (18)

where γt−1 ∈ (0, 1] denotes the discount factor that reflects
the discount reward of the future. E[·] is concerned with
the system parameters, i.e., bound constraints, and processing
requirements of all UEs, and further influences the offloading
strategy.

III. DEEP REINFORCEMENT LEARNING BASED APPROACH

In this section, we propose an Experience-based Deep Rein-
forcement learning (EBRL) offloading algorithm that enables
dynamic offloading decision-making of each UE. Like the nor-
mal DRL algorithm for MEC offloading problems, i.e., deep
Q-learning, the proposed algorithm decides by memorizing
and reusing past information by experience replay. Meanwhile,
the proposed algorithm can improve the convergence rate and
the impossible issue of high dimensionality in state space.

In the EBRL algorithm, each UE makes an offloading
strategy by learning a mapping from each state-action pair to
a Q-value, reflecting the policy’s expected long-term payment.
The offloading policy depends on the result of the neural
network, which obtains the result depending on the samples
from the experience pool. In the following, we present the
EBRL algorithm in detail.

A. Experience replay method

The objective of the experience replay method is to consider
two questions, Which information is worthy of being put into
the experience pool, and How to choose the most significant
experience to put into the neural network. We propose an

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Environment

State St

Action

Reward R(St,At)

...

...

...

Store

Replay Policy

B*={B2, B3,B4,B6,...}

Experience pool

Q(St, At)Agent

0 1 1 1 0

…

...

B1

0 1

B2 B3 B4 B5 B6 Bj

Experienced-

based policy

Fig. 2. An illustration of Experienced-based Reinforcement Learning.

experience replay method, including an Experience Trimming
method and a Priority Experience Replay method to solve the
above two questions.

Fig. 2 shows the details of the experience replay method
for UE m ∈M. Each UE can be seen as an agent that takes
an action at ∈ A in state st ∈ S, receives a reward rt and
observes the next state st+1. The quadruple (st, at, rt, st+1) is
stored in the experience pool at each time slot, and also named
transition. Before the transition is stored in the experience
pool, the most valuable transition needs to be selected by an
experienced trimming method. Afterwards, a batch of transi-
tions drawn from the experience pool is trained by the priority
experience replay method to update the agent information and
generate the offloading decision.

1) Experience Trimming method: Experience replay has
played an important part in remembering and learning from ex-
periences from the past of deep reinforcement learning. There
have been several proposed studies into how to experience re-
play can influence the deep reinforcement learning algorithms
[24]. However, it is nontrivial to model an appropriate replay
policy for MEC offloading problems for several challenges. On
the one hand, the transitions in the experience pool are quite
noisy due to the dynamic network environment. On the other
hand, there are a lot of repeating transitions in the experience
pool. To the best of our knowledge, there are few types of
research on which samples can be stored in the experience
pool. Therefore, it is challenging to effectively and efficiently
learn the replay policy.

The results of the neural network directly affect the com-
putational offloading decision. During training, the neural
network takes as input historical transitions and outputs an
approximate Q value Q(st, at). Then the state st interacts
with the environment, performs the action at according to the
policy pi(st, at), and gets the corresponding immediate reward
rt based on the state action pair. The transition information
is stored as (st, at, rt, st+1) (st ∈ S, at ∈ A, rt ∈ R,
and st+1 ∈ S) in the experience pool as memory. Let Bj
be a transition in experience pool B, J is the size of the
experience pool, where j ∈ J denotes the index. In this
article, the experiential log of each time slot is denoted as
B =< St,At,Rt,St+1 >.

Algorithm 1: Experience trimming method
Input: Bj = {(st, at, rt, st+1)j , j ∈ J },
B = (st∗ , at∗ , rt∗ , st∗+1), t

∗ ∈ (1, 2, ...t− 1)
Output: New experience pool B

1 Initialize similarity Similarity level
2 for each replay updating step do
3 Calculate similarity based on (19)
4 Update the experience pool B
5 end

In order to simplify the memory structure and improve the
effectiveness of the information, we developed a criterion to
measure the importance of the current incoming information.
If these experience transitions had similar characteristics, we
combined some experience transitions within one piece of
information in the experience pool. It simplifies the experience
pool structure by combining similar historical transitions into
one transition if they have similar characteristics. Furthermore,
we define a similarity function that measures the similarity
between the transition and historical experience of the learning
agent by evaluating two metrics:

(i) the users’ information, which refers to the size of tasks,
device patterns, etc.

