
A Survey on Exact Algorithms for the Maximum

Flow and Minimum-Cost Flow Problems

Oliverio Cruz-Mej́ıa∗ Adam N. Letchford†

To appear in Networks

Abstract

Network flow problems form an important and much-studied family
of combinatorial optimisation problems, with a huge array of practical
applications. Two network flow problems in particular have received
a great deal of attention: the maximum flow and minimum-cost flow
problems. We review the progress that has been made on exact solution
algorithms for these two problems, with an emphasis on worst-case
running times.

Keywords: combinatorial optimisation; network flows

1 Introduction

Network flow problems have received a great deal of attention from the
Operational Research and Optimisation communities, ever since Ford and
Fulkerson published their influential textbook in 1962 [28]. In addition to
their wealth of practical applications, network flow problems are also of
great theoretical interest. For one thing, they can be viewed as “easy”
combinatorial optimisation problems, in the sense that they can be solved
in polynomial time. For another, they can be viewed as a rather simple
kind of linear program (LP), in which the constraint matrix has a special
structure. We refer the reader to the excellent textbooks [1, 79] for details.

Over the years, there have been many advances in exact algorithms for
various network flow problems. In this paper, we review the progress that
has been made on exact algorithms for two problems in particular: the
maximum flow problem (MF for short) and the minimum-cost flow problem
(MCF for short). Although MF is a special case of MCF, a large number of

∗Department of Industrial Engineering, Universidad Nacional Autónoma de México,
FES Aragón, México. E-mail: oliverio.cruz.mejia@comunidad.unam.mx

†Corresponding author. Department of Management Science, Lancaster University,
Lancaster LA1 4YW, United Kingdom. E-mail: a.n.letchford@lancaster.ac.uk

1

exact algorithms have been devised specifically for MF. For this reason, we
believe that it deserves special treatment.

The reader familiar with network flow problems will know that several
other much-studied combinatorial optimisation problems can also be viewed
as special cases of MCF. In particular, this includes the shortest (s, t)-path,
assignment, transportation and transshipment problems. We will mention
some of them in Subsection 3.2. The reader wanting more details is referred
to [1, 13, 55, 70, 79].

The paper has a very simple structure. Section 2 surveys algorithm for
MF, and Section 3 does the same for MCF.

We use the following (standard) notation throughout the paper. Let
G = (V,A) be a directed graph (or digraph). If an arc a ∈ A goes from node
i to node j, we write a = (i, j). We also write n = |V | and m = |A|. The
set of arcs leaving node i is denoted by δ+(i), and the set of arcs entering
node i is denoted by δ−(i).

2 The Maximum Flow Problem

In this section, we survey exact algorithms for MF. Subsection 2.1 gives
some key definitions and notation. Subsection 2.2 briefly reviews the “clas-
sical” algorithms, by which we mean all algorithms that came before the
landmark paper of Goldberg & Rao [40] in 1998. Subsection 2.3 reviews
the subsequent combinatorial algorithms. Finally, Subsection 2.4 considers
some very different algorithms based on interior-point methods.

2.1 Definitions and notation

The maximum flow problem was introduced in Ford & Fulkerson [27]. We
have a directed graph G = (V,A). One node s ∈ V is called the source,
and another node t ∈ V is called the sink. Each arc a ∈ A has a capacity
ua ∈ Q+. The task is to send as much flow as possible from the source to
the sink.

Without loss of generality, we assume that all capacities are integers.
We also let U = maxa∈A{ua} denote the maximum capacity. If the running
time of an MF algorithm is bounded by a polynomial in m, n and logU ,
the algorithm is called polynomial. If the running time is bounded by a
polynomial in m and n only, the algorithm is called strongly polynomial. We
call a directed path from s to t in G an (s, t)-path.

The material in the remainder of this subsection comes from [28]. For
a ∈ A, let xa be a non-negative variable, representing the amount of flow
sent through the arc a. MF can then be formulated as the following LP:

max
∑

a∈δ+(s) xa (1)

s.t.
∑

a∈δ+(i) xa −
∑

a∈δ−(i) xa = 0 (i ∈ V \ {s, t}) (2)

2

0 ≤ xa ≤ ua (a ∈ A). (3)

The objective function (1) is to maximise the total amount of flow leaving
the source node. The constraints (2) ensure that, for each vertex apart from
the source and sink, the total amount of flow entering and leaving are equal.
The constraints (3) ensure that flows are non-negative and arc capacities
are not exceeded.

Note that the constraints (2) have a very special structure: each vari-
able appears exactly once with a coefficient of +1, and exactly once with a
coefficient of −1. For this reason, it is usually much more efficient to solve
MF with a specialised algorithm, rather than using a generic LP algorithm
(such as the simplex method).

A vector x̄ satisfying (2) and (3) is called a flow. Given a flow, we can
construct a digraph, called the residual graph, as follows. The vertex set is
V . The arc set, which we call Ā, is defined as follows. For each arc (i, j) ∈ A
such that x̄a < ua, we place an arc (i, j) in Ā with capacity ua − x̄a. For
each arc (i, j) ∈ A such that x̄a > 0, we place an arc (j, i) in Ā with capacity
x̄a. The two types of arcs are called forward and reverse arcs, respectively.

