
Concave-Convex PDMP-based sampling

Matthew Sutton
Centre for Data Science, Queensland University of Technology

and
Paul Fearnhead

Department of Mathematics and Statistics, Lancaster University∗

May 12, 2023

Abstract

Recently non-reversible samplers based on simulating piecewise deterministic Markov
processes (PDMPs) have shown potential for efficient sampling in Bayesian inference prob-
lems. However, there remains a lack of guidance on how to best implement these algorithms.
If implemented poorly, the computational costs of simulating event times can out-weigh the
statistical efficiency of the non-reversible dynamics. Drawing on the adaptive rejection liter-
ature, we propose the concave-convex adaptive thinning approach for simulating a piecewise
deterministic Markov process, which we call CC-PDMP. This approach provides a general
guide for constructing bounds that may be used to facilitate PDMP-based sampling. A key
advantage of this method is its additive structure - adding concave-convex decompositions
yields a concave-convex decomposition. This makes the construction of bounds modular,
as given a concave-convex decomposition for a class of likelihoods and a family of priors,
they can be combined to construct bounds for the posterior. We show that constructing
our bounds is simple and leads to computationally efficient thinning. Our approach is well
suited to local PDMP simulation where conditional independence of the target can be ex-
ploited for potentially huge computational gains. We provide an R package and compare
with existing approaches to simulating events in the PDMP literature.

1 Introduction

Monte Carlo methods based on continuous-time Markov processes have shown potential for
efficient sampling in Bayesian inference challenges (Goldman and Singh, 2021; Fearnhead et al.,
2018). These new sampling algorithms are based on simulating piecewise-deterministic Markov
processes (PDMPs). Such processes evolve deterministically between random event times with
possibly random dynamics at event times (see Davis, 1993, for an introduction to PDMPs).
Monte Carlo methods based on simulating a PDMP with a desired invariant distribution were
first proposed in the computational physics literature where they were motivated as examples
of non-reversible Markov processes (Peters and de With, 2012; Michel et al., 2014). These ideas
transitioned to the statistics community as an alternative to traditional Markov chain Monte
Carlo (MCMC) samplers. Popular algorithms in this development include the Bouncy Particle
Sampler (Bouchard-Côté et al., 2018) and the Zig-Zag sampler (Bierkens et al., 2019) amongst
others (Vanetti et al., 2017; Wu and Robert, 2020; Michel et al., 2020; Bierkens et al., 2020).

There is substantial theoretical and empirical evidence to support the claim that non-reversible
MCMC samplers offer more efficient sampling as they reduce the chance of the sampler moving
back to areas of the state space that have recently been visited (Diaconis et al., 2000; Bierkens
and Roberts, 2017; Bouchard-Côté et al., 2018). Samplers based on PDMPs simulate from a

∗This research was supported by EPSRC grant EP/R018561 and EP/R034710/1

1

density π(θ) by introducing a velocity component v which is used to evolve the position of the
state, θ, with deterministic dynamics. At stochastic event times the velocity component is up-
dated using a Markov kernel after which the process continues with the new velocity. The main
challenge to implementing a PDMP-based sampler is the simulation of the random event times.
This involves simulating the next event time in a time-inhomogeneous Poisson process with rate
function that depends on the current position of the sampler.

Simulation of event times in a Poisson process is often facilitated through a method known
as thinning (Lewis and Shedler, 1979). The aim of this paper is to provide a general frame-
work to aid practitioners in implementing PDMP-based samplers. Specifically we introduce the
concave-convex thinning approach to facilitate simulating a PDMP-based sampler, which we
call CC-PDMP. This method can be applied whenever the rate function of the PDMP can be
decomposed into the sum of concave and convex functions, and can be used to facilitate thinning
from polynomial rate functions, allowing for broad applicability of the method. We discuss the
efficiency of the method compared to alternative approaches in the literature for exact sampling
of event times.

Related to our work is the concave-convex adaptive rejection sampler (CC-ARS) of Görür and
Teh (2011) which uses the same upper-bounding approach to construct bounds on the log density
within a rejection sampler that draws independent samples from univariate density functions.
In contrast, by applying this technique within PDMP sampling, the bounds are constructed
on the gradient of the log density (i.e. the rate) and used within the non-reversible Markov
process framework to generate samples from multivariate densities. Moreover, the CC-PDMP
framework allows for both subsampling and local updating schemes to facilitate these methods
for high dimensional sampling. A short comparison between concave-convex adaptive rejection
sampling and CC-PDMP for sampling from a univariate density is given in Appendix C.

Some authors have proposed using automatic but approximate methods for simulating a
PDMP-based sampler. Among these approaches, Cotter et al. (2020) propose numerical in-
tegration and root-finding algorithms to facilitate simulation. Others have considered using
approximate local bounds which can be simulated exactly (Goldman and Singh, 2021; Goan and
Fookes, 2021; Pakman et al., 2017). Both of these approaches sacrifice exact sampling of the
posterior and involve a trade-off between the computational cost and the approximation of the
sampling distribution.

The paper is organised as follows. In Section 2, we introduce the technical details of simu-
lating from a PDMP-based sampler and the details of some popular samplers. Section 3 reviews
the literature on thinning for PDMP-based samplers. We introduce the concave-convex PDMP
approach for adaptive thinning in Section 4 and 5. Empirical evaluation of CC-PDMP, and
comparison to existing methods, is given in Section 6. We conclude with discussion of limita-
tions and extensions that are possible for the method. Code for implementing our method and
replicating our results is available at https://github.com/matt-sutton/ccpdmp.

2 Sampling using a PDMP

2.1 Piecewise deterministic Markov processes

Before we explore PDMP-based samplers, we first review PDMPs. A PDMP is a stochastic
process, and we will denote its state at time t by zt. There are three key components that define
the dynamics of a PDMP:

1. A set of deterministic dynamics defined as zt+s = ψ(zt, s).

2. Event times that are driven by an inhomogeneous Poisson process with rate λ(zt).

3. A Markov transition kernel q(z|zt−) where zt− := lims↑t zs.

A PDMP with these specifications will evolve according to its deterministic dynamics between
event times and at event times will update according to the Markov transition kernel q(z|zt−).

2

The event times must be simulated from a Poisson process with rate λ(zt), which depends on
the state of the process at time t. The result of simulating this process is a PDMP skeleton
{(tk, ztk)}nk=1 where for k = 1, . . . , n, tk denotes the kth event time and we have stored the state
of the process immediately after this event time, ztk . Given this skeleton it is possible to fill in
the values of the state between the events using the deterministic dynamics.

2.2 PDMP-based samplers

Assume we wish to construct a PDMP process to sample from a target distribution of interest,
π(θ). Current PDMP-based samplers are defined on an augmented space z ∈ E , where E =
X × V, that can be viewed as having a position, θt, and a velocity, vt. As described below, the
dynamics of the PDMP can be chosen so that the PDMP’s invariant distribution has the form
ν(z) = π(θ)p(v|θ), for some conditional distribution of the velocities, p(v|θ). As a result, the
θ-marginal of the invariant distribution is the target distribution we wish to sample from. We
will consider target distributions of the form

π(θ) ∝ exp(−U(θ))

where θ ∈ Rp and U(θ) is the associated potential. An important feature of PDMP samplers is
that they need to know the target distribution only up to a constant of proportionality.

If we simulate the PDMP, and the process converges to stationarity, then we can use the
simulated skeleton of the PDMP to estimate expectations with respect to the target distribution
in two ways. Assume we are interested in a Monte Carlo estimate of

∫
g(z)ν(z)dz. The first

estimator averages over the continuous time path of the PDMP

1

tn − t1

n−1∑
k=1

∫ tk+1

tk

g(ψ(ztk , s))ds.

This requires that the integral of g(ψ(ztk , s)) with respect to s may be computed. The sec-
ond, simpler, approach is to “discretise” the PDMP path. This involves taking an integer
M > 0, defining s = (tn − t1)/M , calculating the value of the state at discrete-time points,
zt1+s, . . . ,zt1+Ms, and then using the standard Monte Carlo estimator

1

M

M∑
j=1

g(zt1+js).

The points zt1+js may be found by evolving the process along its deterministic dynamics for the
appropriate event time interval.