(ii) the subchannel information, which refers to the utilized
energy, transfer rate, etc.

Jaccard similarity coefficient is a statistic used for gauging
the similarity and diversity between finite sample sets [25].
Define A to be the experience transitions already stored in the
experience pool and B to be the experience transitions that
are currently about to arrive. Before the experience transition
B is stored in the experience pool, the two are compared.
Assuming that both experience transitions satisfy the condition
J(A,B) < ϑ, the best reward value experience transition in
the experience pool will be stored, and the other one will be
dropped until the experience pool is full. The similarity level
between two transitions is given by:

J(A,B) =
|A| ∩ |B|
|A| ∪ |B| (19)

where the J(·) denotes the well-known Jaccard similarity
coefficient, manifolding the similarity between set A and set
B. ϑ = 0.5 is the similarity level in the simulation. When
the experience pool is full, the last used historical experience
transition will be dropped and the new coming experience
transition will be stored. The Experience Trimming method
is summarized in Algorithm 1.

2) Priority Experience Replay: It is well-known that expe-
rience replay makes deep reinforcement learning more efficient
by remembering and reusing experiences from the past [26].
Most commonly for MEC computational offloading problems,
the experience replay is sampled uniformly randomly from
the experience pool when training the neural networks [27].
Although the random sampling policy is an easy default, the
performance of the DRL algorithm can be improved by using
strategies to choose the experience samples used for training
[28], [29]. Therefore, unlike the previous design of randomly

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Algorithm 2: Priority Experience Replay
Input: experience pool B, batch size I
Output: Sampled batch transition B∗

1 Initialize batch transition B∗ = ∅
2 for i=1 to I do
3 Store (st, at, rt, st+1) in B∗ with maximal priority

based on (21)
4 Update the priority Pj according to pj
5 Update the batch transition based on (23)
6 end
7 Sample a subset B∗ from B

sampling replay in the DRL applied for MEC offloading
system, we adopt a priority experience replay method to
sample subsets of transitions for efficient replaying.

The UE is assumed to be equipped with an experience pool
of finite size to store the experience transition which can be
represented as Bj = {{st, at, rt, st+1}j , j ∈ J , t ∈ T }.
According to the experience replay technique [22], the UE
then samples a batch transition B∗ from the experience pool
according to the reply policy at each decision epoch to train
the neural network. In the learning phase, the experience pool
store the Bj continuously. In the training phase, for each train-
ing interval, the agent selects a batch B∗ from experience pool
B and trains it. At each training epoch, B∗ can be represented
as B∗i = {{st, at, rt, st+1}, i ∈ 1, 2, ...I, t ∈ {1, 2, ...T }}, I is
the size of the batch transition, where i ∈ I denotes the index.
The algorithm of experience replay is defined as Algorithm 2.

In our preliminary experiments, we find that the temporal-
different error can measure the significance of the sample. A
greater absolute value of the temporal-different error means a
greater loss of the Q network during training. This suggests
that samples with more significant temporal-different errors
contain more information and increase the accuracy row of the
Q network. Therefore, samples with larger temporal-different
errors will have a higher probability of being a subset than
other experiences. Further, we develop sampling priorities for
samples determined by the distribution of sample temporal-
different errors. The temporal-different error of the experience
transition j can be expressed as:

δj = Rj+γjQtarget(Sj , argmaxaQ(Sj , a))−Q(Sj−1,Aj−1)
(20)

However, it is infeasible to sweep over the entire experience
pool because the experience pool size is usually large. In this
priority experience replay, the replay policy is described as a
priority score function ϕ(·), in which a higher value indicates
a higher probability of the transition Bj be selected in the
sampled subset. In this work, the chosen probability of the
batch transition can be expressed as:

pj =
δj∑
J δJ

(21)

Algorithm 3: An EBRL algorithm to solve the offload-
ing decision problem
Input: Q(s, a),∀st ∈ S, at ∈ A, and

Q(terminal − state, ·) = 0
Output: Offloading action at

1 Initialize st, max similarity = ϑ;
2 for time step = 1 : T do
3 Repeat (for each step of episode):
4 Choose Action at and state st using policy derived

from Q function (e.g.,ϵ-greedy);
5 Take action A, reward R, and St
6 Q(St, a)←

Q(St, a)+α[R+ γmaxαQ(St+1, a)−Q(St, a)]
7 St ← St+1

8 Find the historical learned action ahistorical;
9 for m = 1 : J do

10 Update similarity using (19)
11 Store (st, at, r, st+1), in experience pool B

using Algorithm 1
12 end
13 for n=1 : I do
14 Sample experience Bs with probability Pj in

