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Catalog of noninteracting tight-binding models with two energy bands in one dimension
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We classify Hermitian tight-binding models describing noninteracting electrons on a one-dimensional periodic
lattice with two energy bands. To do this, we write a generalized Rice-Mele model with two orbitals per unit cell,
including all possible complex-valued long-range hoppings consistent with Hermicity. We then apply different
forms of time-reversal, charge-conjugation, and chiral symmetry in order to constrain the parameters, resulting
in an array of possible models in different symmetry classes. For each symmetry class, we define a single,
canonical form of the Hamiltonian and identify models that are related to the canonical form by an off-diagonal
unitary transformation in the atomic basis. The models have either symmorphic or nonsymmorphic nonspatial
symmetries (time T , chiral, and charge-conjugation). The nonsymmorphic category separates into two types
of state of matter: an insulator with a Z2 topological index in the absence of nonsymmorphic time-reversal
symmetry or, in the presence of nonsymmorphic time-reversal symmetry, a metallic state. The latter is an instance
of Kramer’s degeneracy with one degeneracy point in the Brillouin zone as opposed to no degeneracy points in
symmorphic systems with T 2 = 1 and two in symmorphic systems with T 2 = −1.
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I. INTRODUCTION

The study of the topological properties of materials accord-
ing to the tenfold way classification of nonspatial symmetries
(time-reversal, charge-conjugation, and chiral) [1–11] has ex-
panded to include materials with nonsymmorphic crystal sym-
metries [12–19], which combine a nonprimitive lattice transla-
tion with either a mirror reflection or a rotation [20]. Recently,
nonprimitive lattice translations have been incorporated into
nonsymmorphic nonspatial symmetries [21–33]. A particular
example is that of three-dimensional antiferromagnetic topo-
logical insulators with nonsymmorphic magnetic symmetry
[21–25] (i.e., nonsymmorphic time-reversal symmetry).

In one dimension, the Su-Schrieffer-Heeger (SSH) model
[34,35] is probably the simplest example of a topological
insulator [36–38] and, as such, it has been studied extensively
[37–64] and realized experimentally in different platforms
[65–78]. The SSH model has alternating hopping strengths
and may be considered as a particular phase of the Rice-
Mele model [79], which has alternating on-site energies as
well as alternating hopping strengths. Surprisingly, it was re-
cently shown that a phase of the Rice-Mele model, which has
alternating on-site energies but constant hopping strengths,
the charge-density-wave (CDW) model [27,31,32,38,40,63],
is an example of a system exhibiting nonsymmorphic chiral
symmetry.
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It is natural to wonder how many different symmetry
classes may be realized in minimal models (one-dimensional
models with only two energy bands), to determine the form
of such models in the atomic basis, and, particularly, to
ask whether it is possible to find further examples with
nonsymmorphic nonspatial symmetries including nonsym-
morphic time-reversal symmetry. In this paper, we answer
these questions by writing down a generalized Rice-Mele
model with two electronic orbitals per unit cell, including
all possible complex-valued long-range hoppings consistent
with Hermicity. We then apply different forms of nonspatial
symmetries in order to constrain the parameters, resulting in
an array of possible models in different symmetry classes.
Within random matrix theory [1–3], it is common to write
generic matrices representing symmetry classes [7–9,11] and
this is also possible with continuous Dirac Hamiltonians [10].
There are recent studies of generic tight-binding models with
four bands [64,80] that have included some representatives of
some of the symmorphic symmetry classes. Here, we focus
on tight-binding models in both position and reciprocal space,
and we identify every distinct model within each symmetry
class according to the tenfold way of nonspatial symmetries
[8–11] and including nonsymmorphic nonspatial symmetries
[16], albeit with only two energy bands.

Our results are summarized in Table I. The first column
indicates the Cartan label of the symmetry class taken from
the tenfold way classification [1–11]. Columns labeled T 2,
C2, S2 show the form of time-reversal, charge-conjugation,
and chiral symmetry, respectively, where a zero indicates an
absence of symmetry and “NS” indicates a nonsymmorphic
symmetry. For systems with nonsymmorphic symmetries, we
adopt the classification of Ref. [16] whereby the symmetry
class is assigned by neglecting the nonsymmorphic symme-
tries (as if “NS” were replaced by a zero), and, subsequently,
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TABLE I. Summary of noninteracting, one-dimensional tight-
binding models with two bands. The first column indicates the Cartan
label of the symmetry class. Labels T 2, C2, and S2 indicate the
type of time-reversal, charge-conjugation, and chiral symmetries,
where “0” indicates the absence of symmetry and “NS” indicates
a nonsymmorphic symmetry. Column “No.” indicates the number of
distinct models in the atomic basis (such models are related by an
off-diagonal unitary transformation, not a diagonal change of gauge),
column “Canonical” shows the location in the text of the canonical
form of the Bloch Hamiltonian H (k), column “State” gives the state
of matter of a typical member of the class.

Class T 2 C2 S2 No. Canonical State

A 0 0 0 1 Eqs. (39)–(42) insulator
AI 1 0 0 2 Table VI insulator
AII −1 0 0 1 Table VI gapless
AIII 0 0 1 3 Table III Z insulator
BDI 1 1 1 3 Table III Z insulator
D 0 1 0 2 Table VI Z2 insulator
C 0 −1 0 1 Table VI insulator
DIII −1 1 1 2 Table III gapless
CI 1 −1 1 2 Table III insulator
A 0 0 NS 1 Table III Z2 insulator
AI 1 NS NS 1 Table III Z2 insulator
D NS 1 NS 1 Table III gapless
AIII NS NS 1 1 Table III gapless
A NS 0 0 1 Table VI gapless
A 0 NS 0 1 Table VI Z2 insulator

the nonsymmorphic symmetries are used to subdivide the
symmetry classes. This is why there are three (sub)classes
with nonsymmorphic symmetry labeled as class A.

The column labeled “No.” in Table I indicates the number
of distinct models in the symmetry class. We consider distinct
models to be related by off-diagonal unitary transformations
(from the atomic basis), whereas models related by diagonal
gauge transformations are not considered to be distinct. For
example, the three distinct models in the BDI class are well
known: the SSH model [34,35], the Creutz model [47,81],
and the Shockley sp orbital model [63,82,83]. The number of
models in each class may be deduced simply by considering
possible combinations of Pauli spin matrices, as described
later. Although there are distinct models within a typical sym-
metry class, they may be related by unitary transformations
and, thus, it is possible to write them all in a single “canon-
ical” form [84] as indicated in the column “Canonical”. For
classes with chiral symmetry, the canonical form is written in
the basis in which the chiral symmetry operator is diagonal
[10,11,47], which we refer to as the “chiral” basis.

The final column in Table I shows the state of matter
of members of the symmetry class, and Fig. 1 shows rep-
resentative band structures for classes with time-reversal,
charge-conjugation, and chiral symmetry. For two energy
bands E±(k), chiral symmetry imposes E±(k) = −E∓(k) and
time-reversal symmetry imposes E±(−k) = E±(k), Fig. 1.
The states of matter agree with predictions of the tenfold way
classification for the symmorphic models [8–11] and with the
classification of Ref. [16] for nonsymmorphic models. Ex-
ceptions are the symmorphic DIII and the nonsymmorphic D

FIG. 1. Bulk band structure E (k) for classes with time-reversal,
charge-conjugation, and chiral symmetry using the canonical form
for each class (Table I) with generic parameter values. (a) Symmor-
phic class BDI with x0 = 2.0, x1 = 1.0, x2 = 0.5, ỹ1 = 0.8, ỹ2 = 0.4.
(b) Nonsymmorphic class AI with x0 = 2.0, x1 = 1.0, x2 = 0.5, β0 =
1.6, β1 = 0.8, β2 = 0.4. (c) Symmorphic class CI with x0 = 2.0,
x1 = 1.0, x2 = 0.5, y0 = 1.6, y1 = 0.8, y2 = 0.4. (d) Nonsymmor-
phic class D with x̃1 = 1.0, x̃2 = 0.5, β0 = 1.6, β1 = 0.8, β2 = 0.4.
(e) Symmorphic class DIII with x̃1 = 1.0, x̃2 = 0.5, ỹ1 = 0.8, ỹ2 =
0.4. (f) Nonsymmorphic class AIII with α0 = 2.0, α1 = 1.0, α2 =
0.5, β0 = 1.6, β1 = 0.8, β2 = 0.4. Higher-order parameters are zero.

class, which we find are both gapless due to the presence
of time-reversal symmetry with Kramer’s degeneracy and
only two orbitals, as opposed to a four-orbital Bogoliubov
de Gennes representation [85,86]. With two bands, there are
also not enough degrees of freedom to realize the CII (chiral
symplectic) symmetry class [80,87].

Table I shows that the nonsymmorphic category separates
into only two types of state of matter: an insulator with a Z2

topological index [16,27] in the absence of nonsymmorphic
time-reversal symmetry or, in the presence of nonsymmorphic
time-reversal symmetry, a metallic state [28]. The latter is an
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FIG. 2. Generalized Rice-Mele model [(1) and (2)] with up to
third-nearest-neighbor coupling. (a) Nearest-neighbor coupling with
staggered hoppings v and w and staggered on-site energies, “+”
represents ε0 + u, “−” represents ε0 − u. The lattice constant is
a, and a B orbital is located at intracell distance s to the right
of an A orbital. (b) Next-nearest-neighbor coupling tAA between
A orbitals and tBB between B orbitals. (c) Third-nearest-neighbor
coupling t3 between an A orbital and the second B orbital to its right.
Bars over parameters indicate that they are complex numbers, in
general.

instance of Kramer’s degeneracy with one degeneracy point
in the Brillouin zone, Figs. 1(d) and 1(f), as opposed to no
degeneracy points in symmorphic systems with T 2 = 1 and
two in symmorphic systems with T 2 = −1, Fig. 1(e).

In Sec. II A we describe the generalized Rice-Mele model
[79], which is a periodic tight-binding model with two orbitals
per unit cell. We consider a time-independent and Hermitian
Hamiltonian describing noninteracting fermions and exclud-
ing superconducting pairing. In the main text, we describe
nearest-neighbor coupling, but we generalize to include hop-
pings of all ranges in Appendix A. Section II B describes
the symmetries that are applied to the generalized Rice-Mele
model in order to constrain the parameter values and identify
models within each symmetry class. The rest of the paper con-
siders each symmetry class in turn, with symmorphic models
with chiral symmetry in Sec. III and without chiral symmetry
in Sec. IV. Nonsymmorphic models with chiral symmetry
are discussed in Sec. V, those without chiral symmetry in
Sec. VI. The paper ends with a brief conclusion, Sec. VII.
Appendix B discusses the role of spatial-inversion symmetry
[11,13,42,63,88–91], which is not the focus of the classifica-
tion in the main text.

II. METHODOLOGY

A. Generalized Rice-Mele model

In position space for a system of J atoms with open bound-
ary conditions, we consider a generalized Rice-Mele model
[79] Hamiltonian, Fig. 2, as a J × J Hermitian matrix in a

basis of atomic orbitals,

H =

⎛
⎜⎜⎝

ε0 + u veiφv tAAeiφAA t3eiφ3

ve−iφv ε0 − u weiφw tBBeiφBB

tAAe−iφAA we−iφw ε0 + u veiφv

t3e−iφ3 tBBe−iφBB ve−iφv ε0 − u

⎞
⎟⎟⎠, (1)

where we write the matrix for just J = 4 atoms. As in the
usual Rice-Mele model [79], there are alternating on-site en-
ergies parameterized by u and alternating nearest-neighbor
hoppings v and w. In addition, we include a uniform con-
tribution ε0 to the on-site energy, next-nearest couplings tAA

and tBB, and third-nearest coupling t3. All parameters, other
than the on-site energies ε0 ± u, are complex, with phases
explicitly written in Eq. (1).

There are two different orbitals per unit cell, labeled A and
B. With lattice constant a, we consider an A orbital to be
separated by distance s from the next B orbital to the right,
which is then separated by distance a − s from the next A to
the right, Fig. 2. The Bloch Hamiltonian in k space written in
the type II or “canonical” representation [38,92] with A and B
Bloch orbitals is

H (k, s) = σ · d(k, s),

d0(k, s) = ε0 + tAA cos(ka + φAA) + tBB cos(ka + φBB),

dx(k, s) = v cos(ks + φv ) + w cos[k(a − s) + φw]

+ t3 cos[k(a + s) + φ3],

dy(k, s) = −v sin(ks + φv ) + w sin[k(a − s) + φw]

− t3 sin[k(a + s) + φ3],

dz(k, s) = u + tAA cos(ka + φAA) − tBB cos(ka + φBB), (2)

with σ = (I, σx, σy, σz ) and d = (d0, dx, dy, dz ), where σi are
Pauli matrices and I is the 2 × 2 identity matrix. We can write

H (k, s) = U (k, s)H (k, 0)U †(k, s), (3)

where

U (k, s) =
(

eiks/2 0
0 e−iks/2

)
, (4)

and H (k, 0) coincides with the Hamiltonian written in the type
I or “periodic” representation [38,92].

Our aim is to describe all models with nearest-neighbor
coupling. We include next-nearest couplings tAA and tBB,
and third-nearest coupling t3 because they become nearest-
neighbor in the limit of intracell spacing s = 0. We consider
only 0 � s � a/2 without loss of generality, so do not include
third-nearest coupling between an A orbital and the second B
orbital to its left. Note, however, that it is straightforward to
include all orders of coupling as described in Appendix A.

The Hamiltonian (1) in position space does not explicitly
depend on the distances a and s although, in a real physical
system, one would expect the values of the tight-binding pa-
rameters to depend on the distances a and s. However, we are
not interested in the numerical values of the parameters, but
general constraints on the existence of their real and imagi-
nary parts. Thus, we treat the generalized Rice-Mele model
as a toy model with no constraints initially on the values of
the tight-binding parameters other than that the Hamiltonian
is Hermitian and, in particular, the tight-binding parameters
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are considered to be independent of a and s. In general,
the generalized Rice-Mele model, Eqs. (1) and (2), does
not satisfy spatial inversion, chiral, time-reversal, or charge-
conjugation symmetry; we apply chiral, time-reversal, or
charge-conjugation symmetry in order to place some further
constraints on the tight-binding parameters. We nominally de-
scribe spinless electrons, although the cases with time-reversal
symmetry T 2 = −1 may be interpreted as describing spinful
electrons, Secs. III C and IV C.