2.3 Bouncy particle sampler

The Bouncy Particle Sampler (Bouchard-Côté et al., 2018) takes the velocity space V to be either
Rp or the unit sphere Sp−1 and targets an invariant distribution ν(z) = π(θ)p(v) where p(v)
is either the standard p-dimensional Normal distribution, or a uniform distribution on Sp−1.
This sampler evolves a PDMP with linear deterministic dynamics ψ((θt,vt), s) = (θt + svt,vt)
between events. The canonical event rate is given by

λc(zt) = max {0, 〈vt,∇θU(θt)〉} .

At an event time t generated according to this rate the velocity is updated as vt = Rθt−(vt−)
where

Rθ(v) = v − 2
〈v,∇θU(θ)〉
‖∇θU(θ)‖2

∇θU(θ).

3

This update can be interpreted as reflecting the velocity off the hyperplane tangential to the
gradient of U(θ). Additionally, at random times t an additional event occurs according to a
homogeneous Poisson process with rate λref > 0 in which the velocity is refreshed, drawing vt ∼
p(v). Refreshment ensures that the Bouncy Particle Sampler samples the invariant distribution
and does not get “stuck” on contours of the potential (Bouchard-Côté et al., 2018). Formally
the Bouncy Particle Sampler has event rate λ(zt) = λc(zt) + λref with Markov transition kernel

q(z|zt−) =
λc(zt−)

λ(zt−)
δθt−(θ)δRθt− (vt−)(v) +

λref

λ(zt−)
δθt−(θ)p(v),

where δa(A) denotes the Dirac delta function with point mass at a. The Bouncy Particle Sampler
is an example of a global PDMP as all components of the velocity v are changed according to
the Markov transition kernel.

2.4 Zig-Zag sampler

The Zig-Zag sampler (Bierkens et al., 2019, 2021a) takes the space of velocities, V, to be
{−1, 1}p with p(v) = 2−p uniform on this space. The Zig-Zag sampler also uses linear dy-
namics ψ((θt,vt), s) = (θt + svt,vt) between events, but unlike the BPS only a single element
of the velocity vector is updated at event times. The overall Zig-Zag process can be viewed as a
composition of p local event rates where each event rate has a corresponding Markov transition
kernel which operates on a single component of the velocity. Specifically, the i-th component of
the velocity is updated with local event rate

λi(zt) = max {0, vi∂θiU(θt)}

for i = 1, ..., p, where ∂θi denotes the partial derivative of U(θt) with respect to θi. Simulating
an event time in this local framework consists of simulating an event time for each local event
rate and then taking the minimum time as the event time t for the overall process. At an event
time t triggered by event rate λi the velocity is updated as vt = Fi(vt−) where

Fi(v) = (v1, . . . , vi−1,−vi, vi+1, . . . , vp)
T .

Once the velocity is updated for component i local event times must be re-simulated only for
rates λj(zt) which are functions of θi. This fact can induce massive computational savings when
there is conditional independence between the components of θ. To see this, consider the extreme
case where the target is fully independent across dimensions. In this case each event rate, λi(zt),
will only depend on the i-th components of θt and vt. Thus at each event, it is only the time
of the next event for the component whose velocity changes that needs to be recalculated. The
computational cost of simulation in this case will scale as O(1) per event as opposed to O(d) for
the global Bouncy Particle Sampler.

2.5 Global and local PDMP methods

As described above, we can divide PDMP samplers into two main classes: global methods and
local methods. These PDMPs differ in how they operate on the velocity vector when an event
is triggered. Global methods are PDMP-based methods where the transition kernel acts on the
entire velocity vector. By contrast, local methods are defined so that the transition kernel only
affects a subset of the velocity. In this section we will give a general algorithm for constructing
a local PDMP-based sampler (though see also Bouchard-Côté et al., 2018). Let v[S] denote the
sub-vector of v with elements indexed by S ⊆ {1, . . . , p} and v[−S] denote the sub-vector of v
without the elements indexed in S. For some set S define the local kernel as one that satisfies

q
[S]
θ (v|vt−) = δ

v
[−S]
t−

(
v[−S]

)
q
[S]
θ (v|vt−),

4

that is, q
[S]
θ (v|vt−) only updates the sub-vector v[S]. Suppose we have a partition of the com-

ponents of θ1, ..., θp given by S = {S1, S2, . . . , SF }. Subset Sf of v is updated with local kernel

q
[Sf]
θ (v|vt−) and associated event rate

λf (zt) = max
{

0, 〈v[Sf],∇
θ[Sf]U(θt)〉

}
,

for f = 1, . . . , F . Simulating a local PDMP with this structure involves simulating an event time
for each of the F rates and applying the local transition kernel corresponding to the smallest
simulated event time. For the partition S define N = {N1, . . . , NF } with

Nf = {m ∈ {1, . . . , F} | θ[Sm] 6⊥⊥ θ[Sf]}

for f = 1, . . . , F where θ[Sm] 6⊥⊥ θ[Sf] denotes that the rate of events associated with Sm depends
on some element of θ[Sf]. When an event is triggered for a local rate f the velocity v[Sf] is
updated and new event times are simulated for rates which depend on the value of one or more
θi for i ∈ Sf . This simulation process is summarised in Algorithm 1.

In this framework the Zig-Zag sampler is a local PDMP with partition S = {{1}, {2}, . . . , {p}}
and local kernels q

[Sf]
θ (v|vt−) = δFf (vt−)(v). The local Bouncy Particle Sampler uses kernel

q
[S]
θ (v|vt−) = δv∗(v) where v

[−S]
∗ = v

[−S]
t− and v

[S]
∗ = R

[S]
θ (v

[S]
t−) with

R
[S]
θ (v[S]) = v[S] − 2

〈v[S],∇θ[S]U(θ)〉
‖∇θ[S]U(θ)‖2

∇θ[S]U(θ).

If there is a single factor S = {S} containing all indices S = {1, . . . , p} we recover the global
Bouncy Particle Sampler.

Algorithm 1: Simulating a PDMP with local structure
Inputs: t1 = 0, θt1 ,vt1 , factorisation (S,N) with S = {S1, S2, . . . , SF } and N =
{N1, N2, . . . , NF }.
Sample τf for f = 1, ..., F where

P(τf ≥ t) = exp

(
−
∫ t

0

λf (θ0 + v0s,v0)ds

)
For k = 1, . . . , n

(a) Let f∗ = argminf (τf) and update tk+1 = tk + τf∗

(b) Update states: θtk+1
= θtk + τf∗vtk

(c) Update velocity: vtk+1
= q

[Sf∗]

θtk+1
(vtk |v)

(d) For f ∈ Nf∗ update times, i.e. resample τf where

P(τf ≥ t) = exp

(
−
∫ t

0

λf (θtk+1
+ vtk+1

s,vtk+1
)ds

)
Outputs: PDMP skeleton {(tk,θtk ,vtk)}nk=1

5

3 Algorithms for event-time simulation

Simulating the first event time, τ , from a Poisson process with event rate λ(t) is equivalent to
simulating u ∼ Uniform[0, 1] and solving

τ = argmint

{
− log(u) =

∫ t

0

λ(zs)ds

}
.

If the event rate is sufficiently simple this can be done exactly. For example if the rate is constant
or linear, then there are analytical solutions for τ in terms of u. If the rate function is convex a
solution may be found using numerical methods (Bouchard-Côté et al., 2018). For more complex
functions, the rate can be simulated by a process known as thinning. This process makes use of
Theorem 1.

Theorem 1 (Lewis and Shedler (1979)). Let λ(t) and λ̄(t) be continuous functions where λ(t) ≤
λ̄(t) for all 0 ≤ tmax. Let τ1, τ2, ..., τn be event times of the Poisson process with rate λ̄(t) over the
interval [0, tmax). For i = 1, ..., n retain the event times τi with probability λ(τi)/λ̄(τi) to obtain a
set of event times from a non-homogeneous Poisson process with rate λ over the interval (0, tmax].

The efficiency of simulating via thinning depends on how tightly the rate λ̄ upper-bounds λ
and how costly it is to simulate from λ̄. Another key tool for enabling the simulation of event
times is known as superposition and the general process is outlined in Theorem 2.

Theorem 2 (Kingman (1992)). Suppose that Λ1, ...,Λn are a set of independent Poisson pro-
cesses with rates λ1(t), ..., λn(t) with first arrival times τ [1], ..., τ [n]. The Poisson process with
rate λ(t) =

∑n
i=1 λi(t) may be simulated by returning the first arrival time as τ = mini=1,...,n τ

[i].

