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1Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié
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Abstract

The human brain presents a heavily connected complex system. From a relatively fixed anatomy, it can
enable a vast repertoire of functions. One important brain function is the process of natural sleep, which
alters consciousness and voluntary muscle activity. On neural level, these alterations are accompanied by
changes of the brain connectivity. In order to reveal the changes of connectivity associated with sleep, we
present a methodological framework for reconstruction and assessment of functional interaction mechanisms.
By analyzing EEG (electroencephalogram) recordings from human whole night sleep, first, we applied a time-
frequency wavelet transform to study the existence and strength of brainwave oscillations. Then we applied
a dynamical Bayesian inference on the phase dynamics in the presence of noise. With this method we
reconstructed the cross-frequency coupling functions, which revealed the mechanism of how the interactions
occur and manifest. We focus our analysis on the delta-alpha coupling function and observe how this cross-
frequency coupling changes during the different sleep stages. The results demonstrated that the delta-alpha
coupling function was increasing gradually from Awake to NREM3 (non-rapid eye movement), but only
during NREM2 and NREM3 deep sleep it was significant in respect of surrogate data testing. The analysis
on the spatially distributed connections showed that this significance is strong only for within the single
electrode region and in the front-to-back direction. The presented methodological framework is for the
whole-night sleep recordings, but it also carries general implications for other global neural states.
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Highlights:

� Delta-alpha coupling functions from EEG (electroencephalogram) of whole night sleep

� Use of dynamical Bayesian inference for phase dynamics from brainwave oscillations

� δ-α coupling function increased gradually from Awake to NREM3(non-rapid eye movement)

� δ-α coupling function is significant to surrogates only for NREM2 and NREM3

� Spatially – significance is strong within region and in front-to-back direction
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1. Introduction

Many systems in nature are found to interact, be-
tween each other or with the environment, or they
have interactions between the subsystems that con-
stitute them [1, 2, 3]. Interactions are particularly
important for the brain as a complex system that
has many different functions from the same structural
connectivity [4]. The interactions of complex dynam-
ical systems can cause gradual or sudden changes in
their qualitative dynamics, leading to their grouping,
self-organizing, clustering and mutually coordinated
synchronization. An important class of such dynami-
cal systems are oscillators, which on the macroscopic
scale in the brain can occur as different brainwave
oscillations [5].
There exist many powerful methods which study

different aspects of the brainwave oscillations and
their interactions. Generally in neuroscience, the
brain connectivity is classified in three different types.
That is, the brain connectivity refers to a pattern of
links (”structural, or anatomical, connectivity”), of
statistical dependencies (”functional connectivity”),
and of causal model interactions (”effective connec-
tivity”) between distinct units within a nervous sys-
tem [6, 7, 8]. The connectivity pattern between the
units is formed by structural links such as synapses or
fiber pathways, or it represents statistical or causal
relationships measured as cross-correlations, coher-
ence, information flow or the all-important coupling
function. In this way, therefore, the brain connec-
tivity is crucial to understand how neurons and neu-
ral networks process information. A particularly ac-
cessible and useful approach has been the study of
cross-frequency coupling where one studies connec-
tivity between different brainwave oscillations, usu-
ally extracted from an electroencephalograph (EEG)
recording [9, 10, 11, 12]. In this work the focus will
be on methods for dynamical inference, often also
referred to as dynamical filtering or dynamical mod-
eling [13, 14, 15, 16]. In particular such methods
involve the analysis of data to reconstruct a dynam-
ical model describing the systems and their interac-
tions. In this way, the dynamical inference methods
reconstruct effective connectivity, thus revealing the
underlaying dynamical mechanisms.

The described dynamical inference methods have
been developed and utilized for the reconstruction of
coupling functions from data. Coupling functions de-
scribe how the interaction occurs and manifest, thus
revealing a functional mechanism [17]. The design of
powerful methods and the explicit assessment of cou-
pling functions has led to applications in different sci-
entific fields including chemistry [18], climate [19], se-
cure communications [20], mechanics [21], social sci-
ences [22], and oscillatory interaction in physiology
for cardiorespiratory interactions [23, 24]. Arguably,
the greatest recent interest for coupling functions is
coming from neuroscience [25]. These works have en-
compassed the theory and inference of a diversity of
neural phenomena, levels, physical regions, and phys-
iological conditions [26, 27, 28, 29, 30, 31, 32, 33].
When the coupling functions describe the interac-
tions between brainwave oscillations with distinctive
frequency intervals, then one refers to neural cross-
frequency coupling functions [31].