B. Symmetries

We consider the nonspatial symmetries of chiral symme-
try (S), time-reversal symmetry (T ), and charge-conjugation
symmetry (C). In k space, they are expressed as

chiral: U †
S (k, s)H (k, s)US (k, s) = −H (k, s), (5)

time: U †
T (k, s)H∗(k, s)UT (k, s) = H (−k, s), (6)

charge: U †
C (k, s)H∗(k, s)UC (k, s) = −H (−k, s), (7)

space: U †
P (k, s)H (k, s)UP(k, s) = H (−k, s), (8)

where US , UT , UC , and UP are unitary matrices with

US (k, s)US (k, s) = I, (9)

UT (k, s)U ∗
T (−k, s) = ±I, (10)

UC (k, s)U ∗
C (−k, s) = ±I. (11)

These three conditions are written in shorthand as S2 = 1,
T 2 = ±1, and C2 = ±1. The operators are related as
US (k, s) = U ∗

C (k, s)UT (−k, s) [93].
In addition to the three nonspatial symmetries, we also

include spatial-inversion symmetry (P) for completeness. Al-
though it is not our focus, many of the models we discuss will
satisfy spatial-inversion symmetry [63], and we describe it in
more detail in Appendix B. Using the unitary transformation
[(3) and (4)] relating H (k, s) to H (k, 0), we can write

US (k, s) = U (k, s)US (k, 0)U †(k, s), (12)

UT (k, s) = U †(k, s)UT (k, 0)U (k, s), (13)

UC (k, s) = U †(k, s)UC (k, 0)U (k, s), (14)

UP(k, s) = U (k, s)UP(k, 0)U (k, s). (15)

Note that the different forms of these transformations are due
to the presence or absence of complex conjugation and inver-
sion of k in the definitions of the symmetries, Eqs. (5)–(8).

Given an energy eigenvalue equation H (k, s)ψ±
(k, s) = E±(k)ψ±(k, s) for two energy bands E±(k) and
eigenstates ψ±(k, s), the effect of the symmetries is

chiral: E±(k) = −E∓(k), (16)

time: E±(−k) = E±(k), (17)

charge: E±(−k) = −E∓(k), (18)

space: E±(−k) = E±(k). (19)

For symmorphic models, symmetry operators US , UT , UC ,
UP, when present, are independent of k for intracell distance
s = 0 (or, equivalently, when using the type I or “periodic”
representation [38,92]). For nonsymmorphic symmetries, the
symmetry operators are independent of k for intracell distance
s = a/2 because this implicitly takes into account a spatial
translation by half of the unit cell a; when transformed back
to s = 0 using Eqs. (12)–(15), they acquire a k dependence.
For the two-band models we consider, the k-independent sym-
metry operators may be represented as either Pauli matrices
or the identity matrix, as appropriate [93]. Application of
chiral symmetry requires d0 and one of the other components,
di for i = x, y, or z, to be zero whereas time-reversal and
charge-conjugation symmetries require each component of
the d vector to be either even or odd functions of the wave
vector k.

In position space, the symmetry operations are written as

chiral: S†HS = −H, SS = I, (20)

time: T †H∗T = H, T T ∗ = ±I, (21)

charge: C†H∗C = −H, CC∗ = ±I, (22)

space: P†HP = H, (23)

where S , T , C, and P are unitary matrices, and S = T ∗C.
For systems with symmorphic symmetries, S , T , C act locally
within a unit cell and may be represented by J × J matrices
Sx, Sy, or Sz, acting in the atomic basis as

Sx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

Sy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0 · · · 0 0
i 0 0 0 · · · 0 0
0 0 0 −i · · · 0 0
0 0 i 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 −i
0 0 0 0 · · · i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

Sz =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 −1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 0
0 0 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (26)

Operations T and C may also be represented by a J × J
identity matrix I . When representing chiral symmetry S , op-
erator Sz (or σz in k space) is usually referred to as sublattice
symmetry. Note that we refer to chiral symmetry as any
unitary operator S satisfying Eq. (20), and, in the atomic
basis, this may include Sx or Sy as well as Sz. In these
cases (when symmorphic), it is possible to perform a unitary
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transformation from the atomic basis to the chiral basis in
which S is represented by Sz.

Spatial inversion symmetry (parity) P is nonlocal and may
be represented by J × J matrices Px, Py, Pz, or PI , where

Px =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
0 0 0 · · · 1 0
...

...
...

...
...

...

0 0 1 · · · 0 0
0 1 0 · · · 0 0
1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (27)

Py =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
0 0 0 · · · −1 0
...

...
...

...
...

...

0 0 −1 · · · 0 0
0 1 0 · · · 0 0

−1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (28)

Pz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 −1
...

...
...

...
...

...
...

0 0 1 0 · · · 0 0
0 0 0 −1 · · · 0 0
1 0 0 0 · · · 0 0
0 −1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

PI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
...

...
...

...
...

...
...

0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

Nonsymmorphic symmetry involves a translation Ta/2 [32]
by the atomic spacing a/2,

Ta/2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

It could also be expressed as a matrix product Ta/2Sz of sub-
lattice symmetry Sz (26) with Ta/2,

Ta/2Sz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 −1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

where Ta/2Sz is written for an odd number of atoms J . These
two possibilities correspond to σx or σy, respectively, in k
space.

For symmorphic models in position space, symmetries
generally only hold for an even number of atoms J , unless the

matrix representing the symmetry is diagonal. An example is
the SSH model [34,35] for which time-reversal (I), charge-
conjugation (Sz), and chiral (Sz) symmetry are all diagonal, so
they hold for an odd number of atoms; spatial inversion sym-
metry (Px) does not hold in the SSH model for an odd number
of atoms, however. For nonsymmorphic models in position
space, nonspatial symmetries are represented either by non-
symmorphic operations, Ta/2 or Ta/2Sz, or by diagonal ones,
I or Sz (e.g., it is possible to combine symmorphic time with
nonsymmorphic charge-conjugation and chiral symmetries).
Thus, they nominally apply to systems with either even or odd
numbers of atoms, except that, in both instances, the ends of
a system with open boundary conditions break the nonsym-
morphic symmetry [27,32]. Spatial inversion symmetry for
nonsymmorphic models in position space is represented by Px

or Py, and its presence, for a given symmetry class, depends
on whether the number of atoms is even or odd as indicated in
Table VIII.

Symmorphic models are labeled H (i, j,�)
S,n where n indicates

the Cartan label of the symmetry class, Table I. Index i =
I, x, y, z indicates the form of time-reversal symmetry as ei-
ther the identity matrix (I) in both k and position space, or a
Pauli spin matrix σi in k space and matrix Si in position space;
likewise index j = I, x, y, z for charge-conjugation symmetry
and � = x, y, z for chiral symmetry (for which the unit matrix
is not possible). Nonsymmorphic models are labeled H (i, j,�)

NS,n
where n indicates the Cartan label and index i = I, x, y, z indi-
cates the form of time-reversal symmetry as either the identity
matrix (I) in both k and position space, Pauli spin matrix σx in
k space and matrix Ta/2 in position space, Pauli spin matrix
σy in k space and matrix Ta/2Sz in position space, or Pauli
spin matrix σz in k space and matrix Sz in position space;
likewise index j = I, x, y, z for charge-conjugation symmetry,
and index � = x, y, z for chiral symmetry (for which the unit
matrix is not possible).

III. SYMMORPHIC MODELS WITH CHIRAL SYMMETRY

A. Symmetry class AIII with T 2 = 0, C2 = 0, S2 = 1

All versions of chiral symmetry require d0 = 0. From
Eq. (2), this may be satisfied with ε0 = 0, tBB = −tAA, and
φBB = φAA. Hence, with d0 = 0, we consider

H (k, s) = σ · d(k, s),

dx(k, s) = v cos(ks + φv ) + w cos[k(a − s) + φw]

+ t3 cos[k(a + s) + φ3],

dy(k, s) = −v sin(ks + φv ) + w sin[k(a − s) + φw]

− t3 sin[k(a + s) + φ3],

dz(k, s) = u + 2tAA cos(ka + φAA), (33)

with d = (0, dx, dy, dz ).
We begin by considering models with symmorphic chiral

symmetry only (i.e., generally no time-reversal or charge-
conjugation symmetry), which belong to the AIII (chiral
unitary) symmetry class. To identify such models, we deter-
mine the cases for which H (k, 0) satisfies chiral symmetry
(5) with US (k, 0) being independent of k. We find there are
three such models, corresponding to US (k, 0) = σz, σy, or σx,
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FIG. 3. Tight-binding models in the AIII symmetry class
(T 2 = 0, C2 = 0, S2 = 1) on the left, in the BDI symmetry class
(T 2 = 1, C2 = 1, S2 = 1) on the right, shown with intracell spac-
ing s = 0. (a) H (0,0,z)

S,AIII , the generalized SSH model with staggered
couplings v and w plus third-nearest-neighbor hopping t3. (b) The
SSH model H (I,z,z)

S,BDI , with staggered couplings v and w (as usu-

ally considered) plus third-nearest-neighbor hopping t3. (c) H (0,0,y)
S,AIII ,

the generalized Creutz ladder with on-site energies ±u, hopping
±tAAeiφAA along each chain, intracell hopping v, and intercell hop-
pings weiφw between each chain. (d) The Creutz ladder H (x,z,y)

S,BDI , with
on-site energies ±u and imaginary hopping ±itAA along each chain,
intracell hopping v, and intercell hoppings ±w between each chain.
(e) H (0,0,x)

S,AIII , the generalized Shockley s − p orbital model with on-
site energies ±u and hopping ±tAAeiφAA along each chain, intracell
hopping iv, and intercell hoppings ±weiφw between each chain.
(f) The Shockley sp orbital model H (I,x,x)

S,BDI , with on-site energies
±u and hopping ±tAA along each chain, and intercell hoppings ±w

between each chain. Bars over parameters indicate that they are
complex numbers, in general. A finite lateral spacing between A and
B orbitals is shown for clarity, but this separation can be zero without
loss of generality.

and denoted H (0,0,z)
S,AIII , H (0,0,y)

S,AIII , H (0,0,x)
S,AIII , respectively, Fig. 3. The

values of the tight-binding parameters for each model are
summarized in Table II. Note that we could consider a more
general form of chiral symmetry with US (k, s = 0) consisting
of a linear combination of Pauli matrices, but this would lead
to a more constrained version of the Hamiltonians that we
already consider, so we exclude this possibility

The three models, H (0,0,i)
S,AIII , i = x, y, z, are distinct in the

atomic basis, but they are all equivalent after a similarity
transformation into the chiral basis, i.e., the basis in which the
chiral operator is ŨS (k, 0) = σz in k space. For each model
we identify the unitary operator R for which the similarity

transformation may be expressed as

H̃ (0,0,i)
S,AIII (k, 0) = R†H (0,0,i)

S,AIII (k, 0)R ≡ σ · d̃, (34)

so that the Hamiltonian H̃ (0,0,i)
S,AIII (k, 0) is written in the canon-

ical form where d̃x and d̃y are represented by the Fourier
series of arbitrary, real 2π periodic functions (with d̃z = 0),
as shown in Table III. This canonical form has chiral symme-
try ŨS (k, 0) = σz in k space (Sz in position space). Table IV
shows how the tight-binding parameters of the three models
correspond to xn, x̃n, yn, ỹn of the canonical form, Ta-

ble III. Energies eigenvalues are E±(k) = ±
√

d̃2
x + d̃2

y , and

the system is generally an insulator. Since spatial-inversion
symmetry is broken, the spectrum generally is not an even
function of k. As d̃x and d̃y are arbitrary, real 2π periodic
functions, the path of the d̃ vector in the d̃x − d̃y plane defines
an integer Z winding number, in agreement with expectations
from the tenfold way classification [8–11]. We describe the
winding number in more detail in Sec. III B.

In the following, we briefly describe each model, H (0,0,i)
S,AIII ,

i = x, y, z, in more detail. Chiral symmetry US (k, 0) = σz

demands that dz(k, 0) = 0. For arbitrary k, this requires
u = 0 and tAA = 0, yielding H (0,0,z)

S,AIII (k, s) = σ · d(z)(k, s)
where

d (z)
x (k, s) = v cos(ks + φv ) + w cos[k(a − s) + φw]

+ t3 cos[k(a + s) + φ3],

d (z)
y (k, s) = −v sin(ks + φv ) + w sin[k(a − s) + φw]

− t3 sin[k(a + s) + φ3],

d (z)
z (k, s) = 0.

This can be viewed as a generalized version of the SSH
model [34,35,48]: arbitrary, complex A-B hoppings are al-
lowed as long as all A-A or B-B hoppings are absent, as shown
schematically in Fig. 3(a) for intracell spacing s = 0. It is an
unusual case because US (k, s) = σz is independent of k for all
intracell spacing s, including s �= 0. In position space, chiral
symmetry is given by Sz, Eq. (26). Note that we include hop-
ping t3 because, for s = 0, it is a nearest-neighbor hopping,
Fig. 3(a) (and the generalization to longer-range hopping is
straightforward, Appendix A). In the absence of t3 or longer
range hoppings, i.e., with only v̄ = veiφv and w̄ = weiφw , then
it is possible to gauge away the phases φv and φw [80],
giving the conventional SSH model in symmetry class BDI,
Fig. 3(b).

Chiral symmetry US (k, 0) = σy demands that dy = 0. This
can be achieved with φv = 0, t3 = w and φ3 = φw, yielding
H (0,0,y)

S,AIII (k, 0) = σ · d(y)(k, 0) where

d (y)
x (k, 0) = v + 2w cos(ka + φw ),

d (y)
y (k, 0) = 0,

d (y)
z (k, 0) = u + 2tAA cos(ka + φAA).

This can be viewed as a generalized version of the Creutz
ladder [47,81,94], Fig. 3(c). Note that it is possible to find
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TABLE II. Symmorphic models with chiral symmetry, showing the values of the tight-binding parameters of the generalized Rice-Mele
model with d0 = 0, Eq. (33), ε0 = 0, tBB = −tAA, and φBB = φAA. “arb.” indicates that the parameter can take any arbitrary real value. The
second column “P” shows the form of spatial-inversion symmetry in position space for an even number of orbitals, where “0” indicates it is
absent. The same models with long-range hoppings are shown in Table XIV.

Name P u tAA φAA v φv w φw t3 φ3

H (0,0,z)
S,AIII 0 0 0 n/a arb. arb. arb. arb. arb. arb.