Both superposition and thinning provide useful tools in the simulation of event times from a
non-homogeneous Poisson process. However, constructing the upper-bounds required for thin-
ning is largely an ad hoc and time consuming process for the practitioner. A common desire for a
practitioner is to reuse simulation knowledge. For example if an event rate can be written as the
sum of several sub-event rates, that can be exactly simulated, ideally this knowledge should be
used to simulate from the sum. We refer to this class of event rates as additive rates. Specifically,
we will refer to a Poisson process with a rate

λ(zt) = max{0, f1(t) + f2(t)}

as process with an additive rate. The superposition method from Theorem 2 facilitates additive
event-time simulation by thinning using an upper-bounding event rate

λ̄(t) = max{0, f1(t)}+ max{0, f2(t)},

which satisfies λ(zt) ≤ λ̄(t). We can simulate the first event from a process with this rate
as τ = min(τ1, τ2), where τ1 is simulated with rate λ̄1(t) = max{0, f1(t)} and τ2 with rate
λ̄2(t) = max{0, f2(t)}. This simulated time will be accepted with probability

max{0, f1(τ) + f2(τ)}
max{0, f1(τ)}+ max{0, f2(τ)}

,

which will be one when both f1(τ) > 0 and f2(τ) > 0. This procedure is useful since it allows
the re-use of thinning procedures for f1 and f2. Consequently a practitioner can build up to
simulating from a complex rate by combining smaller simpler rates. Thinning via superposition
is often recommended in the literature; notable examples include Bouchard-Côté et al. (2018)
who illustrate this approach when simulating from an exponential family and Wu and Robert
(2020) who discuss the approach generally. The approach was also recommended broadly by
Sen et al. (2020) where it was suggested for practical implementation of the Zig-Zag where f1
and f2 correspond to the terms from the likelihood and prior respectively. Once simulation for a
choice of prior or likelihood are individually established this knowledge can be reused in future
modelling.

6

4 Concave-convex adaptive thinning

Our general proposal for simulating events in a PDMP is based on concave-convex adaptive
thinning. As the dynamics between events are deterministic, conditional on the current state of
the PDMP, we can re-write the rate of the next event as a function of time. With slight abuse
of notation we will denote this rate as λ(t) with the argument of the function making it clear
whether we are viewing it as a function of the state, or as here, as a function of time. Suppose
λ(t) = max{0, f(t)} where f(t) can be decomposed as:

f(t) = f∪(t) + f∩(t) (1)

on a finite interval t ∈ [0, τmax) where f∪(t) is a convex function and f∩(t) is a concave function
in time. We will later discuss general conditions where such a decomposition is possible. The
problem of upper-bounding f(t) is recast to finding upper-bounding piecewise linear functions
`u(t) and `n(t) such that f∪(t) ≤ `u(t) and f∩(t) ≤ `n(t). We may then apply the bound
f(t) ≤ `(t) where `(t) = `n(t) + `u(t). Since `(t) is the sum of piecewise linear functions it will
also be a piecewise linear function and direct simulation from a Poisson process with rate `(t) is
possible (see Appendix A).

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

fn

t

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

fu

t

Figure 1: Upper bounds for a rate function based on concave (left) and convex (right) information
on three abscissae (ti = 0, 1, 2). Concave bounds are formed using linear segments from the
gradient of f∩(ti). Convex bounds are constructed using linear segments connecting evaluations
of f∪(ti).

Concave-convex adaptive thinning proceeds by constructing a piecewise linear function `(t) over
a set of m abscissae t1 = 0 < t2 < · · · < tm = τmax at which the evaluation of f∪(ti), f∩(ti) and
derivative f ′∩(ti) are known. An event time τ is simulated from the Poisson process with rate
λ̄(t) = max{0, `(t)} and is accepted with probability

max{0, f∪(τ) + f∩(τ)}
λ̄(τ)

.

If the event is rejected, we can reuse the information from the evaluation of f∪(τ) and f∩(τ)
with an additional evaluation of f ′n(τ) to refine the simulation on the abscissae t1 = τ to τmax

where all existing evaluations for τ < tk ≤ τmax may be reused. If an event does not occur
on the range t ∈ [0, τmax) the PDMP process is evolved by τmax and the thinning process is
repeated. We give the general construction of the piecewise linear function `(t) for t ∈ [t1, t2)
and note this construction may be applied iteratively over the abscissae. This construction is
also depicted visually in Figure 1. A convex function f∪(t), is by definition a function that can
be upper-bounded by the line segment connecting any two function evaluations. So, for any

7

t ∈ [t1, t2) we have the upper-bound f∪(t) ≤ `u(t) where

`u(t) = f∪(t1) +
f∪(t2)− f∪(t1)

t2 − t1
(t− t1).

For a concave function f∩(t) with derivative f ′∩(t) the line segment corresponding to the tangent
of f∩(t) will upper-bound the function. Thus, for t ∈ [t1, t2), f∩(t) will be upper-bounded by

`n(t) = min {f∩(t1) + f ′∩(t1)(t− t1), f∩(t2) + f ′∩(t2)(t2 − t)} .

This minimum will switch at the point of intersection between the lines f∩(t1) + f ′∩(t1)(t − t1)
and f∩(t2) + f ′∩(t2)(t2 − t). It is simple to find this intersection point (Görür and Teh, 2011),

t∗ =
f∩(t2)− f ′∩(t2)t2 − f∩(t1) + f ′∩(t1)t1

f ′∩(t1)− f ′∩(t2)

which will be a point on the interval [t1, t2] provided the derivatives f ′∩(t1) and f ′∩(t2) are not
equal. If f ′∩(t1) = f ′∩(t2), the linear segment will not change over the interval and we take
t∗ = t2. So we take

`n(t) =

{
f∩(t1) + f ′∩(t1)t t ∈ [t1, t

∗)

f∩(t2) + f ′∩(t2)(t2 − t) t ∈ [t∗, t2)
,

and combining these bounds we have `(t) = `u(t) + `n(t) which is a piecewise linear function
upper-bounding f(t) ≤ `(t) for t ∈ [t1, t2).

4.1 Concave-convex decompositions

The proposition below gives simple conditions for the class of non-homogeneous Poisson processes
that admit thinning using the concave-convex approach.

Proposition 1. If a Poisson process with rate function λ(t) can be written as λ(t) = max{0, f(t)}
where f(t) is continuous then the process admits thinning using concave-convex adaptive thin-
ning.

Proof. Consider f(t) on the interval [0, τmax] where τmax is some arbitrary value τmax > 0. On
this closed compact interval f(t) is continuous and by the Stone-Weierstrass theorem (Stone,
1948), for any ε > 0 there exists a polynomial g(t) on the interval with ‖f−g‖ < ε. The function
g is a polynomial so it admits the concave-convex decomposition

g(t) =
∑

{i:ai>0}

ait
i +

∑
{i:ai<0}

ait
i

with convex function gu(t) =
∑
{i:ai>0} ait

i and concave function gn(t) =
∑
{i:ai<0} ait

i. The

Process with rate λ(t) admits thinning on the interval [0, τmax) using the Poisson process with

rate λ̂(t) = max{0, g(t) + ε} which has a convex-concave decomposition. If an event does not
occur on the interval [0, τmax) then the process is evolved to τmax and the thinning process
repeated.

Remark 1. While continuity of f(t) is required for the Stone-Weirestrass theorem, the concave-
convex process may also be applied more generally. If f(t) is continuous for all 0 < t < t∗ and
limt→(t∗)− f(t) = ∞ then concave-convex thinning can be applied. Consider f(t) using the

abscissae t0 = 0, t1 = t∗

2 , tmax = t∗. Proposition 1 ensures a concave-convex decomposition
on the interval [0, t∗/2). On [t∗/2, t∗) we upper bound the rate by infinity. So if a time is
not simulated on [0, t∗/2), we will propose an event at t1, and this event will be rejected. The
concave-convex bound will then be updated based on f(t∗/2), and used to simulate an event
on [t∗/2, t∗). The abscissae on this increment will be t∗/2, 3t∗/4, and t∗, and the process will
be repeated. Importantly, as limt→(t∗)− f(t) = ∞ there will be an actual event before t∗ with
probability one, thus repeating this process will yield an (accepted) event time.