The brain can facilitate various coexisting neural
states and functions. Sleep is vitally important state
helping to restore the immune, nervous, skeletal,
and muscular systems that maintain mood, memory,
and cognitive function [34, 35]. Promoted by the
internal circadian clock, sleep is a naturally recurring
state of the mind and body, characterized by altered
consciousness, relatively inhibited sensory activity
and reduced muscle activity [36, 37, 38]. Sleep
usually occurs as a relatively long overnight process
in which the brain goes through several different
sleep stages [39, 40, 41, 42, 43]. It is well known
that with the onset of sleep, and the different
sleep stages, comes also change to the brainwave
oscillations [44, 45, 46, 47, 48]. Two of the most
pronounced changes appear in the delta and alpha
brainwaves. These changes have been followed
broadly with different measures of frequency power
and statistical dependencies. In our earlier works,
we studied neural coupling functions in relation to
general anaesthesia [49] and resting state with eyes
open and eyes closed [31]. However, up until now, to
the best of our knowledge, no one has reconstructed
and assessed coupling functions in relation to sleep
and its distinctive sleep stages. In this work we
present a methodological framework for studying
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the delta-to-alpha neural cross-frequency coupling
functions from sleep EEG data, and we assess the
coupling functions changes associated with the
different sleep stages.

2. Methods

2.1. Sleep recordings

The EEG dataset used in this study comes from the
DREAMS database, collected by TCTS laboratory
at the University of Mons and the Charleroi Sleep
Laboratory at the Université Libre de Bruxelles [50].
It consists of 20 whole night PSG recordings from
healthy subjects (16F/4M). The data was collected
using a digital 32-channel EEG system (BrainnetTM
System of MEDATEC, Brussels, Belgium). In each
recording, at least three EEG channels (CZ-A1 or C3-
A1, FP1-A1 and O1-A1), two EOG channels (P8-A1,
P18-A1) and one submental EMG channel were used.
The sampling rate was set to 200 Hz. Each whole
night recording was sleep stage scored using both the
Rechtschaffen and Kales (R&K) and the American
Academy of Sleep Medicine (AASM) protocols. The
first annotation was done on 20-second epochs, and
the latter on 30-second epochs. Both annotations
were produced through a visual inspection by a single
expert at the sleep laboratory. In this study, we used
the AASM criteria for the sleep stage analyses. For
the wavelet analysis and later for the coupling anal-
ysis, we grouped the resulting values in respective
sleep stages according to the AASM scoring i.e. we
separate the wavelet and coupling results from time-
intervals of Awake, NREM1 (Non-REM sleep stage),
NREM2, NREM3 and REM (Rapid Eye Movement)
sleep stage.

2.2. Time-frequency wavelet analysis

A comprehensive analysis of neural oscillatory in-
teractions during sleep is given by employing two
complementary methods that describe different as-
pects: the existence and strength of oscillations, and
the causal interaction mechanisms.
To calculate the effective neural cross-frequency

coupling we first observed the neural oscillations i.e.

the brainwaves during different sleep cycles. This was
achieved when the EEG measurements were analysed
by continuous wavelet transform (WT) [51, 52]. It is
a time-frequency representation containing both the
phase and the amplitude dynamics of the oscillatory
elements from the analyzed signal.

The continuous wavelet transform of a EEG signal
x(t) is given with the equation:

WT (ω, t) =

∫ ∞

0

ψ(ω(u− t))x(u)ωdu. (1)

Here, ω denotes the angular frequency, t is the
time, and

ψ(u) =
1

2π
(ei2πf0u − e

(2πf0)2

2 )e−
u2

2

is the complex Morlet wavelet, with central frequency
f0 = 1,

∫
ψ(t)dt = 0, and with i being the imaginary

unit.
After normalizing (1), |Ws(t, f)|2 represents an in-

stantaneous estimate of the power spectrum at each
time t, and is referred to as the wavelet power. It is
similar to the Fourier transform power spectrum, but
by using adaptive windows it achieves logarithmic fre-
quency resolution and high frequency and time local-
ization, allowing for a suitable representation of the
spectral structure at the observed frequencies. The
brainwave boundaries of the intervals extracted from
the EEG signal were δ = 0.8− 4Hz, θ = 4− 7.5Hz,
α = 7.5−14Hz, β = 14−22Hz and γ = 22−100Hz.
In this way, by using the wavelet transform we ex-
plore the existence of brainwave oscillations in differ-
ent sleep cycles, and their respective strengths.

