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Abstract 34 
 35 

New satellite remote sensing and machine learning techniques offer untapped possibilities 36 
to monitor global biodiversity with unprecedented speed and precision. These efficiencies 37 
promise to reveal novel ecological insights at spatial scales which are germane to the 38 
management of populations and entire ecosystems. Here, we present a robust transferable 39 
deep learning pipeline to automatically locate and count large herds of migratory ungulates 40 
(wildebeest and zebra) in the Serengeti-Mara ecosystem using fine-resolution (38-50 cm) 41 
satellite imagery. The results achieve accurate detection of nearly 500,000 individuals 42 
across thousands of square kilometers and multiple habitat types, with an overall F1-score 43 
of 84.75% (Precision: 87.85%, Recall: 81.86%). This research demonstrates the capability 44 
of satellite remote sensing and machine learning techniques to automatically and accurately 45 



2 
 

count very large populations of terrestrial mammals across a highly heterogeneous 46 
landscape. We also discuss the potential for satellite-derived species detections to advance 47 
basic understanding of animal behavior and ecology. 48 

MAIN TEXT 49 

Introduction 50 
 51 

The African continent has the greatest diversity and abundance of mammals in the world 1. 52 
This status, however, is threatened by intensive land use changes driven by increasing 53 
natural resource extraction and infrastructure development 2,3. Even in protected areas, 54 
Africa’s large mammal populations have declined by 59% in three decades 4, and many are 55 
now categorized as endangered or threatened by the International Union for Conservation 56 
of Nature (IUCN). Climate change promises to only accelerate these losses, underscoring 57 
the need for advanced monitoring techniques that can provide managers with information 58 
at a rate that keeps pace with local environmental changes 5,6. 59 
 60 
Conventional methods for surveying large wildlife, especially in Africa, have relied on 61 
crewed aerial surveys for decades 7–11. This approach has generated some of the longest-62 
running ecological datasets in the world and formed the foundation of leading conservation 63 
strategies across the continent. However, crewed surveys introduce risks to human and 64 
wildlife and in many cases can only provide animal counts with coarse location precision. 65 
Moreover, all crewed aerial survey techniques are subject to biases arising from detection 66 
probability, observer experience and double counting 8,12. Uncrewed aerial vehicles (UAVs) 67 
with imaging sensors offer a promising alternative to crewed surveys in some cases 13–18. 68 
However, like crewed flights, UAVs are generally limited by fuel or battery life and, thus, 69 
are limited in scale and can be difficult to maintain in remote locations 19. Moreover, UAVs 70 
can disturb wildlife when flown at low altitudes 20–22, which has led to flight restrictions in 71 
some protected areas 23.  72 
 73 
Recent advances in satellite technology have dramatically increased the feasibility of 74 
conducting uncrewed surveys in remote landscapes and at greater scales than UAVs are 75 
currently capable of. Many of the first applications of this technology focused on visualizing 76 
and analyzing easier-to-view environmental markers that, in certain contexts, provide 77 
insights to estimate population size (e.g., guano stains 24, nests 25, mounds and burrows 26). 78 
It took less than a few years, however, for the technology to accommodate manual counts 79 
at the scale of individual animals for species in unobscured contexts (e.g., polar bears 27, 80 
albatrosses 28, and Weddell seals 29,30). However, reliance on labor-intensive manual 81 
detection has restricted uptake by the conservation community, highlighting the need for 82 
automated techniques for processing fine-resolution satellite images. 83 
 84 
Machine learning and the associated sub-field of deep learning, have offered promising 85 
solutions to the challenge of conducting wildlife surveys from space. Over the past decade, 86 
deep learning has been a key driver of progress in science and engineering 31. Such 87 
advancements have had a transformative impact on the field of computer vision, where the 88 
performance of some deep learning algorithms has achieved or surpassed human-level 89 
performance in many tasks 32–36. At the same time, new collaborations between ecologists 90 
and computer scientists have provided several key advancements in automated animal 91 
detection from satellite imagery, including detection of the world’s largest marine and 92 
terrestrial vertebrates, such as whales 37 and elephants 38, using object detection algorithms. 93 
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However, the performance of current object detectors suffers from the small size of the 94 
objects in imagery 39–41. The feasibility of successfully using object detection methods is 95 
dependent on the body size of the animal: mature whales have a body length of more than 96 
20 meters 42, and African elephants are generally 3 to 5 meters long 43, both of which have 97 
more than eight pixels along the body length axis in submeter-resolution (e.g., 0.3-0.5 m) 98 
satellite imagery. 99 
 100 
A few studies have conducted automated surveys for smaller species with satellite images, 101 
such as for seals 44 and albatrosses 45 using pixel-based semantic segmentation algorithms. 102 
Image segmentation deep learning architectures such as U-Net 46 predict the class 103 
probability for every pixel, showing the potential to detect animals with a smaller size in 104 
satellite imagery. However, these early successes were limited to high-contrast species in 105 
homogeneous environments. The capability to reliably distinguish smaller animals (e.g., ≤9 106 
pixels in size in satellite imagery, such as wildebeest, one of the African ungulate species) 107 
from complex backgrounds (e.g., mixed forest and savanna ecosystems) remains 108 
uninvestigated and continues to be a major question in satellite-based techniques for wildlife 109 
surveys 47. 110 
 111 
Here, we address this shortcoming by presenting a robust framework for efficiently locating 112 
and counting wildebeest-sized animals with a body length of 1.5-2.5 m from submeter-113 
resolution satellite imagery across a large, highly heterogeneous landscape. We do this by 114 
integrating a post-processing clustering module with a U-Net-based deep learning model, 115 
which uses high-precision pixel-based image segmentation to locate animals at the object 116 
level. We demonstrate the power of this framework by deploying it to locate and count the 117 
largest terrestrial mammal migration on the planet – the migration of white bearded 118 
wildebeest (Connochaetes taurinus) and plains zebra (Equus quagga) across the Serengeti-119 
Mara ecosystem. Wildebeest have an estimated population of ~1.3 million individuals, 120 
making them the most numerous species in the ecosystem by an order of magnitude 48,49. 121 
There are also over 250,000 zebras and other ungulate species that move seasonally across 122 
the system in tandem with wildebeest  48. As a result, their annual migration drives multiple 123 
ecological processes that support the health of humans and wildlife across the region (i.e., 124 
nutrient cycling, trophic interactions, biomass removal and habitat recovery from over 125 
utilization 50–53). In addition, the spectacle of the great migration supports a robust tourism 126 
industry, which underpins regional economies across Kenya and Tanzania. However, with 127 
the migration subject to seasonality of rainfall and habitat preference, this iconic system is 128 
facing unprecedented threats from rapid climate and environmental change 54–57. Thus, the 129 
ability to frequently and accurately assess the status of migratory ungulate populations is 130 
key to forming conservation policies that address current threats and promote ecosystem 131 
function. In addition to supporting conservation planning in East Africa, these 132 
methodological advances stand to inform basic scientific understanding of ecological 133 
patterns and processes, such as quantitatively describing the emergent properties of animal 134 
aggregations 58,59 and answering long-standing questions about the mechanisms that drive 135 
behavioral shifts from individuals to populations. Such insights are crucial for advancing 136 
the fields of functional ecology and collective behavior, yet the technological challenges 137 
associated with studying animal aggregations in the wild have hindered scientific 138 
understanding outside of a laboratory environment 60. Here, we take a germinal step towards 139 
overcoming such challenges by presenting a method for locating and counting large groups 140 
of animals in fine-resolution satellite imagery.  141 
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Results 142 
 143 
A U-Net-based ensemble learning model for wildebeest detection 144 
 145 
As a network designed for image segmentation tasks, U-Net allows precise pixel-level 146 
localization of a target class in an image 46. However, it is not directly suitable for object 147 
detection applications. To address this issue, we present a U-Net-based detection pipeline 148 
that involves a post-processing module using a clustering method (Fig. 1). The pipeline is 149 
composed of three main blocks. In the first block, we subdivide the raw satellite image 150 
scenes into 336 by 336-pixel images (hereafter patches) as the input images for the model. 151 
The wildebeest in the input images are annotated as points, which are expanded to 3 by 3-152 
pixel segments and are then converted to binary wildebeest/non-wildebeest image 153 
segmentation masks. In the second block, the satellite image patches and the corresponding 154 
masks of labelled wildebeest are fed into the U-Net model, which predicts the probability 155 
of wildebeest presence for each pixel. The U-Net model has a U-shaped symmetrical 156 
encoder-decoder structure that consists of a contracting path on the left, which extracts high-157 
level features, an expanding path on the right that increases the resolution, and multiple 158 
levels of skip connections between two paths that allows for precise localization. To 159 
increase the robustness of the model, we adopt ensemble learning through a K-fold splitting 160 
method. The training dataset is split into ten folds, with nine folds used for training and the 161 
remaining fold used for validation. This ensemble block introduces variation in the training 162 
and validation datasets and achieves 10 individual base models. We then summarize the 163 
predictions by averaging the probability maps produced by these 10 base models. In the last 164 
post-processing block, we convert the pixel-wise prediction into wildebeest individuals 165 
through K-means clustering. The clumped wildebeest pixels were disaggregated by K-166 
means clustering to separate individual wildebeest (Supplementary Fig. 1), which were used 167 
as the final outputs for evaluation at the individual level. Note that as wildebeest is the 168 
dominant ungulate species in the system and most animals we located and counted were 169 
wildebeest, we refer hereafter to the migratory ungulates detected by our model as 170 
wildebeest for the purpose of simplicity.  171 