8

The proof of Proposition 1 relies on finding a polynomial that can upper-bound the process
over a finite interval. If a bound can be given for higher order derivatives of f(t) then there are
two main approaches for finding an upper-bounding polynomial. Using Taylor’s expansion of
f(t) about zero, we get

f(t) = f(0) + f ′(0)t+
f ′′(0)

2!
t2 + · · ·+ f (k)(0)

k!
tk +

∫ t

0

f (k+1)(s)
tk

k!
ds.

If there is a known constant M such that |f (k+1)(t)| ≤M we can employ thinning based on the

polynomial bound g(t) = f(0) + f ′(0)t + f ′′(0)
2! t2 + · · · + f(k)(0)

k! tk + M
(k+1)! t

(k+1). Alternatively

polynomial upper-bounds can be constructed based on interpolation where the error is controlled.
For example using Lagrange polynomial interpolation on [0, τmax] with k + 1 evaluations of the
function has error bounded by τk+1

max
M

(k+1)! . Adding this bound as a constant yields an upper-

bounding polynomial without requiring evaluation of the derivatives of f(t) required for the
Taylor series expansion.

4.2 Concave-convex adaptive thinning and PDMP-based samplers

A key advantage to CC-PDMP is that it can easily and efficiently simulate from rates with an
additive structure. That is, if f1(t) and f2(t) both have concave-convex decompositions then
f(t) = f1(t) + f2(t) will also have a concave-convex decomposition. The rates associated to a
PDMP-based sampler with π(θ) ∝ exp(−U(θ)) as its target will have an additive structure. In
particular, a local PDMP sampler as described in Section 2.4 will have rates

λf (zt) = max

0,
∑
j∈Sf

fj(t)

where fj(t) = vj∂θjU(θ+tv). This means that the concave-convex decompositions for the partial
derivatives fj(t) can be trivially combined to simulate from new local or global implementations
of the PDMP. There is a subtle trade-off between computational and statistical efficiency offered
by global and local PDMP-based samplers which we explore in Section 6.

Additive rates are also present when using a PDMP to simulate from a Bayesian posterior
distribution. For a model with parameter θ ∈ Rp, the target has the form

π(θ) ∝ p(θ)p(y1:n|θ)

where p(y1:n|θ) is the likelihood of the observed data y1:n = (y1, ..., yn), and p(θ) is the prior for
the parameters of the model. The function associated to the jth partial derivative of U(θ) can
be written as fj(t) = fpj (t)+f `j (t) where fpj (t) = vj∂θj log p(θ+ tv) depends on the log prior and

f `j (t) = vj∂θj log p(y1:n|θ + tv) depends on the log likelihood. This allows for the rate function
to be split into more manageable pieces and once a decomposition has been found for a choice
of prior or likelihood, it can be reused to facilitate simulating from that prior or likelihood in
future models. Specific examples are given in Section 6.

5 Tuning parameters

5.1 Choice of abscissae

A key user choice in CC-PDMP sampling is that of the position and number of abscissae on
the interval [0, τmax). Suppose that CC-PDMP simulation is implemented with abscissae t0 =
0 < t1 < · · · < tn = τmax if an event does not occur on the interval [0, τmax) the PDMP will be
evolved by τmax and the thinning process will repeat where the function evaluations at τmax can
be reused at t0 = 0. Thus one simulation with n abscissae would be computationally equivalent

9

to n evolutions of the CC-PDMP approach using abscissae with only two points t0 = 0 and
t1 = τmax. This encourages choosing a minimal number of abscissae and more carefully choosing
the length of the interval. There are two main issues that can occur when tuning the parameter
τmax. If τmax is too small, then the proposal frequently lie outside the interval [0, τmax) and
simulating an event will requiring many iterations of bounding the event rate. Whilst if τmax is
too large then the bound on the rate may be be poor, leading to many events that are rejected.
In this article, we refer to an iteration of the CC-PDMP that does not generate an event time
(i.e. a rejected proposal event or not generating on the interval) as a shadow event. The total
number of iterations will be the sum of the number of events and shadow events. Efficiency is
measured as the proportion of iterations that are events. Adapting the value of τmax will not
change the sampling dynamics. Consequently, unlike in adaptive MCMC, this parameter may
be adapted throughout the course of simulating the PDMP. Ideally this parameter should be a
little larger than the average event time so that events are proposed on the interval. A simple
automatic approach for choosing this parameter is to set τmax equal to the q-th percentile of
previous simulated event times, and update τmax every 100 iterations of the sampler. We found
that setting q = 80th percentile worked well for automatically selecting τmax. We investigate the
dependency on this tuning parameter by implementing the Zig-Zag sampler on the 2-dimensional
Banana distribution, with

U(θ) = (θ1 − 1)2 + κ(θ2 − θ21)2,

where κ controls how much mass concentrates around the region θ2 ≈ θ21. Since the potential
is polynomial in both parameters it is trivial to see that the Zig-Zag rate functions will also be
polynomial. Further implementation details may be found in the supplementary material and
associated GitHub.

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

τmax

E
ff
ic

ie
n
c
y

0 1 2 3 4

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

τmax

T
im

e
 (

S
e
c
)

Figure 2: Efficiency, defined as the proportion of iterations (events + shadow events) that are
events, of Zig-Zag using the CC-PDMP thinning with varying choices for τmax on the Banana
target. Plot on the right shows the actual computation time for running the sampler with
different choices of τmax. The red line shows the performance of an automatic choice for this
parameter.

Figure 2 shows the efficiency of the Zig-Zag sampler on the Banana distribution with κ = 1
when changing the interval length τmax from 0.1 to 4 with two abscissae. The Zig-Zag algorithm
was simulated for 10000 events at each value of τmax. The effect of selecting τmax too small or
too large is clearly seen and the red line shows the performance using the adaptive approach.
The main computational cost is due to an artefact of the otherwise fast C++ code having to
call an R function each time the concave-convex decomposition is evaluated. For simple event
rates such as polynomials this computation can be implemented in C++ as well. Appendix D

10

illustrates the effect of τmax on computation time when the convex-concave decomposition is
evaluated in C++.

5.2 Choice of decomposition

The choice of concave-convex decomposition is not unique (Görür and Teh, 2011). Arbitrary
convex functions can be added to f∪(t) and subtracted from f∩(t) to give a new valid decom-
position. A concave-convex decomposition is minimal if there is no non-affine convex function
that can be added to f∩(t) and subtracted from f∪(t) while preserving the convexity of the
decomposition (Hartman, 1959). For example, consider the function

f(t) = −t3 + 3t2 − 3t+ 3,

where f ′′(t) = −6t+ 6. It is simple to see that the function is convex for t < 1 and concave for
t > 1. A minimal decomposition is given by the piecewise functions

f1∪(t) =

{
−t3 + 3t2 − 3t+ 3 t ≤ 1

0 t > 1
and f1∩(t) =

{
0 t ≤ 1

−t3 + 3t2 − 3t+ 3 t > 1
.

Görür and Teh (2011) give a general construction for a minimal concave-convex decomposition.
However, this construction relies on finding all points of inflection, which are points where the
function changes convexity. Alternatively, Proposition 1 gives a simple decomposition f2∪(t) =
3t2 + 3 and f2∩(t) = −t3 − 3t. While the decomposition from Proposition 1 is not minimal, it
does not require finding all points of inflection. These two decompositions are shown in Figure 3
using abscissae at 0 and 1. The optimal decomposition gives a tighter bound, here reducing the
bounding rate by approximately 0.33 on average across the interval. However, using this bound
comes with additional computation cost of finding inflection points. This has the potential to
reduce the overall efficiency of the method. Our experience is that the efficiency gains for using
the optimal polynomial are generally not sufficient for it to be beneficial. See Appendix D for
further discussion and simulations.