(21)
15 Update the priority Pj according pj
16 end
17 Update the θj and θtarget,j using (26) (27)
18 Update the current action acurrent using (28)
19 update offloading action at using (29)
20 end

We describe the priority score function as:

Pj = {ϕ(pj |Bj)} ∈ RN (22)

where ϕ ∈ (0, 1) denotes a function approximation which is
a deep neural network. Given the priority score Pj , we then
sample batch transition B∗ according to:

B∗ = {Bj |Bj ∈ B ∧ Pj = 1} (23)

B. Experience Based Reinforcement Learning

The EBRL algorithm makes the offloading policy to indicate
the task to be executed at UE m ∈M or EN n ∈ N . The detail
of this method is given in Algorithm 3. The key idea of the
algorithm is to use the experience of UE to train the neural
network, and obtain the mapping from the state-action pair
(st, at) to the Q-value. Therefore, on this basis, the UE can
choose the action that minimizes the Q-value in the observed
state, and minimizes its expected long-term reward rt.

Hence, the EBRL Q(st, at; θ) approximates the optimal
state-action function Q(st, at) can be given as:

Q(st, at; θ) = ΣjQ(st, at; θj) (24)

where θ = (θj) is a collection of parameters associated with
the DNN. At each epoch, the agent maintains a DNN and
a target DNN, which are Q(st, at; θ) and Q(st, at; θtarget)
respectively. Our proposed experience replay strategy is exe-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE I
DEFAULT SIMULATION PARAMETERS

Parameter Description value

M Number of UE (100,1000)
N Number of EN 10
bt,upmn , bt,down

mn Bandwidth [0.5,200]MHz
Bmin Minimize bandwidth 0.5MHz [31]
Bmax Maximize bandwidth 200MHz [31]
Pmn Transmit power 25dBm
Gt,up

mn , Gt,down
mn Fading channel power gain -5dB

ht,up
mn , ht,down

mn Channel gain -25dB
ϵ Effective switched capacitance 0.5 [32]
dmn Distance between UE and EN 35m [31]
k Number of experience transition 64 [31]
σ2 Pass loss 4 [31]
dref Reference distance 50m
fm UE computing capacity 10GHz [33]
fn EN computing capacity 50GHz [33]
τ temperature 0.5 [34]

cuted in which the intelligence is trained by drawing minibatch
B∗ from the experience pool B. Then, the parameters θj are
updated according to the loss function using gradient descent.
Typically, the loss function can be expressed as the mean
square measure of the Bellman equation error [30]. Therefore,
the loss function L(EBRL)(θj) is calculated by the equation:

L(EBRL)(θj) =E[(R(st, at) + γQ(st+1, argmaxQ(st+1,

at+1; θtarget,j)))−Q(st, at)]
(25)

Next, the parameters of theta and thetatarget are updated,
where mu is the learning rate of the gradient decay algorithm
and nu/in(0, 1) is the weight parameter:

θj ← θj + µ · ∇L(EBRL)(θj) (26)

θtarget,j ← νθj + (1− ν)θtarget,j (27)

According to the policy pi(st, at), the agent chooses the
action at under the state st, where pi(st, at) is defined as:

π(st, at) =
exp(Q(st, at; θ)/τ)

exp(Q(st, a′t; θ)/τ)
(28)

where the τ is temperature, the smaller the τ is, the more
likely action at is to be selected.

To further enhance the exploration performance of the
algorithm, we consider historical action ahistorical (the action
stored in the experience pool) and current action acurrent (the
agent chooses the action for the current task) in the action
selection process, and the action choosing formulation can be
expressed as:

a = o ∗ ahistorical + (1− o)acurrent (29)

where o ∈ [0, 1] denotes the transfer rate, and the value will
decrease with the stage step increased information. The pro-

posed EBRL algorithm for offloading is provided in Algorithm
3.

C. Computational Complexity Analysis

The proposed EBRL approach have defined T time steps,
i.e., T = {1, 2, ...t}, the computational complexity can be
simplify expressed as O(T 2) [35]. However, the complexity
of the algorithm should not be neglected to many important
parameters, i.e., the number of UE, and the batch size of
the experience pool. Therefore, we analyze the computational
complexity of two modules (Experience Trimming method
and Priority Experience Replay method) and analyze their
computational complexity in the following.