Any (s, t)-path in the residual graph is called an augmenting path (with
respect to x̄). Given any augmenting path D ⊆ Ā, we can increase the
amount of flow in G as follows. Let δ be the smallest capacity among the
arcs in the path. If a ∈ D is a forward arc, then increase x̄a by δ. If it is a
reverse arc, then decrease x̄a by δ. A flow x̄ is maximum if and only if there
exists no augmenting path.

Now consider the subgraph of the residual graph which contains only the
forward arcs. If this subgraph does not contain any augmenting path, x̄ is
called a blocking flow. All maximum flows are blocking, but the reverse is
not true.

2.2 Classical algorithms

As mentioned above, we call an MF algorithm “classical” if it appeared
before the publication of [40]. (This is because the appearance of [40] was
regarded as a major breakthrough in the field—see the next subsection.)

There exist several excellent surveys on the classical algorithms (see, e.g.,
[1, 45, 70]). For this reason, we mention only deterministic algorithms here,
and we include only algorithms that included fundamental new ideas, and
algorithms that had a faster running time than at least one earlier algorithm.
These algorithms are summarised in Table 1.

The first exact algorithm for MF was introduced by Ford & Fulkerson
[28]. Their algorithm was based on iteratively improving flows along aug-
menting paths. It performs O(nU) augmentations and runs in O(mnU)
time. Note that this running time is pseudo-polynomial rather than polyno-
mial. That is, it is polynomial only when U is itself bounded by a polynomial
in m and n.

3

Year Bound Reference

1962 O
(
mnU

)
Ford & Fulkerson [28]

1969 O
(
m2n

)
Edmonds & Karp [25, 26]

1969 O
(
m2 logU

)
Edmonds & Karp [25, 26]

1970 O
(
mn2

)
Dinic [24]

1970 O
(
mn logU

)
Dinic [24]

1974 O
(
n3

)
Karzanov [50]

1977 O
(
n2

√
m
)

Cherkassky [20]
1978 O

(
m2/3n5/3

)
Galil [34, 35]

1978 O
(
mn log2 n

)
Shiloach [72], Galil & Naamad [36]

1980 O
(
mn log n

)
Sleator & Tarjan [73, 74]

1986 O
(
mn log

(
n2/m

))
Goldberg & Tarjan [41, 43]

1989 O
(
mn+ n2 logU

)
Ahuja & Orlin [5]

1989 O
(
mn+ n2

√
logU

)
Ahuja et al. [6]

1989 O
(
mn log

(
n
√
logU
m

))
Ahuja et al. [6]

1990 O
(
n3/ log n

)
Cheriyan et al. [18, 19]

1990 O
(
mn+ n8/3 log n

)
Cheriyan & Hagerup [17], Alon [7]

1992 O
(
mn+ n2+ϵ

)
King et al. [52]

1993 O
(
mn logn

log(m/n) + n2+ϵ
)

Phillips & Westbrook [67, 68]

1994 O

(
mn logn

log
(
m/(n logn)

)) King et al. [53]

Table 1: Some “classical” deterministic maximum flow algorithms.

4

Edmonds & Karp [25, 26] discovered two different ways to improve the
augmenting-path approach:

1. Shortest augmenting paths: At any given stage in the Ford-Fulkerson
algorithm, there may exist more than one augmenting path. Edmonds
and Karp proved that, if one always uses an augmenting path having
the least number of arcs, then only O(mn) flow augmentations are
needed. This reduces the running time to O(m2n), which is strongly
polynomial.

2. Capacity scaling: We begin by selecting some positive constant ∆.
We then run the Ford-Fulkerson algorithm, but ignore any arc in the
residual graph that has capacity less than ∆. When the algorithm
terminates, we halve the value of ∆, and repeat. When ∆ becomes
smaller than 1, we can stop. With an appropriate choice of ∆, this
approach gives O(m logU) augmentations. The resulting running time
is O(m2 logU) time, which is (weakly) polynomial.

The next important development was due to Dinic [24]. He observed
that one can construct a blocking flow directly, in O(mn) time, without any
considering of augmenting paths. This led him to propose a variant of the
first Edmonds-Karp algorithm which begins by constructing a blocking flow,
and then iteratively searches for blocking flows in the residual graph. He
proved that this variant terminates after only O(n) augmentations. Since
each augmentation takes O(mn) time, his algorithm runs in O(mn2) time.
Applying a similar idea to the second Edmonds-Karp algorithm, Dinic also
found an algorithm that performs O(logU) augmentations, leading to a
running time of O(mn logU).

After the publication of Dinic [24], several faster algorithms were found
for computing blocking flows. These included theO(n2) algorithm of Karzanov
[50], the O(n

√
m) algorithm of Cherkasky [20], the O((mn)2/3) algorithm

of Galil [34, 35], the O(m log2 n) algorithms of Shiloach [72] and Galil &
Naamad [36], and the O(m log n) algorithm of Sleator & Tarjan [73, 74].
These improvements led to corresponding speed-ups in the Dinic algorithm.
Thus, by the start of the 1980s, it was known that MF could be solved in
either O(n3) or O(mn log n) time, whichever is the faster.

The next significant advance was made in 1986, when Goldberg & Tarjan
[41, 43] proposed the preflow-push approach. This approach uses the notion
of pre-flows, first defined in [50]. Roughly speaking, a pre-flow is a relaxation
of a flow, in which the total flow entering a node may exceed the total flow
leaving that node. The difference between the entering and leaving flows is
called the “excess”. Goldberg & Tarjan’s algorithm begins by constructing
a “blocking pre-flow”, and then repeatedly tries to “push” excess flow from
a node to adjacent nodes that are estimated to be closer to the sink node.