0.0 0.2 0.4 0.6 0.8 1.0

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

f_u

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

f_n

0.0 0.2 0.4 0.6 0.8 1.0

2
.0

2
.2

2
.4

2
.6

2
.8

3
.0

f = f_u + f_n

0.0 0.2 0.4 0.6 0.8 1.0

2
.0

2
.2

2
.4

2
.6

2
.8

3
.0

f_u

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

f_n

0.0 0.2 0.4 0.6 0.8 1.0

2
.0

2
.2

2
.4

2
.6

2
.8

3
.0

f = f_n + f_u

Figure 3: The upper-bounds resulting from two different concave-convex decompositions of the
function f(t) = −t3 +3t2−3t+3, based on abscissae at 0 and 1. The top row corresponds to the
decomposition from Proposition 1 and the bottom row corresponds to an optimal decomposition
which recognises f(t) as a convex function on [0, 1). The columns show the functions f∪, f∩ and
f as well as their piece-wise linear upper-bounds.

11

6 Experiments

We now present empirical evaluation of CC-PDMP and comparison with other approaches to
simulate PDMPs. Our experiments were implemented using the R package ccpdmp available at
https://github.com/matt-sutton/ccpdmp.

The package enables you to simulate a PDMP provided one specifies the concave and convex
decomposition of the rate function. If the rate function is polynomial (or bounded by a poly-
nomial) the practitioner may parse this instead and the concave-convex decomposition will be
handled internally. The package contains some basic example use cases and code to reproduce
the experiments. Code snippets are given in the additional material.

6.1 Application in generalised linear models

Generalised linear models (GLMs) provide a rich class of models that are frequently used in
Bayesian inference. Let {(yi,xi)}ni=1 be the observed data, where yi is an observed response and
xi ∈ Rp is a vector of associated covariates for i = 1, . . . , n. The expected value of yi is modelled
by g−1(xTi θ) where g−1 : R→ R is the inverse link function. The potential of the likelihood has
the form

U (`)(θ) =

n∑
i=1

φ(xTi θ, yi)

where φ : R2 → R is the GLM mapping function φ(a, y) = log p(y|g−1(a)) returning the log
likelihood for observation y given a. The partial derivative with respect to θk has the form

∂θkU
(`)(θ) =

n∑
i=1

φ′(xTi θ, yi)xik

where φ′(a, y) = ∂aφ(a, y) and higher order derivatives are defined similarly. Over the time
interval t ∈ [0, τ] let fk(t) = vk∂θkU

(`)(θ + tv) which is

fk(t) = vk

n∑
i=1

φ′(ai(t), yi)xik

where ai(t) = xTi (θ + tv). We can use this to define local rates as λk(t) = max{0, fk(t)} for
k = 1, ..., p. For GLMs, repeated application of the chain rule yields:

f
(j)
k (t) = vk

n∑
i=1

φ(j+1)(ai(t), yi)

(
∂ai
∂t

)j
xik

where ∂ai
∂t = xTi v and f

(j)
k denotes the jth derivative of fk(t). When there are bounds on

φ(j) we can use the upper-bounding Taylor polynomial. In Appendix B we provide bounds for
several modelling choices. Here we consider logistic regression, which has the mapping function
φ(a, y) = log(1 + exp(a))− ya where y ∈ {0, 1}. We look at the efficiency of CC-PMDP thinning
for a five dimensional logistic regression problem with n = 200 observations. The covariates
were generated from a multivariate normal, xi ∼ N (0, V −1) for i = 1, .., 200, with mean zero,
precision matrix

V =

1 ρ 0 0 0
ρ 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

and data generated using θ = (−1.25, 0.5,−0.4,−0.4,−0.4)T . We take a Gaussian prior θj ∼
N (0, 1) for j = 1, . . . , 5. As the correlation is increased the thinning becomes more challenging.

12

We investigate the performance of CC-PDMP for increasing polynomial bounds with increasing
correlation ρ.

Polynomial Correlation
Order 0.00 0.25 0.50 0.65 0.75 0.85 0.95

1 0.64 (4.13) 0.58 (4.41) 0.49 (4.87) 0.41 (5.57) 0.34 (6.47) 0.26 (8.06) 0.13 (14.80)
2 0.77 (4.13) 0.76 (4.12) 0.75 (4.16) 0.72 (4.26) 0.68 (4.42) 0.62 (4.75) 0.39 (6.56)
3 0.80 (5.56) 0.80 (5.56) 0.79 (5.58) 0.78 (5.67) 0.75 (5.76) 0.70 (6.03) 0.47 (7.91)

Table 1: Efficiency of thinning in Zig-Zag sampling of logistic regression for increasing order of
Taylor series polynomial thinning bound. Efficiency is measured as the average proportion of
iterations that are events over 20 repetitions of the sampler. Average runtime, in seconds, of
sampler is shown in ()s.

To date only linear bounds (polynomial order 1) for logistic regression have been used for
thinning (Bierkens et al., 2018; Bouchard-Côté et al., 2018). These are based on the bound
|φ′′(a, y)| ≤ 1/4. Table 1 shows the efficiency for thinning using polynomials of order 1-3 (using
bounds |φ′′(a, y)| ≤ 1/4, |φ′′′(a, y)| ≤ 1/(6

√
3) and |φ(4)(a, y)| ≤ 1/8). The linear 1st order

bound matches the bound used in Bierkens et al. (2018) for logistic regression using the Zig-Zag
sampler. Table 1 shows that higher order polynomial thinning facilitated through the CC-PDMP
allows more efficient thinning. However, these bounds can incur higher computational cost as
they require evaluation of the higher order derivatives. For this example an order 2 polynomial
appears to have the trade-off in computation and thinning efficiency giving the best performance.
For the linear bounds we used a large fixed τmax to ensure the linear rate proposal is simulated
on the interval [0, τmax). For other polynomial orders we used the adaptive procedure described
in the tuning section to select τmax.

6.2 Comparison to thinning via superposition

In this example we demonstrate the advantages of CC-PDMP when the event rate is additive. In
particular, we compare thinning using the CC-PDMP approach with thinning using superposition
as outlined in Section 3. Let {yi}ni=1 be the observed data with the following model

yi | θi ∼ Poisson(exp(θi)),

θi ∼ N (0, 1)

independently for i = 1..., n. The derivative of the potential is ∂θkU(θ) = θk − yk + exp(θk) and

fk(t) = vk∂θkU(θ + tv) = vk(θk + vkt)− ykvk + vk exp(θk + vkt).

This has the concave-convex decomposition f∪(t) = fk(t) when vk > 0 and f∪(t) = vk(θk +
vkt)− ykvk, f∩(t) = vk exp(θk + vkt) when vk < 0. The global Bouncy Particle Sampler rate can
be defined as

λ(t) = max

{
0,

n∑
k=1

vk∂θkU(θ + tv)

}
= max

{
0,

n∑
k=1

fk(t)

}
,

which has concave-convex decomposition defined by the decompositions of the individual fk
functions. In contrast, thinning via superposition involves simulating an event time for the linear
and exponential terms of the rate individually. The proposed event time is the minimum of all
simulated times. This approach to simulating event times for exponential likelihood and Poisson-
Gaussian Markov random fields has been previously used in implementing PDMPs (Bouchard-
Côté et al., 2018; Vanetti et al., 2017).

13

0
.0

0
.2

0
.4

0
.6

Dimension (n)

E
ve

n
ts

 /
 I

te
ra

ti
o

n
s

2
2

2
3

2
4

2
5

2
6

0
.0

1
.0

2
.0

3
.0

Dimension (n)

S
e

c
o

n
d

s

2
2

2
3

2
4

2
5

2
6

Superposition
CCPDMP

Figure 4: Efficiency of thinning for the global BPS using thinning via super-position and CC-
PDMP thinning with increasing dimension. Efficiency of the thinning (left) and total computa-
tion time (right) is averaged over 20 repeated runs. The Bouncy Particle Sampler samplers were
simulated for 1000 event times on each run.

Figure 4 compares the thinning and overall computational efficiency for the Bouncy Particle
Sampler applied to the Poisson likelihood problem. In the CC-PDMP approach we used the
adaptive update for τmax as described in the tuning section. As the dimension increases we
see the proportion of iterations that are events using superposition drops quickly, consequently
the overall computation time for this approach scales poorly. The poor performance of the
superposition approach with increasing dimension is the result of the large number of exponential
terms, vk exp(θk + vkt), in the event rate. The thinning acceptance rate for this proposal is

max {0,
∑n
k=1 vk(θk + vkt− yk + exp(θk + vkt))}

max {0,
∑n
k=1(vk(θk + vkt)− ykvk)}+

∑n
k=1 max {0, vk exp(θk + vkt)}

When vk < 0 these exponential terms contribute zero to the denominator of the superposition ap-
proach. In comparison the CC-PDMP approach uses a linear upper-bound on these exponential
terms which can be negative and reduce the denominator term, leading to more efficient thinning
proposals. This is seen in Figure 4 where the thinning efficiency remains roughly constant with
increasing dimension.

