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The need for AI systems to provide explanations for their behaviour is now widely recognised as key to their adoption. In this paper, 

we examine the problem of trustworthy AI and explore what delivering this means in practice, with a focus on healthcare 

applications. Work in this area typically treats trustworthy AI as a problem of Human-Computer Interaction involving the individual 

user and an AI system. However, we argue here that this overlooks the important part played by organisational accountability in how 

people reason about and trust AI in socio-technical settings. To illustrate the importance of organisational accountability, we present 

findings from ethnographic studies of breast cancer screening and cancer treatment planning in multidisciplinary team meetings to 

show how participants made themselves accountable both to each other and to the organisations of which they are members. We use 

these findings to enrich existing understandings of the requirements for trustworthy AI and to outline some candidate solutions to 

the problems of making AI accountable both to individual users and organisationally. We conclude by outlining the implications of 

this for future work on the development of trustworthy AI, including ways in which our proposed solutions may be re-used in 

different application settings. 
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1 INTRODUCTION 

Trustworthy AI is an essential requirement for the effective, safe and ethical application of AI systems in decision-

making support roles (HLEG 2019, Leslie 2019). AI systems are becoming an increasingly commonplace feature of 

organisational settings and are notably being promoted to support certain kinds of decision-making in healthcare 

organisations. In this paper, we argue that this means AI systems must be capable of providing accounts of their 

behaviour in ways that not only meet the requirements of individual users but that are organisationally appropriate 

(Cummings 2006). To do this, the paper draws upon a rich body of empirically-gathered materials to explore in detail 

how organisational settings may shape the requirements for trustworthy AI ېin the wildۑ. We put particular emphasis 
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upon collaborative and organisational sense-making of the behaviour of AI systems and how members of 

organisations may interact with them.  

A major challenge for trustworthy AI is that techniques have advanced in ways that have led the behaviour of AI 

systems to becoming increasingly ېblack boxedۑ. This makes AI systems difficult ۋ if not impossible ۋ to understand by 

those that use them, and often even by those who build them (Pedreschi et al. 2018). As a consequence, much effort is 

now being devoted to developing ways of ېopening upۑ the black box (Carvalho et al. 2019, Du et al. 2019, Meteier et al. 

2019, Mittelstadt et al. 2019) through the development of techniques for explainable AI (xAI) (Adadi et al. 2018, Gilpin 

et al. 2018). These aim to provide accounts of AI system behaviour that are transparent to ۋ and interpretable by ۋ 

their users. xAI techniques may be applied globally (i.e., to explain the behaviour of the system as a whole) or locally 

(i.e., to explain its behaviour for a specific input) (Guidotti et al. 2018). Current examples of xAI techniques include 

saliency maps, which visualise the most significant regions of input data for a prediction, and semantic 

disentanglement, which extracts from the underlying model high level features that are comprehensible by people 

(Henne et al. 2020). However, with some notable exceptions (e.g., Cai et al. 2019b, Ehsan et al. 2021), few studies have 

sought to assess the potential fit of these techniques with real-world requirements (Antoniadi et al. 2021). Doing this 

involves, first of all, a better understanding the socio-technical constitution of the organisational environments within 

which such systems might be deployed and how trust in the accountable character of those environments is currently 

achieved. Exploring the socio-technical challenges confronting the development of trustworthy AI in organisational 

settings is something that has so far been largely absent from the related literature (e.g., Yang et al. 2019, Liao et al. 

2020, Ehsan et al. 2021, Glaser et al. 2021).  

Healthcare is notable for high rates of failure in the adoption of digital innovations (Greenhalgh et al. 2017). 

Computer decision-support systems (CDSS) in clinical work are no exception, with many never progressing beyond 

the preclinical or pilot stage (Beede et al. 2020, Egermark et al. 2022, Oakden-Rayner et al. 2022). The causes are often 

complex, but some common factors can be identified. The first generation of CDSS were rule-based, which often 

proved too costly to develop in practice (Musen et al. 2014). The move to techniques based on belief networks and 

case-based reasoning helped to eliminate that obstacle, only to expose new problems. For example, Heathfield and 

Wyatt (1993) found that CDSSs were failing to address the real-world needs of clinicians, a problem that can be 

addressed by involving clinicians closely in the system design and development process. However, problems may still 

be encountered if it is assumed that a CDSS that has been designed to meet the needs of a specific group of clinicians 

will work as well in new clinical settings (Black et al. 2011, Nix et al. 2022, Oakden-Rayner et al. 2022). The emergence 

of deep learning-based techniques synonymous with AI has significantly extended the power and range of CDSS 

applications in healthcare but also brings new challenges. According to Yang et al. (2022), deep learningۑs lack of 

explainability is one of the main factors inhibiting adoption of this new generation of CDSS. Understanding just what 

it might take to make AI more explainable requires looking at how decision-making is done, not only at the level of 

the individual clinician but as a socially-situated practice (Aversa et al. 2018). 

In this paper, we look at how socially-situated decision-making in healthcare is bound up with the organisational 

circumstances within which those decisions are taken, i.e., they are oriented to as organisationally accountable 

decisions. To do this, we examine in detail the practices that people follow to make themselves accountable, so that 

their co-workers can see their actions to be organisationally appropriate. Multiple studies have revealed how the 

timely and dependable completion of organisational work requires participants be able to make sense of each otherۑs 

activities (Hartswood et al. 2007, Heath and Luff 1991, Hughes et al. 1994, Procter et al. 2006, Suchman et al. 2002). 
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Participants ېdoۑ being accountable as part of their everyday work, demonstrating competence in their role(s) and 

furnishing evidence of their trustworthiness. Moreover, providing evidence of trustworthiness is not a one-time act 

but must be continually reproduced in and through the course of peopleۑs daily activities (Clarke et al. 2006, Procter et 

al. 2022). Other studies of the explainability of AI and of how such explanations, or accounts, might serve as a 

foundation of trust in decision-making have largely left untouched the matter of how accounts are reflexively bound 

up with the organisational context within which they unfold. Our primary contribution here is therefore to bring into 

view the importance of understanding organisational accountability in relation to the delivery of explainable and 

trustworthy AI in healthcare. 

In section 2, we begin our exploration of requirements for trustworthy AI by reviewing the literature on accounts 

and accountability. We examine in depth the nature of accounts and accountability practices, with a focus on 

organisational accountability and trust in professional work. It is important to note that accountability practices are 

shaped by the technologies in use and the ways in which these lead to specific forms of socio-material practice (e.g., 

Heath and Luff 1991). Introducing a new technology, such as AI, into an organisational setting may call for the 

reconfiguration of these practices but also of the technology itself so that organisational members can use it and/or 

adapt it in ways that best affords their accountability needs (Sellen & Harper 2003). Being organisationally accountable 

means that not only must AI systems furnish accounts that meet the needs of organisational members to make sense 

of their behaviour, but these accounts must also be compatible with how organisational members themselves manage 

being accountable to one another and to the organisation at large. 

The safety critical demands of decision-making in healthcare make it a particularly perspicuous setting for 

exploring what organisational accountability involves. Section 3 presents three case studies drawn from a range of 

studies we have undertaken regarding breast cancer screening and treatment planning in multi-disciplinary team 

meetings. Through these, we explore what being accountable might amount to in relation to diagnostic work in 

healthcare. The findings are then used in section 4 to examine the challenges they present for data visualisation and 

HCI design and to propose some candidate solutions, before articulating some broader considerations related to 

auditing and regulatory frameworks for AI in healthcare. Finally, based on these we formulate the implications of this 

material for an ongoing programme of work in section 5. 

2 An overview of accounts and accountability 

In this section we summarise key points from the literature regarding accounts and peopleۑs everyday accountability 

practices. We explore how accounts and accountability have distinct characteristics that are of enormous significance 

for how they are handled by people. One part of this relates to the nature of accounts themselves and whether they 

might be considered formal, situated or natural. The latter two of these are tightly interrelated but can have different 

outcomes. Another consideration is how accounts and accountability relate to the context within which they are 

embedded. Of particular relevance for this paper is how accounts have an indexical and reflexive relationship with 

organisational settings, i.e., organisational accountability. This relates to the way in which people orient to understood 

organisational structures, requirements and imperatives when managing their accountability, not just to each other, 

but to the organisation as well. Here, other members of the same cohort are understood to be organisational 

incumbents who reason about the organisation in similar ways.  
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Another consideration is how accountability can be seen to have grammatical characteristics (Coulter 1983, 1989). 

What we mean by this is that what people do and how they do it has an accountable order and way of being put 

together. This can be a spatial and temporal matter, e.g.: certain things get done in certain places and not in others; 

things may have a certain sequence; things may get done at certain times and not at others; etc. It can also be about 

coherence or co-occurrence, e.g.: things may be describable in one way, but not in another; some things may be seen 

to go together, other things not.  

We conclude this section by looking at how notions of ېtrustۑ and accountability can be seen to be related and 

what this might mean in the context of trustworthy AI. 

2.1 A typology of accounts 

As noted above, accounts can be considered as formal, situated or natural. This typology has significance when 

examining the implications of introducing new technologies and systems into the organisational workplace. 

Formal accounts are accounts of action that are situation independent, such as stories, scripts, minutes, written 

explanations, scripted commentaries, etc. Although they may be engaged with in different ways in different situations, 

they are typically understood to be reproducible across a range of different circumstances and thus, in some sense, 

generic (there is more to the matter than this, but we shall return to it below). The disadvantage of formal accounts is 

that their prescriptive character can make it difficult for them to be adapted to fit the specific requirements of the 

situation in which they are produced. 

Situated accounts, by contrast, are accounts that are tailored to circumstance. Fundamentally, they are possessed of 

three interactionally distinct modes of production. First, they may be produced as a response to being ېcalled to 

accountۑ. If the reasons why some course of action has been pursued by one party are not evident to another party, the 

latter may request an explanation, i.e., an ېaccountۑ. This request typically takes the form of direct questions, e.g., 

 etc. Second, a party who has pursued some course of action may suspect it was not understood ,ۑ?What are you doingې

correctly by others around them. They may then produce a pre-emptive account to explain their actions, so that they 

are never actually called to account. A third form of situated account is where the explanation of some course of action 

is produced in company with the course of action itself. It may be pre-scripted to some degree, but can be adapted to 

the moment of production, enabling it to accommodate contingency and the particular recipients to hand.  

Two key characteristics of all situated accounts are: i) they are recipient designed (Sacks 1992), i.e., the exact way 

they are formulated is tailored to their recipient, so two different individuals may receive different accounts, 

depending upon matters such as their competence and their relationship with the party producing the account; ii) they 

are tailored to the circumstances of their production, i.e., they are positioned appropriately within an ongoing 

sequence of interaction and demonstrate due recognition of the ecological and semantic circumstances.  