5

Any excess flow that cannot be routed to the sink is eventually sent back to
the source.

Goldberg and Tarjan showed that only O(mn) “pushes” are needed.
They then showed that, with the help of a data structure from [73, 74], their
approach could be implemented so that each “push” takes onlyO(log(n2/m))
time. This particular implementation therefore runs in O(mn log(n2/m))
time.

The remaining eight algorithms listed in Table 1, dated 1989–1994, are
all variants of the preflow-push algorithm. Some of them use remarkably
sophisticated data structures. For brevity, we do not go into details. We
remark however that the algorithm of Cheriyan et al. [18, 19] is rather un-
usual, in that it starts with a sparse subgraph and then adds the remaining
edges as needed. Moreover, it was the first ever MF algorithm to run in
o(n3) time on dense graphs.

To close this subsection, we remark that the worst-case running time is
not the only criterion by which one may evaluate an algorithm. Some algo-
rithms are easier to implement than others, and some perform better than
their worst-case bound might suggest. For thorough empirical comparisons
of various classical MF algorithms, see [4, 15, 21].

2.3 The “O(mn) barrier”

The observant reader will have noticed that, in the 1980s and early 1990s,
authors were coming closer and closer to obtaining an algorithm running
in O(mn) time, but never quite achieving it. Actually, as pointed out in
[40], Ω(mn) is a very natural “barrier” for MF algorithms. Indeed, every
maximum flow can be expressed as a non-negative linear combination of
(s, t)-paths, and each of those (s, t)-paths may contain up to n − 1 arcs.
Thus, any MF algorithm that uses augmenting paths explicitly must take
Ω(mn) time.

The first algorithm to break through the barrier arose in 1998, with the
publication of Goldberg & Rao [40]. The algorithm exploits an earlier result,
proved in [43, 49], that the blocking-flow algorithm of Dinic [24] needs no
more than O(min {n2/3,m1/2}) augmentations in the unit capacity case (i.e.,
the case in which ua = 1 for all a ∈ A and there are no parallel arcs). Com-
bined with capacity scaling, along with an some ingenious data structures,
they obtain an MF algorithm which solves a sequence of O(log(n2/m) logU)
unit-capacity MF subproblems. This yields an overall running time of

O
(
mmin {n2/3,m1/2} log (n2/m) logU

)
.

Provided that U is not extremely large, this running time breaks the O(mn)
barrier. For an empirical study of the algorithm, see [46].

6

Year Bound Reference

1998 O
(
mmin

{
n2/3,m1/2

}
log

(
n2/m

)
logU

)
Goldberg & Rao [40]

2013 O
(
mn+m31/16 log2 n

)
Orlin [65]

2021 O
(

mn logn
log logn+log(m/n)

)
Orlin & Gong [66]

Table 2: More recent deterministic maximum flow algorithms.

The Goldberg-Rao algorithm is a weakly polynomial-time algorithm.
This left open the question of whether there exists a strongly polynomial-
time algorithm running in O(mn) time or less. This was answered in 2013
by Orlin [65]. He found a variant of the Goldberg-Rao algorithm which
works on a series of “contracted” graphs and runs in O(mn+m31/16 log2 n)
time. Together with the result of King et al. [53] mentioned in the previous
subsection, this implies that MF can be solved in O(mn) time. (It suffices
to run Orlin’s algorithm for sparse graphs and the King et al. algorithm for
dense graphs.)

Later on, Orlin & Gong [66] obtained a running time ofO
(

mn logn
log logn+log(m/n)

)
,

using an improved version of the algorithm of Ahuja et al. [6]. This running
time is very slightly better than the one of King et al. [53].

The algorithms mentioned in this subsection are summarised in Table 2.

2.4 Interior-point methods

Recently, some rather different MF algorithms have been developed, based
on interior-point methods (IPMs). These algorithms are randomised, but
they find the optimal solution to any specified accuracy with high probabil-
ity. Moreover, as we will see, some of them can be derandomised with only
a small increase in running time. For a summary of these algorithms, see
Table 3. In this table, ‘polylog n’ means logk n for some constant k ≥ 1,
and ‘o(1)’ means a constant that tends to zero as n tends to infinity.

Before going into details on these algorithms, we give a bit of historical
context. In 2004, Spielman & Teng [75] gave a fast randomised algorithm
for finding approximate solutions to systems of linear equations that have a
“symmetric and diagonally dominant” (sdd) constraint matrix. (Such lin-
ear systems, called “Laplacian” systems, have a wide range of applications.)
Their algorithm runs in O(m polylogn) time, where n is the number of vari-
ables and m is the number of non-zeroes in the matrix. A series of improve-
ments quickly followed. To our knowledge, the fastest known randomized

algorithm for the problem is the one of [48], which runs in O
(
m(log log n)k

)
time for some positive constant k. There is also a deterministic version [22],
which runs in O(m1+o(1)) time.