6.3 Local Methods

Local PDMP methods take advantage of the conditional independence between parameters.
Consider the following extension to the previous Poisson example

yi | θi ∼ Poisson(exp(θi)) independently for i = 1, . . . , n

θ1 ∼ N (0, 1/(1− ρ2))

θi | θi−1 ∼ N (ρθi−1, 1), for i = 2, . . . , n

where we fix ρ = 0.5. The prior on θ corresponds to an AR(1) process. The partial derivative
of the potential is

∂θkU(θ) =

(1 + ρ2)θk − ρθk+1 − yk + exp(θk) k = 1

(1 + ρ2)θk − ρθk−1 − ρθk−1 − yk + exp(θk) 1 < k < n

θk − ρθk−1 − yk + exp(θk) k = n

14

which has the same linear and exponential form as the rate in Section 6.2 so we can use an
analogous concave-convex decomposition for this rate. In this section we consider local PDMP
implementations. The CC-PDMP implementation facilitates simple construction of thinning
bounds for local PDMP factorisations. For the partition S = {S1, . . . , SF } the local rate for
factor f is

λf (zt) = max

0,
∑
k∈Sf

vk∂θkU(θt)

 = max

0,
∑
k∈Sf

fk(t)

 ,

for f = 1, . . . , F . In this section we consider a number of local decompositions of the form S(j) =
{S1, . . . , SF } where S1 = {1, 2, ..., j}, S2 = {j + 1, j + 2, .., 2j}, . . . , SF = {n − j, . . . , n − 1, n}.
We assume n is divisible by F so each Sf contains j elements. For these decompositions the
conditional independence between parameters gives the following neighbours N = {N1, . . . , NF }
where

Nf =

{f, f + 1} f = 1

{f − 1, f, f + 1} 1 < f < F

{f − 1, f} f = F

.

This local decomposition offers computational advantages since updating a single rate requires
recalculation of at most three rates regardless of the dimension of the problem. However, this
computational efficiency comes at a loss of statistical efficiency. In particular, a global PDMP
will be able to move further in stochastic time than local methods before requiring a new event
simulation as the global rate function will lower bound the local rate. The overall efficiency
of the PDMP method should therefore be considered in terms of both its computational and
statistical efficiency.

11 12 13 14 15

6
8

1
0

1
2

1
4

1
6

1
8

Computational Efficiency

Dimension log 2

C
o

m
p

u
ta

ti
o

n
a

l
E

ff
ic

ie
n

c
y

hmc: 22.7 −1.14d
mala: 22.32 −0.93d
bps: 21.41 −1d
zigzag: 20.24 −0.17d
local (4): 18 −0.05d
local (8): 16.94 −0.02d
local (16): 16.01 −0.01d

11 12 13 14 15

−
1

5
−

1
0

−
5

0

Statistical Efficiency

Dimension log 2

S
ta

ti
s
ti
c
a

l
E

ff
ic

ie
n

c
y

hmc: 0.01 −0.04d
mala: −1.72 −0.38d
bps: 7.71 −0.97d
zigzag: 0.7 −1d
local (4): −3.27 −0.54d
local (8): −0.51 −0.68d
local (16): 1.49 −0.77d

11 12 13 14 15

−
2

0
2

4
6

8
1

0
Overall Efficiency

Dimension log 2

O
ve

ra
ll

E
ff

ic
ie

n
c
y

hmc: 22.72 −1.18d
mala: 20.6 −1.31d
bps: 29.13 −1.97d
zigzag: 20.94 −1.17d
local (4): 14.73 −0.58d
local (8): 16.42 −0.7d
local (16): 17.49 −0.77d

Figure 5: Log-log breakdown of computational, statistical and overall empirical efficiency scaling
with dimension. The ESS values are calculated with respect to the first coordinate θ1 using the
coda R package on a discretised trajectory of the PDMPs. Plotted are the average rates and
error bars of all methods calculated from 50 repeated runs of the methods. The legend shows
the slope and intercept fitted for each method giving empirical evidence for scaling rates.

In Figure 5 we measure overall efficiency as the effective sample size (ESS) per second, the
computational efficiency as the number of events or MCMC samples per second and the statistical
efficiency as the ESS per MCMC sample or PDMP event.

15

Figure 5 shows the scaling performance of local methods in comparison with alternative state-
of-the-art MCMC methods. We compare local PDMP methods with well-tuned implementations
of Metropolis adjusted Langevin algorithm (MALA) and Hamiltonian Monte Carlo (HMC).
MALA is tuned to obtain acceptance rate approximately equal to 0.5 and HMC tuned to scale
with acceptance probability approximately equal to 0.6. These are close to the optimal values
from the MCMC optimal scaling literature (Roberts and Rosenthal, 1998; Beskos et al., 2013).
For MALA this involves scaling the variance in the proposal and for HMC this involves adjusting
the number of leapfrog steps per iteration. These implementations are in line with theoretical
scaling results when the parameters of the distribution are all independent.

As expected, the computational efficiency for the local methods remains (approximately)
constant with increasing dimension. Based on the fitted models shown alongside the legends,
it appears that computational efficiency for both MALA and Bouncy Particle Sampler scales
approximately as O(d−1). The computational efficiency for HMC scales at a rate worse than
O(d−1) due to the increase in the number of leapfrog iterations. The statistical efficiency for the
local methods improves with larger local factors and is highest for the Global Bouncy Particle
Sampler. The statistical efficiency for MALA drops at a rate roughly equal to O(d−1/3). Overall
efficiency can be seen as the sum of the log computational and log statistical efficiencies. The
Zig-Zag and local Bouncy Particle Sampler methods attain the best overall efficiency scaling rates
around O(d) or better. It is clear that there is a trade-off between the statistical efficiency of
larger local factors and the increased computational cost. This decomposition can be thought of
as an additional choice for PDMP implementation that can easily be tuned using the CC-PDMP
approach for thinning. Despite a poorer scaling with dimension, HMC remains competitive with
local methods to a very high dimension.

7 Conclusion

PDMP-based samplers have shown advantages over traditional MCMC samplers, but their use
has been limited by the perceived difficulty in simulating the PDMP dynamics. We have intro-
duced CC-PDMP as a general approach that can simulate the PDMP provided we can specify
a concave-convex decomposition of the event rate. This method has broad applicability, enables
simple implementation of local PDMP methods, and empirically outperforms alternative simu-
lation approaches. Additional generalisations of the CC-PDMP approach are also possible by
making use of other ideas for adaptive rejection sampling. For example, to bound the concave
term, f∩(t), of the rate function we require that the derivative f ′∩(t) is known on the interval
t ∈ [0, τmax). However, we could instead use a looser bound that does not require this deriva-
tive information based on the adaptive rejection bounds proposed in Gilks (1992). If the rate
function is particularly computationally intensive, a lower bound based on the abscissae where
f∪, f∩ and f ′n and f ′∪ are evaluated may be used to perform early rejection in the thinning.
Additional generalisations may also be found in the difference of convex functions programming
literature (Le Thi and Pham Dinh, 2018). A general approach to facilitate thinning using a
concave-convex decomposition was described in Section 4. This approach advocates finding an
upper-bounding polynomial approximation for the rate function. This upper-bounding polyno-
mial may be thinned using the concave-convex adaptive thinning as described in Proposition 1.
It is natural to consider an approximate version of our algorithm where this polynomial is esti-
mated via interpolation. Without controlling for the potential error in the polynomial the overall
algorithm would be biased. Recently Corbella et al. (2022) have proposed an automatic Zig-Zag
implementation which uses optimisation methods to obtain a valid linear thinning bound. Fu-
ture research may consider how to automate the concave-convex thinning procedure for higher
order polynomial thinning based on this new work. This may enable more efficient automatic
PDMP-based samplers.

Finally while our CC-PDMP approach has been illustrated only on PDMPs with linear
dynamics the approach could be used more generally on PDMPs with nonlinear dynamics, such
as the Boomerang sampler of Bierkens et al. (2020). The only requirement is that the rate

16

function can be bounded by a function with a concave-convex decomposition.