Centrally, situated accounts are able to draw upon the circumstances of production as a resource (i.e., they display 

a reflexive and indexical relationship with the situation). One advantage of situated accounts is that by being tailored 

to fit the immediate need they are much more likely to be readily understood. Another advantage is that they are open 

to repair. In other words, a recipientۑs failure to understand can be recognised by the account-giver and they can then 

reformulate the account until it is understood. Some disadvantages of situated accounts (at least from the point of view 

of AI systems design) are: the need for an account has to be recognised in the first place; the account-giver has to be 
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able to grasp the local context; and the account-giver has to be able to make the account fit the need, i.e., they have to 

not only to be capable of grasping the local situation but also have the competence to be able understand how to 

respond appropriately. 

As people conduct their everyday affairs, they take the ordinary, readily explicable character of the world around 

them for granted. This taking for granted of the explicable character of phenomena and their constituent features can 

be termed as treating them as ېnaturally accountableۑ (Garfinkel 1967). Implicit to this is a notion of ېtrustۑ, which is ۔a 

background condition for mutually intelligible actionە (Watson 2009: 476). Trust is a key component of peopleۑs 

 all parties to the interaction must understand that they are۔ where ,ۑrules of engagementې to the ۑmutual commitmentې

engaged in the same practice, must be competent to perform the practice, must actually perform competently and 

assume this also of the others.ە (Watson 2009: 475). This forms the intersubjective grounds of everyday action and its 

intelligibility, i.e., ۔We trust in other partiesۑ ability and motivation to make similar sense of a situation, using similar 

sense-making methods and instruments.ە (Watson 2009: 481). Of course, occasions do arise where our background 

expectations are challenged and this is when the production of situated accounts occurs, as described above. 

Clearly, the advantage of natural accountability is that there is no need for an overt account and all courses of 

action are, for the larger part, mutually intelligible to those engaged in them or witnessing them. This also means that 

trust is implicit because everyone understands one another to be oriented to a shared set of background expectations. 

Natural accountability calls for having the competence to see the world in the same way as those with whom you are 

interacting, and they have to see you as being possessed of that competence. This may be a ېvulgar competenceۑ 

(Garfinkel 1967), i.e., something that is shared by most other people, or it can be a competence shared by members of a 

more specific cohort, for example, clinicians.  

There are relatively few direct discussions of how people handle accountability and trust in the digital domain. 

One persistent and growing thread of interest relates to the accountability of systems and how effectively systems 

might make visible to their users ېwhat they are doingۑ, i.e., give some account of their actions. This notion can be 

traced back to the work of Dourish (1993, 1997, 2001a), Button and Dourish (1996), and Belloti and Edwards (2001). It 

continues to be of importance for the design of trustworthy IT systems (Eriksen 2002) but, as we have noted above, 

much of the recent discussion about it has been framed within a growing body of work on the explainability (or 

otherwise) of AI algorithms (e.g., Abdul et al. 2018).  

While trustworthiness may be seen to be a generic requirement of IT systems, the challenges of meeting it may 

vary significantly with the kind of system in question. In some cases, users may treat trustworthiness as an 

accountable matter in very specific circumstances only (Dourish 1997, Anderson et al. 2003), such as when an Internet 

connection unexpectedly slows or stops working. In other cases, users may treat trustworthiness as an accountable 

matter routinely, such as when a recommender system suggests products to an online shopper, or an AI system 

presents a candidate diagnosis to a clinician. However, what distinguishes the provision of accounts by recommender 

systems, for example, from those by an AI system in healthcare is that in the latter, the AI account will be a material 

resource for an account to be provided by healthcare professionals for whatever action they make. This is of 

fundamental importance as it is the trustworthiness and organisational accountability of the healthcare professional 

that is at stake (Nix et al. 2022).  
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With this in mind, one question we will be seeking to address is what current approaches to xAI are actually 

addressing: formal accountability, situated accountability, or natural accountability. The first of these is clearly the 

easiest to accomplish; the last might be considered the ېidealۑ. 

In summary, everyday life is socially organized and this social order constitutes a moral order. This order is the 

basis upon which the very need for an explicit account or otherwise is founded. It provides for seeing what needs to be 

done or left alone, for seeing what oneۑs obligations might be and for seeing what might or might not be reasonably 

expected of others. The latter is of particular concern in organisational contexts and it is a foundational characteristic 

of healthcare settings. As these form the backdrop of the case studies in this paper, we will look next at the topic of 

organisational accountability, which is fundamental to establishing and sustaining trust in professional work. If AI 

systems do not provide the resources to support this, then this trust will be undermined. 

2.2 Organisational accountability 

While notions of organisational accountability are tightly bound up with the preceding considerations, they differ in 

the way they focus upon the relationship between people and organisational structures, requirements and imperatives. 

Here, the intersubjective aspects outlined above are premised upon assumptions that other members of the same 

organisational cohort consider themselves to be accountable to the same organisational concerns in much the same 

way. All aspects of organisational life, from management protocols to technologies are subject to the same concerns. 

This underpins how organisations are constituted as social phenomena and, at heart, it makes trustworthy AI first and 

foremost a socio-technical problem. There are a number of treatments of this topic in the literature. 

Perhaps the earliest ethnomethodological discussion of organisational accountability can be found in Garfinkelۑs 

 This relates to a study that Garfinkel .(Garfinkel 1967: 186-207) ەclinical records ۑbadې Good organizational reasons for۔

and Bittner undertook of the nature of clinical records in a psychiatric clinic in California in the 1950s. Garfinkel and 

Bittnerۑs remarks are primarily addressed to the absence of seemingly important bits of information from the large 

majority of the files they inspected. As they tried to unravel and reconcile these absences, they came to see the 

problem as one of dealing with ېnormal, natural troublesۑ, which ۔occur because clinic persons, as self-reporters, 

actively seek to act in compliance with rules of the clinicۑs operating procedures that for them and from their point of 

view are more or less taken for granted as right ways of doing thingsە (Garfinkel 1967: 191). In his explication of the 

issues, Garfinkel draws a sharp distinction between the accountability of clinic records as actuarial records, in relation 

to which they were clearly wanting, and as records ۔of a therapeutic contract between the clinic as a medico-legal 

enterprise and the patientە (Garfinkel 1967: 198 (original italics)), in relation to which they were perfectly adequate 

when certain assumptions were being made. Thus, Garfinkel suggests that: 

 s contents without incongruity a clinic member must expect of himself, expect ofۑIn order to read the folder۔

other clinic members, and expect that as he expects of other clinic members they expect him to know and to 

use a knowledge (1) of particular persons to whom the record refers, (2) of persons who contributed to the 

record, (3) of the clinicۑs actual organization and operating procedures at the time the folderۑs document are 

being consulted, (4) of a mutual history with other persons ۋ patients and clinic members ۋ and (5) of clinic 

procedures, including procedures for reading a record, as these procedures involved the patient and the clinic 

members. In the service of present interests, he uses such knowledge to assemble from the folderۑs items a 

documented representation of the relationship.ە (Garfinkel 1967: 206). 
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It can be seen within this an assumption of the natural accountability of clinic records to other members of the 

same organisation who can grasp the same intersubjective point of view. This goes to the heart of organisational 

accountability: it is premised upon a presumption of the adequacy of oneۑs actions, including the production of 

records, not to just anyone at all, but rather to just anyone who has available to them an understanding of an 

organisationۑs operating procedures and ېthe right way of doing thingsۑ as a member of that organisation. This is 

evidently a substantial elaboration of what was said in the previous section regarding formal accounts. The significant 

thing to grasp is the distinction Garfinkel makes between what might be thought of as an actuarial, generic use of 

formal accounts and the ways in which they are actually generated and used in practice. We return to some of these 

points in the discussion because they constitute a vital backbone to much of the reasoning visible in the case studies 

we present below.  

There have been various developments of the discussion of accounts in Garfinkel and Bittnerۑs original study of 

clinical records. Bittner, for instance, moved beyond this to write a seminal paper on organisational accountability that 

took to task organisational theory at the time (Bittner 1965). Bittnerۑs key concern was to illustrate how sociological 

discussions of how organisations are constituted managed to miss how organisations are oriented to by organisational 

members in everyday practice. His argument revolves around two principal concerns, to which we shall return later. 

One of these is what he termed ېgambits of complianceۑ. This is how organisational members find ways to account for 

their actions in terms of what just any member knows about that organisation and its interests. Gambits of compliance 

also serve to make manifest organisational membersۑ understanding of the organisation they inhabit. Thus, they make 

available to the analyst an intersubjectively-established, common-sense understanding of what an organisation 

amounts to.  

Bittnerۑs second, strongly related point, is that organisational members orient to what they understand to be the 

 of an organisation. This refers to how organisations, despite their potential scale and diversity, are still ۑstylistic unityې

taken by members to be a sphere of ېconcerted actionۑ. That is, despite the presence of specific rules for specific 

matters to which members might consider themselves accountable, they also orient to a sense of there being an overall 

interest or ېreproducible themeۑ to which an organisation adheres. Bittner further notes how organisational members 

will use the stylistic unity of an organisation as a source of ېcorroborative referenceۑ, whereby their overall 

understanding of an organisationۑs purpose can be invoked as an account for what might otherwise seem fragmentary 

or contradictory. In a more recent development of these themes, Tolmie and Rouncefield (2016) have examined the 

visible exercise of organisational acumen by members of an organisation in relation to how they prioritise activities, 

demonstrate adherence to organisational policy, and preserve a sense of organisational consistency. 

When it comes to how notions of organisational accountability have been used in the digital domain, it is 

important to make a distinction between how members might be seen to orient to formally constituted records and 

procedures, and how members can be seen to deliver organisationally appropriate accounts, for instance, through 

gambits of compliance. A classic example of the former is Suchmanۑs discussion of how plans stand not as instructions 

but rather resources for situated action (Suchman 1987). Examples of the latter include Dourishۑs discussion of the use 

of workflow technologies (Dourish 2001b) and Martin et al.ۑs study of the development of electronic patient records 

(Martin et al. 2009). 
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2.3 The grammatical constitution of accounts 

Wrapped into all of the previous considerations are the ways in which accounts and accountability may be seen to 

have grammatical characteristics, i.e., they have a recognisable order and are assembled in certain kinds of ways. 

Accounts and accountability are tied up with: 1) spatial concerns ۋ things get done in certain places and not others and 

are accountable in those terms; 2) temporal concerns, where, a) courses of action are in a temporal order that is often 

sequenced in a certain way, and b) things are done at certain times and not others; 3) coherence concerns, where, a) 

things may be describable in one way, but not in another, b) some things may be seen to go together, others not; c) the 

occurrence of one thing may strongly implicate the co-occurrence of another, and d) relatedly, the description of one 

thing in a certain way may strongly implicate the description of other co-situated elements in a certain way. 