H (0,0,y)
S,AIII 0 arb. arb. arb. arb. 0 arb. arb. w φw

H (0,0,x)
S,AIII 0 arb. arb. arb. arb. π/2 arb. arb. −w φw

H (I,z,z)
S,BDI Px 0 0 n/a arb. 0 arb. 0 arb. 0

H (x,z,y)
S,BDI Px 0 arb. π/2 arb. 0 arb. 0 w 0

H (I,x,x)
S,BDI Pz arb. arb. 0 0 n/a arb. 0 −w 0

H (z,I,z)
S,BDI Py 0 0 n/a arb. π/2 arb. π/2 arb. π/2

H (x,I,x)
S,BDI Py 0 arb. π/2 arb. π/2 arb. π/2 −w π/2

H (z,x,y)
S,BDI Pz arb. arb. 0 0 n/a arb. π/2 w π/2

H (y,x,z)
S,DIII Pz 0 0 n/a 0 n/a arb. arb. −w −φw

H (y,z,x)
S,DIII Px 0 arb. π/2 0 n/a arb. 0 −w 0

H (y,I,y)
S,DIII Py 0 arb. π/2 0 n/a arb. π/2 w π/2

H (x,y,z)
S,CI PI 0 0 n/a arb. arb. arb. arb. w −φw

H (I,y,y)
S,CI PI arb. arb. 0 arb. 0 arb. 0 w 0

H (z,y,x)
S,CI PI arb. arb. 0 arb. π/2 arb. π/2 −w π/2

H (0,0,y)
S,AIII (k, s) for arbitrary s using the unitary transformation

(3). This can be transformed to the canonical form, Ta-
ble III, with parameters given in Table IV using R = RyRr ,
where

Ry = 1√
2

(
1 1
i −i

)
, (35)

and Rr = diag(1, i). Here, Ry transforms to the chiral
basis and Rr rotates the dx − dy plane around the dz

axis. In the atomic basis in position space, a transfor-
mation to the chiral basis is H̃ (0,0,y)

S,AIII = R†
rR†

yH (0,0,y)
S,AIII RyRr

where

Ry = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 · · ·
i −i 0 0 0 · · ·
0 0 1 1 0 · · ·
0 0 i −i 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and Rr = diag(1, i, 1, i, 1, i, . . .). With this transformation,
H̃ (0,0,y)

S,AIII is of the same general (canonical) form as H (0,0,z)
S,AIII .

Chiral symmetry US (k, 0) = σx demands that dx = 0,
which can be achieved with φv = π/2, t3 = −w, and

TABLE III. Canonical forms of the Bloch Hamiltonian H (k) for noninteracting, one-dimensional tight-binding models with two bands and
chiral symmetry. The first column indicates the Cartan label of the symmetry class where “NS” indicates a nonsymmorphic subclass. Labels
UT , UC , US , and UP indicate the form of time-reversal, charge-conjugation, chiral, and spatial-inversion symmetries in k space, where “I” is the
identity matrix and “0” indicates the absence of symmetry. Columns “d̃x” and “d̃y” indicate components of the canonical form H̃ (k, s) = σ · d̃
where intracell spacing s = 0 for symmorphic systems, s = a/2 for nonsymmorphic systems.

Class UT UC US UP d̃x d̃y

AIII 0 0 σz 0 x0
2 + ∑∞

n=1[xn cos(kna) + x̃n sin(kna)] y0
2 + ∑∞

n=1[yn cos(kna) + ỹn sin(kna)]

BDI I σz σz σx
x0
2 + ∑∞

n=1 xn cos(kna)
∑∞

n=1 ỹn sin(kna)

DIII σy σx σz σz
∑∞

n=1 x̃n sin(kna)
∑∞

n=1 ỹn sin(kna)

CI σx σy σz I x0
2 + ∑∞

n=1 xn cos(kna) y0
2 + ∑∞

n=1 yn cos(kna)

A (NS) 0 0 σz 0 x0
2 + ∑∞

n=1[xn cos(kna) + x̃n sin(kna)]
∑∞

n=0[βn cos[ka(n + 1
2 )] + β̃n sin[ka(n + 1

2 )]]

AI (NS) σx σy σz I x0
2 + ∑∞

n=1 xn cos(kna)
∑∞

n=0 βn cos[ka(n + 1
2 )]

D (NS) σz I σz σy
∑∞

n=1 x̃n sin(kna)
∑∞

n=0 βn cos[ka(n + 1
2 )]

AIII (NS) σx σy σz I
∑∞

n=0 αn cos[ka(n + 1
2 )]

∑∞
n=0 βn cos[ka(n + 1

2 )]
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TABLE IV. Symmorphic models with chiral symmetry showing how their parameters, Table II, correspond to the canonical forms
in Table III.

model x0 x1 x̃1 y0 y1 ỹ1

H (0,0,z)
S,AIII 2v cos φv w cos φw + t3 cos φ3 −w sin φw − t3 sin φ3 −2v sin φv w sin φw − t3 sin φ3 w cos φw − t3 cos φ3

H (0,0,y)
S,AIII 2v 2w cos φw −2w sin φw −2u −2tAA cos φAA 2tAA sin φAA

H (0,0,x)
S,AIII 2u 2tAA cos φAA −2tAA sin φAA 2v −2w sin φw −2w cos φw

H (I,z,z)
S,BDI 2v w + t3 0 0 0 w − t3

H (x,z,y)
S,BDI 2v 2w 0 0 0 2tAA

H (I,x,x)
S,BDI 2u 2tAA 0 0 0 −2w

H (z,I,z)
S,BDI 2v w − t3 0 0 0 w + t3

H (x,I,x)
S,BDI 2v 2w 0 0 0 −2tAA

H (z,x,y)
S,BDI 2u −2tAA 0 0 0 −2w

H (y,x,z)
S,DIII 0 0 −2w sin φw 0 0 2w cos φw

H (y,z,x)
S,DIII 0 0 −2tAA 0 0 −2w

H (y,I,y)
S,DIII 0 0 −2w 0 0 2tAA

H (x,y,z)
S,CI 2v cos φv 2w cos φw 0 −2v sin φv 2w sin φw 0

H (I,y,y)
S,CI 2v 2w 0 −2u −2tAA 0

H (z,y,x)
S,CI 2u 2tAA 0 2v −2w 0

φ3 = φw, yielding H (0,0,x)
S,AIII (k, 0) = σ · d(x)(k, 0) where

d (x)
x (k, 0) = 0,

d (x)
y (k, 0) = −v + 2w sin(ka + φw ),

d (x)
z (k, 0) = u + 2tAA cos(ka + φAA).

This can be viewed as a generalized version of the Shockley
sp orbital model [63,82,83], Fig. 3(e). It can be transformed
to the canonical form, Table III, with parameters given in
Table IV using R = Rx, where

Rx = 1√
2

(
1 1
1 −1

)
. (36)

In the atomic basis in position space, a transformation to
the chiral basis is H̃ (0,0,x)

S,AIII = R†
xH (0,0,x)

S,AIII Rx where

Rx = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 · · ·
1 −1 0 0 0 · · ·
0 0 1 1 0 · · ·
0 0 1 −1 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

With this transformation, H̃ (0,0,x)
S,AIII is of the same general

(canonical) form as H (0,0,z)
S,AIII .

B. Symmetry class BDI with T 2 = 1, C2 = 1, S2 = 1

We apply time-reversal symmetry (6) to the three models
with chiral symmetry described in Sec. III A. We con-
sider UT (k, 0) to be independent of k, and this means
that UT (k, 0) = I , σx or σz (for which T 2 = +1), or UT

(k, 0) = σy (for which T 2 = −1). Then, with definite chiral
symmetry and time-reversal symmetry, we determine the form

of charge-conjugation symmetry UC using US (k, 0) = U ∗
C

(k, 0)UT (−k, 0), where C2 = ±1. We then group models in
the same symmetry class together, beginning with the BDI
(chiral orthogonal) class, T 2 = 1, C2 = 1, S2 = 1.

In this class, the canonical form of the Bloch
Hamiltonian H̃S,BDI(k, 0) = σ · d̃ is given in Table III where
d̃x is represented as an even-in-k 2π -periodic function, d̃y is
an odd 2π -periodic function, and d̃z = 0, where parameters
xn and ỹn are real. Note that a form with d̃x odd and d̃y

even is equivalent [84], because it is related by a rotation
of the d̃x − d̃y axes about d̃z. Reference [55] expressed the
SSH model in an equivalent form with d̃x + id̃y written as a
complex Fourier series. The canonical form has time-reversal
symmetry UT (k, 0) = I , charge-conjugation symmetry
UC (k, 0) = σz, and chiral symmetry US (k, 0) = σz.

Energy eigenvalues are E±(k) = ±
√

d̃2
x + d̃2

y , and the sys-

tem is generally an insulator, Fig. 1(a). The path of the d̃
vector in the d̃x − d̃y plane defines an integer Z winding num-
ber W , in agreement with expectations from the tenfold way
classification [8–11]. As a hypothetical example, Fig. 4(a)
shows the band structure when the system is dominated by
second-order terms x2, ỹ2 in the canonical form, Table III, and
Fig. 4(b) shows the corresponding path of the d̃ vector with a
winding number of W = 2.

In position space, one can set S = Sx, Sy, or Sz with T = I ,
Sx, or Sz and C = I , Sx, or Sz, and search for combinations of
them; there are only six possibilities because T �= Sy, C �= Sy,
Table II. Of these, three are related by diagonal gauge trans-
formations as seen by multiplying two of S , T , or C by Sz

(which is diagonal). The three remaining distinct models have
all been discussed widely in previous literature: H (I,z,z)

S,BDI is the

SSH model [34,35], H (x,z,y)
S,BDI is the Creutz ladder [46,47,64,81],

and H (I,x,x)
S,BDI is the Shockley sp orbital model [63,82,83], as
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FIG. 4. Edge states and winding number for the SSH model
H (I,z,z)

S,BDI in the BDI symmorphic symmetry class (T 2 = 1, C2 = 1,
S2 = 1). (a) Bulk band structure E (k) dominated by second-order
terms in the canonical form, Table III. (b) The corresponding trajec-
tory of the d̃ vector in the d̃x − d̃y plane defining a winding number
of W = 2. (c) Energy levels E in position space as a function of
parameter t ′

3 with J = 40 atoms. (d) The probability density |ψ j |2
per site j = 1, 2, . . . , 16 for the four zero-energy states in the SSH
model for t ′

3 = 2.0 and J = 16 atoms. Note that the levels come
in pairs with equal probability densities, so only two of the four
are distinguishable. Parameter values are t3 = t5 = 0, v = 0.2, and
w = 1.0. In (a), (b), and (d), t ′

3 is fixed, t ′
3 = 2.0. In terms of the

canonical form, Table III, then x0 = 2v = 0.4, x1 = ỹ1 = w = 1.0,
and x2 = ỹ2 = t ′

3 with xn = ỹn = 0 for n � 3.

shown schematically in Fig. 3. They are distinct in the sense
that the unitary transformation from the atomic basis to the
canonical form, Table III, is off-diagonal (35,36).

The three models related by diagonal gauge transforma-
tions correspond to an additional version of each of the
distinct three such that their A-B hopping parameters are
imaginary rather than real, Table II. Formally, the diagonal
transformation in the atomic basis in position space has a
period of 2a,

Ri =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
0 −i 0 0 0 · · ·
0 0 −1 0 0 · · ·
0 0 0 i 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (37)

so that H (z,I,z)
S,BDI = R†

i H (I,z,z)
S,BDI Ri, with a flip of sign of t3, etc.

Table IV shows how the tight-binding parameters of the
models correspond to xn, ỹn of the canonical form, Ta-
ble III. Since each model consists of nearest-neighbor only,
xn = ỹn = 0 for n � 2, the winding number W can only take
two values (0 or 1) [37,80]. In terms of the canonical form,
Table III, it is given by

W =
{

0 if |x0| > 2|x1|,
1 if |x0| < 2|x1|, (38)

and the system is gapless if |x0| = 2|x1|. Expressions for x0,
x1 in terms of tight-binding parameters for different models
may be read off Table IV. For example, for the SSH model
H (I,z,z)

S,BDI , then W = 1 if |v| < |w + t3|. The SSH model is usu-
ally considered with t3 = 0 [34,35,37,38], but we include it
because it is a nearest-neighbor hopping for intracell spacing
s = 0, and because its inclusion does not affect the symmetry
classification of the model. It is straightforward to gener-
alize the models to longer range hoppings, as described in
Appendix A, and terms beyond nearest-neighbor hopping in
the SSH model have been described previously [45,54,55,61].
Note that the spinless Kitaev chain [9,47,80,95] also belongs
to the BDI symmetry class, but we do not discuss it here
because superconducting pairing is not included in the gen-
eralized Rice-Mele model [(1) and (2)].

In the atomic basis in position space, edge states will be
located on different atomic sites in the three models. Given an
eigenstate ψSSH of the SSH model, H (I,z,z)

S,BDI , a corresponding

state in the Creutz ladder H (x,z,y)
S,BDI is RyRrψSSH and in the

Shockley sp orbital model H (I,x,x)
S,BDI it is RxψSSH. The SSH

model is usually considered for t3 = 0, which, according to
Table IV, is equivalent to tAA = w in the Creutz ladder and
tAA = −w in the Shockley sp orbital model. Then, in the fully
dimerized limit of v = 0, one can see from Fig. 3(b) that
there will be an edge state fully localized on the leftmost
A atom in the SSH model [37]. Owing to the off-diagonal
transformations to the bases of the other models, such a state
will be shared equally between the left-most A and leftmost
B atom in the same limit of the Creutz ladder (v = 0) and the
Shockley sp orbital model (u = 0), Figs. 3(d) and 3(f).

As an illustration, Fig. 4(c) shows the energy levels in posi-
tion space of the SSH model H (I,z,z)

S,BDI as a function of parameter
t ′
3 with t3 = t5 = 0. With these choices, parameters of the

canonical form are x0 = 2v, x1 = ỹ1 = w, and x2 = ỹ2 = t ′
3.

With w = 1 and v = 0.2, then there is a phase transition
from winding number W = 2 for t ′

3 > 1 to W = 1 for t ′
3 < 1.

As shown in Figs. 4(c) and 4(d), these phases support four
zero-energy edge states for t ′

3 > 1 and two zero-energy edge
states for t ′

3 < 1.