 172 
We applied the pipeline to satellite images acquired over six years (August 2009, September 173 
2010, August 2013, July 2015, August 2018, and October 2020) covering 2,747 km2 in the 174 
Serengeti-Mara ecosystem (Fig. 2). The images were captured by different satellite sensors 175 
with distinct spatial resolutions ranging from 38 cm to 50 cm, including GeoEye-1 (GE01), 176 
WorldView-2 (WV02) and WorldView-3 (WV03). Each individual wildebeest in the 177 
satellite imagery was represented by approximately 3-to-4 pixels in length and 1-to-3 pixels 178 
in width, with 1 or 2 relatively darker pixels in the center, including the shadow of the body 179 
(Fig. 3). The training dataset contained 1097 image patches captured from these six years, 180 
including 53,906 manually labelled wildebeest points across various environmental 181 
conditions. We incorporated labels created by four independent expert observers by 182 
majority voting. The details about the level of their agreement are presented in 183 
Supplementary Table 1. During the labelling process, we used a set of reference satellite 184 
images acquired on different dates, but with the same background landscapes for cross-185 
referencing to ensure the labels were moving animals and were not similar-looking static 186 
objects (e.g., termite mounds, small bushes). The acquisition dates and spatial resolutions 187 
of the reference images are presented in Supplementary Data 1. During model training, the 188 
training dataset was split randomly into 10 folds, among which nine folds were used for 189 
training and the remaining one fold was used for validation. 190 
 191 
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To evaluate model performance, we used a stratified random sampling method to select test 192 
sample plots across the images in each year to ensure their representativeness and 193 
independence from the training dataset. The strata are based on the number of animals in 194 
the image patches. The distribution of the number of animals per image is summarized in 195 
Supplementary Fig. 2. In total, we selected 2700 test images containing 11,594 wildebeest 196 
individuals. Key information about the images used and the size of training and test dataset 197 
is summarized in Supplementary Table 2. More details about the sampling method and data 198 
preparation process are described in the Methods section. We calculated the model 199 
performance for each year and also calculated the overall accuracy by combining all the test 200 
datasets. The accuracy (precision, recall, F1-score) was evaluated on a per-individual basis 201 
as demonstrated in Fig. 4. The model achieved an overall F1-score of 84.75% with a 202 
precision of 87.85% and a recall of 81.86%. The model performed well in each year 203 
(Supplementary Table 3): all F1-scores were above 80% (between 80.40% and 91.70%). 204 
The precision across the six years varied between 82.68% and 97.80% and recall between 205 
74.00% and 87.52% (Fig. 5a). This indicates that the model has good generalization ability 206 
across varied image resolution (from 38 to 50 cm), despite the great temporal and spatial 207 
variation in landscape type, ecological conditions, and mode of image acquisition over 208 
different years. 209 
 210 
To validate the advantage of using an ensemble model, we also compared the performance 211 
of the ensemble model with the individual base models. The original training dataset was 212 
split into 10 folds, nine of which were used for training and the remaining fold for validation, 213 
resulting in 10 models trained on various datasets. The predictions of the 10 models were 214 
averaged to obtain the final results. We assessed the performance of each individual model 215 
using the Precision-Recall curve and Area Under the Curve (AUC). The ensemble model 216 
achieved an AUC of 0.88, which is significantly higher than all other base models (Fig. 5b). 217 
We also compared the F1-score: the F1-score of 10 base models on average is 78.22% 218 
(±0.86%), also lower than the F1-score of ensemble model (84.75%). A more detailed 219 
comparison is listed in Supplementary Table 4.  220 