Spatial accountability is a pervasive feature of our world. It takes little effort to see what kinds of activity are 

considered naturally accountable or otherwise in offices and factories, and so on. The sequential organisation of 

conversation and resulting patterns of accountability were first described in detail by Sacks et al. (1978). The notion of 

extending this sequential view of action through words to action has been articulated by Coulter in terms of 

 It will be seen in our description of multidisciplinary meetings in a breast .(Coulter 1983, 1989) ۑgrammars of actionې

cancer clinic that such meetings have a powerfully implicative sequential order that provides for a range of important 

outcomes. Another accountable aspect of temporality is the timing and duration of different things. Clearly, just when 

certain activities are completed and just how long they take can be of significant concern in organisational settings. 

This interest in temporal accountability has been previously described in several production environments (Button & 

Harper 1995, Button & Sharrock 1997), with it being potentially consequential for the management of divisions of 

labour.  

The describability of certain things in certain ways, and the situated grounds of such descriptions, is of particular 

pertinence for this paper. There are ways in which appropriate descriptions are assembled on the basis of appropriate 

evidence that are tightly bound up with how things are seen in commonly oriented-to ways amongst specific cohorts. 

This has been a recurrent topic in ethnomethodological studies of expert practice, ranging from Garfinkel et al.ۑs early 

paper on the optical discovery of a pulsar (Garfinkel et al. 1981), through Goodwinۑs analysis of professional vision 

(1994), to more recent studies of work with mammograms (Hartswood et al. 2002a, Hartswood et al. 2007). With regard 

to the latter, Slack et al. (2010) unpacked the specific kinds of ېprofessional visionۑ involved in diagnostic work in 

terms of what might be called ېgeographiesۑ or ېtopologies of suspicionۑ, where it is an assembly of anomalous features 

that plays into what may be seen as a potentially carcinogenic mass or lesion. This reasoning about what things go 

together can also be seen to extend to recognition of what activities go together. Crabtree and Rodden (2004) note that 

certain activities can be seen to cluster in certain spaces in homes, with objects being placed within those locations 

actively promoting and supporting coordination between inhabitants (e.g., by positioning letters in certain places). 

This kind of concern is obviously of importance in workplace settings and more recent work has taken a similar view 

of how certain constellations of things may actively provide for reasoning and account (Anderson 2017). 

There is one further ېgrammaticalۑ consideration of accountability of relevance to this paper that needs to be 

mentioned. Sacks (1992) pointed out that there are certain categories we are predisposed to hear as going together, 

such as mothers and babies, drivers and passengers, doctors and patients. Upon the basis of this, we regularly make 

ordinary and naturally accountable assumptions. Sacks termed such co-occurrent descriptors as membership 

categorization devices (MCDs). Understanding how appropriate assumptions of co-occurrence might occur is one of 
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the challenges confronting trustworthy AI, when it comes to being able to assemble what are seen to be reasonable 

accounts in specific circumstances. 

2.4 Trust and accountability in the context of AI 

As a final point for consideration, in our discussion of natural accountability, we pointed to the interrelationship 

between accountability and trust (Watson 2009). Something we want to emphasise here is the particular importance of 

this in relation to the prospective use of AI systems to support decision-making in safety critical circumstances. As a 

broad topic, the relationship between trust and safety critical systems has generated a substantial literature (Albayram 

et al. 2019, Coskun and Grabowski 2004, Fenton et al. 1998, Johnson 2002, Mentler et al. 2016). Here, we want to bring 

to the fore a specific concern: if, as Garfinkel (1967) and Watson (2009) suggest, trust turns upon the intersubjective 

grounds of accountability, what will it take for an AI decision-support system to be trusted?  

There is a similar substantial literature concerning improvements in AI and its role in decision-making, and 

associated ideas such as trust, accountability, and explainability (Knowles et al. 2014, 2015, Cai et al. 2019a, 2019b, 

Smith 2021, Kaur et al. 2022). Early work on the use of AI in detecting breast cancer (Hartswood et al. 2003) points to 

the importance of ېrepairۑ, of how clinicians are required to use their collaborative ېprofessional visionۑ, i.e., ۔socially 

organised ways of seeing and understanding events that are answerable to the interests of a particular groupە 

(Goodwin 1994) to make sense of the outputs of the technology:  

 That a mammogram feature or a prompt is there is not, of itself, constitutive of a lesion or other accountable۔
thing, it must be worked up through these embodied practices and ratified in the professional domain of 

scrutiny. The machine knows nothing of what it is to be a competent, professional reader and what it is to 

look for features in a mammogram beyond its algorithms ۋ that is self-evident ۋ and the reader must ېrepairۑ 
what the machine shows, making it accountable in and through their professional vision.ە (Hartswood et al. 

2003) 

More recent work has reiterated these findings, and their importance, identifying a failure to consider typical HCI 

issues, to explain system use or capability or its contribution to existing collaborative practices that might make it fit 

in to everyday work, or become ېunremarkableۑ (Yang et al. 2019). For example, McKinney et al. (2020) outline 

experimental evidence of statistical improvements in decisions and outcomes from using AI in breast screening but 

with little concern about how these might impact on the actual working practice and everyday experience of 

radiologists. In contrast, Smith (2021) highlights a range of interlocking and contradictory issues concerning 

accountability, responsibility and transparency in the use of AI in clinical decision making. Similarly, Henriksen et al. 

(2021) suggest the ېinherentۑ opacity of deep learning-based AI systems reduces the possibilities for accountability and 

trust, arguing for a move towards ېexplainabilityۑ of AI systems. Abdul et al. (2018) stress the importance of 

understanding how the context of use impacts on requirements for explainability. Finally, Ehsan et al. (2021) argue for 

the need for critical reflection and a movement away from algorithm-centred approaches towards more social 

transparency in AI systems:  

 Implicit in AI systems are human-AI assemblages. Most consequential AI systems are deeply embedded in۔

socio-organizational tapestries in which groups of humans interact with it, going beyond a 1-1 human-AI 

interaction paradigm. Given this understanding, we might ask: if both AI systems and explanations are 

socially situated, then why are we not requiring incorporation of the social aspects when we conceptualize 

explainability in AI systems?ە (Ibid) 
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For us a telling aspect of this argument is the emphasis on ېsocio-organisational tapestriesۑ, since it is exactly this 

organisational aspect of accountability that features so strongly in our own research into healthcare technologies and 

innovations. 

The new generation of AI systems have a diverse range of potential applications in healthcare decision-making, 

including diagnosis (Bohr & Memarzadeh 2020). The roles they may be assigned to in diagnostic processes, for 

example, assisting or replacing human expertise (Keane & Topol 2018), remains an open question, one that will require 

thorough evaluation of performance, together with proof of meeting any regulatory standards (Arora 2020) and ethical 

principles that apply (Guan 2019). However, regardless of role, AI systems will need to be capable of being accountable 

for their decisions in ways that healthcare professionals can trust. Some studies, such as Wang et al. (2019), have 

approached these questions from a decision theory perspective. Other studies have followed an empirical approach 

based on interviews with clinicians (Yang et al. 2019, Liao et al. 2020) or scenario-based methods (Ehsan et al. 2021). 

What is lacking is an empirically-based exploration of what it means for AI to be accountable ېin the wildۑ and this is 

what we aim in this paper to begin to address by presenting evidence from our previous field studies of accounts and 

accountability practices in healthcare.  

3 Case studies of accounts and accountability 

3.1 Rationale 

As noted above, accounts make people's reasoning about particular courses of action manifest. People assume that the 

reasoning exhibited in their own and other people's accounts is appropriate for the organisational context within 

which they are situated. This is argued by Watson (2009) to be the cornerstone of intersubjectivity because accounts 

trade upon background expectations that just anyone within a particular cohort will bring to bear. So, examining 

accounts and explanations put forward by members of an organisation gives insight into the nature of accountability 

in that organisation and what it will take to support it or otherwise.  

The safety critical demands of decision-making in healthcare, together with it being a very active domain for the 

application of AI, make healthcare an excellent choice of setting in which to explore the nature of organisational 

accountability and the design of trustworthy AI systems. We have undertaken many studies of technological 

innovation in healthcare settings over a span of some 20 years. In order to explicate in detail the kinds of accountable, 

expert reasoning present in healthcare settings, we have selected from this body of work a series of studies relating to 

the diagnosis and treatment of breast cancer. By presenting findings from these studies, we aim to make visible how 

AI has the potential in such settings to either disrupt or support that reasoning in various ways. In view of this, we 

argue that it is important that design endeavours for xAI in this domain start out from a reasonable understanding of 

just what that reasoning looks like. 

As noted below, it has long been standard practice in CSCW and HCI to use ethnographic studies as a way of 

examining existing practice and explore the kinds of impact the introduction of technology may have. In dialogue with 

designers, these provide a way of testing the assumptions present in technology design about the settings in which 

technologies may be deployed in order to see whether they are well-grounded in an understanding of the social 

organisation of those settings. This illustrative and instructive approach forms the backdrop to the studies we report 

here. We will specifically be making use here of ethnographic data from three studies relating to the diagnosis and 
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treatment of breast cancer: the expert practices involved in reading mammograms; the cross-disciplinary reasoning 

that is brought to bear upon the treatment implications of expert recommendations in what are called Multi-

disciplinary Team (MDT) meetings in a breast cancer unit; and a trial of a decision support system for mammography 

screening. Ethical approval was obtained for each study and participants gave their informed consent.  

It should be noted that the specific rationales for undertaking each of the studies differ from one another in certain 

ways. In the first study, the focus was upon how radiologists working in breast screening decided on whether to refer 

a patient for further investigation (Hartswood et al. 2002a). The second study was undertaken to inform the 

development of prognostic tools for use in MDT meetings, illustrating how not only the diagnostic process is being 

opened up as a space within which to deploy AI but it is also envisaged as a resource to underpin prognosis. Diagnosis 

and prognosis come together in the context of MDT meetings that are held pre- and post-operatively. The third study 

was interested in the impact of the introduction the decision support system for mammography screening and how 

expert reasoning and machine-based recommendations rub up against one another when they are obliged to work 

together (Hartswood et al. 2003, Slack et al. 2010). 