References

Beskos, A., Pillai, N., Roberts, G., maria Sanz-serna, J. and Stuart, A. (2013). Optimal tuning
of the hybrid Monte Carlo algorithm. Bernoulli 19(5A), 1501–1534.

Bierkens, J. and Roberts, G. (2017). A piecewise deterministic scaling limit of lifted Metropolis–
Hastings in the Curie–Weiss model. The Annals of Applied Probability 27(2), 846–882.

Bierkens, J., Bouchard-Côté, A., Doucet, A., Duncan, A. B., Fearnhead, P., Lienart, T., Roberts,
G. and Vollmer, S. J. (2018). Piecewise deterministic Markov processes for scalable Monte
Carlo on restricted domains. Statistics & Probability Letters 136, 148–154.

Bierkens, J., Fearnhead, P. and Roberts, G. (2019). The zig-zag process and super-efficient
sampling for Bayesian analysis of big data. The Annals of Statistics 47(3), 1288–1320.

Bierkens, J., Grazzi, S., Kamatani, K. and Roberts, G. (2020). The boomerang sampler. In:
International Conference on Machine Learning , PMLR, 908–918.

Bierkens, J., Grazzi, S., van der Meulen, F. and Schauer, M. (2021a). A piecewise deterministic
Monte Carlo method for diffusion bridges. Statistics and Computing 31(3).

Bierkens, J., Grazzi, S., van der Meulen, F. and Schauer, M. (2021b). Sticky PDMP samplers
for sparse and local inference problems. ArXiv.2103.08478.

Bouchard-Côté, A., Vollmer, S. J. and Doucet, A. (2018). The bouncy particle sampler: A nonre-
versible rejection-free Markov chain Monte Carlo method. Journal of the American Statistical
Association 113(522), 855–867.

Chevallier, A., Power, S., Wang, A. Q. and Fearnhead, P. (2021). PDMP Monte Carlo methods
for piecewise-smooth densities. ArXiv.2111.05859.

Chevallier, A., Fearnhead, P. and Sutton, M. (2022). Reversible jump PDMP samplers for vari-
able selection. Journal of the American Statistical Association .

Corbella, A., Spencer, S. E. F. and Roberts, G. O. (2022). Automatic zig-zag sampling in practice.
Statistics and computing 32(6), 107.

Cotter, S., House, T. and Pagani, F. (2020). The NuZZ: Numerical zigzag sampling for general
models. ArXiv.2003.03636.

Davis, M. (1993). Markov Models and Optimization. Chapman Hall.

Diaconis, P., Holmes, S. and Neal, R. M. (2000). Analysis of a nonreversible Markov chain
sampler. Annals of Applied Probability 10, 726–752.

Fearnhead, P., Bierkens, J., Pollock, M. and Roberts, G. O. (2018). Piecewise deterministic
Markov processes for continuous-time Monte Carlo. Statistical Science 33(3), 386–412.

Gilks, W. R. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. Bayesian
Statistics 4(4), 641–649.

Goan, E. and Fookes, C. (2021). Stochastic bouncy particle sampler for Bayesian neural networks.
In: Stochastic Bouncy Particle Sampler for Bayesian Neural Networks.

Goldman, J. V. and Singh, S. S. (2021). Spatiotemporal blocking of the bouncy particle sampler
for efficient inference in state-space models. Statistics and Computing 31(5), 68.

17

Görür, D. and Teh, Y. W. (2011). Concave-convex adaptive rejection sampling. Journal of Com-
putational and Graphical Statistics 20(3), 670–691.

Hartman, P. (1959). On functions representable as a difference of convex functions. Pacific
Journal of Mathematics 9, 707–713.

Kingman, J. F. C. (1992). Poisson Processes. Clarendon Press.

Le Thi, H. A. and Pham Dinh, T. (2018). DC programming and DCA: thirty years of develop-
ments. Mathematical Programming. A Publication of the Mathematical Programming Society
169(1), 5–68.

Lewis, P. A. W. and Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes by
thinning. Naval Research Logistics Quarterly 26(3), 403–413.

Michel, M., Kapfer, S. C. and Krauth, W. (2014). Generalized event-chain Monte Carlo: Con-
structing rejection-free global-balance algorithms from infinitesimal steps. The Journal of
Chemical Physics 140(5), 054116.

Michel, M., Durmus, A. and Sénécal, S. (2020). Forward event-chain Monte Carlo: Fast sampling
by randomness control in irreversible Markov chains. Journal of Computational and Graphical
Statistics 29, 689–702.

Pakman, A., Gilboa, D., Carlson, D. and Paninski, L. (2017). Stochastic bouncy particle sampler.
In: Proceedings of the 34th International Conference on Machine Learning , volume 70, PMLR,
2741–2750.

Peters, E. A. and de With, G. (2012). Rejection-free Monte Carlo sampling for general potentials.
Physical Review E 85(2), 026703.

Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approximations to
Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 60(1), 255–268.

Sen, D., Sachs, M., Lu, J. and Dunson, D. (2020). Efficient posterior sampling for high-
dimensional imbalanced logistic regression. Biometrika 107(4), 1005–1012.

Stone, M. H. (1948). The generalized Weierstrass approximation theorem. Mathematics Magazine
21(5), 237–254.

Vanetti, P., Bouchard-Côté, A., Deligiannidis, G. and Doucet, A. (2017). Piecewise-Deterministic
Markov Chain Monte Carlo. arXiv:1707.05296 .

Wu, C. and Robert, C. P. (2020). Coordinate sampler: a non-reversible Gibbs-like MCMC
sampler. Statistics and Computing 30(3), 721–730.

18

A Supplementary Material

A.1 Simulating from a piecewise linear rate

Suppose the rate function λ(t) = max{0, `(t)} is piecewise linear on times t0, t1, . . . , tn with

`(t) =

a0 + b0t 0 < t < t1

a1 + b1t t1 < t < t2

.

an−1 + bn−1t tn−1 < t < tn

(2)

The event time can be simulated using the following process:

Simulate u ∼Uniform[0,1]
Set E = − log(u)
For k = 0, ..., n− 1:
1. If

∫ tk+1

tk
max{0, ak + bks}ds > E, then return τ solving:

τ = argmint

{
E =

∫ t

tk

max(0, ak + bks)ds

}
.

2. If
∫ tk+1

tk
max{0, ak + bks}ds ≤ E, then update E as

E = E −
∫ tk+1

tk

max{0, ak + bks}ds

Return

B Alternative GLM likelihood and prior specifications

The likelihood potential for a GLM posterior has the form

U (`)(θ) =

n∑
i=1

φ(xTi θ, yi)

where φ : R2 → R is the GLM mapping function φ(a, y) = log(y|g−1(a)). As described in Section
6.1 polynomial rates can be constructed if the following functions can be evaluated and bounded

f
(j)
k (t) = vk

n∑
i=1

φ(j+1)(ai(t), yi)

(
∂ai
∂t

)j
xik.

Functions and derivatives can be found using mathematical software such as Mathematica.

B.1 Robust regression

For robust regression of a response y ∈ R we could model the error with wide tails using the
Cauchy likelihood:

φ(a, y) = − log

(
1 +

(a− y)2

b

)
with scale b > 0. The derivatives are φ′(a, y) = −2 a−y

b+(a−y)2 , φ′′(a, y) = 2 (a−y)2−b
(b+(a−y)2)2 and

φ′′′(a, y) = −4 (a−y)((a−y)3−3b)
(b+(a−y)2)3 with upper-bounds |φ′(a, y)| ≤ 1√

b
, |φ′′(a, y)| ≤ 2

b . For b ≥ 1

19

|φ′′′(a, y)| ≤ 3 (though better bounds are available). For b ≤ 1, the gradient can be bounded but
closed form solutions for this bound are not available.
Mixture of normals:

φ(a, y) = − log
(
0.5N (y − a; 0, 1) + 0.5N (y − a; 0, 102)

)
,

upper-bounds on the derivatives for this function are |φ′(a, y)| ≤ 2, |φ′′(a, y)| ≤ 0.91 and
|φ(3)(a, y)| ≤ 1.8.

B.2 Poisson regression

For y ∼Poisson(exp(a)) the mapping function is,

φ(a, y) = − log (exp(ya− exp(a))) .