2.3. Neural coupling functions

The brain is a highly-connected complex system
[4], whose interactions can be studied at different lev-
els, many of them carrying important implications
for characteristic neural states and diseases. Cou-
pling functions are especially appealing for studying
the neural interactions as they can characterize the
particular neural mechanisms behind these connec-
tions [25, 17, 31]. Not surprisingly, recently, there
has been quite a lot of interest for coupling functions
in neuroscience.
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We start by studying interacting dynamical sys-
tems as a system setup, with the focus on coupled
oscillators. Then, coupling functions describe the
physical rule specifying how the interactions occur
and manifest. Because they are directly connected
with the functional dependencies, coupling functions
focus not only on if the interactions exist, but more
on how they appear and develop. For example, when
studying phase dynamics of coupled oscillators the
magnitude of the phase coupling function affects di-
rectly the oscillatory frequency and will describe how
the oscillations are being accelerated or decelerated
by the influence of the other oscillator.

2.3.1. Phase dynamics model of interacting oscilla-
tions

We model the entire system of neural interactions
as a network of pairwise coupled phase oscillators [2].
This oscillator network is defined as:

ϕ̇i(t) = ωi(t) + qi(ϕ1, ϕ2, t) + ξi(t), (2)

where i = 1, 2 is the oscillator index, ξi is the Gaus-
sian white noise, and ϕ̇i is the instantaneous fre-
quency of each oscillator which is determined by its
natural frequency ωi and by a coupling function[17]
qi of the phases ϕ1,2 of the two oscillators. The func-
tions qi represent the underlying coupling dynamics
of the pairwise interaction within the network. Due
to the oscillatory nature of the systems, the deter-
ministic section of (2) can be expanded with a second
order Fourier expansion into a sum of base functions
Φk, i.e. a series of sin and cos functions on the full

(ϕ1, ϕ2) argument space, scaled by parameters c
(i)
k :

ϕ̇i(t) =

2∑
k=−2

c
(i)
k Φk(ϕ1, ϕ2, t) + ξi(t). (3)

Therefore, the main aim will be to infer this model
of coupled phase oscillators, i.e. to infer the param-
eters of the model base functions Φk and the noise
parameters.

2.4. Dynamical Bayesian Inference

To perform the model inference we applied dynam-
ical Bayesian inference [53, 54, 55]. The method re-

constructs the matrix of parameters M = {c(i)k , D},
which consists of the coupling parameters c

(i)
k and

the noise strength D, thus completely describing the
oscillator coupling. We achieve this by utilizing the
essence of Bayes’ theorem for obtaining the posterior
probability density pX (M|X ) of the unknown param-
eters M given the data X and given the prior prob-
ability density pprior(M) of the parameters:

pX (M|X ) =
ℓ(X|M)pprior(M)∫
ℓ(X|M)pprior(M)dM

. (4)

Here, the likelihood function ℓ(X|M) is obtained
through the stochastic integral of the noise term over
time, thus leading to the minus log-likelihood func-
tion S = −lnℓ(X|M) defined as:

S =
L

2
ln |D|+ h

2

L−1∑
l=0

(ck
∂Φk(ϕ.,l)

∂ϕ
+

+ [ϕ̇l − ckΦk(ϕ∗.,l)]T (D−1)[ϕ̇l − ckΦk(ϕ∗.,l)],

(5)

where h is the sampling time, L is the length of the
time series, and the summation over k is implicit.

We assume that the prior probability of parameters
M is a multivariate normal distribution. Then, tak-
ing into account the fact that the log-likelihood (5)
is of quadratic form, the posterior probability will
also be a multivariate normal distribution. The dis-
tribution for the parameter vector c, its mean c̄, and
covariance matrix Σprior ≡ Ξ−1

prior are then used to
recursively obtain the stationary point of S using:

D =
h

L

(
ϕ̇l − ckΦk(ϕ

∗
·,l)

)T (
ϕ̇l − ckΦk(ϕ

∗
·,l)

)
,

ck = (Ξ−1
prior)kw rw,

rw = (Ξprior)kw cw + hΦk(ϕ
∗
·,l) (D

−1) ϕ̇l+

− h

2

∂Φk(ϕ·,l)

∂ϕ
,

Ξkw = (Ξprior)kw + hΦk(ϕ
∗
·,l) (D

−1) Φw(ϕ
∗
·,l),

(6)
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where the summations over l = 1, ..., L and over the
repeated indices k and w are implicit. Finally, the
coupling strength of the coupling from oscillator 1 to
oscillator 2 is the Euclidean norm of the aforemen-
tioned parameters inferred from the phase dynamics:

σ1,2 =
√∑2

k=−2(c
(1,2)
k )2.