 221 
Model transferability 222 
 223 
To assess the temporal and spatial transferability of the model, we ran two tests: 224 
 225 
1) Transferability of the model to a temporally different dataset: we selected the image 226 

from 2015 as an independent test dataset and trained the model with wildebeest labels 227 
from the other five years (2009, 2010, 2013, 2018, 2020). The 2015 dataset was an 228 
unseen image captured with a different sensor, with the finest spatial resolution (38 cm 229 
of WV03 versus 42~50 cm of GE01 and WV02). The model achieved high accuracy on 230 
this new dataset, with a precision of 90.77%, recall of 95.61%, and F1-score of 93.13%. 231 
Such high accuracy indicates the model can be transferred to a temporally different 232 
dataset without adding additional training samples and still demonstrate excellent 233 
performance. 234 

2) Transferability of the model to a spatially different dataset: we selected the images from 235 
2020 as an independent test dataset and trained the model with wildebeest labels from 236 
the other five years (2009, 2010, 2013, 2015, 2018). The coverage of the 2020 data is 237 
on the east side of Masai Mara National Reserve and Serengeti National Park, which is 238 
outside the coverage of the remaining datasets, and its spatial resolution is the coarsest 239 
(50 cm of WV02) of all years. The model achieved a 96.98% precision, showing that 240 
the model is able to avoid false positives without adding any new training samples for 241 
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this new task with different landscapes and ecological conditions. The recall score is 242 
60.65% (with F1-score of 74.63%), indicating the ability to detect all positives can still 243 
be improved by adding more samples from the 2020 dataset. 244 

 245 
Wildebeest detection and counting 246 
 247 
To detect and count migratory wildebeest within the area, we applied the U-Net-based 248 
ensemble model trained with full training datasets from all six years to the entire satellite 249 
imagery dataset that covered a large portion of the dry-season range of migratory 250 
wildebeest. Fig. 6 shows examples of the detection across varied landscape characteristics 251 
including savanna, woodland and riverine forests. The detection results demonstrate the 252 
model’s robustness to variation in three dimensions: 1) variation between different satellite 253 
sensors, namely, various spatial resolutions over the six different years; 2) variation in the 254 
landscape context, such as river, woodland, bushland and grassland, with the potential for 255 
confusion with background objects such as termite mounds, small bushes and shadows 256 
caused by terrain, and 3) variation in the wildebeest aggregation patterns, such as scattered, 257 
linear and clustered. Further examples of detected wildebeest patterns across very large 258 
areas can be found in Supplementary Fig. 3-8 and Supplementary Data 2. The method 259 
resulted in a sum count of 480,362 (ranging between 470,121 and 490,603) individual 260 
wildebeest (F1-score: 84.75±0.18%) across the whole dataset (Table 1). See Fig. 7 for the 261 
location and coverage of the imagery of each year and Table 1 for the number of animals 262 
detected in each year. 263 

 264 
To further analyze the spatial distribution pattern of the migrating wildebeest in the 265 
Serengeti-Mara ecosystem, we calculated the wildebeest count per km2 in each scene and 266 
plotted the resulting histogram (see Fig. 7a-f). The maximum wildebeest density displays 267 
great variation across months in the dry season (July-October). Peaks in wildebeest density 268 
appear in August in the western Masai Mara National Reserve (more than 4000 to 6000 269 
individual wildebeest per km2). In September, the peak wildebeest density is approximately 270 
3000 per km2, while in July and October, the maximum density is between 1500 and 2000 271 
per km2. The spatially and temporally varied density is visualized in the hotspot maps in 272 
Fig. 7. 273 
 274 
We also present the enlarged hotspot map in Fig. 8. The high densities and dense clusters 275 
of wildebeest were observed in the three representative images from August (2009, 2013, 276 
2018). Variation in this pattern is evident in the lower wildebeest densities observed in the 277 
representative image analyzed from September 2010 and the more scattered distribution 278 
observed spread out over a larger area in the October 2020 image. The distribution dynamics 279 
observed comply with the general wildebeest migration patterns shown in Fig. 2. The 280 
wildebeest migrate to the north towards the Mara Triangle in July and August, and aggregate 281 
there for grazing before moving further southeast across the Masai Mara National Reserve 282 
in September, and spread south into the vast Serengeti National Park in October, as shown 283 
in the sparse distribution in the hotspot map. 284 