The derivatives for the mapping function are φ′(a, y) = exp(a)−y and φ(j)(a, y) = exp(a) for j >
1. Upper-bounds on the interval τ ∈ [0, τmax] are φ(j)(a, y) ≤ exp(a∗) where a(t) = xT (θ + tv)
and a∗ = max{a(0), a(τmax)}.

B.3 Gaussian Spike and Slab Prior

Following Chevallier et al. (2022) and Bierkens et al. (2021b), the spike and slab prior can
be simulated using PDMP dynamics. The Gaussian Spike and Slab prior has the form θj ∼
wN (0, σ) + (1 − w)δ0 for j = 1, ..., p where w is the prior probability of inclusion and δ is the
Dirac spike at zero.

For RJPDMPs there are three types of events that occur; a reversible jump (RJ) move if a
variable hits the axis (θj =0), events according to the likelihood and prior N (0, σ) for θj non-
zero, or the RJ move to reintroduce a variable. The rate to reintroduce a variable is calculated
in Chevallier et al. (2022) where it is found to be

prj√
2πσ2

w

(1− w)

where prj is a tuning parameter for the probability of jumping to the reduced model when hitting
the axis in Chevallier et al. (2022). The time to hit an axis for parameter θj will be −θj/vj when
θjvj > 0 and ∞ otherwise. Finally simulating non RJ events is equivalent to simulating from
the Gaussian slab and thus the part of the event rate contributed by the prior on parameter θj
is vj(θj + vjt)/σ

2 for t ∈ [0, τmax]. This is linear in time so will be exactly simulated by the
CC-PDMP approach.

B.4 Cauchy Prior

A Cauchy prior on θ with scale b ≥ 1 and mean m has the form p(θ) ∝ exp(−U(θ)) where

U(θ) = log

(
1 +

(θ −m)2

b

)
the term contributed to the rate depends on

v∂θU(θ) = v
2(m− θ)

b+ (m− θ)2

where v is the velocity corresponding to θ. Following the bounds from the Cauchy likelihood
(B.1) we have

v∂θU(θ + tv) ≤ f(0) + f ′(0)t+
M

2!
t2

where f(0) = v 2(m−θ)
b+(m−θ)2 , f ′(0) = 2v (θ−m)2−b

(b+(θ−m)2)2 and M = 3.

20

B.5 PDMP-based samplers on restricted domains

PDMP-based samplers can be implemented on a restricted domain following Bierkens et al.
(2018) or when the density is only piece-wise smooth following Chevallier et al. (2021). We
consider some PDMP samplers on the restricted domain θ > 0. Simulation involves tracking
the time to hitting the boundary τb = inf{t > 0 : θ + tv = 0}. If an event time occurs before
the boundary is hit the sampler evolves with the usual rate. If the boundary is hit before the
switching event, the sampler is reflected off of the boundary by sampling a new velocity from a
probability measure concentrated on directions that are normal to the boundary. We refer the
reader to Bierkens et al. (2018) for details.

B.6 Generalised inverse Gaussian prior

The generalised inverse Gaussian prior has the form p(θ) ∝ exp(−U(θ)) where

U(θ) = θ + θ−1 + 2 log(θ)

and θ > 0. The term contributed to the rate depends on

v∂θU(θ) = v − vθ−2 + 2
v

θ
.

When v > 0 we have decomposition f∪(t) = v(1+ 2
θ+vt), f∩(t) = − v

(θ+tv)2 and f ′∩(t) = v2 2
(θ+vt)3 .

When v < 0 we have decomposition f∪(t) = v(1 + 1
(θ+vt)2), f∩(t) = v

(θ+tv) and f ′∩(t) =

−v2 2
(θ+vt)2 .

B.7 Gamma prior

The Gamma prior has the form p(θ) ∝ exp(−U(θ)) where

U(θ) = βθ − (α− 1) log(θ)

and θ > 0 for hyper-parameters α, β > 0. The term contributed to the rate depends on

v∂θU(θ) = vβ − v (α− 1)

θ
.

When v(α− 1) > 0 we have decomposition f∪(t) = v(β + (α−1)
θ+vt), f∩(t) = 0.

When v(α− 1) < 0 we have decomposition f∪(t) = vβ, f∩(t) = v (α−1)
θ+vt and f ′∩(t) = −v2 (α−1)

(θ+vt)2 .

C Comparison of CC-PDMP and CC-ARS

We present a comparison between CC-PDMP and sampling directly with CC-ARS where compu-
tational cost is measured by the number of proposals used in the adaptive thinning (CC-PDMP)
or adaptive sampling (CC-ARS). Both sampling methods are implemented on a generalised
inverse Gaussian distribution (GIG). The unnormalised GIG density function is

π(x) ∝ exp
(
x+ x−1 + 2 log(x)

)
,

which is log concave for 2 log(x) and log convex for x + x−1, see section B.6 for details on
the CC-PDMP. We favour the performance of CC-ARS in the 1-dimensional setting since the
method yields independent samples while CC-PDMP has correlated samples. Event times in the
PDMP-based method give a continuous trajectory where samples can be taken at a consistent
times along the trajectory. We observe the performance of the samplers for 60, 300 and 500
proposals – where a proposal is either a thinning proposal for CC-PDMP or a rejection proposal
for CC-ARS.

21

The left column of Figure 6 shows the estimated KDE from the samples based on CC-
ARS (black), the KDE based on the PDMP sampler (red) and the true density (blue). The
right column shows the samples (black points) and associated PDMP trajectory (red) for the
samplers. Rows 1 and 2 of Figure 6 show the methods have similar performance in exploring
the density. Jumping from row 2 to 3 we can see that the PDMP sampler only needs to go
into the tail once to give a good approximation to the tail of the density. In higher dimensional
targets CC-ARS must be used within Gibbs sampling where the efficiency of the sampler will be
reduced.

Figure 6: Comparison of typical sampling dynamics for PDMP and ARS sampling using concave-
convex upper-bounding in a 1-dimensional GIG distribution. Each row shows the results for an
increasing number of proposals using in the sampling procedure. Continuous lines are shown for
the PDMP dynamics and points for the ARS method.

22

D Extra implementation details, sensitivity to τmax and op-
timal decomposition

In the R package, the specification of the rates is enabled through direct R coding and the
concave-convex thinning procedure is implemented efficiently in C++ classes that are exposed
in the R session. This allows for less technical programming via R from the user at the cost of
some computational speed. For the case where the thinning bound is a polynomial we provide
an efficient C++ implementation that pushes more of the computation inside of the C++ class.
The underlying simulation process uses the concave-convex procedure but requires fewer calls to
the R environment to evaluate the decomposition when proposing events.

Returning to the banana distribution example from Section 5.1 we explore the implementa-
tion speedup using the internal C++ classes to simulate from the polynomial rate. The total
computation time is shown in Figure 7. The implementation is more robust to large values of
τmax and slightly faster than the optimal performance from Section 5.1.

tuning_tmax_poly-eps-converted-to.pdf

Figure 7: CC-PDMP thinning using C++ to evaluate the decomposition for a polynomial rate.
Total computation time for running the Zig-Zag sampler with different choices of τmax on the
Banana target.

The C++ polynomial class also allows simulation via optimal decomposition or using the
default concave-convex polynomial decomposition. The performance of the methods is compared

23

in Figure 8 based on thinning from a 5th order polynomial. While the bound for the optimal
polynomial is far better the computational performance of the two methods is reasonably similar.
For this example, the optimal decomposition reliably takes around 25 microseconds to simulate
an event while the default method either takes under 25 microseconds or over 35 microseconds.
This multi-modal timing may be due to the multi-modal rate function. The optimal rate was
also used for thinning in the Zig-Zag sampler targeting the Banana distribution and found to
offer very similar performance to the default decomposition (roughly 2 seconds for large τmax).

24

comp_bound-eps-converted-to.pdf

computation_bounding-eps-converted-to.pdf

Figure 8: Comparison of simulating an event using the optimal and default polynomial decom-
position - typical bounds are illustrated from top row and average computational performance
is shown on the bottom row. The top row shows the true event rate, which is the positive part
of a 5th order polynomial function (black), together with the concave-convex piecewise linear
bounds for the optimal (left) and default (right). The bottom figure plots the timings of 100
simulations of the first event time for both the default and optimal thinning procedures.

25