Armed with this background, we can now make some remarks about the

7

Year Bound Reference

2008 O
(
m3/2 polylog n logU

)
Daitch & Spielman [23]

2014 O
(
m
√
n polylog n log2 U

)
Lee & Sidford [57]

2016 O
(
m10/7 polylog nU1/7

)
Madry [59]

2020 O
(
m11/8 polylog nU1/4

)
Liu & Sidford [58]

2020 O
(
m4/3+o(1) U1/3

)
Kathuria et al. [51]

2021 O
((

m+ n1.5
)
polylog n logU

)
van den Brand et al. [12]

2021 O
(
m3/2−1/328 polylog n logU

)
Gao et al. [39]

2022 O
(
m3/2−1/58 polylog n logU

)
van den Brand et al. [11]

2022 O
(
m1+o(1) logU

)
Chen et al. [16]

Table 3: Overview of recent randomised maximum flow algorithms.

new MF algorithms:

• Daitch & Spielman [23] devised a specialised IPM for LPs with sdd
constraint matrices, which uses the algorithm of Spielman & Teng [75]
as a subroutine. They then show that the max-flow LP (1)-(3) can
be converted into an LP of the desired form, using a certain linear
transformation. Note that the running time of the Daitch-Spielman
algorithm is comparable to that of the one by Goldberg & Rao [40]
mentioned above.

• Lee & Sidford [57] presented an improved IPM for LPs with sdd con-
straint matrices, which uses random sampling to sparsify the con-
straint matrix. The IPM requires onlyO(

√
rL) major iterations, where

r is the rank of the constraint matrix and L is its bit complexity. When
specialised to MF, their algorithm obtains the running time stated in
the table.

• The approach of Lee and Sidford was improved by Van den Brand et
al. [12, 11] and Gao et al. [39].

• Madry [59] presented a rather different approach, based on three main
observations: (i) the max-flow problem is similar to the problem of
sending electrical current through a network of resistors while con-
suming the minimum amount of energy (although the latter has a
quadratic objective function instead of a linear one); (ii) this electrical
flow problem can be solved quickly via a reduction to a series of Lapla-
cian system solves; and (iii) one can construct a maximum flow via a
series of electrical flow problems, rather than by a series of blocking
flow problems as in the classical algorithms. We remark that Madry’s
algorithm runs in pseudo-polynomial time.

• Variants of Madry’s algorithm can be found in Liu & Sidford [58] and
Kathuria et al. [51]. These algorithms are pseudo-polynomial as well.

8

• Finally, and most recently, Chen et al. [16] found a randomised MF
algorithm that runs in only O(m1+o(1) logU) time. The algorithm is
however extremely complex, using concepts and data structures from
traditional MF algorithms, Laplacian systems and IPMs simultane-
ously.

To close this section, we remark that the Daitch-Spielman and Madry
algorithms can be de-randomised, using the deterministic Laplacian system
solver mentioned above. This comes at the cost of an additional factor of
no(1) in the running time. An interesting open question is whether any of the
other IPM algorithms can be de-randomised, without incurring a significant
increase in running time.

3 The Minimum-Cost Flow Problem

Next, we look at exact algorithms for MCF. Subsection 3.1 gives some key
definitions and notation. Subsection 3.2 mentions some key problems that
often arise as subproblems when solving MCF. Subsection 3.3 recalls some of
the earliest MCF algorithms, which run in pseudo-polynomial time. Finally,
Subsection 3.4 covers polynomial-time algorithms.

3.1 Definitions and notation

In MCF, we have a digraph G = (V,A). Associated with each node i ∈ V
is an integer bi. If bi > 0, i is called a supply node. If bi < 0, i is called a
demand node. It is assumed that

∑
i∈V bi = 0. Each arc a ∈ A has a cost

cij ∈ Z and a capacity ua ∈ Z+. (Note that arc costs are usually permitted
to be negative.) The task is to send flow through the network in such a way
that the flow leaving each supply node i is equal to bi, the flow arriving at
each demand node i is equal to bi, and the amount of flow through any given
arc a does not exceed the capacity.

In the standard LP formulation of MCF, one uses a non-negative variable
xa for each arc a ∈ A, just as in the case of MF. The LP is then:

min
∑

a∈A caxa (4)

s.t.
∑

a∈δ+(i) xa −
∑

a∈δ−(i) xa = bi (i ∈ V) (5)

0 ≤ xa ≤ ua (a ∈ A). (6)

The objective function (4) is to minimise the total cost. The constraints (5)
ensure that the supplies and demands are met. The constraints (6) bound
the flow through each arc.

As in the previous section, we let U denote the maximum arc capacity.
We will also find it helpful to let C denote maxa∈A {|ca|}.

9

3.2 Key subproblems

It turns out that many of the MCF algorithms in the literature call on sub-
routines for other simpler problems, such as (a) the maximum flow problem,
(b) the shortest (s, t)-path problem, (c) the transshipment problem, and
(d) the problem of detecting negative-cost cycles in digraphs. To make this
paper self-contained, we briefly recall some results on the last three of the
problems mentioned.

In the shortest (s, t)-path problem, we have a digraph G, two specified
nodes s and t, and a cost vector c ∈ Qm. The task is find a path from s to t
of minimum total cost. This problem has a long history, and a wide variety
of algorithms have been proposed for it. Algorithms have also been found
for various special cases. A good survey is given in [70]. For brevity, we
mention only three algorithms. Dijkstra’s algorithm, which is designed for
the case in which c ∈ Qm

+ , can be implemented to run in O(m+n log n) time
[29]. The algorithm of Thorup [77], which makes the stricter assumption
that c ∈ Zm

+ , runs in O(m+ n log logC) time. Finally, the algorithm in [9],
which assumes that c ∈ Zm, runs in O(m polylogn logW) time, where W is
the most-negative arc cost.