There is a process involved in the diagnosis and treatment of breast cancer and we have sought to selectively 

illustrate here the organisational accountability and reasoning associated with this. The first example in section 3.3 

relates to how radiologists examine images for potentially cancerous lesions. In section 3.4, we see how the findings of 

various healthcare professionals are collectively brought to bear in MDT meetings to decide on how to proceed with 

the treatment of any identified cancers. Thus, there is a strong relationship between the work of and organisational 

accountability of radiologists described in section 3.3 and the work carried out in MDT meetings, where specific expert 

accounts are brought to bear. MDT meetings are effectively where diagnostic outcomes produced by individual experts 

(including any outcomes informed by technical apparatus, such as, potentially, AI) are parleyed into a treatment plan 

and, simultaneously, made accountable to all relevant organisational stakeholders. This is the kind of work described 

in section 3.4. Finally, in section 3.5 we see how radiologists attempted to make a prototype CDSS accountable for its 

behaviour. We use materials from these studies to understand how these different bodies of practice are accomplished 

and what organisational accountability looks like in each situation. This gives insight into the settings within which 

AI-based accounts will also have to find a home. We would argue that, while technologies may change, the basic 

processes and reasoning about the organisationally accountable characteristics of moving from diagnosis to treatment, 

do not.  

We are aware that the significance of these studies for trustworthy AI might be challenged on the grounds that 

they are not recent or that they might not be relevant to AI technologies or healthcare settings and practices today. 

First, to build upon the preceding remarks, the role played by accountability in establishing and maintaining trust in 

organisational work and the ways in which it is reasoned about as a feature of that work remains a preoccupation in 

healthcare. Second, as a socio-material practice, how accountability is performed is shaped by both the technologies 

and settings in which accounts are presented, interrogated and shared. However, to assume that AI, by virtue of its 

presentation will bypass the socio-technical concerns we elaborate and be ېtrustedۑ by virtue of its technical features 

alone, is to assume that the sociality of such settings will be held subservient to such considerations. On the contrary, 

the materials we present below make it manifest that the opposite is the case: all organisational settings are invested 

with an order that is first and foremost moral and social and within which any kind of technology must find its home. 

As observed many years ago by Sacks regarding the introduction of telephones into domestic environments, 
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technologies are ۔made at home in the world that has whatever organisation it already hasە (Sacks, 1992, vol. 2: 548-9). 

So, while the specificities and possibilities of technologies may change, the fact that they will be subjected to the kinds 

of moral reasoning we describe does not. 

3.2 Methodology 

The research in the three empirical cases studies was carried out through the deployment of an observational method 

known as ېethnomethodologically informed ethnographyۑ (EIE) (Button et al. 2015). Following the ېturn to the socialۑ 

(Anderson 1994, Button and Harper 1995, Jirotka et al. 2005, Randall et al. 2007), this approach to understanding the 

activities and processes connected to everyday work has become especially prominent in both computer-supported 

cooperative work (CSCW) (Luff et al. 2000, Randall et al. 2005) and human-computer interaction (HCI). The aim of EIE 

is to identify and describe the particular activities in any workplace setting, to consider the myriad ways in which 

work is accomplished, moment by moment, irrespective of, and ېindifferentۑ to, any pre-existing theoretical or 

organizational stance on how work ېshouldۑ be done. As Randall (2018) puts it, ۔Roughly speaking, this entails a 

commitment to the point of view of the actor; some kind of preference for study of the way actors order their 

activities; an interest in the skills, competencies and ېartfulnessۑ that actors bring to their efforts, and an interest in the 

use of artefacts.ە 

The general warrant for EIE is that of ېfaithfulness to the phenomenaۋ ۑ the thorough description of the situated 

organisation of activity in all its real-world detail. It sets out, as Garfinkel puts it; ۔to treat practical activities, practical 

circumstances, and practical sociological reasonings as topics of empirical study, and by paying to the most 

commonplace activities of daily life the attention usually accorded extraordinary events, seeks to learn about them as 

phenomena in their own rightە (Garfinkel 1967). In our analysis, we focus on what we can learn from the real-world, 

real-time competences and practices through which members of the setting organize their interactions. This involves 

fine-grained, moment by moment, analysis of everyday situated practices and interactions in order to explicate 

peopleۑs ېethno-methodsۋ ۑ the practical, situated exercise of common-sense, whereby activities are made to be seen 

accountable, organized and recognisable. In everyday working life people just ېget onۑ with things; and its exactly that 

 of work: how ۑdoingې that we describe and analyse. The emphasis throughout is on documenting the actual ۑgetting onې

mammograms are ېreadۑ; how MDT meetings proceed and make decisions; that is, how work is done in actual practice. 

It is this detailing of social interactions that ultimately makes the findings relevant and important to design activities 

(Dourish 2006).  

3.3 Reading mammograms in the UK Breast Screening Programme 

Our first case study is of the UK breast screening programme, where mammograms were ېreadۑ by two radiologists 

and the recall/no recall decision was made on the basis of these two independent assessments (Hartswood et al. 2002a). 

In Figure 1 a radiologist is examining mammograms (2 views: ېobliqueۑ and ېCCۑ). As accounts, mammograms may 

seem of limited value, but radiologists are able to work up a professionally relevant explanation of what they can see 

in the mammograms by, e.g.: (a) comparing features across the 2 views; (b) using a magnifying glass; and (c) 

measuring features using their hands (Slack et al. 2010).  
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Figure 1: Radiologist examining a mammogram, showing use of fingers to measure a feature. 

In reading mammograms, radiologists are required to exercise a combination of practical reasoning, knowledge 

and skill, as they translate the features visible in the mammogram, their knowledge of its underlying physics, breast 

architecture and circumstances of the patient into an appropriate organisational account. This requires a range of 

professional skills to find or rather ېunpickۑ or uncover what may be faint features in the complex visual environment 

of the mammogram: interpretative skills to classify them appropriately as being ېbenignۑ or ېsuspiciousۑ; and 

explanatory skills to make their procedures and decisions professionally and organisationally accountable. Types of 

features that are indicators of malignancy include: micro-calcification clusters (small deposits of calcium visible as tiny 

bright specks); ill-defined lesions (areas of radiographically dense tissue appearing as a bright patch that might 

indicate a developing tumour); stellate or spiculated lesions (visible as a radiating structure with ill-defined borders). 

 may be visible when tissue around the site of a developing tumour contracts; asymmetry ۑArchitectural distortionې

between left and right mammograms may be the only visible sign of some features. 

Radiologistsې ۑprofessional visionۑ (Goodwin 1994) entails being able to distinguish between what is ېnormalۑ and 

what is ېabnormalۑ through an understanding of ېterritories of normal appearanceۑ and ېincongruity proceduresۑ (Sacks 

1972) and a repertoire of physical manipulations that make such differences visible and accountable. When we look at 

the work of reading, we observe it as a skilled, reasoned, and above all accountable, practice. For radiologists, diagnosis 

involves ېundressingۑ or ېpicking apartۑ features that appear on the mammogram. For example, the important 

characteristics of calcifications are their size, shape or morphology, number, and distribution. Benign calcifications are 

usually larger than calcifications associated with malignancy. They are usually coarser, often round with smooth 
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margins and are much more easily seen. But microcalcifications are generally very small and so may be missed; in 

regions where the background tissue of the breast is dense, it is very difficult to localize the calcifications; moreover, 

calcifications sometimes have a low contrast to the background. Sometimes, other structures in the breast may mimic 

micro-calcifications ۋ such as calcified arteries ۋ or artefacts on mammograms (e.g., due to specks of dust or talcum 

powder) may look like micro-calcifications. These characteristics are revealed through the process of ېundressingۑ. 

Such ېundressingۑ is accompanied by relevant descriptors that invoke a repertoire of descriptions of significance 

concerning shape, size, density, contour, number of flecks, distribution, orientation, location etc.  

Figure 2 shows the screening form used to record comments and decisions made during the process. It consists of 

several distinct sections that are intended for the use of the different members of the screening centre team. The 

process begins when the mammograms are taken by the radiographer, who records information about, e.g., 

information gleaned from the woman about her medical history (e.g., cyst; moles; Pain L breast and arm, GP thinks is 

muscular), together with details of how the x-ray machine was set up when the mammograms were taken. In 

summary, these are observations that are expected of a competent radiographer and which a radiographer records to 

make their actions accountable. Comments are indexically tied to the mammograms through marking the simple 

schematics. Similarly, the first radiologist to examine the mammograms doesnۑt just record recall/no recall but adds a 

comment (e.g., new), which is then available to the second radiologist, who adds a final comment (e.g., BT I think, HRT 

related). The combination of images and forms provides the means for radiographers and radiologists to make 

themselves accountable for their actions. As a record of decision-making, these accounts may be re-visited should 

there be any subsequent questions about the original decision (Hartswood et al. 2002a). 

 

Figure 2: Example of a UK Breast Screening report form. 
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3.4 Decision-making in multi-disciplinary team meetings for breast cancer 

Our second study was of multidisciplinary team (MDT) meetings for breast cancer. MDT meetings facilitate various 

processes and interactions around the detection, diagnosis and treatment of cancer. The study was focused on 

developing insights for the creation an enhanced version of the Nottingham Prognostic Index (NPI), NPI+, which uses 

a naïve Bayesian classifier to predict patient outcomes (Soria et al. 2010, Rakha et al. 2014).  

To make NPI more directly usable and relevant in MDT meetings, a general question was posed regarding how 

clinicians and other healthcare professionals make decisions and develop those decisions in their interactions with 

both one another and with patients. A key aspect of this is how such decisions are made accountable and how they 

feed into a process of accountability. The study sought to understand what informed these decisions and the 

implications of that for the design of future prognostic systems and representations. In these meetings ېaccountabilityۑ 

refers to not only some sense of responsibility for the production of an image, or the making of a diagnostic or 

treatment decision; but also the making of an action ېaccountableۑ in the sense of it being made visible and apparent to 

others as the action it is, and repairing any misconceptions or misunderstandings. Accountability is then woven into 

the whole process of MDT meetings and not merely occasioned by some particular decision; indeed, the fact that it is a 

  .forms part of its accountability ۑprocessې

In MDT meetings, health professionals display, make use of, and found decisions upon various kinds of 

information relating to patients, including the NPI score (based on factors such as tumour size, grading, etc.), which 

are input into a prognostic index formula (Rakha et al. 2014). Our interest, as far as accountability is concerned, lay in 

understanding the grammatical constitution of accounts in MDT meetings: the kinds of information that gets 

displayed, when it is displayed, how it gets displayed, the specific situation in which such display is embedded, and the 

ways in which displays of information get cued, and how changes of display are cued and managed. While each 

particular MDT meeting has features that are exclusive to the particular setting, the general process will be familiar 

across a range of settings: there will be some form of ېfamily resemblanceۑ, the most important of which is the strong 

theme of accountability that runs through the process. As noted in section 3.1, MDT meetings are also where the 

outcomes of using diagnostic tools, such as those used by radiologists and pathologists, are brought to account. Thus, 

MDT meetings constitute a key environment to understand with regard to how expert decisions are made more 

broadly organisationally accountable and opened up for potential further inquiry and explanation. 