C. Symmetry class DIII with T 2 = −1, C2 = 1, S2 = 1

Models with chiral symmetry S2 = 1, time T 2 = −1, and
charge conjugation C2 = 1 are in the DIII symmetry class,
which is usually associated with a Bogoliubov de Gennes
Hamiltonian. This symmetry class must have time T = Sy.
There are three possibilities for chiral symmetry, S = Sx, Sy,
or Sz, giving three models, Table II. However, multiplying
S and C by Sz shows that one of them is trivially related to
another by a diagonal gauge transformation. Thus, there are
two distinct models (H (y,x,z)

S,DIII and H (y,z,x)
S,DIII ) as shown schemati-

cally in Fig. 5. They are distinct in the sense that the unitary
transformation relating them is off-diagonal. Model H (y,z,x)

S,DIII

has an additional version H (y,I,y)
S,DIII that is the one related by

a trivial, diagonal transformation such that its A-B hopping
parameters are imaginary rather than real, Table II.

In this class, the canonical form of the Bloch Hamiltonian
H̃sym(k, 0) = σ · d̃ is where both d̃x and d̃y are represented by
odd-in-k 2π -periodic functions, Table III, parameters x̃n and
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FIG. 5. Tight-binding models in the DIII symmetry class
(T 2 = −1, C2 = 1, S2 = 1) on the left, in the CI symmetry class
(T 2 = 1, C2 = −1, S2 = 1) on the right, shown with intracell spacing
s = 0. (a) H (y,x,z)

S,DIII with complex intercell hoppings ±we±iφw . As

shown here, with only nearest-neighbor hopping, H (y,x,z)
S,DIII is simply

two disconnected linear chains; higher-order hopping is required to
couple the chains, Table XIV. (b) H (x,y,z)

S,CI with complex intracell

hopping veiφv , and complex intercell hoppings we±iφw . (c) H (y,z,x)
S,DIII

with imaginary, staggered second-neighbor hopping ±itAA, and in-
tercell hoppings ±w. (d) H (I,y,y)

S,CI with staggered on-site energies ±u,
staggered second-neighbor hopping ±tAA, intracell hopping v and
intercell hopping w. A finite lateral spacing between A and B orbitals
is shown for clarity, but this separation can be zero without loss of
generality.

ỹn are real, and d̃z(k, 0) = 0. Table IV shows how the tight-
binding parameters of the three models correspond to x̃n, ỹn

of the canonical form, Table III. Since each model consists
of nearest-neighbor only, x̃n = ỹn = 0 for n � 2, although it
is straightforward to generalize to longer range hoppings, as
described in Appendix A.

Energy eigenvalues are E±(k) = ±
√

d̃2
x + d̃2

y . Owing to

Kramer’s degeneracy (with T 2 = −1), states at k = 0 and
k = ±π/a are degenerate because these k values are time-
reversal invariant. As there are only two bands and the bands
are degenerate, the system is gapless, Fig. 1(e).

As a representative of this symmetry class, let us briefly
discuss H (y,x,z)

S,DIII , Fig. 5(a). With only nearest-neighbor cou-
pling, ±we±iφw , the model is simply two disconnected linear
chains; higher-order hopping is required to couple the chains,
Table XIV. As time T 2 = −1, the A atoms can be considered
as spin-up electrons and the B atoms as spin-down electrons,
with the coupling (±we±iφw ) describing spin-orbit coupling
[96,97] between them,

H (y,x,z)
S,DIII (k, 0) =

(
0 −2iweiφw sin(ka)

2iwe−iφw sin(ka) 0

)
.

Owing to the presence of chiral symmetry, there is no cou-
pling between spins of the same orientation (A-A or B-B)
here; however, it has been taken into account previously [97]
as d0(k, 0) = 2t cos(ka) for nearest-neighbor A-A and B-B
hopping with parameter t = tAA = tBB.

FIG. 6. (a) Typical band structure E (k) in the CI symmetry class
(T 2 = 1, C2 = −1, S2 = 1) using the canonical form, Table III.
Parameter values are x0 = 0.5, x1 = 1.0, x2 = 0.4, y0 = −0.3,
y1 = −1.0, y2 = 0.5, with xn = yn = 0 for n � 3. (b) The corre-
sponding trajectory of the d̃ vector in the d̃x − d̃y plane. It traces an
open path for −π < ka � 0 and then reverses along the same path
for 0 < ka � π to end at the original starting point.

D. Symmetry class CI with T 2 = 1, C2 = −1, S2 = 1

Models with chiral symmetry S2 = 1, time T 2 = 1, and
charge conjugation C2 = −1 are in the CI symmetry class,
which is usually associated with a Bogoliubov de Gennes
Hamiltonian. In this class, the canonical form of the Bloch
Hamiltonian H̃sym(k, 0) = σ · d̃ is where both d̃x and d̃y are
represented by even-in-k 2π periodic functions, Table III,
parameters xn and yn are real, and d̃z(k, 0) = 0.

Energy eigenvalues are E±(k) = ±
√

d̃2
x + d̃2

y , and the sys-

tem is generally an insulator, Fig. 1(c). In agreement with
expectations from the tenfold way classification [8–11], it
is topologically trivial. As a hypothetical example, Fig. 6(a)
shows the band structure for typical parameter values using
the canonical form, Table III, and Fig. 6(b) shows the corre-
sponding path of the d̃ vector in the d̃x − d̃y plane. It traces
an open path for −π < ka � 0 and then reverses along the
same path for 0 < ka � π to end at the original starting point.
Note the dips in the band structure at ka ≈ ±π/2 arising from
higher-order terms in the canonical form, Table III, which
would result in van Hove singularities in the density of states.

This symmetry class must have charge conjugation C = Sy.
There are three possibilities for chiral symmetry, S = Sx, Sy,
or Sz, giving three models, Table II. However, multiplying S
and T by Sz shows that one of them is trivially related by a
diagonal gauge transformation. Thus, there are two distinct
models (H (x,y,z)

S,CI and H (I,y,y)
S,CI ) as shown schematically in Fig. 5.

They are distinct in the sense that the unitary transformation
relating them is off-diagonal. Model H (I,y,y)

S,CI has an additional

version H (z,y,x)
S,CI that is the one related by a trivial, diago-

nal transformation such that its A-B hopping parameters are
imaginary rather than real, Table II. Table IV shows how the
tight-binding parameters of the three models correspond to xn,
yn of the canonical form, Table III. Since each model consists
of nearest-neighbor only, xn = yn = 0 for n � 2, although it
is straightforward to generalize to longer range hoppings, as
described in Appendix A.

Although we only consider systems with two energy bands,
these models fall into a Bogoliubov de Gennes symmetry class
(CI), which nominally has four components. In Ref. [7], the
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TABLE V. Symmorphic models without chiral symmetry showing the values of the tight-binding parameters of the generalized Rice-Mele
model Eq. (2), for each model. The same models with long-range hoppings are shown in Table XII.

Name ε0 u tAA φAA tBB φBB v φv w φw t3 φ3

H (I,0,0)
S,AI arb. arb. arb. 0 arb. 0 arb. 0 arb. 0 arb. 0

H (x,0,0)
S,AI arb. 0 arb. arb. tAA −φAA arb. arb. arb. arb. w −φw

H (z,0,0)
S,AI arb. arb. arb. 0 arb. 0 arb. π/2 arb. π/2 arb. π/2

H (y,0,0)
S,AII arb. 0 arb. arb. tAA −φAA 0 n/a arb. arb. −w −φw

H (0,x,0)
S,D 0 arb. arb. arb. −tAA −φAA 0 n/a arb. arb. −w −φw

H (0,z,0)
S,D 0 0 arb. π/2 arb. π/2 arb. 0 arb. 0 arb. 0

H (0,I,0)
S,D 0 0 arb. π/2 arb. π/2 arb. π/2 arb. π/2 arb. π/2

H (0,y,0)
S,C 0 arb. arb. arb. −tAA −φAA arb. arb. arb. arb. w −φw

generic 4 × 4 Hamiltonian representing class CI is actually
block diagonal with a single 2 × 2 block representing spin-up
electrons and spin-down holes (say). Comparison with the
form of H (I,y,y)

S,CI shows that we may interpret the chain of A
atoms (with on-site energies −u and A-A hopping tAA) as
mimicking the spin-up electrons and the chain of B atoms
(with on-site energies u and B-B hopping −tAA) as mimicking
the spin-down holes.

IV. SYMMORPHIC MODELS WITHOUT
CHIRAL SYMMETRY

A. Symmetry class A with T 2 = 0, C2 = 0, S2 = 0

We now consider symmorphic models without chiral sym-
metry. Symmetry class A is described by the generalized
Rice-Mele model Eqs. (1,2), and the corresponding expres-
sion with tight-binding parameters of all ranges is given in
Eqs. (A1)–(A4). For intracell spacing s = 0, Eq. (2) shows
that, without any symmetry constraints, each component of
the d vector at s = 0 may be written as an arbitrary real
Fourier series of a 2π -periodic function. Energies eigenvalues

are E±(k) = d̃0 ±
√

d̃2
x + d̃2

y + d̃2
z , and the system is generally

an insulator. Since time-reversal and spatial-inversion symme-
tries are absent, the spectrum generally is not an even function
of k.

We write the canonical form for this class as Hsym,A

(k, s) = σ · d̃(k, s) where

d̃0(k, 0) = a0

2
+

∞∑
n=1

[an cos(kna) + ãn sin(kna)], (39)

d̃x(k, 0) = x0

2
+

∞∑
n=1

[xn cos(kna) + x̃n sin(kna)], (40)

d̃y(k, 0) = y0

2
+

∞∑
n=1

[yn cos(kna) + ỹn sin(kna)], (41)

d̃z(k, 0) = z0

2
+

∞∑
n=1

[zn cos(kna) + z̃n sin(kna)], (42)

where all the parameters are real. This canonical form ex-
presses the fact that, without any symmetry constraints, each
component of the d vector may be written as an arbitrary
real Fourier series of a 2π -periodic function of ka. With

nearest-neighbor parameters only, the parameters from the
canonical form (39)–(42) may be read from Eqs. (1) and (2),
e.g., a0 = 2ε0, z0 = 2u, wherein parameters of second order
or above are zero due to the nearest-neighbor approximation.

B. Symmetry class AI with T 2 = 1, C2 = 0, S2 = 0

Models with time-reversal symmetry T 2 = 1, but no
charge-conjugation or chiral symmetry are in the AI (orthog-
onal) class. There are three possibilities, T = I , Sx, or Sz,
giving three models, Table V. However, multiplying T by
Sz shows that one of them is trivially related to another by
a diagonal gauge transformation. Thus, there are two dis-
tinct models (H (I,0,0)

S,AI and H (x,0,0)
S,AI ) as shown schematically in

Fig. 7. They are distinct in the sense that the unitary trans-
formation relating them is off-diagonal. Model H (I,0,0)

S,AI has an

additional version H (z,0,0)
S,AI such that its A-B hopping param-

eters are imaginary rather than real, Table V. The Rice-Mele
model [79] is H (I,0,0)

S,AI with ε0 = t3 = tAA = tBB = 0, i.e., the
SSH model with alternating on-site energies ±u. The SSH
model with additional real next-nearest-neighbor coupling
discussed in [45] is the same as H (I,0,0)

S,AI with ε0 = u = t3 = 0
and the replacements v = t1, w = t2, tAA = tA, and tBB = tB,
where our parameters are listed first. The tight-binding model
on a triangular lattice considered in [98] is the same as H (I,0,0)

S,AI
with tBB = t3 = 0 and the replacements ε0 = (εA + εB)/2,
u = (εA − εB)/2, tAA = t3, v = t1, and w = t2, where our pa-
rameters are listed first. The extended Creutz ladder discussed
in [99] is the same as H (x,0,0)

S,AI with ε0 = φw = 0 and the
replacements v = −JY , φv = −φ, w = −JD, tAA = −JX , and
φAA = −θ , where our parameters are listed first.

The canonical form for this class, Table VI, may be written
as for class A with d̃0(k, 0), d̃x(k, 0), and d̃z(k, 0) as even func-
tions of k, and d̃y(k, 0) odd, i.e., set ãn = x̃n = yn = z̃n = 0
in Eqs. (39)–(42). Then, time reversal symmetry is given by
T = I . Relations of the tight-binding parameters for each
model to the canonical form are given in Table VII, where
H (x,0,0)

S,AI is rotated by R−1
y and H (z,0,0)

S,AI is rotated by Ry. En-

ergies eigenvalues are E±(k) = d̃0 ±
√

d̃2
x + d̃2

y + d̃2
z , and the

system is generally an insulator. With time-reversal symmetry,
the spectrum is an even function of k.

Although this class does not satisfy chiral symmetry,
it is known that the Rice-Mele model [79] satisfies a
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TABLE VI. Canonical forms of the Bloch Hamiltonian H (k) for noninteracting, one-dimensional tight-binding models with two bands
and no chiral symmetry. The first column indicates the Cartan label of the symmetry class where “NS” indicates a nonsymmorphic subclass.
Column Ui indicates the form of either time-reversal (i = T ) or charge-conjugation (i = C) symmetry in k space, where I is the identity matrix.
Columns “d̃0”, “d̃x”, “d̃y”, and “d̃z” indicate components of the canonical form H̃ (k, s) = σ · d̃ where intracell spacing s = 0 for symmorphic
systems, s = a/2 for nonsymmorphic systems.

Class Ui d̃0 d̃x d̃y d̃z

AI UT = I a0
2 + ∑∞

n=1 an cos(kna) x0
2 + ∑∞

n=1 xn cos(kna)
∑∞

n=1 ỹn sin(kna) z0
2 + ∑∞

n=1 zn cos(kna)

AII UT = σy
a0
2 + ∑∞

n=1 an cos(kna)
∑∞

n=1 x̃n sin(kna)
∑∞

n=1 ỹn sin(kna)
∑∞

n=1 z̃n sin(kna)

D UC = σx
∑∞

n=1 ãn sin(kna)
∑∞

n=1 x̃n sin(kna)
∑∞

n=1 ỹn sin(kna) z0
2 + ∑∞

n=1 zn cos(kna)

C UC = σy
∑∞

n=1 ãn sin(kna) x0
2 + ∑∞

n=1 xn cos(kna) y0
2 + ∑∞

n=1 yn cos(kna) z0
2 + ∑∞

n=1 zn cos(kna)

A (NS) UT = σx
a0
2 + ∑∞

n=1 an cos(kna)
∑∞

n=0 αn cos[ka(n + 1
2 )]

∑∞
n=0 βn cos[ka(n + 1

2 )]
∑∞

n=1 z̃n sin(kna)

A (NS) UC = σy
∑∞

n=1 ãn sin(kna)
∑∞

n=0 αn cos[ka(n + 1
2 )]

∑∞
n=0 βn cos[ka(n + 1

2 )] z0
2 + ∑∞

n=1 zn cos(kna)

combination of chirality and spatial inversion [11,29,32] as
σyH (k)σy = −H (−k). This is satisfied by H (I,0,0)

S,AI with d0 =
0, i.e., with ε0 = 0 and tBB = −tAA. Note that this additional
symmetry does not affect the topological indices [13] of
these one-dimensional models as predicted by the tenfold way
based solely on nonspatial symmetries [8–11].