Define the system with UE P and an experience pool of
size I , for the Experience Trimming method. According to
[36], the complexity of the Experience Trimming method is
O(I). Further, for the Priority Experience Replay method, Q
is defined to denote the dimension size of the state space, U
denotes the size of the minibatch, and V denotes the maximum
plot during training, and its complexity is O(P 2 ·I) according
to Algorithm 2. In addition, the computational complexity of
one experience training is defined as O(L), where L is the
number of multiplication operations in the neural network,
and the computational complexity of EBRL is O(LI2P 2QV)
according to [37].

IV. SIMULATION RESULTS AND DISCUSSION
A. Simulation Settings

Throughout the experiments, we assume that UEs are ran-
domly distributed within an area of 350m× 350m. Addition-
ally, the reference distance, channel bandwidths between the
UE and the ENs, and the transmit power from UEs to ENs
are 50 m, 6 MHz, and 25 dBm, respectively [31].

For the task execution, the task bound constraints to follow
the uniform QoS between [5, 30] seconds, while the gap from

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 3. The number of iterations required to converge as the learning rate µ
varies.

the soft bounds to hard bounds is [0, 20] seconds according
to [32]. In addition, the task data sizes follow the uniform
distribution on [100, 1000] KB. The arrival rate of the task is
0.5 and the pass-loss constant is 4. The fading channel power
gain and channel gain are -5 dB and -25 dB, respectively.

We assume that the basic parameters for the proposed EBRL
method are a time slot of 1e−2, action slot of 5e−2, and time
total of 60000 s. Without losing generality, the initial values
of ω1, ω2 and o for the EBRL parameters are 0.5, 0.5, and
0.8, respectively [34]. The target network parameter is 0.8.
The other default simulation settings are listed in Table I.

B. Convergence analysis

To reflect the change in the convergence of our proposed
algorithm, we compare the number of iterations required to
converge for different learning rates for the EBRL and DDPG
algorithms. Fig. 3 shows that as the learning rate increases,
the number of iterations required to converge decreases ac-
cordingly for both methods. This is because the agent learns
more information from the new transitions as the learning rate
increases. Further, Fig. 3 also shows that the EBRL method
reaches the convergence state faster than DDPG. This is
because EBRL focuses on meaningful transition experiences,
and compared to DDPG for random sampling, EBRL can
control for worthless transitions from incorrect training steps
in future updates. Thus, the agent can learn vital information
to speed up convergence.

C. System performance under different features

A larger number of UE and the task’s Poisson distribution
will cause invalid training data to increase system delay.
Therefore, we explore the number of UE effects on the average
system payment and delay. Fig. 4 shows how this system
performs with different numbers of UEs based on average
MEC payments and average delay. From 100 to 1000 UEs,
the average MEC payment and the average delay increase
by 14.43% and 69.76%, respectively. The local computing

Fig. 4. The average MEC payments as the number of UE varies.

Fig. 5. The average MEC payments as the Poisson distribution of tasks varies.

resources cannot keep up with the computing needs of the
users as the number of UEs increases. Therefore, a large
number of tasks need to be transferred to the EN.

Fig. 5 shows the changes in the average delay and average
MEC payment as the Poisson distribution of the task changes.
In Fig. 5, these curves show that as the tasks’ Poisson
distribution rises, the delay and payment of tasks appear to
increase by varying degrees, which validates our previous
theoretical analysis. This is because as the Poisson distribution
of tasks rises, the computational tasks increase, leading to
fewer local computational resources being allocated to each
task. Furthermore, we can observe that the increase in the
Poisson distribution of tasks leads to a more complex dynamic
environment. When the number of users grows, it is necessary
to improve the local and edge computing resources allocated
to each user to minimize the processing latency and improve
the computational offloading efficiency.