The transshipment problem, mentioned in the introduction, is the vari-
ant of MCF in which no arc capacities are present (or, equivalently, all arc
capacities are very large) [61]. A folklore result states that MCF can be
reduced to transshipment by subdividing each arc into two, and adjusting
the supplies, demands and costs appropriately (see [55]). Note that this
transformation increases the number of nodes from n to n +m, which can
have an effect on the worst-case running time of various solution algorithms.

Finally, in the negative-cycle detection problem, we have a digraph G
and a cost vector c ∈ Zm. The task is to check whether there exists a
directed cycle in G whose total cost is negative. The problem can be solved
in O(mn) time using the Bellman-Ford algorithm (see [1]).

3.3 Pseudo-polynomial MCF algorithms

We now recall the “classical” MCF algorithms, all of which run in pseudo-
polynomial time. These algorithms are summarised in Table 4.

In this table, “MF”, “SP” and “NC” stand for “maximum flow”, “shortest-
path” and “negative-cost cycle”, respectively. So, for example, the first MCF
algorithm in the table uses a shortest-path algorithm as a subroutine, and
it calls that subroutine O(mn2C) times. As in the previous section, we only
include algorithms that include fundamental new ideas, and algorithms that
had a faster running time than at least one earlier algorithm.

We now make some remarks about each of these algorithms:

• Iri [47] and Busacker & Gowen [14] developed what is now known as
the “successive shortest path” approach. It is a “primal-dual” ap-

10

Year Bound Reference

1960 O
(
mn2C

)
SP Iri [47], Busacker & Gowen [14]

1960 O(mU) SP Minty [60], Fulkerson [30]
1962 O

(
nmin{U,C}

)
SP & MF Ford & Fulkerson [28]

1967 O(mC) NC Klein [54]
1969 O(nU) SP Edmonds & Karp [25]

Table 4: Classical pseudo-polynomial algorithms for MCF.

proach, in the sense that it maintains dual optimality from the start
and then strives to attain primal feasibility. It involves the solution of
O(mn2C) shortest-path problems in which negative edge-lengths may
appear. Later on, Tomizawa [78] showed that one can restrict oneself
to shortest-path problems with non-negative edge lengths.

• Minty [60] and Fulkerson [30] independently developed the so-called
“out-of-kilter” method. It is an unusual method as it does not need
primal or dual solutions to be feasible in its early stages. It involves
the solution of O(mU) shortest-path problems.

• Ford & Fulkerson [28] developed a primal-dual algorithm that has
O(nmin{U,C}) major iterations. In each such iteration, a shortest-
path problem and a maximum flow problem is solved.

• Klein [54] presented a primal algorithm, based on iteratively cancelling
negative-cost cycles. Although he did not give a formal analysis of the
running time, the number of major iterations must be O(mC), since
the cost of the flow decreases by at least one in each iteration.

• Edmonds & Karp [25] found an improved out-of-kilter algorithm that
does not need to solve max-flow problems. It requires the solution of
O(nU) shortest-path problems.

We remark that Klein’s algorithm appeared implicitly in the 1940s, in
the works of Leonid Kantorovich (see [71]).

3.4 Polynomial MCF algorithms

In the 1970s and 1980s, several polynomial-time algorithms were developed
for MCF. The main developments are summarised in Table 5. We now make
some remarks about these algorithms:

• Edmonds & Karp [26] used capacity scaling (see Subsection 2.2) to
obtain a faster out-of-kilter algorithm that involves only O(m logU)
shortest-path computations.

11

Year Bound Reference

1972 O(m logU) SP Edmonds & Karp [26]
1980 O(m logC) MF Röck [69]
1984 O

(
m2 log n

)
SP Orlin [62], Fujishige [31]

1985 O
(
m2 log n

)
MF Tardos [76]

1986 O
(
n2 log n

)
SP Galil & Tardos [37, 38]

1987 O
(
mn log n logU log(nC)

)
Gabow & Tarjan [32, 33]

1987 O
(
mn log (n2/m) log (nC)) Goldberg & Tarjan [42, 44]

1988 O(m log n) SP Orlin [63, 64]
1988 O

(
mn log logU log(nC)

)
Ahuja et al. [2, 3]

Table 5: Some polynomial-time algorithms for MCF.

• Röck [69] used “cost scaling” to obtain a primal-dual algorithm that
involves O(m logC) max-flow computations. (Cost scaling is similar
to capacity scaling, except that one iteratively increases the precision
of the costs, rather than the capacities.)

• Orlin [62] and Fujishige [31] showed how to reduce the transshipment
problem to the solution of O(n2 log n) shortest-path problems. Us-
ing the transformation mentioned above, this shows that MCF can
be reduced to O(m2 log n) shortest-path problems in a digraph with
O(m+ n) nodes and arcs.

• Around the same time, Tardos [76] found a different strongly polynomial-
time algorithm which involves the solution of O(m2 log n) max-flow
problems.

• Galil & Tardos [37, 38] showed that, in fact, only O(n2 log n) shortest-
path problems are needed even when capacities are present.

• Gabow & Tarjan [32, 33] devised an algorithm based on a combination
of capacity scaling, cost scaling, and a reduction to a series of trans-

portation problems. The running time is O
(
mn log n logU log(nC)

)
.