In the MDT meetings we observed, the clinicians managed the running order by making reference to printed 

sheets provided in advance by admin staff. The meetings took place at the beginning of each day before patients 

visited the clinic and the printed sheets gave the order in which the patient visits were scheduled. At the start of each 

patient discussion, the clinician responsible for that case would provide a short history, giving origins, actions and 

current status, including any technical information, if known. A radiologist would then continue with the radiology-

derived information. Where relevant, radiological imagery on one of the screens at the front of the room would be 

displayed, as specifics were mentioned. Details from this were typically noted down by the clinicians and nurses. 

When the radiologist had concluded, it was the turn of the pathologist to deliver a summary of the pathology report 

based on biopsies or surgically extracted material, including technical figures. While the pathologist was talking, the 

clinician, nurses and administrative staff all took notes. The pathologist then handed over the printed report to the 

responsible clinician, who then took further notes from it prior to inserting it in the patient record. After this, a 

decision regarding next steps was made by the clinician, either as a direct proposal or in discussion with others in the 

room. This could be short or more protracted, depending on the case. Once a decision for treatment had been made it 
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was noted on the MDT meeting record by the clinician. Admin staff simultaneously noted the same information on 

their own copies of these records and nurses noted it on their Breast Care Nursing Assessment Forms.  

It can be seen from this overview that MDT meetings are shaped by a process that is all about accountability. At 

each and every stage, people are required to give accounts of or explanations for their decisions. Accountability also 

attaches to the process itself in the form of who has the right to speak and the need to account for interventions or 

comments. For example, nurses may provide reference to, clarification of, or enrichment of patient biographical 

details. Radiologists and pathologists may elaborate on, clarify, and/or enrich technical information when it is 

mentioned by the clinician, especially where uncertainty about some technical or pathological component is voiced. 

Similarly, admin staff may add to the nurse commentary or elaborate upon aspects of the record and its interpretation 

where this is unclear, or errors are manifest. There are global and local grammars to be followed and exceptions to this 

may matter. Surprising or unusual results can provoke debate. When these kinds of discussions occur, the other 

clinicians may request additional information from nurses, pathologists, radiologists, admin staff, other clinicians; in 

short anyone present with specific and relevant knowledge.  

Another observation concerns how accountability is afforded by and accomplished through the visibility and 

sharing of particular forms of document ۋ paper records, slides displayed on screen, etc. A number of items were 

visible to everybody in the room by virtue of two screens on one wall displaying a range of information. This included: 

a list of patients under discussion; the radiology patient record containing a summary of the main features of the 

patientۑs case and scanned copies of relevant documents; radiology images ۋ CT scans, mammograms ۋ biopsy images, 

NPI-derived survival curves, individual drawings and sketches; letters from GPs etc.  

The displayed record can become quite specifically a talking point within discussion of ways to proceed ۋ 

especially where specific events or findings in the past are deemed relevant ۋ with it standing directly as an object of 

ostension, people in the room being able to point to aspects of the record and refer to them with them being visible to 

all. Within the course of the meeting, items in the record are made use of by specific people, with the organization of 

the display and use of these informational resources founded upon the ongoing flow of talk, with talk cueing certain 

elements and then being used to describe and elaborate upon what is seen. Much of the decision-making hinges upon 

factors such as the size, the category, the type, the margin, whether thereۑs been any vascular invasion, what was 

found in the lymph nodes, the NPI score and so on. All of these can implicate different patterns of treatment.  

Arriving at accountable decisions is something that unfolds dynamically. At the same time, different parts within 

the process of diagnosis, treatment and care implicate the production of certain kinds of record. Thus, the making of 

decisions and the recording of decisions can be a hugely interwoven and mutually elaborative affair, rather than it 

simply being a case of ېfacts are presentedې ,ۑdecisions are madeې ,ۑrelated facts and decisions are recordedۑ.  

So, within the course of MDT meetings, a number of resources are called upon; that is, are called to account. 

Patient files, for example, are managed by clinicians and have a rich and important relationship with the process of 

accountability and the related decision-making process ۋ they form part of its stylistic unity (Bittner 1965). They feed 

into delivery of the patient history and stand as a resource for elaboration. At the same time, they are an accountable 

auditing device, standing as a repository of decisions made and where one might find a record of past states and 
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actions and whom they relate to. In addition, and as an outcome in part of the meeting, they give access to the current 

state and projected next actions.  

Clinicians enter details from radiologists and pathologists during the MDT meeting and the decisions made as a 

consequence on MDT meeting record forms. These are headed with an administration section and have sections for 

completing information as it is provided by the radiologist and pathologist and then a space for recording the decision. 

The forms cover a wide range of technical details, and some details may be appended or changed as things are checked 

and verified or elaborated upon. In this sense the forms provide a schematic record of the in-situ elaborations. The 

decision is entered as the discussion concludes. These forms are always completed in the meeting in the context of 

each case. This makes the MDT meeting in part about record creation and annotation ۋ not just presentation, display, 

talk and decision-making.  

The responsible clinician is also accountable for documenting what unfolds next: as the radiology report unfolds; 

as the pathology report unfolds; as elaborations are provided; as a decision is arrived at (or not). This documentary 

work has to be managed within the course of the interaction, which has implications for how clinicians engage with 

other resources during the meeting. In terms of the decision-making process these forms become the accountable 

representation of the decision and (ideally) provide the materials within them, and in relation to the rest of the patient 

file, for the decision to be accountable and intelligible to other competent members. Additionally, as documents that 

record the pathology data as it unfolds, they can also stand as a reference point for information during interaction 

leading towards the decision. 

3.5 What does it mean for AI to be accountable? 

In this section, we examine how healthcare professionals reacted to the challenges of using an AI system that lacked 

the capacity to explain its behaviour. 

In the past two decades, breast screening has been the site of several attempts to introduce CDSS into the process 

of reading mammograms. Figure 3 shows a prototype of one such system that was designed to substitute for the first 

radiologist
1
. At the top are the original mammograms and at the bottom are displays showing prompts, that is marked-

up areas in the mammograms that the systemۑs analysis of the mammogram has decided are suspicious. We studied 

radiologists using this CDSS in order to understand how they made sense of these prompts and how the prompts 

influenced their decisions (Hartswood et al. 2003, Alberdi et al. 2005, Slack et al. 2010).  

 

                                                           

1
 Using AI to substitute for human expertise remains a widely used argument for CDSS deployment. See, for example, McKinney et al. (2020). 
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Figure 3: The breast screening decision support system showing the prompt viewer. 

The system generated prompts that call attention to particular features on the mammogram but provided no 

explanation for them, leaving radiologists with the task of providing some form of ېnaturalۑ accountability for the 

features it highlighted. This was especially noticeable when radiologists disagreed with the system because the 

radiologists then had to explain, i.e., to account, why the prompt should be ignored or, alternatively, acted upon (see 

Figures 4 and 5) (Hartswood et al. 2003, Slack et al. 2010). 



 
ACM Trans. Comput.-Hum. Interact. 

 

Figure 4: Itۑs got a whole row of markers up here… but theyۑre all on innocent things… nothing to worry about there. 

 

 

Figure 5: Iۑve seen this before... the computerۑs marked something that I think is artefact on that side… itۑs often along the edge of the 

film. 
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Partly as a consequence of its inability to provide accounts of its behaviour, this system failed to demonstrate 

improvements in real-world settings and was never adopted (Alberdi et al. 2005), and this remains a persistent problem 

for AI systems in healthcare (Yang et al. 2019).  

4 Discussion  

We now examine in more detail the various dimensions of accountability visible in the three case studies in relation to 

the review of accounts and organisational accountability presented in section 2. 

4.1 The accountable characteristics of reading mammograms 

The report form records radiologistsۑ reading of a mammogram, including the various features uncovered through the 

process of undressing and the grounds for their recommendation, i.e., ېrecallۑ, because their reading indicates that 

certain features are ېsuspiciousۑ, or no recall because they consider the features to be ېbenignۑ. Once completed, the 

report form stands as a formal account of the reading procedure and has a relatively generic status in that it can be 

consulted by a range of others who are not a party to the situated reading and generation of the account itself. This is, 

of course, not quite the whole story because the form is open to contestation and modification by the second 

radiologist. Nonetheless, once the reading process is complete, from the point of view of medical records, the form 

stands as a formal account of what took place. 

Close inspection also reveals that what might stand as a formal account also has elements here of situated 

accountability. Two things are noteworthy in this regard. First of all, the form works to make visible what would 

otherwise be opaque to non-competent others in the original situated reading of the mammogram. So, it is a formal 

account of a situated reading and is negotiable in those terms should some other party inspect the same mammogram. 

Second, the form is itself formulated by the first radiologist for reading by the second radiologist. In other words, it is 

recipient designed (Sacks 1992) for someone else with a shared understanding of the work of reading mammograms, 

not just anybody. So, it is clearly not really generic but rather targeted at other members of the same cohort with a 

similar competence.  

In the case of the breast screening CDSS, however, the study make clear that there was little ېaccountingۑ going on. 

For the system, every marked-up entity had the status of suspicious and it was left to the radiologists to arrive at an 

actual account in situ, though their own record of the reading of the mammogram may then acquire the status of a 

formal account. This is indicative of some of the issues that trustworthy AI needs to address, because it illustrates the 

problem when such systems effectively generate just one half of what might be considered an accounting ېpairۑ, i.e., 

offering an assertion (tantamount to ېsuspiciousۑ on the original reporting form) without an explanation to underpin 

the assertion (the reasoning uncovered through the undressing process articulated through the original form). 

As the CDSS was not capable of providing an account for its behaviour (i.e., the presence or absence of prompts), 

radiologists were left to come up with one based on their accumulating observations, a ېbiographyۑ (Slack et al. 2010) 

of the systemۑs behaviour that is, in itself, a kind of account, one that might stand in equivalence with a formal 

account in that it is global and generic (e.g., Figure 5: ۔Iۑve seen this before… the computerۑs marked something that I 

think is artefact on that side… itۑs often along the edge of the filmە). To serve as an organisational account, it would 

need to be shared between ۋ annotated and curated by ۋ radiologists as their experience of its behaviour accumulated 
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with every prompt they saw. However, unlike the ways in which, as we saw, radiologists were able to make a 

mammogram an accountable object and which drew upon their understanding of its physics, their knowledge of breast 

architecture and how these inform procedures for ېundressingۑ a lesion, this system biography was not informed by 

radiologists' detailed knowledge of how the system worked but by accumulated observations of its behaviour, and so 

was likely to be partial and inaccurate. There is, therefore, also a need for a situated account, that is one that is tailored 

to the particular behaviour being observed at any moment.  