D. System performance under different methods

In this section, we evaluate the proposed offloading policy
by comparing it with several benchmarks (Deep Deterministic
Policy Gradient (DDPG) [33], Soft Actor-Critic (SAC) [38],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

En

er
gy

 C
on

su
m

pt
io

n
/ (

J)

Task Arrival Rate / (Mbps)

 EBRL
 DDPG
 EDGE
 SAC
 LOCAL

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

5
 EBRL
 DDPG
 EDGE
 SAC
 LOCAL

En
er

gy
 C

on
su

m
pt

io
n

/ (
J)

Task Arrival Rate / (Mbps)

(b)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
2

3

4

5

6

7

8

 EBRL
 DDPG
 EDGE
 SAC
 LOCAL

En
er

gy
 C

on
su

m
pt

io
n

/ (
J)

Task Arrival Rate / (Mbps)

(c)

Fig. 6. Performance under different task arrival rate vs energy consumption: (a) number of UE is 10; (b) number of UE is 50; (c) number of UE is 100

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

 EBRL
 DDPG
 EDGE
 SAC
 LOCAL

A
ve

ra
ge

 D
el

ay
 /

(s
)

Task Bound / (s)

(a)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.6

0.8

1.0

1.2

1.4

1.6

1.8
 EBRL
 DDPG
 EDGE
 SAC
 LOCAL

A
ve

ra
ge

 D
el

ay
 /

(s
)

Task Bound / (s)

(b)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

 EBRL
 DDPG
 EDGE
 SAC
 LOCAL

A
ve

ra
ge

 D
el

ay
 /

(s
)

Task Bound / (s)

(c)

Fig. 7. Performance under different task bound vs average delay: (a) number of UE is 10; (b) number of UE is 50; (c) number of UE is 100

EDGE (offload all tasks to EN), and LOCAL (execute all
tasks locally). The DDPG and SAC methods are widely
used in computation offloading decision problems, EDGE and
LOCAL are currently two offloading methods widely used as
benchmark comparison methods.

In Fig. 6, we evaluate the system performance under differ-
ent task arrival rates and algorithm settings. With increasing
task arrival rates, the average energy consumption decreases
significantly for all four methods in Fig. 6(a). In general, this
is due to the fact that rising task arrival rates require each UE
to be assigned more computational resources. Compared to the
other benchmark methods, which increase by at least 33.32%
over a growth rate of 1.0 Mbps to 3.5 Mbps, EBRL grows
by only 23.07% over a growth rate of 1.0 Mbps to 3.5 Mbps.
The proposed method focuses on introducing the experience
replay mechanism. This makes it possible to generate more
efficient decision results based on historical information when
high task arrival rates occur without having to repeat the
training process. Additionally, it is worth mentioning that as
the task arrival rate increases, our algorithm converges to a
stable result more quickly than the other methods when the
task arrival rate increases. This is because compared to the
same frequency of training history data for other methods,
EBRL selects more important experiences to participate in the
training improves the accuracy of the results. For the same
reason, the proposed algorithm also outperforms when the
number of tasks increases, as shown in Fig. 6(b) (number of
UEs is 50) and Fig. 6(c) (number of UEs is 100).

In Fig. 7, we evaluate the performance comparisons of

the algorithms under different task constraints and parameter
settings. Fig. 7(a) compares the average delay obtained by
the proposed algorithm with the benchmark method when the
number of UEs is 10. As shown in Fig. 7(a), our approach
only slightly impacts task delay as the task bound constraints
rise. On the other hand, EDGE and LOCAL are significantly
different in terms of the shift in task bound constraints. This is
mainly because our method can complete the task briefly since
the experience reply mechanism. It should be noted that when
the task bound constraint was increased from 0.4 seconds to
2.2 seconds, our average latency increased by 19.67%, while
those of the benchmark methods increased by 26.15%-41.67%.
As a consequence of the same reason, the proposed algorithm
also performs well when the number of tasks increases, and
this is illustrated in Fig. 7(b) in which a count of 50 UEs is
shown, while Fig. 7(c) shows a count of 100 UEs.

V. CONCLUSION

In this paper, we investigate reinforcement learning-based
computation offloading in multi-user MEC systems. To guar-
antee users’ QoS, we construct a computational offloading
framework by minimizing the payment of users with mixed
bound constraints. To address the above issues, we propose
an experience-based reinforcement learning approach to solve
the payment minimization problem efficiently by introducing
two experience replay mechanisms. Numerical results verify
the effectiveness of the presented EBRL approach and achieve
better performance than other algorithms in MEC.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

This work can be extended by considering the mobility of
the device in the computation offloading problem. In order to
modify the actual MEC system, we will also take into account
the costs of computational services for UEs.