The neural input data for the inference described
here comes in a form of instantaneous phase signals.
In practice, the brainwave oscillations are filtered-out
from the EEG signals by standard Butterworth filter
followed by filtfilt procedure to ensure zero-lag distur-
bances. From such filtered oscillation signals, we then
obtained the protophase by using the Hilbert trans-
formation, after which we applied the protophase-to-
phase univariate transformation [21] to obtain the
phase signals that act as input to the Bayesian in-
ference.

2.5. Statistical analysis and Surrogate time-series
testing

Even for unrelated or uncoupled oscillations, the
coupling between the signals is generally positive,
however small. This is the reason why a significance
threshold must be defined, above which the coupling
will be considered significant and indicative of gen-
uine connectivity and interdependence. That thresh-
old is defined by constructing randomized surrogates
[56, 57] of the original signals and calculating the cou-
pling functions for these surrogates as well. The ob-
tained results serve as a baseline reference in order
to confirm the relative statistical significance of the
coupling of the original signals. We used a surrogate
threshold of mean plus two standard deviations of
the coupling calculated from the surrogates, and for
generating the surrogate time series we used the cy-
cle phase permutation (CPP) surrogates [57]. Cycle
phase permutation surrogates are designed for phase
dynamics. These surrogates are constructed to test
the interdependence between systems and are gener-
ated by rearranging the cycles within the extracted
phase. If the phase dynamics of two systems are not
independent, then phase evolution over time of one
system will be dependent on the phase evolution of
the other system. Rearranging the cycles by ran-
dom permutation destroys this dependence, whilst

preserving the general form of the phase dynamics
of each system [57]. More technical details about the
procedure of CPP surrogate testing can also be found
in the Supplementary Material.

For calculating the statistical difference between
coupling distributions, we use the standard Wilcoxon
statistical test, where p < 0.05 was considered as sig-
nificant. The different coupling distributions did not
form a statistical family and multiple comparison test
were not needed. For visually presenting the statis-
tical differences we use the standard boxplot, which
refer to the descriptive statistics (median, quartiles,
maximum and minimum).

3. Results

This section shows comprehensive analysis of the
oscillations and their interactions. We begin by look-
ing into the presence and extent of the brainwave
oscillations by conducting a wavelet analysis. We
then reconstruct the delta-alpha coupling functions
and quantify their coupling strength in relation to
the different sleep stages.

3.1. Existence and strength of brainwave oscillations

In order to observe the strength of different oscil-
lations, we used the wavelet transform (WT) analy-
sis [58, 59]. Fig. 1 A shows an EEG signal from a
subject during one night sleep for the O1 electrode,
which acts as an input signal for the wavelet anal-
ysis. The time-frequency wavelet transform (Fig. 1
B) presents the detailed frequency and time changes
throughout the night sleep. Fig. 1 C then shows
the time-averaged frequency-only wavelet transform,
where the specific delta and alpha brainwave oscilla-
tion can be observed. [The analysis of all the brain-
wave oscillations are given in Supplementary Mate-
rial.] The three plots Fig. 1 A, B and C are aligned
in time (A and B) and frequency (B and C) for com-
parison. These results show that there are well pro-
nounced delta δ and alpha α brainwave oscillations
(Fig. 1 C) and that this frequency power varies and
goes through transitions over the course of time dur-
ing the sleep (Fig. 1 A).
Having seen the time-frequency wavelet represen-

tation from a single representative subject (Fig. 1 A,
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Figure 1: The brainwave oscillations during sleep – Wavelet transform analysis. The top panel shows the Hypnogram
with the accompanied sleep staging. A shows a sample EEG time-series, B shows a time-frequency wavelet transform and C
shows the time-averaged spectral frequency content. A, B and C are the time, time-frequency and frequency representation,
respectively, of a same sample Cz electrode EEG recording from a subject during one night sleep. The dashed lines indicate the
five brainwave oscillation intervals δ, θ, α, β and γ as indicated on the right axes on C. The boxplots on D show the average
power in δ interval for all subjects of the O1 EEG electrode, for the five stages of sleep. Similarly, the boxplots on E show the
average power in α interval for all subjects of the same O1 electrode. AU stands for arbitrary units.