C. Symmetry class AII with T 2 = −1, C2 = 0, S2 = 0

Models with time-reversal symmetry T 2 = −1, but no
charge-conjugation or chiral symmetry are in the AII (sym-
plectic) class. There is only one possibility, T = Sy, giving
H (y,0,0)

S,AII , Table V and Fig. 7(e). The canonical form for this
class, Table VI, may be written as for class A with d̃0(k, 0) as
an even function of k, and d̃x(k, 0), d̃y(k, 0), d̃z(k, 0) as odd
functions, i.e., set ãn = xn = yn = zn = 0 in Eqs. (39)–(42).
Relations of the tight-binding parameters for H (y,0,0)

S,AII to the
canonical form are given in Table VII. Energy eigenvalues

are E±(k) = d̃0 ±
√

d̃2
x + d̃2

y + d̃2
z . Owing to Kramer’s degen-

eracy (with T 2 = −1), states at k = 0 and k = ±π/a are
degenerate because these k values are time-reversal invariant.

As there are only two bands and the bands are degenerate, the
system is gapless.

D. Symmetry class D with T 2 = 0, C2 = 1, S2 = 0

Models with charge-conjugation symmetry C2 = 1, but no
time-reversal or chiral symmetry are in the D class. There
are three possibilities, C = I , Sx, or Sz, giving three models,
Table V. However, multiplying C by Sz shows that one of
them is trivially related to another by a diagonal gauge trans-
formation. Thus, there are two distinct models (H (0,x,0)

S,D and

H (0,z,0)
S,D ) as shown schematically in Fig. 7. They are distinct

in the sense that the unitary transformation relating them is
off-diagonal. Model H (0,z,0)

S,D has an additional version H (0,I,0)
S,D

such that its A-B hopping parameters are imaginary rather
than real, Table V. The SSH model with additional imaginary
next-nearest-neighbor coupling discussed in [61] is the same
as H (0,z,0)

S,D with t3 = 0 and tBB = −tAA (hence d0 = 0) and
the replacements v = −J , w = −J ′, tAA = −K , and tBB = K ,
where our parameters are listed first.

The canonical form for this class, Table VI, may be writ-
ten as for class A with d̃z(k, 0) as an even function of k,
and d̃0(k, 0), d̃x(k, 0), and d̃y(k, 0) as odd functions, i.e.,

TABLE VII. Symmorphic models without chiral symmetry showing how their tight-binding parameters correspond to the canonical form,
Eqs. (39)–(42) and Table VI.

H (I,0,0)
S,AI H (x,0,0)

S,AI H (z,0,0)
S,AI H (y,0,0)

S,AII H (0,x,0)
S,D H (0,z,0)

S,D H (0,I,0)
S,D H (0,y,0)

S,C

a0 2ε0 2ε0 2ε0 2ε0 0 0 0 0

a1 tAA + tBB 2tAA cos φAA tAA + tBB 2tAA cos φAA 0 0 0 0

ã1 0 0 0 0 −2tAA sin φAA −tAA − tBB −tAA − tBB −2tAA sin φAA

x0 2v −2v sin φv 2u 0 0 0 0 2v cos φv

x1 w + t3 2w sin φw tAA − tBB 0 0 0 0 2w cos φw

x̃1 0 0 0 −2w sin φw −2w sin φw −tAA + tBB −tAA + tBB 0

y0 0 0 0 0 0 0 0 −2v sin φv

y1 0 0 0 0 0 0 0 2w sin φw

ỹ1 w − t3 −2tAA sin φAA −w − t3 2w cos φw 2w cos φw −w + t3 −w − t3 0

z0 2u 2v cos φv −2v 0 2u 2v −2v 2u

z1 tAA − tBB 2w cos φw w − t3 0 2tAA cos φAA w + t3 w − t3 2tAA cos φAA

z̃1 0 0 0 −2tAA sin φAA 0 0 0 0
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FIG. 7. Symmorphic models with either time-reversal sym-
metry (left side) or charge-conjugation (right side) symmetry
only. (a) H (I,0,0)

S,AI (T 2 = 1) with arbitrary, real hopping parameters.
(b) H (0,z,0)

S,D (C2 = 1) with imaginary A-A and B-B hopping, but real
A-B hopping parameters. (c) H (x,0,0)

S,AI (T 2 = 1) with complex intra-
and intercell hopping parameters. (d) H (0,x,0)

S,D (C2 = 1) with alternat-
ing on-site energies, complex intra- and intercell hopping parameters.
(e) H (y,0,0)

S,AII (T 2 = −1) with complex intercell hopping parameters. (f)

H (0,y,0)
S,C (C2 = −1) with alternating on-site energies, complex intra-

and intercell hopping parameters. Bars over parameters indicate that
they are complex numbers, in general. A finite lateral spacing be-
tween A and B orbitals is shown for clarity, but this separation can
be zero without loss of generality.

set an = xn = yn = z̃n = 0 in Eqs. (39)–(42). Then, charge-
conjugation symmetry is given by C = Sx. Relations of the
tight-binding parameters for each model to the canonical form
are given in Table VII, where H (0,z,0)

S,D is rotated by Rx and

H (0,I,0)
S,D is rotated by Ry. Energy eigenvalues are E±(k) = d̃0

±
√

d̃2
x + d̃2

y + d̃2
z and the system is generally an insulator.

With charge-conjugation symmetry, E±(−k) = −E∓(k).
Despite the absence of chiral symmetry, the constraint of

charge-conjugation symmetry protects a Z2 topological index
[86] in class D in accord with predictions of the tenfold
way classification [8–11]. It may be interpreted in terms of
the three-dimensional path of (d̃x, d̃y, d̃z ) for −π < ka � π

[86]. With the canonical form, Table VI, components d̃x and
d̃y are odd functions of a 2π -periodic function. Thus, the
closed path begins and ends on either the north or south pole
of the Bloch sphere, d̃z(−π ) = d̃z(π ) = z0

2 + ∑∞
n=1(−1)nzn,

and it is also at either the north or south pole at k = 0, d̃z

FIG. 8. (a) Energy levels E in position space as a function of
phase φAA of model H (0,x,0)

S,D in the D symmorphic symmetry class
(T 2 = 0, C2 = 1, S2 = 0) with J = 40 atoms. (b) The probability
density |ψ j |2 per site j = 1, 2, . . . , 16 for the two zero energy states
for φAA = 0 and J = 16 atoms. Other parameter values are u = √

2,
tAA = 1, w = 1, and φw = π/4.

(0) = z0
2 + ∑∞

n=1 zn. The Z2 topological index, ν2, may be
defined [86] as

ν2 =
{

0 if sgn [d̃z(π )] = sgn [d̃z(0)],

1 if sgn [d̃z(π )] = −sgn [d̃z(0)].
(43)

This can be written in terms of the canonical form including
all orders of hopping using the expression for d̃z,

ν2 =
{

0 if
∣∣ z0

2 + ∑∞
m=1 z2m

∣∣ >
∣∣∑∞

m=0 z2m+1

∣∣,
1 if

∣∣ z0
2 + ∑∞

m=1 z2m

∣∣ <
∣∣∑∞

m=0 z2m+1

∣∣, (44)

For nearest-neighbor terms only (first order), the expression
for ν2 simplifies as

ν2 =
{

0 if |z0| > 2|z1|,
1 if |z0| < 2|z1|, (45)

and the system is gapless if |z0| = 2|z1|. Expressions for z0

and z1 in terms of tight-binding parameters for different mod-
els may be read off Table VII. For example, for H (0,x,0)

S,D , then
ν2 = 1 if |u| < |2tAA cos φAA|.

As an illustration, Fig. 8(a) shows the energy levels in po-
sition space of model H (0,x,0)

S,D , as a function of phase φAA with

u = √
2, tAA = 1, w = 1, and φw = π/4. With these choices,

the index ν2 = 1 if | cos φAA| > 1/
√

2, i.e., for 0 < φAA <

π/4, 3π/4 < φAA < 5π/4 and 7π/4 < φAA < 2π . As shown
in Fig. 8, this phase supports two zero energy edge states as
opposed to none for ν2 = 0. The edge states have weight on
both the A and B sites, unlike the SSH model, Fig. 4(d). Note
that this model does not have chiral symmetry, so d0 �= 0, and
the whole spectrum tends to oscillate with φAA, Fig. 8(a).

E. Symmetry class C with T 2 = 0, C2 = −1, S2 = 0

Models with charge-conjugation symmetry C2 = −1, but
no time-reversal or chiral symmetry are in the C class. There
is only one possibility, C = Sy, giving H (0,y,0)

S,C , Table V and
Fig. 7(f). The canonical form for this class, Table VI, may
be written as for class A with d̃0(k, 0) as an odd function
of k, and d̃x(k, 0), d̃y(k, 0), d̃z(k, 0) as even functions, i.e.,
set an = x̃n = ỹn = z̃n = 0 in Eqs. (39)–(42). Relations of the
tight-binding parameters for H (0,y,0)

S,C to the canonical form

245401-13
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TABLE VIII. Nonsymmorphic models with chiral symmetry showing the values of the tight-binding parameters of the generalized Rice-
Mele model with d0 = 0, Eq. (33), ε0 = 0, tBB = −tAA and φBB = φAA. We also set t3 = 0. “arb.” indicates that the parameter can take any
arbitrary real value. The second column “P” shows the form of spatial-inversion symmetry in position space where “e” (“o”) indicates an
even (odd) number of orbitals, and “0” indicates the symmetry is absent altogether. The same models with long-range hoppings are shown in
Table XV.

Name P u tAA φAA v φv w φw

H (0,0,y)
NS,A 0 arb. arb. arb. arb. arb. v φv

H (0,0,x)
NS,A 0 arb. arb. arb. arb. arb. −v φv

H (I,y,y)
NS,AI Px (o) arb. arb. 0 arb. 0 v 0

H (z,x,y)
NS,AI Py(o) arb. arb. 0 arb. π/2 v π/2

H (I,x,x)
NS,AI Py(o) arb. arb. 0 arb. 0 −v 0

H (z,y,x)
NS,AI Px (o) arb. arb. 0 arb. π/2 −v π/2

H (x,z,y)
NS,D Px (e) 0 arb. π/2 arb. 0 v 0

H (y,I,y)
NS,D Py(e) 0 arb. π/2 arb. π/2 v π/2

H (y,z,x)
NS,D Px (e) 0 arb. π/2 arb. 0 −v 0

H (x,I,x)
NS,D Py(e) 0 arb. π/2 arb. π/2 −v π/2

H (x,y,z)
NS,AIII Px (o) 0 0 n/a arb. arb. v −φv

H (y,x,z)
NS,AIII Py(o) 0 0 n/a arb. arb. −v −φv

are given in Table VII. Energy eigenvalues are E±(k) = d̃0 ±√
d̃2

x + d̃2
y + d̃2

z . The system is generally an insulator and,

with charge-conjugation symmetry, E±(−k) = −E∓(k).

V. NONSYMMORPHIC MODELS WITH
CHIRAL SYMMETRY

A. Nonsymmorphic symmetry class A with
T 2 = 0, C2 = 0, S2 = NS

The two possibilities for a nonsymmorphic nonspatial sym-
metry, Ta/2 and Ta/2Sz, suggest that there are two possible
models with nonsymmorphic chiral symmetry (only), Ta-
ble VIII. However, they are related by a trivial, diagonal gauge
transformation because Sz is diagonal; thus, there is only one
distinct model in subclass A with S2 = NS.

The models written in the atomic basis may be identi-
fied explicitly using the generalized Rice-Mele Hamiltonian
(33) with d0 = 0. For the Bloch Hamiltonian H (k, s), non-
symmorphic chiral symmetry corresponds to cases for which
H (k, a/2) satisfies chiral symmetry (5) with US (k, a/2) being
independent of k. In principle, there are three such mod-
els, corresponding to US (k, a/2) = σz, σy, or σx. However,
chiral symmetry US (k, s) = σz is independent of the intra-
cell spacing s because it and U (k, s), Eq. (4), are diagonal.
Thus, US (k, s) = σz is included as symmorphic chiral symme-
try yielding H (0,0,z)

S,AIII (k, s), the generalized SSH model. Thus,

there are two general nonsymmorphic models: H (0,0,y)
NS,A with

US (k, a/2) = σy in k space and Ta/2Sz in position space,
H (0,0,x)

NS,A with US (k, a/2) = σx and Ta/2. The values of the
tight-binding parameters for each model are summarized in
Table VIII.

Considering one of these models in position space with
an even number of atoms and periodic boundary conditions
(thus, satisfying chiral symmetry), then, when we change to

the chiral basis, the resulting Hamiltonian is block diagonal,
with 2 × 2 blocks, but it is no longer a periodic lattice (with a
period of a); this is why analysis of the generalized Rice-Mele
model with US (k, a/2) = σz is unable to realize a nonsymmor-
phic model.

Although the symmetry operators for intracell spacing
s = a/2 are independent of k, they acquire k dependencies
when written for zero intracell spacing s = 0 (or, equiva-
lently, when written in the type I or “periodic” representation
[38,92]) according to Eqs. (12)–(15). For example, for
H (0,0,y)

NS,A , US (k, a/2) = σy translates as

US (k, 0) =
(

0 −ie−ika/2

ieika/2

)
. (46)

The canonical form HNS,A(k, a/2) = σ · d̃ of the Hamil-
tonian is given in Table III with d̃z(k, a/2) = 0. Component
d̃x is an arbitrary, real 2π -periodic function of ka whereas
d̃y has a period of 4π [27]. In the canonical form, chi-
ral symmetry is given by σz. Model H (0,0,y)

NS,A (k, a/2) can be
transformed to the canonical form, Table III, using R = Ry,
Eq. (35), and H (0,0,x)

NS,A (k, a/2) can be transformed to the canon-
ical form using R = Rx, Eq. (36). The canonical form in
Table III is written for intracell spacing s = a/2, but it may
be written for s = 0 using the unitary transformation Eqs. (3)
and (4). In terms of tight-binding parameters, nonsymmor-
phic models (Tables VIII and X) have definite relationships
between nearest-neighbor hopping parameters w and v (gen-
eralizing to t ′

2n+1 and t2n+1 for hoppings of arbitrary order,
Appendix A). Symmorphic models (Tables II and V) either
have no particular relation between different hopping pa-
rameters or third-nearest-neighbor hopping t3 is related to
next-nearest hopping w (generalizing to t2n+1 and t ′

2n−1 for
hoppings of arbitrary order, Appendix A).
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TABLE IX. Nonsymmorphic models with chiral symmetry showing how their parameters, Table VIII, correspond to the canonical forms
in Table III.