ACKNOWLEDGEMENTS

This work is supported by the National Key R&D Pro-
gram of China under Grant No. 2022YFB4500800; the Na-
tional Natural Science Foundation of China under Grant No.
62032013 and No. 61872073; the LiaoNing Revitalization
Talents Program under Grant No. XLYC1902010.

REFERENCES

[1] H. Djigal, J. Xu, L. Liu, and Y. Zhang, “Machine and deep learning for
resource allocation in multi-access edge computing: A survey,” IEEE
Communications Surveys Tutorials, vol. 24, no. 4, pp. 2449–2494, 2022.

[2] J. Xu, B. Ai, L. Chen, Y. Cui, and N. Wang, “Deep reinforcement
learning for computation and communication resource allocation in
multiaccess mec assisted railway iot networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 12, pp. 23 797–23 808,
2022.

[3] J. Lu, Q. Li, B. Guo, J. Li, Y. Shen, G. Li, and H. Su, “A multi-
task oriented framework for mobile computation offloading,” IEEE
Transactions on Cloud Computing, vol. 10, no. 1, pp. 187–201, 2022.

[4] M. Chen, S. Guo, K. Liu, X. Liao, and B. Xiao, “Robust computation
offloading and resource scheduling in cloudlet-based mobile cloud
computing,” IEEE Transactions on Mobile Computing, vol. 20, no. 5,
pp. 2025–2040, 2021.

[5] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading
in heterogeneous networks,” IEEE Transactions on Mobile Computing,
vol. 17, no. 2, pp. 461–474, 2018.

[6] W. Fang, S. Ding, Y. Li, W. Zhou, and N. Xiong, “Okra: optimal task and
resource allocation for energy minimization in mobile edge computing
systems,” Wireless Networks, vol. 25, no. 5, pp. 2851–2867, 2019.

[7] L. Lei, H. Xu, X. Xiong, K. Zheng, W. Xiang, and X. Wang, “Multi-
user resource control with deep reinforcement learning in iot edge
computing,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 119–
10 133, 2019.

[8] Z. Wang, Z. Jia, H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, and
J. J. P. C. Rodrigues, “Energy-aware and urllc-aware task offloading for
internet of health things,” in GLOBECOM 2020 - 2020 IEEE Global
Communications Conference, 2020, pp. 1–6.

[9] W. Fan, L. Yao, J. Han, F. Wu, and Y. Liu, “Game-based multi-type task
offloading among mobile-edge-computing-enabled base stations,” IEEE
Internet of Things Journal, pp. 1–1, 2021.

[10] Z. Chang, L. Liu, X. Guo, and Q. Sheng, “Dynamic resource alloca-
tion and computation offloading for iot fog computing system,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3348–3357,
2021.

[11] I. Kovacevic, E. Harjula, S. Glisic, B. Lorenzo, and M. Ylianttila, “Cloud
and edge computation offloading for latency limited services,” IEEE
Access, vol. 9, pp. 55 764–55 776, 2021.

[12] M. Mukherjee, V. Kumar, D. Maity, R. Matam, C. X. Mavromoustakis,
Q. Zhang, and G. Mastorakis, “Delay-sensitive and priority-aware task
offloading for edge computing-assisted healthcare services,” in GLOBE-
COM 2020 - 2020 IEEE Global Communications Conference, 2020, pp.
1–5.

[13] H. Wu, J. Chen, T. N. Nguyen, and H. Tang, “Lyapunov-guided delay-
aware energy efficient offloading in iiot-mec systems,” IEEE Transac-
tions on Industrial Informatics, vol. 19, no. 2, pp. 2117–2128, 2023.

[14] Q. Tang, R. Xie, F. R. Yu, T. Huang, and Y. Liu, “Decentralized com-
putation offloading in iot fog computing system with energy harvesting:
A dec-pomdp approach,” IEEE Internet of Things Journal, vol. 7, no. 6,
pp. 4898–4911, 2020.

[15] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation offloading
for mobile cloud computing: A stochastic game-theoretic approach,”
IEEE Transactions on Mobile Computing, vol. 18, no. 4, pp. 771–786,
2019.

[16] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4005–4018, 2019.

[17] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “Eedto:
An energy-efficient dynamic task offloading algorithm for blockchain-
enabled iot-edge-cloud orchestrated computing,” IEEE Internet of Things
Journal, vol. 8, no. 4, pp. 2163–2176, 2021.