B and C), we now move to wavelet analysis on group
of subjects (Fig. 1 D and E). The wavelet power of
the delta δ brainwave oscillation varies between dif-
ferent sleep stages (Fig. 1 D). Namely, the power in
the Awake state is significantly reduced in the REM

sleep stage, which then gradually increases through
NREM1, NREM2 and NREM3. Here, one should
note that the δ power in NREM3 is the highest, even
higher than the Awake stage. The wavelet power of
the alpha α brainwave oscillation is highest for the
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Figure 2: The δ-to-α neural coupling functions in sleep. A to E present the group average δ-to-α coupling functions for
the five different states in the sleep cycle, for the Fp1 EEG electrode. Note that for comparison the scale on all the z-axis for
the coupling function amplitude are the same.

Awake stage, after which there is significant decrease
for the sleep stages (Fig. 1 D). Here REM is slightly
lower than the other three NREM stages, which are
of relatively the same order.

3.2. The δ-to-α neural coupling functions in sleep

Next, we turn our attention to the neural δ-to-α
cross-frequency coupling functions for the different
sleep stages. After applying the dynamical Bayesian
inference on the phases from the EEG data, we re-
constructed the δ-to-α coupling functions – as shown
in Fig. 2. Here, the coupling functions are averaged
for the different sleep stages. Note that, for compari-
son between stages the coupling functions are aligned
left-to-right from Awake to NREM3.
We see that the coupling function for the Awake

stage is very low with varying and not well defined
form of the function (Fig. 2 A). The results are qual-
itatively similar for the coupling functions of REM
sleep and the first stage of light sleep NREM1 (Fig.
2 B and C), where again the functional forms are
varying and without a well defined form. Then,
for the NREM2 and the NREM3 stage, the δ-to-α
neural coupling functions were significantly increased
and the form of the function had characteristic wave
shape (Fig. 2 D and E). This change appears to be
gradual, where the coupling function in NREM3 had
higher amplitude than NREM2, which in turn was
higher than the coupling functions in the other three
stages.

The form of the δ-to-α coupling function for the
NREM2 and NREM3 (Fig. 2 D and E) has charac-
teristic wave shape. The wave changes mostly along
the ϕδ-axis and less along the ϕα-axis. This form thus
reveals that the δ-to-α coupling function in the dy-
namics of α brainwave oscillations qα(ϕδ, ϕα) is pre-
dominantly dependent on the δ dynamics i.e. this is
a direct coupling from δ [49]. By going back to the
phase model Eq. (2), one can notice that the cou-
pling function qα(ϕδ, ϕα) is additive to the frequency
parameter ωα. Thus, the characteristic wave form re-
veals the mechanism underlying the phase dynamics
interaction: it shows in detail how the α brainwave
oscillations are accelerated or decelerated, as an effect
of the direct influence from the δ brainwave oscilla-
tions. In other words, when looking at the NREM3
coupling function wave, from 0 to pi delta phase ϕδ,
there is a deceleration of α oscillations, and from pi
to 2pi ϕδ, there is an acceleration of alpha oscillations
[17]. The coupling functions in Fig. 2 thus show the
qualitative nature of the δ-to-α interaction in the dif-
ferent sleep stages.

3.3. The δ-to-α coupling strength

To investigate the interactions in a quantitative
way, we calculated the δ-to-α coupling strength, as a
norm from the aforementioned δ-to-α coupling func-
tions. The boxplots in Fig. 3 show the coupling
strength of the group of subjects, for different sleep-
ing stages. Only the coupling strength for NREM2
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Fp1δα Czδα O1δα Fp1δ-Czα Fp1δ-O1α Czδ-Fp1α Czδ-O1α O1δ-Fp1α O1δ-Czα