Discussion 285 
 286 
The detection pipeline presented here demonstrates the potential for deep learning 287 
techniques to efficiently track fine-scale environmental changes through automated, 288 
satellite-based wildlife surveys. To create outputs that would have real-world utility to 289 
researchers and managers, we deployed our model at an especially large spatial scale (2,747 290 
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km2) and validated it on a dataset that varied in space, time, and resolution. This approach 291 
yielded highly accurate results (with an overall F1-score of 84.75%) and the largest training 292 
dataset ever published from a satellite-based wildlife survey (53,906 annotations). In 293 
addition to its size, the landscape diversity captured by this dataset will facilitate model 294 
transferability to applications in similar environmental contexts, such as future satellite-295 
based wildebeest census surveys at the ecosystem scale. Although generalization of our 296 
model is inherently limited to wildebeest-like animals in open landscapes, the pipeline itself 297 
is generic and can be applied to other animal detection applications after retraining. 298 
 299 
Beyond providing a truly open-source and transferable method for satellite-based wildlife 300 
surveys, our approach holds extreme promise for scaling spatially to produce the first ever 301 
total counts of migratory ungulates in open landscapes. Such information is particularly 302 
important to the management of aggregating species like wildebeest because their 303 
heterogeneous and autocorrelated grouping patterns violate the assumptions of most 304 
statistical methods for estimating population abundance from survey data 61. As a result, 305 
traditional methods are prone to systematic undercounts and high uncertainty 61. An 306 
automated total count would eliminate the need for statistical inference and potentially 307 
produce a correction factor that could be used to reduce error in historic estimates through 308 
post-hoc analysis. While a total count would still assume near-perfect detection of animals, 309 
we note that this ideal may be achieved in open systems where biological cycles drive 310 
predictable periods of aggregation. For example, wildebeest could be censused while 311 
gathered to calve on the nutritious shortgrass plains of Serengeti, caribou could be censused 312 
while gathering to cross seasonal ice floes in the arctic, and white-eared kob could be 313 
imaged while concentrated in low-lying meadows along the margins of major watercourses 314 
during the dry season. 315 
 316 
A next valuable step in the science of enumerating large mammal populations using the 317 
proposed satellite-based method will be ground-truthing the predictions against both 318 
historical and contemporary estimates of population size derived using traditional methods 319 
(e.g., ground-based or aerial counts). For the present case of the wildebeest population, 320 
satellite-derived counts should be compared against the data collected every 2-3 years using 321 
aircraft surveys in the Serengeti National Park 7,62. Comparisons can be conducted both at 322 
the transect level (with satellite image acquisition synced to the timing of aircraft transects 323 
– although noting that temporal alignment of surveys with suitable conditions for both 324 
survey types can be challenging) and at the whole population level via data extrapolation. 325 
 326 
In addition to facilitating total counts for multiple species, the ability to observe expansive 327 
herds of migratory ungulates from space presents an exciting opportunity for the study of 328 
the ecology of animal aggregations from an entirely novel perspective. For example, the 329 
spatially explicit point data produced by our model can be readily analyzed as an ecological 330 
point process 63 to facilitate the first-ever quantitative descriptions of wildebeest herding 331 
patterns in the wild. Such insights are crucial for answering key ecological questions about 332 
social and environmental drivers of animal behavior and identifying emergent biological 333 
patterns that scale from individuals to populations 63. Likewise, a robust time series of 334 
satellite images may be used to extend previous work on the ecology of large-scale 335 
aggregation patterns of wildebeest across the landscape 64. We demonstrate the potential for 336 
our pipeline to inform this approach by producing density plots from model outputs, which 337 
can then be mapped and analyzed within their native environmental context (Fig. 8). This 338 
ability to track the distribution of large animal aggregations over time is important for 339 
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guiding adaptive management of mobile species and for deriving a systematic 340 
understanding of population-level responses to rapid environmental change. 341 
 342 
Another potentially promising application of the proposed method would be the detection 343 
of large mammal migrations that have not previously been documented. Despite the 344 
charisma of such fauna, the migrations can go uncharacterized and are infrequently 345 
discovered or rediscovered (e.g., the Burchell’s zebra migration in Nambia/Botswana 65; 346 
white-eared kob in South Sudan 66). Given the advantages of surveying at large scales, 347 
satellite imaging techniques, coupled with GPS tracking of individual animals, could 348 
provide a powerful methodological combination for detecting or confirming such 349 
migrations. GPS tracking data could benefit the survey by giving prior information about 350 
the potential range, while regularly acquired satellite imagery can be used to identify the 351 
migration routes of large animal groups over time, as satellite imaging at high time 352 
frequency becomes possible. Such methods are also especially useful for detecting and 353 
studying wildlife migrations in remote or insecure regions 66. 354 
 355 
Despite the clear potential for satellite-based wildlife surveys to advance both basic and 356 
applied research, this technology is still limited by the inherent challenge of distinguishing 357 
small objects from only a few pixels on satellite imagery. While the commonly used deep-358 
learning based object detectors for animal detection are confined by the size of the object 359 
on the image 37,67,68, our method addresses this challenge by utilizing a class of convolutional 360 
neural networks (specifically the U-Net model) designed for pixel-level segmentation, thus 361 
enabling detection of objects that occupy less than 9 pixels. This method uses ensemble 362 
learning to further increase the accuracy of individual U-Net models. By combining the 363 
clustering module, the ensemble model can separate multiple clustered animals and identify 364 
individual animals with high accuracy and efficiency. This is an advancement compared to 365 
previous studies, which had lower detection accuracy for similarly sized animals (e.g., seal 366 
detection with <50% accuracy 44), or focused on identifying large animals in homogeneous 367 
environments (e.g., whales 37). 368 

 369 
Nevertheless, the current limitation of satellite image resolution impacted our study by 370 
preventing distinction between wildebeest and other species of similar size, including 371 
domestic cattle (Bos taurus), topi (Damaliscus korrigum), Coke's hartebeest (Alcelaphus 372 
buselaphus cokii), and eland (Taurotragus oryx). While we controlled for the most 373 
numerous species (e.g., cattle) by limiting collections to sites and seasons with minimal 374 
overlap, finer-resolution imagery (for example, <10 cm) will be required to discriminate 375 
these species. We also note that smaller-bodied species (e.g., gazelle) were not visible at the 376 
current resolution, but larger species (e.g., hippos and elephants) were successfully excluded 377 
by the model. Given these promising results, we are confident that pending technology will 378 
rise to meet the demand to resolve smaller species, as multiple satellite companies have 379 
already announced the arrival of breakthrough technologies that will make sub-daily, sub-380 
50 cm imaging a reality. One limitation in satellite imaging wildlife currently is the cost of 381 
very-fine-resolution imagery. However, costs are falling as more companies are now 382 
offering sub-meter imaging capabilities from multiple constellations at lower prices. In 383 
addition, many satellite providers (e.g., Maxar, Airbus and Planet) are providing more 384 
opportunities for researchers to access sub-meter imagery at low or zero cost. 385 
 386 
As more fine-resolution constellations come online, we anticipate that satellite-based 387 
wildlife surveys will become increasingly affordable and accessible. We aim to capitalize 388 
on this technological moment by validating a data pipeline, which advances the scale and 389 
scope of current techniques to include medium-sized mammals in highly heterogeneous 390 
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landscapes. While there are many applications for this pipeline, we wanted to demonstrate 391 
its potential to monitor animals across an area of unprecedented size by counting hundreds 392 
of thousands of wildebeest in the Serengeti-Mara ecosystem. When combined with 393 
anticipated advances in satellite imaging, the outputs of our model will improve the 394 
frequency and accuracy of population estimates for multiple species in open landscapes and 395 
produce novel datasets for investigations of animal behavior, ecosystem ecology, and global 396 
change biology. 397 