[18] X. Chen, C. Wu, Z. Liu, N. Zhang, and Y. Ji, “Computation offloading
in beyond 5g networks: A distributed learning framework and applica-
tions,” IEEE Wireless Communications, vol. 28, no. 2, pp. 56–62, 2021.

[19] H. A. Shah, L. Zhao, and I.-M. Kim, “Joint network control and resource
allocation for space-terrestrial integrated network through hierarchal
deep actor-critic reinforcement learning,” IEEE Transactions on Vehic-
ular Technology, vol. 70, no. 5, pp. 4943–4954, 2021.

[20] N. Tian, H. Fang, J. Chen, and Y. Wang, “Nonlinear double-capacitor
model for rechargeable batteries: Modeling, identification, and valida-
tion,” IEEE Transactions on Control Systems Technology, vol. 29, no. 1,
pp. 370–384, 2021.

[21] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[22] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” Computer Science, 2015.

[23] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, “Qos driven
task offloading with statistical guarantee in mobile edge computing,”
IEEE Transactions on Mobile Computing, vol. 21, no. 1, pp. 278–290,
2022.

[24] T. de Bruin, J. Kober, K. Tuyls, and R. Babuska, “Experience selection in
deep reinforcement learning for control,” Journal of Machine Learning
Research, vol. 19, pp. 1–56, 2018.

[25] J. M. Hancock, Jaccard Distance (Jaccard Index, Jaccard Similarity
Coefficient). Dictionary of Bioinformatics and Computational Biology,
2004.

[26] T. D. Bruin, J. Kober, K. Tuyls, and R. Babuska, “Experience selection in
deep reinforcement learning for control,” Journal of Machine Learning
Research, vol. 19, pp. 1–56, 2018.

[27] J. Li, Q. Liu, P. Wu, F. Shu, and S. Jin, “Task offloading for uav-
based mobile edge computing via deep reinforcement learning,” in
2018 IEEE/CIC International Conference on Communications in China
(ICCC), 2018, pp. 798–802.

[28] Y. Wang and Z. Zhang, “Experience selection in multi-agent deep
reinforcement learning,” in 2019 IEEE 31st International Conference
on Tools with Artificial Intelligence (ICTAI), 2019, pp. 864–870.

[29] M. Li, J. Gao, L. Zhao, and X. Shen, “Deep reinforcement learning for
collaborative edge computing in vehicular networks,” IEEE Transactions
on Cognitive Communications and Networking, vol. 6, no. 4, pp. 1122–
1135, 2020.

[30] H. Xie and Z. Qin, “A lite distributed semantic communication system
for internet of things,” IEEE Journal on Selected Areas in Communica-
tions, vol. 39, no. 1, pp. 142–153, 2021.

[31] J. Cai, H. Fu, and Y. Liu, “Multitask multiobjective deep reinforcement
learning-based computation offloading method for industrial internet of
things,” IEEE Internet of Things Journal, vol. 10, no. 2, pp. 1848–1859,
2023.

[32] M. Mukherjee, V. Kumar, Q. Zhang, C. X. Mavromoustakis, and
R. Matam, “Optimal pricing for offloaded hard- and soft-deadline tasks
in edge computing,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 7, pp. 9829–9839, 2022.

[33] B. Hazarika, K. Singh, S. Biswas, and C.-P. Li, “Drl-based resource al-
location for computation offloading in iov networks,” IEEE Transactions
on Industrial Informatics, vol. 18, no. 11, pp. 8027–8038, 2022.

[34] B. Yamansavascilar, A. C. Baktir, C. Sonmez, A. Ozgovde, and C. Ersoy,
“Deepedge: A deep reinforcement learning based task orchestrator for
edge computing,” IEEE Transactions on Network Science and Engineer-
ing, vol. 10, no. 1, pp. 538–552, 2023.

[35] K. Li, X. Wang, Q. He, B. Yi, A. Morichetta, and M. Huang,
“Cooperative multiagent deep reinforcement learning for computation
offloading: A mobile network operator perspective,” IEEE Internet of
Things Journal, vol. 9, no. 23, pp. 24 161–24 173, 2022.

[36] Z. Yan, P. Cheng, Z. Chen, Y. Li, and B. Vucetic, “Gaussian process
reinforcement learning for fast opportunistic spectrum access,” IEEE
Transactions on Signal Processing, vol. 68, pp. 2613–2628, 2020.