Awake 2.20 2.18 2.07 2.19 2.08 2.20 2.08 2.19 2.16
REM 2.32 2.35 2.31 2.32 2.29 2.33 2.26 2.33 2.33
NREM1 2.35 2.33 2.29 2.29 2.31 2.32 2.28 2.34 2.37
NREM2 2.42 2.49 2.49 2.50 2.48 2.43 2.47 2.40 2.52
NREM3 2.48 2.56 2.50 2.54 2.51 2.39 2.52 2.40 2.49

Surrog. 2.45 2.48 2.47 2.50 2.47 2.44 2.47 2.44 2.49

Table 1: Median values for the coupling strength εδ−α for the five states of the sleep cycle and for the all the coupling
relationships investigated. Note that the first three coupling relationships are from a single electrode, while the other six
couplings are from mixed electrodes for spatial investigation. Coupling strengths that were statistically significant in respect
of the surrogates are presented with bold text. Surrogate thresholds, calculated as mean plus two standard deviations, are
shown with grey in the last row. The values are cut to two decimal places for succinct presentation, we note however, that
the significance of the NREM2 for Fp1δ-Czα is because the coupling εδ−α = 2.5051 is larger than its surrogate threshold
surr = 2.5005.

Figure 3: Average δ-α coupling strength. The boxplots
show the average coupling strength εδ−α for the group subjects
for the O1 electrode, presented individually for each state of
the sleep cycle. The dashed line represents the surrogate data
threshold. The connecting lines on the top, from left to right,
represent if two boxplots distributions are statistically and sig-
nificantly different (p < 0.05).

and NREM3 sleep stages were significant in respect to
the surrogate threshold (indicated by dashed line in
Fig. 3). (This quantitative result is consistent with
the coupling function observations for NREM2 and
NREM3 in Fig. 2.) There were also differences be-
tween the boxplots for the sleep stages. Here one
can observe three groups: i) Awake, ii) REM and

NREM1, and iii) NREM2 and NREM3. Namely, the
coupling for the Awake stage was lowest and signif-
icantly different from all the other four sleep stages.
REM and NREM1 stages were similar and they were
both significantly greater than Awake, while smaller
than NREM2 and NREM3. The coupling during
NREM2 and NREM3 was similar between them and
significantly greater than the other three sleep stages.
The overall trend from comparison of all the five
stages is that there is gradual increase of the coupling
strength when going from Awake to NREM3. Quan-
titative statistical analysis with linear regression for
the gradual increase is given in the Supplementary
Material.

The previous observation of coupling strength (Fig.
3) was only from one EEG channel. Next, we extend
this to three channels (prefrontal Fp1, center Cz and
occipital O1), in order to assess also the spatial dis-
tribution of the interactions. We present these results
tabularly in Tab. (1). Here, we present two groups of
results: i) between delta and alpha brainwaves within
the same channel location, and ii) spatially distant
delta and alpha i.e. combinations with delta from
one channel and alpha brainwave from other channel.
First, we observe the three columns at the beginning
of the table for Fp1δα, Czδα and O1δα. Here, there
is increase of the coupling strength when going from
Awake to NREM3, where NREM2 and NREM3 are
significant in respect of surrogates (with bold text).
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An exception is only Fp1δα where only NREM3 had
significant coupling with respect to surrogates.

The second group of spatially distant interactions
shows interesting trend – there is a strong and sig-
nificant coupling from links going in front-to-back di-
rection, but much lower and not-significant when go-
ing in back-to-front direction. Namely, in the Fp1δ-
Czα, Fp1δ-O1α and Czδ-O1α connections where the
information flow is from front to back of the head,
there is strong coupling strength with NREM2 and
NREM3 significant to surrogates in all three connec-
tions. Contrary to this, in the back-to-front direction
of information flow the links Czδ-Fp1α, O1δ-Fp1α
and O1δ-Czα had low coupling strength, and they
were not significant to surrogates (exception is only
NREM2 for O1δ-Czα). Overall, the coupling strength
from Awake to NREM3 gradually increased for all in-
teraction combinations, though the significance with
respect to surrogates is strong only for within the
region and in the front-to-back direction.

Figure 4: The spatial δ-to-α neural coupling functions in
sleep. All four δ-to-α coupling functions are for the NREM3
stage sleep, but the δ and α oscillations are coming from differ-
ent spatial EEG electrodes. They are subject group averages.
For the coupling function in A the δ is from the Cz electrode,
while α is from the O1 electrode; for B δ is from Fp1 and α
is from O1 electrode; for C δ is from O1 and α is from Cz
electrode; and for D δ is from O1 and α is from Fp1 electrode.