• Goldberg & Tarjan [42, 44] developed a new primal-dual approach that
uses cost scaling. Using an appropriate data structure, they obtain a
running time of O(mn log (n2/m) log (nC)).

• Orlin [63, 64] presented a new approach based on a relaxed notion
of flow called a pseudo-flow. His approach enables one to solve the
transshipment problem with only O(n log n) shortest-path calls. Using
the transformation mentioned above, this shows that MCF can be
reduced to O(m log n) shortest-path problems in a digraph with O(m+
n) nodes and arcs.

12

Year Bound Reference

2008 O
(
m3/2 polylog n logU

)
Daitch & Spielman [23]

2014 O
(
m
√
n polylog n log2 U

)
Lee & Sidford [57]

2021 O
((

m log(UC) + n1.5 log2(UC)
)
polylog n

)
van den Brand et al. [12]

2021 O
(
m3/2−1/762 polylog n log(U + C)

)
Axiotis et al. [8]

2022 O
(
m3/2−1/58 polylog n log2 U

)
van den Brand et al. [11]

2022 O
(
m1+o(1) logU logC

)
Chen et al. [16]

Table 6: Overview of recent randomised algorithms for MCF.

• Ahuja et al. [2, 3] combined the best features of the capacity-scaling
and cost-scaling approaches, together with sophisticated data struc-
tures, to yield an algorithm running in O(mn log logU log(nC)) time.

For empirical comparisons of various MCF algorithms, see [10, 56].
Finally, we mention that some of the interior-point MF algorithms, men-

tioned at the end of the previous section, can be used for MCF as well. This
does however sometimes come at the cost of a slightly increased running
time. For a summary, see Table 6. We remark that the Daitch-Spielman
algorithm can be derandomised, as mentioned in the previous section.

References

[1] R.K. Ahuja, T.L. Magnanti & J.B. Orlin (1993) Network Flows. Engle-
wood Cliffs, NJ: Prentice-Hall.

[2] R.K. Ahuja, A.V. Goldberg, J.B. Orlin & R.E. Tarjan (1988) Finding
minimum-cost flows by double scaling. Technical Report 164-88, De-
partment of Computer Science, Princeton University.

[3] R.K. Ahuja, A.V. Goldberg, J.B. Orlin & R.E. Tarjan (1992) Finding
minimum-cost flows by double scaling. Math. Program., 53, 243–266.

[4] R.K. Ahuja, M. Kodialam, A.K. Mishra & J.B. Orlin (1997) Computa-
tional investigations of maximum flow algorithms. Eur. J. Oper. Res.,
97, 509–542.

[5] R.K. Ahuja & J.B. Orlin (1989) A fast and simple algorithm for the
maximum flow problem. Oper. Res., 37, 748–759.

[6] R.K. Ahuja, J.B. Orlin & R.E. Tarjan (1989) Improved time bounds
for the maximum flow problem. SIAM J. Comput., 18, 939–954.

[7] N. Alon (1990) Generating pseudo-random permutations and maximum
flow algorithms. Inf. Proc. Lett., 35, 201–204.

13

[8] K. Axiotis, A. Madry & A. Vladu (2021) Faster sparse minimum cost
flow by electrical flow localization. In Proc. FOCS ’21, pp. 528–539.
Piscataway, NJ: IEEE.

[9] A. Bernstein, D. Nanongkai & C. Wulff-Nilsen (2022) Negative-weight
single-source shortest paths in near-linear time. In Proc. FOCS ’22,
pp. 600–611. Piscataway, NJ: IEEE.

[10] R.G. Bland, J. Cheriyan, D. Jensen & L. Ladányi (1993) An empirical
study of min cost flow algorithms. In D.S. Johnson & C.C. McGeoch
(eds) Network Flows and Matching: First DIMACS Implementation
Challenge, pp. 119–156. Providence, RI: AMS.

[11] J. van den Brand, Y. Gao, A. Jambulapati, Y.T. Lee, Y.P. Liu, R. Peng
& A. Sidford (2022) Faster maxflow via improved dynamic spectral
vertex sparsifiers. In Proc. STOC ’22, pp. 543–556. New York: ACM.

[12] J. van den Brand, Y.T. Lee, Y.P. Liu, T. Saranurak, A. Sidford, Z.
Song & D. Wang (2021) Minimum cost flows, MDPs, and ℓ1-regression
in nearly linear time for dense instances. In Proc. STOC ’21, pp. 859–
869. New York: ACM.

[13] R. Burkard, M. Dell’Amico & S. Martello (2012) Assignment Problems.
Philadelphia, PA: SIAM.

[14] R.G. Busacker & P.J. Gowen (1960) A procedure for determining a
family of minimum cost network flow patterns. Technical paper OCO-
TP-15, Operations Research Office, John Hopkins University.

[15] B.G. Chandran & D.S. Hochbaum (2009) A computational study of the
pseudoflow and push-relabel algorithms for the maximum flow problem.
Oper. Res., 57, 358–376.

[16] L. Chen, R. Kyng, Y.P. Liu, R. Peng, M.P. Gutenberg & S. Sachdeva
(2022) Maximum flow and minimum-cost flow in almost-linear time.
arXiv preprint 2203.00671.

[17] J. Cheriyan & T. Hagerup (1989) A randomized maximum-flow algo-
rithm. In Proc. FOCS ’89, pp. 118–123. Piscataway, NJ: IEEE.