Again, all of the work of arriving at a situated account falls upon the radiologist because it is absent from the 

account generated by the system. So, radiologists cannot just take the systemۑs behaviour at face value but rather have 

to account explicitly for either disregarding or acting upon it. In the case of contestable prompts, there is a need to 

account for their disagreement and to offer up an alternative account in its place, i.e., conduct the work of repair. So, it 

is clearly not the case that the marked-up mammogram might be said to constitute something like the first 

radiologistۑs report. In double reading, the first radiologistۑs report is designed to make visible solely relevant features 

based upon a common understanding of what a relevant feature might look like. The marked-up mammogram has 

none of this implicit understanding, so all of the work is left to the remaining radiologist. This shows the economy of 

the recipient design based upon the first undressing and also reveals that, as things stand, the reading of a marked-up 

mammogram might be said to generate additional work. This is clearly not ideal for an AI system designed to offer 

support and reveals starkly and why this system could not be used to substitute for the first reader. 

The false prompt rate of the CDSS in this study was high (Champness et al. 2005) and it might be argued that 

accountability would not be necessary for a better performing system. Three observations are worth mentioning in 

response. First, the performance of an AI system may vary: for different classes (in breast screening, these classes may 

reflect, e.g., type of lesion: micro-calcifications, masses, spiculated lesions, etc.); with different data (Oakenden-Rayner 

et al. 2020); in different contexts (Sanneman & Sha 2022); and may subject to ېdriftۑ (i.e., change over time), all of which 

will be difficult to detect without access to accounts of its behaviour. Second, the ways that radiologists are seen to 

orient to being accountable for their decisions shows radiologists understand that evidence of their trustworthiness 

has to be continually reproduced in and through the course of their work (Clarke et al. 2006). Third, and relatedly, an 

AI system whose performance is at a similar level to that of a radiologist (e.g., McKinney et al. 2020) would still be 

required to provide accounts of its behaviour, because, as we argued above, these are a material resource for the 

account clinicians will be expected to provide for their decisions. 

Beyond this, there are clearly ways in which natural accountability comes into play in the work of radiologists in 

this case study. A great many of the procedures and descriptors used in the course of doing the work are assumed to 

be appropriate, without any explicit account being given for their use. This includes both the matters of focus and 

report when ېundressingۑ a mammogram and the order within which that ېundressingۑ is pursued and reported. This 

attests to an oriented-to, intersubjective grasp of what is relevant and appropriate on the part of other organisational 

members who might engage with the work. There are ways in which both the procedures of undressing a 

mammogram and the procedures for reporting what is revealed are also possessed of various features of grammatical 

accountability, as discussed in section 2: these things cannot be done in just any order. The choice of terms to describe 

the features found attends to what might appropriately co-occur and do the job of mapping out a topology of suspicion 

that might be expected to be reasoned about in the same way by another party with similar interests. Within the 

cohort of radiologists, there is also a set of operational MCDs, whereby certain terms, such as ېlesionۑ and ېmarginۑ 
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might be seen to go together. All of this is never rendered explicit, but it constitutes a ېbackdropۑ upon which effective 

reasoning and diagnosis might proceed. This backdrop, or set of background expectations, forms a central part of what 

a presumptively adequate, trustworthy AI would need to be able to grasp to be able to measure up to what experts 

take to be a demonstrably capable professional in their domain. As we noted in Section 2, the capacity to draw upon 

the same background expectations is also a central component of trust.  

In fact, there are both formal and taken-for-granted aspects of trust visible in the work of the radiologists. One of 

the key formal mechanisms for ensuring the ېtrustabilityۑ of accounts is the need for two independent assessments. 

Implicit in this are two considerations: i) if two separate experts provide similar accounts for what is visible, the 

accounts can be ېtrustedۑ; ii) if one radiologist produces a contestable account, there is an opportunity for the contested 

account to be itself called to account, negotiated and, if necessary, repaired. Both of these matters are also further 

formalised and, in a sense, made more explicit by the use of the reporting form. All of this, in turn, is also bound up 

with both the association between trust and background expectations (the intersubjective point of view) and the points 

made by Garfinkel regarding the use of formal records and organisational accountability. There are multiple ways in 

which the elements entered into the report trade upon background expectations of what specific terms and their co-

constitution might amount to when delivered in a formal report. Clearly, also, the recipient design of these elements 

for another radiologist involves knowing things like the organization (i.e., the NHS breast screening programme), its 

operating procedures, and what, through the elliptic terms provided, will evidence the adequacy of the radiologistۑs 

actions for others in the same organisation.  

This can also be seen to resonate with Bittnerۑs notion of a gambit of compliance (1965), in that it makes manifest 

an understanding of the organisation and how it works. For the other radiologist in receipt of the report, the report is 

only going to be sufficient for the work in hand if they have knowledge of who the report is referring to, who 

contributed to the report (i.e., the first radiologist), and, potentially, their mutual history with the other radiologist in 

the same organisation, with known operating procedures. Most importantly, as the report is, in Garfinkelۑs terms, a 

 the other radiologist knows the procedures for being able to read it in an ,(Garfinkel 1967) ۑtherapeutic contractې

appropriate fashion. A curiosity in this case is that, unlike the records Garfinkel and Bittner examined, these reports 

are open to being revisited by other parties as a matter of open policy, if there is any question about the decision, 

which means that there is also a sense in which they have to work as actuarial records as well. This, of course, begs a 

question as to who might be a competent ېreaderۑ of the record under such circumstances. This actuarial component is 

provided for by the structure of the forms, the fields given, etc., but, clearly, this exposes the radiologists to being 

potentially called to account for, not only their decision, but the adequacy of their form-filling practices. There are 

ways in which this is covered by Garinkelۑs exposition of organisational accountability. Knowing what is actuarially 

adequate is a part of knowing an organisation and its procedures. Here, however, the ېorganisationۑ to which one 

might be deemed accountable is somewhat large and diffuse, including oneۑs professional colleagues, the clinic for 

which they work, the NHS breast screening programme and its regional and national entities, medical professional 

associations, legal authorities of various kinds, and even the recipients of care and their representatives. All of this is 

to say that, in the case of safety critical services, there is a mixture of the therapeutic and actuarial considerations in 

how records are constituted that modifies some of the character of organisational accountability. As we note below, 

this gives a particular twist to how matters of accountability and trust might play out when incorporating AI systems 

within the diagnostic and reporting practices of radiologists and within healthcare more broadly. 
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4.2 The accountable characteristics of MDT meetings 

MDT meetings are where formal and situated accountability come together. Consultants, radiologists, pathologists, 

nurses and administrators work together to provide a situated sense of what disparate formal accounts amount to. 

They do this to construct the biography of both a patient and their illness and the likely ways in which that biography 

will continue to unfold. We have seen how MDT meetings are also replete with not just presumptively adequate 

naturally accountable action, but also callings to account, with specific understandings and their implications being 

opened up to question. Natural accountability is especially evident in how the taken-for-granted structure, order and 

pursuit of the process is achieved and the nature of the practices on display. Background expectations, and ways in 

which the common intersubjective grounds of understanding a personۑs illness and how to proceed are established, 

provide for the trustability of each otherۑs competences and, critically, trust in the process and ways in which the 

biography of the illness has been managed and will continue to be managed. 

In terms of organisational accountability, compliance with the right way of doing things is evident in MDT 

meetings, both in participantsۑ adherence to the procedures whereby the meeting can progress (using the printed sheet 

regarding the ېorder of the dayۑ, etc.) and to the documentation of the meeting and the decisions made. There is a 

sense in which the whole thing is about properly managing the therapeutic contract while ensuring the actuarial 

contract is validated and kept up to date. 

With regard to the contract itself, knowing who the record refers to is procedurally established from the outset, 

but is also subject to elaboration and update. Each party has a certain interest in how the patientۑs biography is 

constructed. Although these interests are not commensurate, they are mutually elaborative and, for the larger part, 

understood to be complementary. One of the strong organisational affordances of MDT meetings is that they make 

especially available who is contributing to the record because much of the record is either actively being presented by 

the person who prepared it or is being cooperatively constituted then and there in front of one another. This makes 

the accountability of the record producer and the practices they adopted for preparation of records directly available.  

The whole MDT meeting process, with the parties present, the timing of the meeting, the resources made 

available, the layout of the room and where people sit within it, its running order and the records produced, testifies to 

a shared and taken-for-granted knowledge of the organization and its operating procedures amongst everyone present. 

Also, MDT meetings are largely populated by the same personnel: despite their diversity of organisational roles, all 

parties come to have a mutual history that is itself a feature of the ways in which the resources made available are 

treated as either naturally accountable or open to being called to account. A wide variety of records and information 

derived from them are put on display. In this way, through the presentation of the records and their situated 

accountability, members of MDTs come to acquire knowledge of the procedures for reading the various records. This 

is not to say that nurses can read a mammogram as well as a radiologist, but they are instructed through the course of 

the meetings in what a competent reading of the record looks like, such that they would recognise anomalous 

practices and be able to call them to account. As stressed in the description of MDT meetings in the case study, they 

are all about accountability. They provide for a recognition of the adequacy of each otherۑs actions for everybody else 

in the local organisation, regardless of role, and, most importantly, they provide for recognition of the adequacy of the 

decisions made, they provide an opportunity for those decisions to be called to account by competent others and, 

ultimately, through the procedural mechanisms they provide (technical and interactional), they make everyone in the 

room potentially accountable for the decisions made. 
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In relation to Bittnerۑs (1965) view of organisational accountability, everyone in the room has an understanding of 

what organisational compliance looks like, so there is a sense in which every account put forward is a gambit of 

compliance because it contains within it the means for others present to recognise its organisational compliance 

(Zimmerman 1971). As noted in the case study, MDT meetings actively provide a mechanism whereby the stylistic 

unity of the organisation can be accomplished. They also provide, by the same token, a source of corroborative 

reference (Bittner 1965), because every taken-for-granted moment of adequacy within them provides everyone present 

with the sense that ېyes, we do all understand this organisation and its goals in much the same way, even though we 

have disparate roles to play within itۑ. Indeed, it is hard to think of a better articulation of Bittnerۑs notion of 

corroborative reference than this. 

Another way in which MDT meetings reflect existing understandings of organisational accountability within the 

literature is that they are manifestly a mechanism for enabling prioritisation: prioritisation of patients and 

prioritisation of the handling of those patients and the treatment they receive. They also provide a mechanism for 

making decisions that are visibly in line with organisational policy. Indeed, one of the grounds upon which decisions 

actively do get called to account in MDT meetings is the extent to which they adhere to understood ways of dealing 

with this particular kind of case. 