3.4. The spatially distant coupling functions

Next, we analyzed the δ-to-α coupling functions
from spatially distant links where the δ brainwave
comes from one, and the α brainwave comes from
other EEG channel. Fig. 4 presents four exam-
ples of such spatial δ-to-α coupling functions for
the NREM3 sleep stage which had highest coupling
strength. Fig. 4 A and B for the coupling functions
of the front-to-back δCz-αO1 and δFp1-αO1, respec-
tively, demonstrate the same form of coupling func-
tion as Fig. 2, at the same time having relatively high
amplitude i.e. coupling strength. The other two cou-
pling functions in Fig. 4 C and D for the back-to-front
(opposite direction from A and B) had much lower
amplitude and coupling strength. Nevertheless, the
form of the coupling function in C and D is qualita-
tively similar to the form in A and B. These reinstates
that the NREM3 coupling functions are the strongest
and most prominent among the sleep stages, both in
strength and functional form.

3.5. The analogy and relation to sleep spindles

The main focus in this study is on the delta
(δ = 0.8 − 4Hz) and alpha (α = 7.5 − 14Hz) brain-
wave oscillations and how they interact, seen through
their phase dynamics. On the other hand, a lot of
works about EEG dynamics and sleep have studied
the interactions of slow waves (< 4Hz) and spindles
(11−16Hz). As the alpha band we analyzed and the
sleep spindles band (sigma σ) largely overlap on the
frequency spectrum, the question if the observed in-
teraction reflects the interaction from delta to one or
the other band, and how they relate to the different
sleep stages, naturally arises. To understand this, we
have performed separate analyses, methodologically
as before, but now for the interaction of: (i) delta to
alpha (α′ = 8−12Hz) and (ii) delta to spindles sigma
(σ = 12− 16Hz). [Note that we called the new band
α′ as it is slightly different frequency interval from
the initially used α.]
We note also, that there are many sleep studies

which separate the spindles into two parts – slow
spindles (σ1 = 9 − 12Hz) and fast spindles (σ2 =
12 − 15Hz) and then they study how the two inter-
act with slow waves [60, 61, 62, 63]. In this sense,
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Figure 5: The δ-to-α′ and the δ-to-σ neural coupling in sleep. Average δ-α′ A and δ-σ B coupling strength for the group
subjects for the O1 electrode, presented individually for each state of the sleep cycle. The dashed line represents the surrogate
data threshold. The connecting lines on the top, from left to right, represent if two boxplots distributions are statistically and
significantly different (p < 0.05). C present the group average δ-α′ coupling functions for the five different states in the sleep
cycle, for the Fp1 EEG electrode.

what we are doing here with the separation to al-
pha and sigma, amounts to a similar approach as the
separation to slow and fast spindles.

The analysis about the δ-to-α′ and the δ-to-σ cou-
pling is presented in Fig. 5. The coupling strength
quantitative and statistical analysis (similar to those
in Fig. 3) for the δ-to-α′ interaction Fig. 5 A shows a
similar picture as seen before – that there is a gradu-
ally increasing coupling from Awake to NREM3, with
some portion being significant in respect of surrogates
(cf. NREM2 and NREM3) and with statistical differ-
ences between the different sleep stages. The cou-
pling strength for the other δ-to-σ interaction Fig. 5

B shows much lower coupling and not significant in
respect of surrogates. The δ-to-α′ coupling functions
Fig. 5C, where there were some significant couplings,
show a more varying form of functions, but quali-
tatively similar form as the one observed before in
Fig. 2, especially for the NREM2 and NREM3 sleep
stages. In summary of the separate α′ and σ phase
dynamics analysis, we have seen that the observed
interaction is predominantly on account of the δ-to-
α′ coupling, and it is low and not significant for the
δ-to-σ coupling.