 398 

Methods 399 
 400 
Satellite imagery 401 
 402 
The satellite imagery used for wildebeest detection and counting includes nine multispectral 403 
images captured by three satellite sensors (GeoEye-1, WorldView-2 and WorldView-3) 404 
over six years in the Serengeti-Mara ecosystem. We selected these images from the archived 405 
very-fine-resolution satellite images acquired by the Maxar Worldview constellation, which 406 
can cover more than 3.8 million square kilometers per day and has a revisit rate of 1-2 times 407 
per day. The images we used mainly cover the Masai Mara National Reserve and the 408 
northernmost section of the Serengeti National Park (see Fig. 2 of the study area). The 409 
images cover 2,747 km2 within the delimited boundary. The spatial resolution varies from 410 
38 to 50 cm (see Supplementary Table 2 of image resolution and date). Most of the acquired 411 
images were delivered as pan-sharpened products, while the WorldView-2 images in 2020 412 
were pan-sharpened using the UNB-pansharp method 69. The pre-processed satellite images 413 
have four bands: Red, Green, Blue and Near-Infrared. All the images are covered by cloud 414 
by less than 2%. In addition, another set of eight satellite images covering the same area as 415 
the images above, but acquired on different dates are used as a set of reference images for 416 
wildebeest labelling. Details of the input satellite images and the reference images are listed 417 
in Supplementary Data 1. 418 

 419 
Labeling the wildebeest 420 

In the satellite imagery, we labelled the individual wildebeest as points in vector format. On 421 
the true color composite image, a wildebeest is a group of grey-brownish pixels with a dark 422 
black pixel commonly in the center representing the animal's neck and spine with a black 423 
mane. Each wildebeest individual in the image was about 3 to 4 pixels in length and 1 to 3 424 
pixels in width, with 1 or 2 relatively darker pixels in the center as shown in Fig. 3. 425 
Therefore, for each wildebeest, we labeled one point at the center of this wildebeest 426 
segment, and then expanded the point to a polygon with a size of 3 by 3 pixels, such that 427 
the polygon covers most of the wildebeest pixels. The wildebeest labels were derived using 428 
majority voting from visual interpretation undertaken by four expert observers of the same 429 
satellite image, cross-referenced against another (reference) satellite image acquired in a 430 
different year. The purpose of using reference images was to distinguish between wildebeest 431 
and spectrally similar background objects, such as small bushes and the shadows of termite 432 
mounds, which are static in both images. 433 
 434 
Training and test dataset  435 
 436 
For each satellite image, we built a grid system with a cell size ranging from 150 m to 170 437 
m, dependent on image resolution. Each grid covered 336 × 336 pixels, which was the size 438 
of the image patch for model training. The training and test datasets were sampled based on 439 
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the cell units of the grid. In the training dataset, we selected a total of 1097 training grids, 440 
covering different types of landscapes and various wildebeest abundances across all six 441 
years. The training dataset contains 53,906 wildebeest, occupying 27.13 km2, which is 0.7% 442 
of the whole area. The test datasets were sampled using the proportionate stratified random 443 
sampling method on each image date, containing 2700 sample grids with 11,594 wildebeest. 444 
We adopted this method to guarantee the representativeness of the test dataset.  445 
 446 
The strata of the test dataset were based on the wildebeest density in the grids in accordance 447 
to the spatially imbalanced distribution of wildebeest, ensuring the test dataset contains 448 
sample grids with different levels of animal density. Therefore, preliminary information on 449 
wildebeest density was required. We first built an initial test dataset using a random 450 
sampling method and trained a model to achieve an acceptable detection performance on 451 
the initial test dataset. Then we applied the preliminary model to the whole imagery dataset 452 
to detect and count the wildebeest, which were used to estimate the wildebeest density in 453 
all the grid cells. The grid-level wildebeest density was used as the criteria to classify the 454 
grid cells into one of four categories (low density, medium density, high density and very 455 
high density) based on the mean and standard deviations. Supplementary Fig. 9 shows an 456 
example of the wildebeest density map in the year 2009 for sampling. Majority of the grids 457 
have low density of animals. We determined the test sample size as 100 or 200 test grid 458 
cells depending on the area covered by each image, and then selected a proportionate 459 
number of samples randomly within each category to build the final test dataset. For 460 
example, as there was a single image collected on 10 August 2009, 100 test samples were 461 
selected from it. Since there are two images on 13 August 2013, 200 test samples were 462 
chosen from them. For images collected on 08 October 2020, the area was much larger and 463 
the wildebeest density was rather low. As a result, we selected 1900 image grid cells for 464 
testing. The sample size for the year 2020 was relatively large to ensure the test datasets 465 
covered sufficient wildebeest-abundant image patches. In total, there were 2700 test grids 466 
for all six years, occupying 1.7% of the entire dataset. We manually labelled all the 467 
wildebeest in the test sample grids. 468 