Model x0 x1 x̃1 α0 β0 β̃0

H (0,0,y)
NS,A 2u 2tAA cos φAA −2tAA sin φAA 0 2v cos φv −2v sin φv

H (0,0,x)
NS,A 2u 2tAA cos φAA −2tAA sin φAA 0 2v sin φv 2v cos φv

H (I,y,y)
NS,AI 2u 2tAA 0 0 2v 0

H (z,x,y)
NS,AI 2u −2tAA 0 0 2v 0

H (I,x,x)
NS,AI 2u −2tAA 0 0 2v 0

H (z,y,x)
NS,AI 2u 2tAA 0 0 2v 0

H (x,z,y)
NS,D 0 0 −2tAA 0 2v 0

H (y,I,y)
NS,D 0 0 2tAA 0 2v 0

H (y,z,x)
NS,D 0 0 2tAA 0 2v 0

H (x,I,x)
NS,D 0 0 −2tAA 0 2v 0

H (x,y,z)
NS,AIII 0 0 0 2v cos φv −2v sin φv 0

H (y,x,z)
NS,AIII 0 0 0 2v cos φv −2v sin φv 0

In this symmetry class, energy eigenvalues are given by

E±(k) = ±
√

d̃2
x + d̃2

y , and the system is generally an insula-

tor. Since time-reversal and spatial-inversion symmetries are
absent, the spectrum generally is not an even function of k, but
chiral symmetry imposes E±(k) = −E∓(k). As d̃y at s = a/2
has a period of 4π , the path of the d̃ vector in the d̃x − d̃y

plane is not closed and it is not possible to define a winding
number. However, it is possible to identify a Z2 topological
index μ2 [16,27] by counting whether the number of times
the trajectory crosses the negative d̃x axis is even (μ2 = 0) or
odd (μ2 = 1) for 0 � ka < 2π . The end point of the trajectory
must have the same d̃x value as the start point, and a negated
value of d̃y. Thus, it is impossible to change the Z2 topological
index by adiabatically changing parameters in order to move
the start and end points or to adjust the trajectory, as long as
the origin is avoided.

For nearest-neighbor terms only (x0, x1, x̃1, β0, and β̃0

only), an expression for the Z2 topological index μ2 may be
found by examining the sign of d̃x at the point when d̃y = 0
[i.e., when β0 cos(ka/2) + β̃0 sin(ka/2) = 0]. This gives

μ2 =
{

0 if f > 0,

1 if f < 0,
(47)

f = x0

2

(
β2

0 + β̃2
0

) − x1
(
β2

0 − β̃2
0

) − 2x̃1β0β̃0, (48)

and the system is gapless if f = 0. Expressions for the param-
eters x0, x1, x̃1, β0, and β̃0 in terms of tight-binding parameters

for the two models may be read off Table IX. For example,
for H (0,0,y)

NS,A , then μ2 = 1 if u < 2tAA cos(φAA − 2φv ). The Z2

topological index μ2 is discussed in more detail in Sec. V B.
As stated above, there is only one distinct model because

H (0,0,y)
NS,A and H (0,0,x)

NS,A are related by a diagonal transformation

in the atomic basis in position space, H (0,0,x)
NS,A = Rd H (0,0,y)

NS,A Rd ,
where the transformation has period 2a,

Rd =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 0 −1 0 0 · · ·
0 0 0 −1 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (49)

and this may require reversing the sign of some parameters
(e.g., tAA). Thus, in terms of models, which are distinguished
by off-diagonal transformations in the atomic basis, there is
actually only one, H (0,0,y)

NS,A , which is sketched in Fig. 9(a).

This model, H (0,0,y)
NS,A , can be viewed as a generalized version

of the CDW model [27,31,32,63] with alternating on-site en-
ergies and constant nearest-neighbor hopping v̄ = v exp(iφv ).
Second-nearest-neighbor hopping (if included) also alternates
as t̄AA = tAA exp(iφAA) for A-A hopping and −t̄AA = −tAA

exp(iφAA) for B-B hopping. It may be generalized to include
arbitrary-range hoppings, Table XV.

TABLE X. Nonsymmorphic models without chiral symmetry showing the values of the tight-binding parameters of the generalized Rice-
Mele model, Eqs. (1) and (2), for each model with t3 = 0. The same models with all long-range hoppings are shown in Table XIII.

Name ε0 u tAA φAA tBB φBB v φv w φw

H (x,0,0)
NS,A arb. 0 arb. arb. tAA −φAA arb. arb. v −φv

H (y,0,0)
NS,A arb. 0 arb. arb. tAA −φAA arb. arb. −v −φv

H (0,y,0)
NS,A 0 arb. arb. arb. −tAA −φAA arb. arb. v −φv

H (0,x,0)
NS,A 0 arb. arb. arb. −tAA −φAA arb. arb. −v −φv
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FIG. 9. Nonsymmorphic models. (a) H (0,0,y)
NS,A (S2 = NS) with

alternating on-site energies ±u, constant nearest-neighbor hop-
ping v̄, and alternating second-nearest-neighbor hopping ±t̄AA.
(b) H (x,y,z)

NS,AIII (T 2 = NS, C2 = NS, S2 = 1) with alternating, complex
nearest-neighbor coupling ve±iφv and staggered, complex third-
nearest-neighbour couplings t3e±iφ3 (we include t3, otherwise the
model is just a trivial linear chain). (c) H (x,0,0)

NS,A (T 2 = NS) with
constant on-site energies ε0, alternating, complex nearest-neighbor
coupling ve±iφv , and alternating, complex A-A coupling tAAe±iφAA .
(d) H (0,y,0)

NS,A (C2 = NS) with alternating on-site energies ±u, alter-
nating, complex nearest-neighbor coupling ve±iφv , and alternating,
complex A-A coupling ±tAAe±iφAA . Bars over parameters indicate
that they are complex numbers, in general. Other nonsymmorphic
models are shown in Figs. 10 and 12.

B. Nonsymmorphic symmetry class AI with
T 2 = 1, C2 = NS, S2 = NS

We now consider nonsymmorphic chiral symmetry in
systems with charge-conjugation C and time-reversal T sym-
metries, too. If chiral symmetry S is nonsymmorphic, then
one (and only one) of C and T must be, too. If we consider
that S and C are nonsymmorphic, each described by Ta/2 or
Ta/2Sz, then there are four possibilities, Table VIII, with T
being symmorphic (T 2 = 1) for each of them. However, only
one of these is distinct, Fig. 10, as can be seen by multiplying
the symmetry operators by Sz.

To identify models in the atomic basis corresponding to
each of these possibilities, we apply time-reversal symmetry
(6) to the models with chiral symmetry described in Sec. V A.
For the Bloch Hamiltonian, we consider UT (k, a/2) to be
independent of k, i.e., UT (k, a/2) = I , σx, σy, or σz. Then,
with definite chiral symmetry and time-reversal symmetry, we
determine the form of charge-conjugation symmetry UC using
US (k, a/2) = U ∗

C (k, a/2)UT (−k, a/2). Thus, the four models
with T = 1, C = NS, S = NS (label “NS” indicates nonsym-
morphic) are listed in Table VIII. In this class, the canonical
form of the Bloch Hamiltonian H̃NS,AI(k, a/2) = σ · d̃ can be
written as in Table III with d̃z(k, a/2) = 0. Values of the tight-
binding parameters of each model in terms of the parameters
of the canonical form are given in Table IX.

Energy eigenvalues are E±(k) = ±
√

d̃2
x + d̃2

y , and the sys-

tem is generally an insulator, Fig. 1(b). As described in
Sec. V A, d̃y(k, a/2) has a period of 4π and it is not possible
to define a winding number, but there is a Z2 topological
index μ2 [27,31]. This is defined by counting whether the
number of times the trajectory crosses the negative d̃x axis is
even (μ2 = 0) or odd (μ2 = 1) for 0 � ka < 2π . An example
is shown with band structure in Fig. 11(a), where we note

FIG. 10. Model H (I,y,y)
NS,AI (CDW model) in the AI nonsymmorphic

symmetry class (T 2 = 1, C2 = NS, S2 = NS). (a) The model with in-
tracell spacing s = a/2, real and constant nearest-neighbor hopping
v, alternating on-site energies ±u, and alternating second-neighbor
hopping ±tAA. (b) The model after a diagonal gauge transformation
in position space Rd H (I,y,y)

NS,AI Rd yielding alternating nearest-neighbor
hopping ±v. (c) The band structure E (k) corresponding to the cosine
representation (a). (d) The band structure E (k) with zone folding
at ka = ±π/2. (e) The band structure E (k) corresponding to the
sine representation (b). Zone folding (d) illustrates that (c) and (e)
describe the same physical states. Parameter values are u = 0.8,
v = 1.0, tAA = 0.2, equivalent to x0 = 1.6, x1 = 0.4, β0 = 2.0.

that the higher-order terms in the canonical form, Table III,
produce strong features in the band structure at ka ≈ ±π/2,
which would result in van Hove singularities in the density of
states. The path of the corresponding d̃ vector is in Fig. 11(b)
showing the trajectory crossing the negative d̃x axis once,
indicating a Z2 topological index of value μ2 = 1 for this
choice of parameters. The canonical form, Table III, shows
that d̃y(π/a, a/2) = 0 so the path must cross the d̃x axis at
k = π/a. The end point of the trajectory must have the same
d̃x value as the start point, and a negated value of d̃y. With
these constraints, it is impossible to change the Z2 topolog-
ical index by adiabatically changing parameters in order to

FIG. 11. (a) Band structure E (k) in the AI nonsymmorphic
symmetry class (T 2 = 1, C2 = NS, S2 = NS) using the canonical
form, Table III. Parameter values are x0 = 0.5, x1 = 1.0, x2 = 0.2,
β0 = 1.5, β1 = −0.5, β2 = 0.2, with xn = βn = 0 for n � 3. (b) The
corresponding trajectory of the d̃ vector in the d̃x − d̃y plane. For
0 � ka < 2π , it traces an open path, which crosses the negative d̃x

axis once, indicating a Z2 topological index [27] of value μ2 = 1.
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move the start and end points or to adjust the trajectory, as
long as the origin is avoided. For nearest-neighbor terms only
(x0, x1 and β0 only), the Z2 topological index, μ2, may be
simplified as

μ2 =
{

0 if x0 > 2x1,

1 if x0 < 2x1,
(50)

and the system is gapless if x0 = 2x1. Expressions for x0, x1

in terms of tight-binding parameters for different models may
be read off Table IX. For example, for H (I,y,y)

NS,AI , then μ2 = 1 if
u < 2tAA.

The one distinct model, H (I,y,y)
NS,AI , is the CDW model

[27,31,32,38,40,63] with alternating on-site energies
and constant nearest-neighbor hopping v, Fig. 10(a).
Second-nearest-neighbor hopping (if included) also alternates
as tAA for A-A hopping and −tAA for B-B hopping. For the
nonsymmorphic cases, the Bloch Hamiltonian is not 2π

periodic in ka, and there is ambiguity in the choice of the
canonical form, Table III: Here, we have chosen a “cosine”
representation d̃y(k, a/2) = ∑∞

n=0 pn cos[ka(n + 1/2)],
but it is equally valid to choose a “sine” representation
d̃y(k, a/2) = ∑∞

n=0 p̃n sin[ka(n + 1/2)] as the two are
related by the diagonal, gauge transformation Rd ,
Eq. (49), in position space. Figure 10(b) shows the model
schematically in position space after the transformation
Rd H (I,y,y)

NS,AI Rd , and the transformation introduces alternating
nearest-neighbor hopping ±v (this is equivalent to model
H (I,x,x)

NS,AI ). On Fourier transforming to k space, the original
model, Fig. 10(a), yields the cosine representation,
Ecos(k) = ±

√
[u + 2tAA cos(ka)]2 + [2v cos(ka/2)]2, as

plotted in Fig. 10(c). However, the transformed model,
Fig. 10(b), gives the sine representation, Esine(k) =
±

√
[u − 2tAA cos(ka)]2 − [2v sin(ka/2)]2, as plotted in

Fig. 10(e). The two representations describe the same
physical states Esine(k + π/a) = Ecos(k) as can be seen by
the fact they both give the same spectrum upon zone folding
at ka = ±π/2, Fig. 10(d).

In this symmetry class, both chiral symmetry S and charge-
conjugation C are nonsymmorphic, Table I, and one may
wonder whether this symmetry class has C2 = 1 or C2 = −1.
There are models (H (I,x,x)

NS,AI and H (z,x,y)
NS,AI ) where C = σx in k

space and C = Ta/2 in position space. Hence C2 = T 2
a/2 = Ta

is not the identity matrix as such but describes translation by
a unit cell (of length a), which is a symmetry of the lattice.
However, there are also models (H (I,y,y)

NS,AI and H (z,y,x)
NS,AI ) where

C = σy in k space and C = Ta/2Sz in position space. Since Ta/2

and Sz anticommute, then C2 = Ta/2SzTa/2Sz = −T 2
a/2 = −Ta.

So, there appears to be both cases (C2 = 1 or C2 = −1), even
though, as described above, all four models are equivalent
(related by diagonal gauge transformations).

Thus, we choose to identify this symmetry (sub)class
by C2 = NS rather than C2 = 1 or C2 = −1. Note that the
apparent ambiguity (C2 = 1 or C2 = −1) is recognised as
ambiguity in the sign, εσ , of a product of symmetry operators
in the classification of Ref. [16], and the classification does
not depend on such ambiguity. In the next section, we de-
scribe a similar situation with nonsymmorphic time-reversal
symmetry, and show how the two apparently contradicting

FIG. 12. Model H (x,z,y)
NS,D in the D nonsymmorphic symmetry class

(T 2 = NS, C2 = 1, S2 = NS). (a) The model with intracell spacing
s = a/2, real and constant nearest-neighbor hopping v, and alter-
nating, imaginary second-neighbor hopping ±itAA. (b) The model
after a diagonal gauge transformation in position space Rd H (x,z,y)

NS,D Rd

yielding alternating nearest-neighbor hopping ±v. (c) The band
structure E (k) corresponding to the cosine representation (a). (d) The
band structure E (k) with zone folding at ka = ±π/2. (e) The band
structure E (k) corresponding to the sine representation (b). Zone
folding (d) illustrates that (c) and (e) describe the same physical
states. Parameter values are v = 1.0 and tAA = 0.2, equivalent to
x̃1 = −0.4, β0 = 2.0.

cases (of T 2 = 1 and T 2 = −1) give a consistent implemen-
tation of Kramer’s degeneracy.