[18] J. Cheriyan, T. Hagerup & K. Mehlhorn (1990) Can a maximum flow
be computed in o(nm) time? In M.S. Paterson (ed.) Proc. ICALP ’90,
pp. 35–248. Berlin: Springer.

[19] J. Cheriyan, T. Hagerup & K. Mehlhorn (1996) An o(n3)-time
maximum-flow algorithm. SIAM J. Comput., 25, 1144–1170.

14

[20] B.V. Cherkassky (1977) Algorithm for construction of maximal flows in
networks with complexity of O(V 2

√
E) operations (in Russian). Math-

ematical Methods of Solution of Economical Problems, 7, 112–125.

[21] B.V. Cherkassky & A.V. Goldberg (1997) On implementing the
push—relabel method for the maximum flow problem. Algorithmica,
19, 390–410.

[22] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng & T. Saranurak
(2020) A deterministic algorithm for balanced cut with applications to
dynamic connectivity, flows, and beyond. In Proc. FOCS ’20, pp. 1158–
1167. Piscataway, NJ: IEEE.

[23] S.I. Daitch & D.A. Spielman (2008) Faster approximate lossy general-
ized flow via interior point algorithms. In Proc. STOC ’08, pp. 451–460.
New York: ACM.

[24] E.A. Dinic (1970) Algorithm for solution of a problem of maximum flow
in networks with power estimation. Soviet Math. Doklady, 11, 1277–
1280.

[25] J. Edmonds & R.M. Karp (1969) Theoretical improvements in algorith-
mic efficiency for network flow problems. Presented at Calgary Interna-
tional Conference on Combinatorial Structures and Their Applications,
Calgary, AB.

[26] J. Edmonds & R.M. Karp (1972) Theoretical improvements in algorith-
mic efficiency for network flow problems. J. ACM, 19, 248–264.

[27] L.R. Ford & D.R. Fulkerson (1956) Maximal flow through a network.
Canadian J. Math., 8, 399–404.

[28] L.R. Ford & D.R. Fulkerson (1962) Flows in Networks. Princeton:
Princeton University Press.

[29] M.L. Fredman & R.E. Tarjan (1984) Fibonacci heaps and their uses
in improved network optimization algorithms. In Proc. FOCS ’84,
pp. 338–346). IEEE Computer Society.

[30] D.R. Fulkerson (1961) An out-of-kilter method for minimal-cost flow
problems. J. SIAM, 9, 18–27.

[31] S. Fujishige (1986) An O(m3 log n) capacity-rounding algorithm for the
minimum cost circulation problem: a dual framework of Tardos’ algo-
rithm. Math. Program., 35, 298–309.

[32] H.N. Gabow & R.E. Tarjan (1987) Faster scaling algorithms for network
problems. Technical Report 111-87, Department of Computer Science,
Princeton University.

15

[33] H.N. Gabow & R.E. Tarjan (1989) Faster scaling algorithms for network
problems. SIAM J. Comput., 18, 1013–1036.

[34] Z. Galil (1978) A new algorithm for the maximal flow problem. Proc.
FOCS ’78, pp. 231–245. Piscataway, NJ: IEEE.

[35] Z. Galil (1980) An O(|V |5/3|E|2/3) algorithm for the maximal flow prob-
lem. Acta Informatica, 14, 221–242.

[36] Z. Galil & A. Naamad (1980) An O(EV log2 V) algorithm for the max-
imal flow problem. J. Comput. Sys. Sci., 21, 203–217.

[37] Z. Galil & E. Tardos (1986) An O(n2(m+ n log n) log n) min-cost flow
algorithm. In Proc. FOCS ’86, pp. 1–9. Piscataway, NJ: IEEE.

[38] Z. Galil & E. Tardos (1988) An O(n2(m+ n log n) log n) min-cost flow
algorithm. J. ACM, 35, 374–386.

[39] Y. Gao, Y.P. Liu & R. Peng (2021) Fully dynamic electrical flows:
sparse maxflow faster than Goldberg-Rao. In Proc. FOCS ’21, pp. 516–
527. Piscataway, NJ: IEEE.

[40] A.V. Goldberg & S. Rao (1998) Beyond the flow decomposition barrier.
J. ACM, 45, 783–797.

[41] A.V. Goldberg & R.E. Tarjan (1986) A new approach to the maximum-
flow problem. Proc. STOC ’86, 136–146. New York: ACM.

[42] A.V. Goldberg & R.E. Tarjan (1987) Solving minimum-cost flow prob-
lems by successive approximation. In Proc. STOC ’87, pp. 7–18. New
York: ACM.

[43] A.V. Goldberg & R.E. Tarjan (1988) A new approach to the maximum-
flow problem. J. ACM, 35, 921–940.

[44] A.V. Goldberg & R.E. Tarjan (1990) Finding minimum-cost circula-
tions by successive approximation. Math. Oper. Res., 15, 430–466.

[45] A.V. Goldberg & R.E. Tarjan (2014) Efficient maximum flow algo-
rithms. Commun. ACM, 57, 82–89.

[46] T. Hagerup, P. Sanders & J.L. Träff (1998) An implementation of the
binary blocking flow algorithm. In K. Melhorn (ed.) Proc. 2nd Work-
shop on Algorithm Engineering, pp. 143–154. Max-Planck-Institut für
Informatik, Saarbrücken.