 469 
Training the U-Net based ensemble model for wildebeest detection 470 
 471 
Before incorporating the training dataset into the model, we first pre-processed the images 472 
and labelled wildebeest to fit the requirements of the input data. The wildebeest polygon 473 
labels were rasterized into a small patch with 3×3 pixels to represent the wildebeest 474 
segments. The segments were then used to generate the binary masks, including the 475 
wildebeest pixels and non-wildebeest pixels. The masks have the same size as the 476 
corresponding satellite sensor gridded images. The gridded images and the binary masks 477 
were cropped into patches with 336 × 336 pixels. Then all data patches were augmented 478 
using horizontal flip, vertical flip, and 90° rotation to increase sample variation. These data 479 
augmentation techniques can help prevent overfitting and increase the generalization 480 
capability of the model on unseen data with unfamiliar patterns 70. All the training image 481 
patches and the masks from the six different years were combined to train the U-Net deep 482 
learning model. 483 

 484 
The U-Net architecture is a type of convolutional neural network designed originally for 485 
biomedical image segmentation 46, which has subsequently been applied widely in other 486 
applications, including remote sensing image segmentation. U-Net uses a U-shaped 487 
symmetrical encoder-decoder structure that consists of a contracting path on the left and an 488 
expanding path on the right 46 (Fig. 1). The contracting path encodes high-level contextual 489 
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features through successive layers, which generates low-resolution, but high-dimensional 490 
feature maps. The expanding path decodes the information of these feature maps and up-491 
samples the image to obtain the original resolution step-by-step. The up-sampled output is 492 
concatenated through skip connections with the corresponding feature map (with the same 493 
spatial resolution) in the contracting path on the left, thus, merging both sources of 494 
information to provide evidence for classification, and to support precise localization of the 495 
obtained semantic information. The last layer of the model maps the feature maps into the 496 
class number for each pixel in the original image using a sigmoid activation function, 497 
resulting in a probability map with a value ranging from 0 to 1 representing the wildebeest 498 
presence probability as the final output of the U-Net model. 499 
 500 
We employed the ensemble learning approach 71–73 to increase the generalization capability 501 
and robustness of the U-Net model. We split the training dataset into K folds (K = 10 in this 502 
research), of which K-1 folds were used for training the U-Net model, and the remaining 503 
one was used for validation. Therefore, a total of K individual U-Net models were trained 504 
and validated with different subsets of the data. Then the K models were combined to 505 
construct the final ensemble model, where the probability predictions of the base models 506 
were first normalized to the scale of 0 to 1 using the standard min-max approach and then 507 
averaged to produce the final outputs as depicted in Fig. 1.  508 
 509 
To address the imbalance between the wildebeest and non-wildebeest classes, we adopted 510 
a weighted loss function, namely, the Tversky loss function 74, to measure the discrepancy 511 
between the predictions and ground references. The parameters of the Tversky loss, α and 512 
β, are the respective penalty weights for False Negatives (FN) and False Positives (FP), 513 
respectively, and the sum of α and β is 1 (Supplementary Equation (1)). Considering that 514 
wildebeest detection from satellite images is a highly imbalanced problem, namely, the 515 
percentage of wildebeest pixels is less than 1% in the training imagery, the model tends to 516 
predict all the pixels into non-wildebeest pixels to achieve high overall accuracy. By 517 
increasing β, emphasis is added to predicting the wildebeest pixels, whilst minimizing the 518 
number of missed wildebeest pixels. The parameter β was finely tuned over a range of 519 
values (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99) to reach the optimal trade-off 520 
between FPs and FNs. We used the dataset of 2009 in a sensitivity analysis to evaluate how 521 
different settings of β influence the model performance and the optimal parameters used 522 
were α = 0.1 and β = 0.9 (Supplementary Table 5). 523 
 524 

The model was trained with the Adam optimizer using an initial learning rate of 0. 0001 75. 525 
The learning rate was reduced by a factor of 0.33 when the loss on the validation set stopped 526 
improving after 20 epochs. The weights in the convolution layers were initialized by the 527 
He_normal kernel initializer 36. The dropout rate 76 was set to 0 as preliminary experiments 528 
showed that a higher dropout rate did not increase significantly the model performance. The 529 
batch size was 12, and the model was trained for 120 epochs. The model generating the 530 
smallest loss on the validation dataset amongst all epochs was selected as the final model. 531 
The software was implemented using TensorFlow 77 2.1.0, and Python 3.7. The model was 532 
trained on Azure Virtual Machine with NVIDIA Tesla V100 GPU supported by Microsoft 533 
AI for Earth. 534 