In relation to grammatical accountability, MDT meetings are replete with a situated grammar that is almost never 

made explicit, yet upon which all other matters may be seen to turn. The whole meeting has a strong spatial 

organisation that positions certain parties in certain places in the room and certain kinds of display in certain 

evidently visible locations for those who have to see them and refer to them. Even the spatial organisation of the 

patient files has an accountable order that drives the sequential order of the meeting and that is presumptively 

adequate to all involved. The temporal order of the meeting is, of course, a playing out of this spatial layout, but it is 

also organised around a clear understanding of turns and just when different parties have a right to speak. Even the 

constitution of radiology and pathology reports has an internal consistency of terms that makes them manifestly what 

they are. The contents of these two different reports, or nursesۑ reports or even consultantsۑ reports are not simply 

interchangeable and, were they to be changed in such a way, the competence of the person compiling the report could 

well be called to direct account. So, in the end, the description of a patient and the specific features made relevant 

within that description, are, in a strong sense, a mutual accomplishment of the MDT meeting. Descriptions are either 

ratified, negotiated or revised on the basis of how the MDT meeting unfolds. The grammatical constitution of the 

meeting itself is also a product of how the resources within it are mutually co-assembled and how all parties present 

are complicit in seeing that co-assembly as natural, appropriate, probative and productive of trust.  

4.3 Understanding accountability as a constraint and a resource for AI 

The preceding analysis of how organisational accountability is achieved illustrates the challenges that may be thrown 

up by introducing AI systems into specific healthcare settings and work practices. We will now consider the 

implications that follow from this analysis for trustworthy AI and which we argue are not being taken into account in 

current research. In particular, our findings suggest that trustworthy AI is likely to require a range of different forms 

of accounts, perhaps assembled in various ways and recipient designed to match the needs of particular on users, 

setting(s), timings and the circumstances in which these accounts are deployed. Our analysis draws on observations of 

healthcare work in real-world settings seen through the lens of organisational accountability. This contrasts with, for 

example, the work of Cai et al. (2019a), who conducted user-based evaluations of CDSS diagnostic utility and Ehsan et 
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al. (2021), who used a scenario-based methodology in a series of interviews with ېstakeholders in AI-mediated 

decision-making domainsۑ, including healthcare. It should be noted that none of the participants in the latter study 

were healthcare professionals. 

We wish also to stress that it is not our aim to decide on the suitability in healthcare of the various techniques for 

xAI now available: such judgments are necessarily specific to the application and its setting. As Ehsan et al. (2021) 

remark, AI systems and explanations are socially-situated, which requires incorporating the social aspects when 

conceptualising xAI. In what follows, we summarise lessons from our case studies on how grammars of accountability 

make distinct demands on accounts and what, in a more general way, these imply for requirements for xAI and 

trustworthy AI. 

Earlier, we remarked on how, on the one hand, current thinking on xAI in relation to trustworthy AI distinguishes 

between global and local accounts and, on the other, the literature on how people do being accountable distinguishes 

between formal, situated and natural accountability in the context of organisational work. It seems to us that a step 

forward in understanding requirements for xAI and trustworthy AI would be to: a) examine the ways in which these 

two distinct ways of thinking about accounts may be related to one another; and b) their grammatical constitution 

within the healthcare pathway, that is, their spatial, temporal and coherence concerns. With this in mind, we present a 

series of scenarios for AI accountability, together with some suggestions on how this might be satisfied in each one. 

First, we argue there is a parallel between global xAI and formal accounts. The final stage in the development of an 

AI system is validation, where performance is measured to establish its accuracy (Liu et al. 2019). For example, where a 

system is to be used to classify features in a mammogram as either ېnormalۑ or ېsuspiciousۑ, the validation step will 

establish: a) how many cases were classified correctly (i.e., true positives and true negatives); and b) how many were 

misclassified (i.e., false positives and false negatives). These four measures can be combined to calculate the systemۑs 

accuracy (Ferri et al. 2009) and hence provide a measure of its trustworthiness. The mammography CDSS case study 

reveals that one of the radiologistsۑ ways reasoned about its trustworthiness was the region of the mammogram within 

which prompt were located. This suggests that, for AI applied to medical imaging, information on the systemۑs 

accuracy for different types of features in relation to distinct regions and ېgeographies of suspicionۑ could be an 

important element of a global account. 

Second, given that a global account is designed to explain an AI systemۑs behaviour as a whole, it may not provide 

sufficient evidence for assessing a systemۑs trustworthiness in a particular case. For this, local xAI, that is, a situated 

account specific to the current case will be required. Providing local xAI is generally easier than global xAI and various 

local xAI techniques have been developed for AI systems in healthcare (Poceviciute et al. 2020, Zhang et al. 2022). 

Saliency maps, a visual display highlighting features that contribute to a prediction (e.g., heat maps), are a natural fit 

with AI systems that make predictions from image data and are also intuitive (Guidotti et al. 2018, Machlev et al. 2022, 

Graham et al. 2022). Couture et al. (2018) tested a saliency map technique in an AI system for detecting breast cancer 

tissue. Counterfactual xAI is based on examples where minimal changes in the data lead to a different prediction and is 

said to provide an intuitive way to interact with the AI system (Henderson et al. 2020). Wu et al. (2021) employed 

counterfactual xAI in a system for lymphedema diagnosis. As xAI techniques differ in the ways in which they provide 

explanations, they have different strengths and weaknesses (Saarela & Geogieva 2022). A truly situated account would 

be one that matched the characteristics and accountability requirements of a specific case, so this suggests that 

different kinds of accounts could be provided from which users could select and employ sequentially and/or in 
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combination. This could also be a solution to the problem of providing progressively richer and recipient designed 

explanations of behaviour (Button & Dourish 1996) and go some way to providing a degree of natural accountability in 

AI systems. For AI systems designed to assist in the diagnosis of medical images, a more general recommendation 

would be that local account design should be informed by the practices that healthcare professionals use to interpret 

images, i.e., clinically meaningful features (Graham et al. 2022, Nix et al. 2022) and how underlying physical structures 

manifest themselves. In mammography, this would suggest that local accounts also be sensitive to the ېgeographies of 

suspicionۑ, but also how radiologistsۑ make use of their understanding of the physics of mammograms and knowledge 

of breast architecture. 

Third, we saw in the CDSS case study how radiologists were able to draw on their memory of previous cases ۋ the 

 in order to help them make sense of its behaviour. There are obvious problems, of course, in ۋ ۑsystem biographyې

clinicians having to rely solely on their memory for previous cases. In a study of prostate cancer diagnosis from biopsy 

images, Cai et al. (2019b) observed that pathologists may look online for images from similar cases. This led them to 

develop an AI-based image retrieval tool to enable clinicians to find similar examples from a dataset of diagnosed cases 

that then can be compared with a new case. This approach could be also applied to a dataset of cases previously 

classified by an AI system (including training examples). As an aggregated and accumulating record of an AI systemۑs 

behaviour (Ehsan et al. 2021) and the ېground truthۑ of each case as it became available, this dataset would provide a 

more reliable system biography. This would help meet the need for an up-to-date, global account of AI performance 

(Liao et al. 2020) but in a form that is distinct from how global accounts have so far been conceived (Das & Rad 2020, 

Machlev et al. 2022). The inclusion in the system biography of usersۑ case-by-case interactions with the system over 

the whole of the healthcare care pathway would capture what and how local accounts were used in the making of 

decisions, and how users accounted for their decisions in the context of the system accounts available, and thus could 

form the basis for an actuarial record of the decision-making process. Further, by making the system biography 

queryable on user-selected parameters, previous cases that match a new case could be used as evidence for helping 

decide on the trustworthiness of the AI systemۑs classification of the new case. For example, if no matches are found, 

this could suggest that the new case is an outlier and thus the AI systemۑs classification of it may be less reliable (Nix 

et al. 2022). The inclusion of usersۑ interactions and decisions could also provide a valuable collective learning 

resource: how colleagues used one or more local accounts when making decisions and how this compares with similar 

cases may help sustain professional vision as users learn to recognise and adapt to an AI systemۑs strengths and 

weaknesses (Procter et al. 2022). However, making it easy for diverse types of users to interrogate this system 

biography, and to do so in different settings, is likely to present significant challenges for data visualisation and HCI 

design. One setting of particular interest in this regard is the MDT meeting.  

Fourth, MDT meetings stand as the point where the outcomes of earlier stages in a patientۑs journey through the 

healthcare pathway are assembled into a coherent record that informs what happens next. Indeed, it is these 

characteristics that have led Yang et al. (2019) to choose MDT meetings as the best site for an AI system to support 

artificial heart implant decisions. Hence, the MDT meetingۑs role as the nodal point of organisational accountability, 

where all the evidence available for each case is discussed in reaching a decision arguably makes it the most significant 

site in terms of the grammars of AI system accountability, and their spatial, temporal and coherence characteristics. 

Each use setting has an existing social organisation, so different kinds of accounts will need to fit within that 

organisation if they are to work effectively and accountably. MDT meetings provide the opportunity not only to 

identify the form of system accounts, but also how they are assembled as reasoned outcomes, and how they are drawn 
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upon as a source of lessons from each case that can be written into both patient and AI system biographies. It is 

important then to reflect upon what the grammars of accountability observed in MDT meetings might mean for: the 

design and choice of global and local xAI techniques as AI system accounts; how a system biography would be made 

accessible as a both a global and local, situated account to those present; and how its constituent parts would be 

displayed, annotated and curated in context. As with other kinds of evidence, those present in the meeting will need to 

be able to understand what a competent reading of the system biography looks like. This raises the question of 

whether, in MDT meetings, it would fall on the clinician presenting of the case to recipient design their presentation of 

the systemۑs accounts to meet the needs of radiologists, nurses, etc., or whether this would be factored into how the 

accounts are put together and what this would represent as data visualisation and HCI design challenges. 

Fifth, there are issues raised by the introduction of new technologies into the MDT meeting process. The literature 

on CDSS adoption demonstrates how challenges of adapting them to the needs of specific application contexts have 

hindered progress and these will have to be addressed by the new generation of CDSS. In the case of MDT meetings, 

these challenges would include the possible impact of new informational resources in the form of the various AI 

system accounts on the existing flow of work. It is also necessary to consider whether they would require significant 

changes to how MDT meetings are currently constituted. Making AI systems accountable will need to reflect context-

specific issues for both forms and assemblies of accounts, for grammars of accountability, and thus for accomplishing 

the stylistic unity of the process. 

Sixth, a healthcare professionalۑs decision-making performance can change over time and for this reason may be 

subject to monitoring and periodic auditing. For example, radiologists working in the NHS breast screening 

programme are subject to a range of monitoring and auditing procedures (Cohen et al. 2018). Data and concept ېdriftۑ 

mean that an AI systemۑs performance may also change over time (Davis et al. 2017a, 2017b, Health 2022), raising the 

need for monitoring and auditing procedures and tools to detect changes that might put patient safety at risk 

(Ackerman et al. 2020, Henne et al. 2020, Nix et al. 2022). Providing support for the monitoring and auditing of AI 

systems (Davis et al. 2019, Liu et al. 2022) would therefore be another scenario to be taken into consideration in the 

design of the system biography described above. Enabling the interrogation of the systemۑs biography, e.g., for 

evidence of significant changes in performance, will bring additional data visualisation and HCI design challenges.  