[47] M. Iri (1960) A new method for solving transportation network prob-
lems. J. Oper. Res. Soc. Jap., 3, 27–87.

16

[48] A. Jambulapati & A. Sidford (2021) Ultrasparse ultrasparsifiers and
faster Laplacian system solvers. In Proc. SODA ’21, pp. 540–559.
Philadelphia, PA: SIAM.

[49] A.V. Karzanov (1973) On finding maximum flows in networks with
special structure and some applications (in Russian). Matematicheskie
Voprosy Upravleniya Proizvodstvom, 5, 81–94.

[50] A.V. Karzanov (1974) Determining the maximal flow in a network by
the method of preflows. Soviet Math. Doklady, 15, 434–437.

[51] T. Kathuria, Y.P. Liu & A. Sidford (2020) Unit capacity maxflow in
almost O(m4/3) time. In FOCS ’20, pp. 119–130. Piscataway, NJ: IEEE.

[52] V. King, S. Rao & R.E. Tarjan (1992) A faster deterministic maximum
flow algorithm. In Proc. SODA ’92, pp. 157–164. Philadelphia, PA:
SIAM.

[53] V. King, S. Rao & R.E. Tarjan (1994) A faster deterministic maximum
flow algorithm. J. Algorithms, 23, 447–474.

[54] M. Klein (1967) A primal method for minimal cost flows with applica-
tions to the assignment and transportation problems. Manag. Sci., 14,
205–220.

[55] B.H. Korte & J. Vygen (2018) Combinatorial Optimization (6th edn).
Heidelberg: Springer.

[56] P. Kovács (2015) Minimum-cost flow algorithms: an experimental eval-
uation. Optim. Meth. Softw., 30, 94–127.

[57] Y.T. Lee & A. Sidford (2014) Path finding methods for linear program-
ming: solving linear programs in Õ(

√
rank) iterations and faster algo-

rithms for maximum flow. In Proc. FOCS ’14, pp. 424–433. Piscataway,
NJ: IEEE.

[58] Y.P. Liu & A. Sidford (2020) Faster energy maximization for faster
maximum flow. In Proc. STOC ’20, pp. 803–814. New York: ACM.

[59] A. Madry (2016) Computing maximum flow with augmenting electrical
flows. Proc. FOCS ’16, pp. 593–602. Piscataway, NJ: IEEE.

[60] G.J. Minty (1960) Monotone networks. Proc. Roy. Soc. Lon. A, 257,
194–212.

[61] A. Orden (1956) The transhipment problem. Manag. Sci., 2, 276–285.

[62] J.B. Orlin (1984) Genuinely polynomial simplex and non-simplex al-
gorithms for the minimum cost flow problem. Working paper 1615-84,
Sloan School of Management, MIT.

17

[63] J.B. Orlin (1988) A faster strongly polynomial minimum cost flow al-
gorithm. In Proc. STOC ’88, pp. 377–387. New York: ACM.

[64] J.B. Orlin (1993) A faster strongly polynomial minimum cost flow al-
gorithm. Oper. Res., 41, 338–350.

[65] J.B. Orlin (2013) Max flows in O(nm) time, or better. In Proc. STOC
’13, pp. 765–774. New York: ACM.

[66] J.B. Orlin & X.Y. Gong (2021) A fast maximum flow algorithm. Net-
works, 77, 287–321.

[67] S. Phillips & J. Westbrook (1993) Online load balancing and network
flow. In Proc. STOC ’93, pp. 402–411. New York: ACM.

[68] S. Phillips & J. Westbrook (1998) Online load balancing and network
flow. Algorithmica, 21, 245–261.

[69] H. Röck (1980) Scaling techniques for minimal cost network flows. In
U. Pape (ed.) Discrete Structures and Algorithms: Proceedings of WG
’79, pp. 181–191. Munich: Hanser.

[70] A. Schrijver (2003) Combinatorial Optimization: Polyhedra and Effi-
ciency. Berlin: Springer.

[71] A. Schrijver (2005) On the history of combinatorial optimization (till
1960). In K. Aardal, G.L. Nemhauser & R. Weismantel (eds) Discrete
Optimization, pp. 1–68. Amsterdam: North Holland.

[72] Y. Shiloach (1978) An O(nI log2 I) maximum-flow algorithm. Technical
report, Computer Science Department, Stanford University.

[73] D.D. Sleator (1980) An O(nm log n) algorithm for maximum network
flow. Technical Report STAN-CS-80-831, Department of Computer Sci-
ence, Stanford University.

[74] D.D. Sleator & R.E. Tarjan (1983) A data structure for dynamic trees.
J. Comput. Sys. Sci., 26, 362–391.

[75] D.A. Spielman & S.H. Teng (2004) Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In
Proc. STOC ’04, pp. 81–90. New York: ACM.

[76] É. Tardos (1985) A strongly polynomial minimum cost circulation al-
gorithm. Combinatorica, 5, 247–255.

[77] M. Thorup (2004) Integer priority queues with decrease key in constant
time and the single source shortest paths problem. J. Comput. Syst.
Sci., 69, 330–353.

18

[78] N. Tomizawa (1971) On some techniques useful for solution of trans-
portation network problems. Networks, 1, 173–194.

[79] D.P. Williamson (2019) Network Flow Algorithms, Cambridge, UK:
Cambridge University Press.

19