 535 
We post-processed the outputs of the ensemble model to obtain precise wildebeest point 536 
predictions. The outputs of the base U-Net models were probability maps of wildebeest 537 
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presence. The probability map of each base model was first rescaled into the range of 0 to 538 
1 (if the maximum value is greater than 0.05) and then averaged to obtain the final 539 
probability map as the output of the ensemble model. Each pixel on the final probability 540 
map was then classified as either wildebeest or non-wildebeest using a threshold of 0.5 541 
(Supplementary Fig. 10). We converted the raster results of wildebeest segments into points 542 
that represent individual wildebeest using K-means clustering. As such, the centroids of the 543 
segments were extracted and individual wildebeest were separated (Supplementary Fig. 1). 544 
The number of clusters in each segment was determined automatically by the ceiling 545 
division result of the number of pixels within the segment by the general wildebeest object 546 
size (namely, 9 pixels). 547 
 548 
Model evaluation 549 
 550 
We evaluated the accuracy of the U-Net-based wildebeest detection model based on the 551 
alignment between the predicted wildebeest points and the ground reference points. A small 552 
local searching region was considered while matching the points to compensate for a slight 553 
shift, considering that the wildebeest segments were not always perfect 3×3 squares and the 554 
extracted centroids of the ground reference and predicted segment may not be perfectly 555 
aligned, but still represent the same animal. In this way, the extracted wildebeest centroids 556 
can still represent the correct detection of wildebeest even if they deviate by one pixel away 557 
from the ground reference points. The radius of the searching region was set to be 0.71 m, 558 
which is equivalent to the actual length of the diagonal line of one 0.5 m-resolution pixel. 559 
Predicted points that could be matched with one of the closest ground reference points 560 
within the searching region were counted as True Positive predictions. Predicted points that 561 
could not be matched with any ground reference points within the searching region were 562 
treated as False Positives, and all the remaining ground reference points that were not 563 
matched with any predicted points were treated as False Negatives. 564 
 565 
To assess the overall performance of the model quantitatively, we utilized the following 566 
accuracy metrics: precision, recall and F1-score. Precision measures the accuracy of 567 
predicting wildebeest amongst all positive detections. It is calculated as the ratio between 568 
the number of True Positives and all detected positives. Recall measures how well the model 569 
performs at finding the actual true positives from all the ground reference points. It is the 570 
ratio between the number of detected True Positives and all existing ground reference 571 
positives. F1-score is the harmonic mean of precision and recall, which reflects the overall 572 
accuracy. The accuracy of each year was evaluated separately on the test dataset of each 573 
year, and the total accuracy obtained on all the test datasets was assessed as well. We 574 
repeated the model training and evaluation five times to obtain the uncertainty of the model 575 
accuracy. 576 
 577 
In addition to the above, we adopted the precision-recall curve and area under the curve 578 
(AUC) to compare the performance of the sub-models with the U-Net-based ensemble 579 
model. By applying different thresholds to the probability map, we calculated multiple pairs 580 
of precision and recall. For the threshold of 0 or 1, we set the paired precision and recall 581 
rates as (0, 1) and (1, 0), respectively. These precision-recall pairs were then added to the 582 
plot, and AUC was calculated using the composite trapezoidal rule. The value of AUC is 583 
between 0 and 1. A larger AUC indicates better model performance. 584 
 585 
To test the spatial and temporal transferability of the model, we ran two tests: (1) 586 
transferring the model to a temporally different dataset: we set aside the dataset in 2015 as 587 
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an independent test dataset and trained the wildebeest detection model using only the data 588 
of the other five years (2009, 2010, 2013, 2018, 2020). The 2015 dataset is therefore an 589 
entirely new dataset obtained by a unique sensor with a different spatial resolution from 590 
others (38 cm of WV03 versus 42~50 cm of GE01 and WV02); (2) transferring the model 591 
to a spatially different dataset: we set aside the dataset in 2020 as an independent test dataset 592 
and trained the wildebeest detection model using only the data of the other five years (2009, 593 
2010, 2013, 2015, 2018). The coverage of 2020 data is on the east side of the Masai Mara 594 
National Reserve and Serengeti National Park, which is outside the coverage of the 595 
remaining datasets, and its spatial resolution is the coarsest (50 cm of WV02) among all the 596 
years. In each of the scenarios, the model was trained with datasets of five years and 597 
transferred to another new year with unseen features, such as new spectral characteristics of 598 
a different year, new image resolution and new landscapes. The model transferability in 599 
these two tests was evaluated directly using the test dataset of the independent year (2015 600 
or 2020).  601 
Detecting and counting the wildebeest 602 
 603 
After the U-Net-based ensemble model demonstrated a high accuracy using the test dataset, 604 
we applied the model to all the satellite imagery to detect all the wildebeest across the study 605 
area inside the Serengeti-Mara ecosystem. The images were cropped into patches to match 606 
the input size of the model, and the ensemble model outputs were converted using K-means 607 
clustering to obtain wildebeest point predictions. The detected wildebeest were then mapped 608 
across the study area. We counted the number of wildebeest points on each satellite image 609 
to obtain the population estimates. We repeated model training five times and calculated the 610 
count five times to obtain the associated modelling uncertainties (at a 95% confidence level) 611 
for each date. 612 
 613 
To explore the spatial distribution patterns of the migrating wildebeest on different dates, 614 
we generated a point density map with a cell size of 100 m and a radius of 500 m (Fig. 8) 615 
for each date. The point density map visualizes the density of wildebeest points within the 616 
neighborhood of each pixel, showing the spatial and temporal variation in wildebeest 617 
distribution. We also calculated the wildebeest count per km2 and summarized the frequency 618 
of the density as a histogram in Fig. 7. 619 

Data availability 620 
The minimum set of segmentation mask samples that can be used to demonstrate the U-621 
Net-based wildebeest detection framework generated in this study was deposited in the 622 
Github repository (https://doi.org/10.5281/zenodo.7810487). Samples of satellite images 623 
for model training and testing are available on a restricted basis due to data protection 624 
laws and access may be obtained by contacting the corresponding author upon reasonable 625 
request. The very-fine-resolution commercial satellite image data for wildebeest detection 626 
are protected under a NextView Imagery End User License Agreement and are not 627 
available as a result of data protection laws. The copyright remains with Maxar 628 
Technologies (formally DigitalGlobe), and redistribution is not possible. The detected 629 
wildebeest point data are available at: https://doi.org/10.5281/zenodo.7810487. Other data 630 
generated in this study to support the findings are provided in the Supplementary 631 
Information and Source Data File. 632 
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Code Availability 633 
The wildebeest detection framework based on U-Net is publicly available at Github 634 
repository78 (https://github.com/zijing-w/Wildebeest-UNet); support and more information 635 
are available from Z.W. (zijingwu97@outlook.com). 636 
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Tables 836 

Table 1.  837 
The number of wildebeest detected and counted in six different years of satellite imagery. 838 

Date Number of wildebeest  

(At 95% confidence level, n = 5) 

11/Aug/2009 122,750 ± 1,905 

24/Sep/2010 79,039 ± 782 

10/Aug/2013 149,232 ± 6,623 

17/Jul/2015 15,855 ± 672 

02/Aug/2018 44,832 ± 3,177 

08/Oct/2020 68,655 ± 1,103 
 839 

Figure Captions 840 

Figure 1. Model framework. The wildebeest detection pipeline consists of three main blocks: 1) 841 
The wildebeest are labeled in the satellite imagery and the masks are generated; 2) The satellite 842 
images and the masks are fed into the U-Net-based ensemble model for model training/validation 843 
and to produce the wildebeest probability maps; 3) The probability maps produced by the 10 base 844 
models are averaged to obtain the final predictions and the wildebeest individuals are detected 845 
using K-means clustering. The blue dots on example image of wildebeest labels represent 846 
manually annotated wildebeest labels. The red dots on example image of detected wildebeest 847 
represent wildebeest detected by the framework. In the U-Net architecture visualization, each box 848 
in grey color represents a multi-channel feature map layer. The grey box with dashed line 849 
represents copied feature map from the left part. Each arrow represents an operation. Satellite 850 
image © 2010 Maxar Technologies. 851 