C. Nonsymmorphic symmetry class D with
T 2 = NS, C2 = 1, S2 = NS

If we now choose S and T to be nonsymmorphic, each
described by Ta/2 or Ta/2Sz, then there are also four possi-
bilities, Table VIII, with C being symmorphic (C2 = 1) for
each of them. Again, one of these (e.g., H (x,z,y)

NS,D ) is distinct
as can be seen by multiplying the symmetry operators by Sz.
Model H (x,z,y)

NS,D , Fig. 12(a), has real nearest-neighbor hopping
v, but imaginary and alternating second-neighbor hopping
±itAA.

The canonical form of the Bloch Hamiltonian
H̃NS,D(k, a/2) = σ · d̃ is given in Table III with d̃z

(k, a/2) = 0. Values of the tight-binding parameters of
each model in terms of the parameters of the canonical
form are given in Table IX. Energy eigenvalues are

E±(k) = ±
√

d̃2
x + d̃2

y , and the system is generally gapless,

Fig. 1(d).
Here, we have chosen the “cosine” representation

d̃y(k, a/2) = ∑∞
n=0 pn cos[ka(n + 1/2)], but it is equally

valid to choose a “sine” representation d̃y(k, a/2) =∑∞
n=0 p̃n sin[ka(n + 1/2)] as the two are related by the

diagonal, gauge transformation Rd , Eq. (49), in position
space. Figure 12(b) shows the model schematically in po-
sition space after the transformation Rd H (x,z,y)

NS,D Rd , and
the transformation introduces alternating nearest-neighbor
hopping ±v (this is equivalent to model H (y,z,x)

NS,D ). On
Fourier transforming to k space, the original model,

245401-17



EDWARD MCCANN PHYSICAL REVIEW B 107, 245401 (2023)

Fig. 12(a), yields the cosine representation, Ecos(k) =
±

√
4t2

AA sin2(ka) + 4v2 cos2(ka/2), as plotted in Fig. 12(c).
However, the transformed model, Fig. 12(b), gives the sine

representation, Esine(k) = ±
√

4t2
AA sin2(ka) + 4v2 sin2(ka/2),

as plotted in Fig. 12(e). The two representations describe
the same physical states Esine(k + π/a) = Ecos(k) as can be
seen by the fact they both give the same spectrum upon zone
folding at ka = ±π/2, Fig. 12(d). In each of the band plots,
Figs. 12(c), 12(d), and 12(e), there is a single degeneracy point
in the spectrum [28], and the system is gapless. We find that
Kramer’s degeneracy does not hold in general (most states are
not degenerate with their time-reversed pair), but there is a
single point, which is doubly degenerate.

To understand this, we briefly review the Kramer’s degen-
eracy argument. In general, time-reversal symmetry ensures
that the energy E±(k) is an even function with respect to k,
Eq. (17). Particularly, for time-reversal invariant wave vec-
tors kT = −kT (i.e., kT = 0 or ±π/a in the first Brillouin
zone), then time-reversal symmetry creates a degeneracy,
but only if the state |ψ (kT )〉 and its time-reversed partner
T (kT )|ψ (kT )〉 are orthogonal. We denote the time-reversal
operator as T (k) = UT (k)K where UT (k) ≡ UT (k, s = 0) is a
unitary operator and K is the complex conjugation operator.
We explicitly include the possibility of k dependence and
consider zero intracell separation s = 0. Then, for two states
|ψ (k)〉 and |φ(k)〉,

〈T (k)ψ (k)|T (k)φ(k)〉 = 〈UT (k)ψ∗(k)|UT (k)φ∗(k)〉,
= 〈ψ∗(k)|U †

T (k)UT (k)φ∗(k)〉,
= 〈φ(k)|ψ (k)〉, (51)

using U †
T (k)UT (k) = I and 〈ψ |φ〉∗ = 〈φ|ψ〉. Substituting

φ(k) ≡ T (k)ψ (k) into Eq. (51),

〈T (k)ψ (k)|ψ (k)〉 = 〈T (k)ψ (k)|T 2(k)ψ (k)〉. (52)

The right-hand side may be written as

〈T (k)ψ (k)|T 2(k)ψ (k)〉 = 〈T (k)ψ (k)|UT (k)U ∗
T (k)ψ (k)〉.

If UT (k)U ∗
T (k) = −I , then

〈T (k)ψ (k)|T 2(k)ψ (k)〉 = −〈T (k)ψ (k)|ψ (k)〉.
Comparison with Eq. (52) requires that

UT (k)U ∗
T (k) = −I ⇒ 〈T (k)ψ (k)|ψ (k)〉 = 0. (53)

This means that every state has an orthogonal time-reversed
partner, which is at the same energy, and that k = kT values
that are time-reversal invariant are points of degeneracy.

Note that there is a subtle difference between the re-
quirement (10) on the operator to represent time reversal,
UT (k)U ∗

T (−k) = ±I , and the requirement (53) for Kramer’s
degeneracy, UT (k)U ∗

T (k) = −I . In the symmorphic symmetry
classes AII and DIII, UT (k) = σy is independent of k, and
UT U ∗

T = −I . Thus, every state has a degenerate partner, and
there are degeneracy points at time-reversal invariant kT val-
ues (kT = 0 and k = ±π/a).

When time is nonsymmorphic, UT (k) is dependent on
k; while UT (k)U ∗

T (−k) = ±I for all k, Kramer’s degener-
acy UT (k)U ∗

T (k) = −I is only satisfied for certain k values.

The form of UT (k) depends on the representation of the
nonsymmorphic terms in the d̃ vector. For the cosine repre-
sentation, UT (k, a/2) = σx and Eq. (13) shows that

UT (k) =
(

0 eika/2

e−ika/2 0

)
,

⇒ UT (k)U ∗
T (k) =

(
eika 0
0 e−ika

)
,

so this is equal to −1 for ka = ±π only; this is the location of
the degeneracy point in Fig. 12(c).

For the sine representation, UT (k, a/2) = σy and

UT (k) =
(

0 −ieika/2

ie−ika/2 0

)
,

⇒ UT (k)U ∗
T (k) =

(−eika 0
0 −e−ika

)
,

so this is equal to −1 for k = 0 only, Fig. 12(e). Regardless
of the representation [e.g., see Fig. 12(d) for the zone-folded
band structure], Kramer’s degeneracy of the nonsymmorphic
time-reversal symmetry dictates that there is one degeneracy
point as opposed to none in the symmorphic case with T 2 = 1
and two in the symmorphic case with T 2 = −1.

D. Nonsymmorphic symmetry class AIII with T 2 = NS,
C2 = NS, S2 = 1

Finally, we can choose C and T to be nonsymmorphic,
each described by Ta/2 or Ta/2Sz. In this case there are only
two possibilities, Table VIII, because S = I is not possible;
for both possibilities S = Sz (S2 = 1). Again, only one model
is distinct, e.g., H (x,y,z)

NS,AIII, Fig. 9(b). To find the form of the
models in position space, with S = Sz, we begin by consider-
ing the generalized SSH Bloch Hamiltonian H (0,0,z)

S,AIII (k, s) and
apply time-reversal symmetry, considering UT (k, a/2) to be
independent of k.

The canonical form of the Bloch Hamiltonian
H̃NS,AIII(k, a/2) = σ · d̃ with d̃z(k, a/2) = 0 is given in
Table III, which is the cosine representation. Note that the sine
representation would have d̃x(k, a/2) = ∑∞

n=0 α̃n sin[ka(n +
1/2)] and d̃y(k, a/2) = ∑∞

n=0 β̃n sin[ka(n + 1/2)]. Energy

eigenvalues are E±(k) = ±
√

d̃2
x + d̃2

y , and the system

is generally gapless, Fig. 1(f), due to nonsymmorphic
time-reversal symmetry and Kramer’s degeneracy, as
described in Sec. V C.

VI. NONSYMMORPHIC MODELS WITHOUT
CHIRAL SYMMETRY

A. Nonsymmorphic symmetry class A
with T 2 = NS, C2 = 0, S2 = 0

To explicitly confirm that the presence of a single degener-
acy point is due to Kramer’s degeneracy with nonsymmorphic
time-reversal symmetry, we construct a model with non-
symmorphic time-reversal symmetry only, i.e., no chiral,
charge-conjugation, or spatial inversion symmetry. We begin
from the full model with d0 �= 0, Eqs. (1) and (2) and set the
intracell spacing s = a/2.
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TABLE XI. Nonsymmorphic models without chiral symmetry showing how their parameters, Table X, correspond to the canonical form
Table VI.

Name a0 a1 ã1 α0 β0 z0 z1 z̃1

H (x,0,0)
NS,A 2ε0 2tAA cos φAA 0 2v cos φv −2v sin φv 0 0 −2tAA sin φAA

H (y,0,0)
NS,A 2ε0 −2tAA cos φAA 0 2v cos φv −2v sin φv 0 0 2tAA sin φAA

H (0,y,0)
NS,A 0 0 −2tAA sin φAA 2v cos φv −2v sin φv 2u 2tAA cos φAA 0

H (0,x,0)
NS,A 0 0 2tAA sin φAA 2v cos φv −2v sin φv 2u −2tAA cos φAA 0

We can choose UT (k, a/2) = σx (T = Ta/2 in position
space) yielding the cosine representation and model H (x,0,0)

NS,A ,
Table X, or UT (k, a/2) = σy (T = Ta/2Sz) giving the sine rep-
resentation and model H (y,0,0)

NS,A . Only one of these is distinct,

e.g., H (x,0,0)
NS,A , because H (y,0,0)

NS,A is related to it by the diagonal

transformation Ri, Eq. (37). Model H (x,0,0)
NS,A is shown schemat-

ically in Fig. 9(c).
For the canonical form, we use the cosine representation,

Table VI. Table XI shows values of the tight-binding param-
eters for the two models and the corresponding values of the
parameters an, αn, βn, and z̃n of the canonical form, Table VI.

Band energies are E±(k) = d̃0 ±
√

d̃2
x + d̃2

y + d̃2
z . Owing to

the nonsymmorphic time-reversal symmetry and Kramer’s
degeneracy, there is a single degeneracy point (at ka = π in
the canonical form, Table VI).

B. Nonsymmorphic symmetry class A with
T 2 = 0, C2 = NS, S2 = 0

To complete the description of nonsymmorphic models,
we conclude with models having nonsymmorphic charge-
conjugation symmetry (only). Again, we begin from the full
model with d0 �= 0, Eqs. (1) and (2) and set the intracell spac-
ing s = a/2. We can choose UC (k, a/2) = σy (C = Ta/2Sz in
position space) yielding the cosine representation and model
H (0,y,0)

NS,A , Table X, or UC (k, a/2) = σx (C = Ta/2) giving the

sine representation and model H (0,x,0)
NS,A . Only one of these is

distinct, e.g., H (0,y,0)
NS,A , because H (0,x,0)

NS,A is related to it by the

diagonal transformation Ri, Eq. (37). Model H (0,y,0)
NS,A is shown

schematically in Fig. 9(d).
For the canonical form, we use the cosine representation,

Table VI. Table XI shows values of the tight-binding pa-
rameters for the two models and the corresponding values
of the parameters ãn, αn, βn, and zn of the canonical form,

Table VI. Band energies are E±(k) = d̃0 ±
√

d̃2
x + d̃2

y + d̃2
z ,

and the form of d̃z shows that this is generally insulating.
K theory predicts [16] that this class has a Z2 topolog-

ical index even in the absence of time-reversal or chiral
symmetry. The description of the Z2 index in the presence
of nonsymmorphic chiral symmetry [27,31], discussed in
Secs. V A and V B, may be generalized to the canonical
form, Table VI. Now, we consider the trajectory for 0 �
ka < 2π in three-dimensional space with Cartesian axes d̃x,
d̃y, d̃z, and count whether the number of times the trajectory
crosses the negative d̃z axis is even (μ2 = 0) or odd (μ2 = 1).
The Z2 index may be defined because of constraints on the

trajectory as described by the canonical form, Table VI: d̃x

(π/a, a/2) = d̃y(π/a, a/2) = 0 so the path must cross the d̃z

axis at k = π/a; the end point of the trajectory must have
the same d̃z value as the start point, with negated values of
d̃x and d̃y. With these constraints, it is impossible to change
the Z2 index by adiabatically changing parameters in order to
move the start and end points or to adjust the trajectory, as
long as the origin is avoided. For nearest-neighbor terms only
(z0, z1, α0, and β0 only), the Z2 topological index μ2 may be
simplified as

μ2 =
{

0 if z0 > 2z1,

1 if z0 < 2z1,
(54)

and the system is gapless if z0 = 2z1. Expressions for z0, z1

in terms of tight-binding parameters for the two models may
be read off Table XI. For example, for H (0,y,0)

NS,A , then μ2 = 1 if
u < 2tAA cos φAA.

VII. CONCLUSIONS

We considered noninteracting, one-dimensional tight-
binding models on a periodic lattice with two energy bands.
For each symmetry class, Table I, we identified distinct
models in the atomic basis in position space and showed
that they may be written in a unified canonical form.
Generally, states of matter were found to be in agree-
ment with predictions of the tenfold way classification for
the symmorphic models [8–11] and with the classifica-
tion of Ref. [16] for nonsymmorphic models. Exceptions
arise because we only consider systems with two bands:
they are the symmorphic DIII and the nonsymmorphic D
class, which we find are both gapless due to the presence of
time-reversal symmetry with Kramer’s degeneracy. With two
bands, there are also not enough degrees of freedom to realize
the CII (chiral symplectic) symmetry class [80]. In principle,
however, our approach could be extended to include more than
two orbitals per unit cell or to incorporate superconducting
pairing, yielding a four-orbital Bogoliubov de Gennes repre-
sentation.

We described models with nonsymmorphic nonspatial
symmetries and found that they separate into only two types
of state of matter: an insulator with a Z2 topological index
[16,27] in the absence of nonsymmorphic time-reversal sym-
metry or, in the presence of nonsymmorphic time-reversal
symmetry, a metallic state [28]. The models identified in the
atomic basis in position space provide a recipe for experi-
mental realization of examples of each symmetry group in a
relatively simple way with only two orbitals per cell, and there
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TABLE XII. Symmorphic models without chiral symmetry including all long-range hoppings, showing the values of the tight-binding
parameters of the generalized Rice-Mele model, Eqs. (A1)–(A4), for each model where n � 1. The last four rows show models with spatial-
inversion symmetry only as described by unitary matrix UP (8) and discussed in Appendix B.