[37] Q. He, Y. Wang, X. Wang, W. Xu, F. Li, K. Yang, and L. Ma, “Routing
optimization with deep reinforcement learning in knowledge defined
networking,” IEEE Transactions on Mobile Computing, pp. 1–12, 2023.

[38] D. Wu, T. Liu, Z. Li, T. Tang, and R. Wang, “Delay-aware edge-
terminal collaboration in green internet of vehicles: A multi-agent soft
actor-critic approach,” IEEE Transactions on Green Communications
and Networking, pp. 1–1, 2022.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Kexin Li received the B.S. degree in software
engineering from Harbin University of Science and
Technology, Harbin, China, in 2015, and the M.S.
degree in computer technology from Northeastern
University, Shenyang, China, in 2018, where she is
currently pursuing the Ph.D. degree in computer ap-
plication technology. Her research interests include
software-defined networking, edge computing, and
machine learning.

Xingwei Wang received the B.S., M.S., and Ph.D.
degrees in computer science from Northeastern
University, Shenyang, China, in 1989, 1992, and
1998, respectively. He is currently a Professor with
the College of Computer Science and Engineering,
Northeastern University. He has published more than
100 journal articles, books and book chapters, and
refereed conference papers. His research interests
include cloud computing and future Internet. Prof.
Wang has received several best paper awards.

Qiang He received the Ph.D. degree in computer
application technology from Northeastern Univer-
sity, Shenyang, China in 2020. He is currently an
Associate Professor with the College of Medicine
and Biological Information Engineering, Northeast-
ern University, Shenyang, China. He has authored
or co-authored more than 50 journal articles and
refereed conference papers. His research interests
include social network analytic, machine learning,
and data mining.

Qiang Ni is a Professor in Communications and Net-
working at the School of Computing and Communi-
cations and Data Science Institute at Lancaster Uni-
versity. He is the Head of the Communications Re-
search Group and the School’s Director of Interna-
tional Partnership (previously was the School’s Di-
rector of Postgraduate Studies and School’s Deputy
Director of Research). Prof Ni is a Fellow of IET,
Fellow of Higher Education Academy and Senior
Member of IEEE.

His interests are Wireless Networks, Commu-
nications, IoT, Data Analytics and Machine Learning techniques, includ-
ing Energy-Efficient Green Communications, Cognitive Radio Networks,
Future Wireless (5G/6G), Intelligent Communication Techniques, SDN,
Edge/Fog/Cloud Computing, Big Data Analytics, AI and Machine Learning,
IoT, Cyber Security, Smart Grids, Sensor Networks, Vehicular Networks
(VANETs), THz Communication, Quantum Communication, Quantum Ma-
chine Learning and Mobile Positioning. Prof Ni is a Voting Member of
IEEE 1932.1 standard. He is a Vice Chair of Big Data with Computational
Intelligence SIG, IEEE ComSoc Technical Committee on Big Data.

Mingzhou Yang received the B.Sc. degree in com-
puter science and technology from Shenyang Univer-
sity of Technology, Shenyang, China, in 2015, and
the M.Sc. degree in computer software and theory
and Ph.D. degree in computer application technology
from Northeastern University, Shenyang, China, in
2017 and 2022, respectively. She is currently a lec-
turer with Shenyang University of Technology. Her
research interests include social network analysis,
computational intelligence, and machine learning.

Schahram Dustdar (Fellow, IEEE) is a full profes-
sor of computer science (informatics) with a focus
on Internet Technologies heading the Distributed
Systems Group at the TU Wien. He is chairman of
the Informatics Section of the Academia Europaea
(since December 9, 2016). From 2004–2010 he was
honorary professor of Information Systems at the
Department of Computing Science, the University of
Groningen (RuG), The Netherlands. From December
2016 until January 2017 he was a visiting professor
at the University of Sevilla, Spain, and from January

until June 2017 he was a visiting professor at UC Berkeley, USA. He is a
member of the IEEE Conference Activities Committee (CAC) (since 2016),
the Section Committee of Informatics of the Academia Europaea (since 2015),
a member of the Academia Europaea: The Academy of Europe, Informatics
Section (since 2013). He is the recipient of the ACM Distinguished Scientist
Award (2009) and the IBM Faculty Award (2012). He is an associate editor of
IEEE Transactions on Services Computing, ACM Transactions on the Web,
and ACM Transactions on Internet Technology, and on the editorial board of
IEEE Internet Computing. He is the editor-in-chief of Computing (an SCI-
ranked journal of Springer).