Seventh, in many domains, there is a body of competence and practice encompassed within professional vision 

that is drawn upon to provide situated accounts of various kinds. As the materials in the mammography case study 

make evident, this competence is observable and, in principle at least, learnable. When it comes to natural 

accountability and everything that is taken for granted, it is unlikely that any AI system could occupy the position of 

the intersubjective ېotherۑ in what is taken for granted about an interactantۑs understanding of the world. Nonetheless, 

and again as the case studies make visible, there is no reason why some of what is taken for granted cannot be 

captured through close observation. It is also possible to cultivate expressions of best practice in the domain and to 

then explore what bringing that about looks like in the actual accomplishment of the work. In this way, although on 

the one hand, natural accountability may seem to be a constraint upon what it is possible for AI systems to achieve, it 

is also possible for the grounds of natural accountability in a domain to be articulated as a resource for AI systems to 

draw upon. 
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Finally, the common thread between these different scenarios and what it means for AI systems accountability is 

that their introduction into a setting will shape the practices through which members make themselves 

organisationally accountable and this is of critical importance. What we want to make clear then is that developing 

resources for AI system accountability is not a trivial undertaking. Especially in a safety critical context such as 

healthcare, these resources for accountability, the accountability practices they support and the auditing regimes that 

ensure they, and the AI systems whose performance they document, remain fit for purpose will need time to evolve. 

They will also need to be guided by the accumulation and sharing of experience, identified best practices and 

professional training. This process will, of course, need to be overseen by bodies representing healthcare professionals 

and by regulatory bodies (ALI 2021). Consultations with patient groups will also be important for maintaining 

confidence in the safety of AI-enabled healthcare (Richardson et al. 2021, Nix et al. 2022). These, then represent 

additional scenarios and HCI design challenges for the delivery of trustworthy AI systems. 

5 Concluding remarks and future work 

 A medical diagnosis system needs to be transparent, understandable, and explainable to gain the trust of۔

physicians, regulators as well as the patient. Explainability is the key to safe, ethical, fair, and trustable use of 

AI and a key enabler for its deployment in the real world.ە (Singh et al. 2020) 

In this paper we have sought to explore what trustworthy AI means by reflecting on the nature and the roles of 

accounts and accountability as practiced within organisational settings and illustrating this with case studies drawn 

from our earlier work in clinical decision-making. It is true that there have been technical changes in healthcare since 

these case studies were conducted. For example, mammography has moved from film to digital imaging and record 

keeping in healthcare has moved progressively from paper to digital. As a socio-material practice, the adoption of 

digital technologies will, of course, shape how accountability is now performed in these settings. However, our 

findings rest on the self-evident fact that the role played by accountability in timely, safe and dependable healthcare 

work remains a constant preoccupation.  

We have stressed that it is natural accountability that ultimately underpins trust between people, and it is hard to 

imagine a more effective foundation for trustworthy AI. What we are arguing for, therefore, is resources for 

accountability that ۔… can be unremarkably embedded into routines and augment action.ە (Tolmie et al. 2002). Clearly, 

delivering trustworthy AI in this way, ېin the wildۑ, will not be a trivial task for HCI design. Trust is a relatively well-

developed topic in the HCI and HCAI literature, highlighting some of the difficulties of trust surrounding work 

activities (Shneiderman 2020, Markus et al. 2021) and suggesting how empirical fieldwork findings might filter down 

into technical design recommendations. (Schneiderman, for example, outlines 15 recommendations to create reliable, 

safe, and trustworthy HCAI.) Trust is a subjective assessment of reliability, dependability and other important features 

of both interactions and technologies, and the case studies reported here explore trust as it relates to individuals, 

processes, systems, settings and ېtrusted dataۑ. They also highlight the idea of trust as both ېconstitutiveۑ of, and 

resultant from, forms of interaction and organisational work, thereby engaging with a significant body of literature 

from a range of disciplines (Luhmann 2018, Watson 2009). The case studies identify the important role of trust in 

organisational work, how people ېperformۑ trust, how it is instantiated in various documents, technical artefacts and 

procedures and how it enters into everyday work. In contrast to a number of theoretical approaches to trust, the case 

studies examine some practical instances, thereby developing the concept as an explicit design goal for both 
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technological systems and organizations in order to enable the HCI notion of ۔trustworthy by design.ە (Knowles et al. 

2014)  

There are no simple, technical ېimplications for designۑ to be offered here. As Dourish (2006) argues, this 

misconstrues the nature of our ethnographic approach, which is a lens for understanding the mundane details of a 

social setting and illuminating the relationship between various technologies and practice. Ethnographic studies 

thereby afford various forms of learning about accountability, explainability and the trust they encourage, and the 

 learnings that ,(Ibid) ە.actors who collectively create the circumstances, contexts, and consequences of technology use۔

might eventually work themselves into more technical design recommendations.  

In ېThe Mechanics of Trust: A Framework for Research and Design,ۑ Riegelsberger et al. (2005) argue that: ۔… trust 

and the conditions that affect it must become a core concern of systems development. The role of systems designers 

and researchers is thus not one of solely increasing the functionality and usability of the systems that are used to 

transact or communicate, but to design them in such a way that they support trustworthy action and ی based on that 

 And when it comes to trustworthy AI, as Chatila et al. (2021) suggest, in a comment that seems ە.well-placed trust ی

especially relevant to our examples from the mammography fieldwork, ۔Learning techniques for processing data to 

predict outcomes and to make decisions are opaque, prone to bias and may produce wrong answers… Properties such 

as transparency, verifiability, explainability, security, technical robustness and safety, are key.ە 

Our findings emphasise that an AI system should be capable of being accountable at every stage of the healthcare 

pathway. They also reveal the MDT meetingۑs role as the key site for delivering organisational accountability. AI 

system accounts therefore need to be recipient designed, matching the needs of different users, the contexts in which 

they are deployed and how they may eventually become part of a larger assembly of information. These factors have 

important implications for the choice of global and local xAI techniques and for HCI design, which is the level at 

which much xAI research is currently focused. Further, we argue that there is necessarily a relationship between local, 

situated and global, formal accounts, with the former potentially being constituent elements of the latter as a ېliving 

biographyۑ of an AI systemۑs behaviour. This system biography would be annotated, updated and curated on a case-

by-case basis, creating a record of usersۑ accumulating interactions with and experience of the system, there to be 

interrogated for a local, situated account as and when required but also to serve as a global, formal account and 

actuarial record. Matching this complex and expanding dataset so that it is usable at any stage of the healthcare 

pathway will be a challenge for data visualisation and HCI design, and perhaps especially in the context of MDT 

meetings. Further investigation of the value of the system biography concept and how to address these design 

challenges is a key part of our future work plans. There is also the question of how AI system accounts might be 

linked to the patient record. Policies and practices for the curation of the system biography, that is for adding local, 

situated and annotated accounts, and capturing how users are interact with them, will need to be designed and design 

choices will likely be subject to organisational governance procedures and protocols for monitoring and auditing 

system performance.  

The case studies presented in this paper involved significant ethnographic effort and this is an investment that will 

need to continue to generate the kinds of insights and resources necessary for trustworthy AI ۋ in healthcare or in any 

other setting ۋ to be a realisable prospect. We have already begun to expand upon the studies reported in this paper by 

conducting fieldwork studies of pathologists in relation to cancer care in order to obtain a more complete picture of 
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the decision-making work implicated by the treatment of cancer and the places in which future AI systems are most 

likely to intercept with existing practice (Procter et al. 2022). We also plan to extend our fieldwork to explore 

requirements for trustworthy AI in a range of other application settings. The understanding gained will facilitate 

recognition and understanding of ېsuccessۑ and ېfailureۑ in the deployment and utilisation of AI systems and will be 

used to inform recommendations for the design of accounts and how to make them available them so that people may 

interact with them as easily and effectively as possible (Victorelli et al. 2020). We then aim to use the findings to 

explore the design of accounts with their prospective users. 

Ethnographic fieldwork can address what trustworthy AI means within any particular setting, however, there are 

significant benefits in terms of time and cost savings if their findings are re-usable, at least at the application domain 

level and preferably at the application setting level. To address this, we propose to develop a toolkit of methods for 

articulating trustworthy AI user requirements, focusing on linking ethnographic findings to design issues, including 

identification of design patterns (Martin and Sommerville 2004, Martin et al. 2006) for trustworthy AI design. For 

example, one particular design pattern might aim to capture the common features of MDT meetings, another the 

reading of medical images such as mammograms. 

We have stressed how the delivery of trustworthy AI, as with any IT system, is a socio-technical problem. Hence, 

xAI and accounts more generally need to be seen as elements of a ېtrust architectureۑ, a configuration of technical and 

human infrastructure designed to support and sustain trust in AI systems. Elements of the former will include xAI 

techniques, system biographies and data infrastructures to support performance validation and auditing. Elements of 

the latter will include governance procedures and protocols, which may require significant adaptations by healthcare 

professionals and organisations, and these will take time to be identified, evolve and to become embedded into routine 

work practices. New competencies will be required of healthcare staff, not only so they can interpret the various 

accounts when making decisions, but also support the validation (Combalia et al. 2022) and auditing of AI system 

performance and of the overall diagnostic process (Liu et al. 2022, Nix et al. 2022). It should be noted that some of the 

resource savings promised by the adoption of AI might be offset by the effort demanded for AI system validation and 

auditing.  

Inherent in our approach is that issues are only understood progressively as solutions are developed and 

stakeholders make different judgements about the nature of the problem and the value of the solution. We aim to 

explore the use of co-production methodologies (Hartswood et al. 2002b, Muller et al. 2019, Voss et al. 2009) in the 

design and development of accounts to ensure that organisational learning is effectively supported over time as socio-

material practices for accountability adapt to fit new technological affordances (Williams et al. 2005). 

Finally, so far, we have only considered the delivery of trustworthy AI from the perspective of accountability 

within organisations. However, there are also inter-organisational factors that will need to be addressed. There is 

increasing acknowledgement of the need for standards and regulation to provide professionals and the public alike 

with (re)assurance of their trustworthiness (Lötsch et al. 2021). Hence, trust architectures for AI will also be shaped by 

industry, professional and regulatory standards and for accuracy, safety, (absence of) bias, risk, auditing, etc. (Health 

2022) and frameworks for auditing compliance (Raji et al. 2020) and we aim to investigate how these are defined and 

are then embedded into organisational practice.  
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