Name ε0 u t2n φ2n t ′
2n φ′

2n v φv t ′
2n−1 φ′

2n−1 t2n+1 φ2n+1

H (I,0,0)
S,AI arb. arb. arb. 0 arb. 0 arb. 0 arb. 0 arb. 0

H (x,0,0)
S,AI arb. 0 arb. arb. t2n −φ2n arb. arb. arb. arb. t ′

2n−1 −φ′
2n−1

H (z,0,0)
S,AI arb. arb. arb. 0 arb. 0 arb. π/2 arb. π/2 arb. π/2

H (y,0,0)
S,AII arb. 0 arb. arb. t2n −φ2n 0 n/a arb. arb. −t ′

2n−1 −φ′
2n−1

H (0,x,0)
S,D 0 arb. arb. arb. −t2n −φ2n 0 n/a arb. arb. −t ′

2n−1 −φ′
2n−1

H (0,z,0)
S,D 0 0 arb. π/2 arb. π/2 arb. 0 arb. 0 arb. 0

H (0,I,0)
S,D 0 0 arb. π/2 arb. π/2 arb. π/2 arb. π/2 arb. π/2

H (0,y,0)
S,C 0 arb. arb. arb. −t2n −φ2n arb. arb. arb. arb. t ′

2n−1 −φ′
2n−1

H (UP=I )
S,A arb. arb. arb. 0 arb. 0 arb. arb. arb. arb. t ′

2n−1 −φ′
2n−1

H ((UP=σx )
S,A arb. 0 arb. arb. t2n −φ2n arb. 0 arb. 0 arb. 0

H
((UP=σy )
S,A arb. 0 arb. arb. t2n −φ2n arb. π/2 arb. π/2 arb. π/2

H (UP=σz )
S,A arb. arb. arb. 0 arb. 0 0 n/a arb. arb. −t ′

2n−1 −φ′
2n−1

are a variety of different platforms for physical synthesis of
one-dimensional tight-binding models including engineered
atomic lattices [65–72] and cold atoms in optical lattices
[73–78].

All relevant data presented in this paper can be accessed
[100].

ACKNOWLEDGMENT

The author thanks S. T. Carr, C. Y. Leung, A. Romito, and
H. Schomerus for helpful discussions.

APPENDIX A: LONG-RANGE HOPPINGS

We generalize the Rice-Mele model (2) to include all pos-
sible long-range couplings,

d0(k, s) = ε0 +
∞∑

n=1

[t2n cos(nka + φ2n)

+ t ′
2n cos(nka + φ′

2n)], (A1)

dx(k, s) =
∞∑

n=0

[t2n+1 cos[k(na + s) + φ2n+1]

+ t ′
2n+1 cos[k((n + 1)a − s) + φ′

2n+1]], (A2)

dy(k, s) =
∞∑

n=0

[−t2n+1 sin[k(na + s) + φ2n+1]

+ t ′
2n+1 sin[k((n + 1)a − s) + φ′

2n+1]], (A3)

dz(k, s) = u +
∞∑

n=1

[t2n cos(nka + φ2n)

− t ′
2n cos(nka + φ′

2n)], (A4)

where t2n and t ′
2n are A-A and B-B hoppings with phases φ2n

and φ′
2n, t2n+1 and t ′

2n+1 are A-B hoppings with phases φ2n+1

and φ′
2n+1, for integer n. In terms of the nearest-neighbor

parameters in the main text, t2 = tAA, t ′
2 = tBB, φ2 = φAA,

φ′
2 = φBB, t1 = v, t ′

1 = w, φ1 = φv , φ′
1 = φw. For

symmorphic models without chiral symmetry, application of
time-reversal or charge-conjugation symmetry requires that
each component di is an even or odd function of k at s = 0,
resulting in the same models as described in the main text
with all hoppings as listed in Table XII. For nonsymmorphic
models without chiral symmetry, we consider intracell
spacing s = a/2, and they are listed in Table XIII.

Chiral symmetry imposes d0 = 0 and one of the other
components must be zero, too. With d0 = 0, then ε0 = 0,
t ′
2n = −t2n and φ′

2n = φ2n. Then, for symmorphic models, we
consider s = 0 and simplify as

dx(k, 0) = v cos φv +
∞∑

n=1

[t2n+1 cos(kna + φ2n+1)

+ t ′
2n−1 cos(kna + φ′

2n−1)], (A5)

dy(k, 0) = −v sin φv +
∞∑

n=1

[−t2n+1 sin(kna + φ2n+1)

+ t ′
2n−1 sin(kna + φ′

2n−1)], (A6)

dz(k, 0) = u + 2
∞∑

n=1

t2n cos(nka + φ2n), (A7)

using t1 = v and φ1 = φv . Applying chiral and time-reversal
symmetries introduces constraints on the parameters giving
the models discussed in the main text for nearest-neighbor
hopping and listed in Table XIV including all long-range
hoppings. For nonsymmorphic models, we consider s = a/2
and simplify as

dx(k, a/2) =
∞∑

n=0

[
t2n+1 cos

(
ka

[
n + 1

2

]
+ φ2n+1

)

+ t ′
2n+1 cos

(
ka

[
n + 1

2

]
+ φ′

2n+1

)]
, (A8)
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TABLE XIII. Nonsymmorphic models without chiral symmetry including all long-range hoppings, showing the values of the tight-binding
parameters of the generalized Rice-Mele model, Eqs. (A1)–(A4), for each model. The last two rows show models with spatial-inversion
symmetry only as described by unitary matrix UP (8) and discussed in Appendix B.

Name ε0 u t2n φ2n t ′
2n φ′

2n t2n+1 φ2n+1 t ′
2n+1 φ′

2n+1

H (x,0,0)
NS,A arb. 0 arb. arb. t2n −φ2n arb. arb. t2n+1 −φ2n+1

H (y,0,0)
NS,A arb. 0 arb. arb. t2n −φ2n arb. arb. −t2n+1 −φ2n+1

H (0,y,0)
NS,A 0 arb. arb. arb. −t2n −φ2n arb. arb. t2n+1 −φ2n+1

H (0,x,0)
NS,A 0 arb. arb. arb. −t2n −φ2n arb. arb. −t2n+1 −φ2n+1

H (UP=I )
NS,A arb. arb. arb. 0 arb. 0 arb. arb. t2n+1 −φ2n+1

H (UP=σz )
NS,A arb. arb. arb. 0 arb. 0 arb. arb. −t2n+1 −φ2n+1

dy(k, a/2) =
∞∑

n=0

[
− t2n+1 sin

(
ka

[
n + 1

2

]
+ φ2n+1

)

+ t ′
2n+1 sin

(
ka

[
n + 1

2

]
+ φ′

2n+1

)]
, (A9)

dz(k, a/2) = u + 2
∞∑

n=1

t2n cos(nka + φ2n). (A10)

Again, application of chiral and time-reversal symmetries
introduces constraints on the parameters giving the models
discussed in the main text for nearest-neighbor hopping and
listed in Table XV including all long-range hoppings.

APPENDIX B: SPATIAL-INVERSION SYMMETRY
AND QUANTIZED ZAK PHASE

The catalog of tight-binding models in the main text, Ta-
ble I, is based on the tenfold way classification of nonspatial
symmetries (time-reversal, charge-conjugation, and chiral)

[1–11]. An alternative approach is to classify models based on
spatial symmetries [11,13,88,90,91] such as spatial-inversion
symmetry [42,63,89] as described by Eq. (8). We consider
the generalized Rice-Mele model, Eqs. (A1)–(A4), and apply
spatial-inversion symmetry in the form of UP = I , σx, σy, or
σz. This forces the individual components of the d vector to
be either even or odd with respect to k.

With intracell spacing s = 0, there are four models, de-
noted H (UP=i)

S,A for i = I , σx, σy, or σz with parameters listed
in Table XII. In position space, these models satisfy spatial
inversion (23) with P = PI , Px, Py, or Pz, respectively, for an
even number of atoms J . For model H (UP=I )

S,A with UP = I , all
four components of the d vector are even with respect to k.
Apart from component d0, this is the same as class C with
U 2

C = −1 described in the main text, Table VI. Hence, as with
class C, H (UP=I )

S,A will be an insulator with a single phase only.

Of the three models H (UP=i)
S,A for i = σx, σy, or σz, only two

of them (H (UP=σx )
S,A and H (UP=σz )

S,A ) are distinct in the atomic basis

because H
(UP=σy )
S,A is a version of H (UP=σx )

S,A with imaginary A-B

TABLE XIV. Symmorphic models with chiral symmetry including all long-range hoppings, showing the values of the tight-binding
parameters of the generalized Rice-Mele model, Eqs. (A5)–(A7), for each model where n � 1, ε0 = 0, t ′

2n = −t2n and φ′
2n = φ2n.

Name u t2n φ2n v φv t ′
2n−1 φ′

2n−1 t2n+1 φ2n+1

H (0,0,z)
S,AIII 0 0 n/a arb. arb. arb. arb. arb. arb.

H (0,0,y)
S,AIII arb. arb. arb. arb. 0 arb. arb. t ′

2n−1 φ′
2n−1

H (0,0,x)
S,AIII arb. arb. arb. arb. π/2 arb. arb. −t ′

2n−1 φ′
2n−1

H (I,z,z)
S,BDI 0 0 n/a arb. 0 arb. 0 arb. 0

H (x,z,y)
S,BDI 0 arb. π/2 arb. 0 arb. 0 t ′

2n−1 0

H (I,x,x)
S,BDI arb. arb. 0 0 n/a arb. 0 −t ′

2n−1 0

H (z,I,z)
S,BDI 0 0 n/a arb. π/2 arb. π/2 arb. π/2

H (x,I,x)
S,BDI 0 arb. π/2 arb. π/2 arb. π/2 −t ′

2n−1 π/2

H (z,x,y)
S,BDI arb. arb. 0 0 n/a arb. π/2 t ′

2n−1 π/2

H (y,x,z)
S,DIII 0 0 n/a 0 n/a arb. arb. −t ′

2n−1 −φ′
2n−1

H (y,z,x)
S,DIII 0 arb. π/2 0 n/a arb. 0 −t ′

2n−1 0

H (y,I,y)
S,DIII 0 arb. π/2 0 n/a arb. π/2 t ′

2n−1 π/2

H (x,y,z)
S,CI 0 0 n/a arb. arb. arb. arb. t ′

2n−1 −φ′
2n−1

H (I,y,y)
S,CI arb. arb. 0 arb. 0 arb. 0 t ′

2n−1 0

H (z,y,x)
S,CI arb. arb. 0 arb. π/2 arb. π/2 −t ′

2n−1 π/2
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TABLE XV. Nonsymmorphic models with chiral symmetry including all long-range hoppings, showing the values of the tight-binding
parameters of the generalized Rice-Mele model, Eqs. (A8)–(A10), for each model with ε0 = 0, t ′

2n = −t2n and φ′
2n = φ2n.

Name u t2n φ2n t2n+1 φ2n+1 t ′
2n+1 φ′

2n+1

H (0,0,y)
NS,A arb. arb. arb. arb. arb. t2n+1 φ2n+1

H (0,0,x)
NS,A arb. arb. arb. arb. arb. −t2n+1 φ2n+1

H (I,y,y)
NS,AI arb. arb. 0 arb. 0 t2n+1 0

H (z,x,y)
NS,AI arb. arb. 0 arb. π/2 t2n+1 π/2

H (I,x,x)
NS,AI arb. arb. 0 arb. 0 −t2n+1 0

H (z,y,x)
NS,AI arb. arb. 0 arb. π/2 −t2n+1 π/2

H (x,z,y)
NS,D 0 arb. π/2 arb. 0 t2n+1 0

H (y,I,y)
NS,D 0 arb. π/2 arb. π/2 t2n+1 π/2

H (y,z,x)
NS,D 0 arb. π/2 arb. 0 −t2n+1 0

H (x,I,x)
NS,D 0 arb. π/2 arb. π/2 −t2n+1 π/2

H (x,y,z)
NS,AIII 0 0 n/a arb. arb. t2n+1 −φ2n+1

H (y,x,z)
NS,AIII 0 0 n/a arb. arb. −t2n+1 −φ2n+1

coupling parameters and is thus related to it by a diagonal
gauge transformation. With these models, component d0 is
an even function of k, one of the other components is also
even and the other two are odd. They may be rotated into
the same canonical form using rotations such as Rx or Ry.
Apart from component d0, they have the same form as class
D with U 2

C = 1 described in the main text, Table VI. Like
class D, they are insulators with a Z2 topological index. In
the context of one-dimensional systems with spatial inversion
symmetry, the Z2 index is Zak phase quantized to either 0 or
π [38,42,63,89,101].

With intracell spacing s = a/2, application of UP = σx or
σy just reproduces models H (UP=σx )

S,A and H
(UP=σy )
S,A discussed

above. Application of UP = I or σz produces two models
denoted H (UP=I )

NS,A and H (UP=σz )
NS,A , with tight-binding parame-

ters listed in Table XIII. In position space, these models
satisfy spatial inversion (23) with P = Px (for UT = I) or
Py (for UT = σz), for an odd number of atoms J . We la-
bel these models as “NS” even though the symmetry is not
nonsymmorphic, because the form of the Hamiltonian is
similar to that of the nonsymmorphic ones, i.e., they also
have definite relationships between hoppings t ′

2n+1 and t2n+1,

Table XIII. Only one of these models is distinct, H (UP=I )
NS,A ,

because H (UP=σz )
NS,A is related to it by the diagonal transformation

Rd , Eq. (49). Apart from component d0 (which is even),
H (UP=I )

NS,A has the same form as class A with U 2
C = NS described

in the main text, Table VI. Like this class, H (UP=I )
NS,A describes

an insulator with a Z2 topological index (the quantized Zak
phase).

One can subsequently refine the classification by apply-
ing time-reversal or charge-conjugation symmetry, which will
also place requirements on components of the d vector to
be even or odd functions of k. In situations where these
constraints clash with those of spatial-inversion symmetry,
the component must be set equal to zero. With time-reversal
symmetry, the resulting models would be like those with chiral
symmetry but with d0 �= 0. For example, applying UT = I
to model H (UP=σx )

S,A requires dz = 0 with dx being even and
dy odd, similar to class BDI, Table III (with d0 �= 0). Fi-
nally, we note that it is possible to consider other spatial
symmetries, for example, in a four-band topological insula-
tor [102] with charge-conjugation and reflection symmetries
[11,13,88,90,91].
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