Figure 2. Study area map. The satellite imagery used in this research cover mainly the Masai 852 
Mara National Reserve and the northernmost section of the Serengeti National Park (the area 853 
outlined in red). The wildebeest typically migrate over 1500 km on average every year (the purple 854 
dashed line). During June and August, the wildebeest migrate from the Serengeti plains in 855 
Tanzania into the Masai Mara National Reserve and then spread to the east crossing the Mara 856 
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River in September. Then during November and December, they move south to the southern 857 
Serengeti. Image credit: EreborMountain/Shutterstock.com for the wildebeest art photo. 858 

Figure 3. Labelling the wildebeest on the satellite image. a The reference satellite image that 859 
was used for cross-referencing while labeling the wildebeest. This example image was acquired 860 
on May 17th,2012. b The satellite image acquired on September 24th, 2010 for wildebeest 861 
labeling. c Wildebeest labels on B. The red points denote wildebeest annotations. The zoomed 862 
boxes are three examples of the wildebeest labels on the GE01 image with 44-cm resolution. 863 
Satellite image © 2010 Maxar Technologies. 864 

Figure 4. Examples of model evaluation on individual wildebeest. In the Evaluation column, 865 
the predictions that match the ground references are True Positives (TP, red crosses), and those 866 
that do not match are False Positives (FP, blue crosses). Ground references that were not detected 867 
by the model are False Negatives (FN, yellow crosses). The examples are taken from the test set 868 
of 2009-2020, showing that the model avoids most of the background objects that have similar 869 
size and color to wildebeest objects, such as small bushes, shadows on the edges of ponds, and 870 
roads. Satellite image © 2009 Maxar Technologies. 871 

Figure 5. Model performance. a The wildebeest detection accuracy of the U-Net-based ensemble 872 
model for each of the six years and the whole dataset. Error bars represent mean values +/- SD (n 873 
= 5). b The Precision-Recall curve of the ensemble model and each base model. The red line 874 
(representing the ensemble model) lies above all other blue curves (representing the individual 875 
base models), indicating greater accuracy. 876 

Figure 6. Detecting wildebeest across different landscapes with variation in wildebeest 877 
spatial clustering patterns. The figures in the first column show the detected wildebeest (red 878 
circles). The second column is a zoom of the imagery covered by the white square in the first 879 
column. a Detected wildebeest in GeoEye-1 imagery acquired on August 11th, 2009. In the 880 
zoomed-in image, the wildebeest are crossing the road near a dry riverbed. b Detected wildebeest 881 
in GeoEye-1 imagery acquired on August 10th, 2013. Wildebeest herd in open grasslands. c 882 
Detected wildebeest in WorldView-3 imagery acquired on July 17th, 2015. The wildebeest 883 
prepare to cross the Mara River. d Detected wildebeest in GeoEye-1 imagery acquired on August 884 
2, 2018. Herds of wildebeest avoid the closed woodlands. e Detected wildebeest in WorldView-2 885 
imagery acquired on October 8th, 2020. The wildebeest herds move through open woodlands and 886 
grasslands. These examples also show the heterogeneity between the satellite images, inclusive of 887 
spectral variation and different levels of contrast between the wildebeest and the background. 888 
Satellite image © 2009-2020 Maxar Technologies. 889 

Figure 7. Spatial distribution of detected wildebeest from July to October in 2009-2020. The 890 
area outlined in red represents the study area, covering the Masai Mara National Reserve and the 891 
northernmost section of the Serengeti National Park.The area outlined in white indicates the 892 
corresponding area presented in Fig. 8. The histogram shows the calculated wildebeest frequency 893 
distribution for each scene. a Spatial distribution hotspot map of wildebeest detected in July 2015. 894 
The image is located in the northernmost section of Serengeti National Park with the Mara River 895 
flowing through. The maximum wildebeest density is about 1500 per km2. b Spatial distribution 896 
hotspot map of wildebeest detected in August 2018. The image is located in the Mara Triangle 897 
inside the Masai Mara National Reserve, covering the border of Kenya and Tanzania. The 898 
wildebeest are near the border and the density peak is more than 4000 individuals per km2. c 899 
Spatial distribution hotspot map of wildebeest detected in August 2013. The image covers the 900 
Mara Triangle in the Masai Mara National Reserve and the northern section of the Serengeti 901 
National Park. The wildebeest are mostly distributed in the Serengeti National Park near the 902 
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border and the density peak is about 4000 individuals per km2. d Spatial distribution hotspot map 903 
of wildebeest detected in August 2009. The image is located in the northwest corner of the Masai 904 
Mara National Reserve. The wildebeest density peak is about 6000 individuals per km2. e Spatial 905 
distribution hotspot map of wildebeest detected in September 2010. The image is located in the 906 
north Serengeti National Park with the Mara River flowing through. The wildebeest are mostly on 907 
the north side of the Mara River and the density peak is about 3000 per km2. f Spatial distribution 908 
hotspot map of wildebeest detected in October 2020. The images cover the east side of the Mara 909 
National Reserve and northeast Serengeti National Park. The wildebeest span sparsely across the 910 
Mara National Reserve and Serengeti National Park and the density peak is about 2000 per km2. 911 
The maximum wildebeest density displays a large difference in terms of months in the dry season. 912 
Satellite image © 2009-2020 Maxar Technologies. 913 

Figure 8. Hotspot map and spatial density of wildebeest over time (from July to October, 914 
2009 to 2020). In this figure, a subset of each timeframe was taken for display purposes and the 915 
hotspot map was produced for each timeframe with a cell size of 100 m and a radius of 500 m 916 
using Point Density tool in ArcGIS. The density of wildebeest varies from 0 to more than 10,000 917 
wildebeest per km2, and it shows a clear spatial variation of wildebeest aggregation patterns in 918 
different months. Satellite image © 2009-2020 Maxar Technologies. 919 