10



4. Discussion

In summary, we have analyzed sleep effects on the
neural oscillatory dynamics and interactions. We pre-
sented a methodological framework for analyzing the
oscillations and their interaction mechanisms. The
framework is quite comprehensive in a sense that
it encompasses a wavelet transform describing the
existence and strength of the oscillations, followed
by a detailed dynamical Bayesian inference of the
phase dynamics and the underlying coupling func-
tions which reveal in detail the interaction mecha-
nisms. This methodology probed directly into the
dynamics of the neural oscillations and the mecha-
nisms of how they affect causally each other to ac-
celerate or decelerate their oscillations. The analy-
sis were able to follow the time-evolving dynamics in
order to trace the transitions due to different sleep
stages. Because of this, we were able to group and
average the time-intervals of the analysis within the
specific sleep stages. In this way, we identified a spe-
cific form of the delta-to-alpha coupling function dur-
ing the sleep stages. The quantitative results showed
number of significant changes due to the different na-
ture of the sleep epochs.
It is well known that delta and alpha brainwave

oscillations play an important role in the brain dy-
namics [45, 46, 35, 47, 48]. For instance, there are
differences in frequency and power during different
sleep stages which appear in the separate delta and
alpha brainwave dynamics [64, 65, 66, 67] and in their
related alpha-delta effect [68, 69]. Thus studying the
delta-alpha cross-frequency coupling, can bring im-
portant insight in the neural mechanisms of sleep.
For example, in a previous study about general anes-
thesia [49] all the different brainwave coupling com-
binations were investigated and only those that were
statistically significant to surrogate data testing were
studied in detail – here the delta-alpha was one of the
most significant and pronounced interaction. Simi-
larly, previous works observe a prominent delta-alpha
coupling in resting state [11], during the orienting
response [70], and during sleep within the network
physiology approach [47]. Therefore, the choice to
investigate the delta-to-alpha coupling had a direct
relevance for the present study of the nature of sleep,

where the use of coupling functions probed into the
interaction mechanisms.

Our results demonstrated that there were specific
changes in the delta and alpha oscillations and how
they interact over the different sleep stages. Inte-
grating the results together, we observed that the
changes in the power of delta and alpha oscillations
(Fig. 1) were followed by changes in the form of the
delta-to-alpha coupling function (Fig. 2) and cou-
pling strength (Fig. 3 and Tab. 1). These interac-
tion changes were increased gradually from Awake to
NREM3, for all the interaction combinations. The
coupling function and the coupling strength analy-
sis showed that only during NREM2 deep sleep and
NREM3 one could observe significant interactions in
respect to surrogates. The analysis on the spatially
distributed connections (Fig. 4 and Tab. 1) showed
that this significance is strong only for within the
single electrode region and in the front-to-back di-
rection. This is consistent with a previous study
[71], where using a directed transfer function (DFT)
analysis before and after sleep onset, the authors ob-
served a directed antero-posterior functional coupling
post sleep-onset. This information flow was opposite
to their observation in pre-sleep onset EEG activity,
where a posterior-to frontal propagation of activity
was found. Similarly, another study [72] reported dif-
ferences in the prevalence of slow oscillations across
regions. Namely, higher slow oscillations density in
anterior and central electrodes compared to temporal
and posterior areas.

In our study, the delta band captures cortically-
driven slow oscillations of large amplitudes. Whereas
the alpha band also encompasses sleep spindles which
are thalamically-driven oscillatory activity. Spindles
and spindle/slow oscillations complexes are shown to
be tightly coupled in NREM2 sleep using a modu-
lation index analysis [73]. To study cross-frequency
coupling another study employed a debiased phase-
amplitude coupling z-scored (dPACz) analysis [72].
They reported a stronger coupling of slow-oscillations
and fast spindles (12.5 - 15 Hz) in NREM2 and the re-
verse for slow spindles (9 - 12.5 Hz), with the coupling
of slow oscillations and spindles being the highest in
NREM3 for fast spindles. The observed decelera-
tion and acceleration of alpha α and alpha prime α′
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along the delta phases during NREM3 (and some-
what NREM2) – Fig. 2 and Fig. 5 C, could be analo-
gous to the reported increases in slow spindles in the
first part of the slow waves, and a decrease in fast
spindles in the ascending part of the slow wave [61].

The specific form of the delta-to-alpha coupling
function (Fig. 2 and Fig. 4) showed that this is a
predominantly direct influence from delta to alpha,
and demonstrated in detail how and when the al-
pha oscillations are accelerated and decelerated due
to the causal influence from the delta oscillations. It
is important to note that, this form of the coupling
function is qualitatively similar to the delta-to-alpha
coupling functions observed in our previous studies
in relation to general anesthesia [49] and resting state
[31]. Namely, the delta-to-alpha coupling function in
the generalized deep anesthesia induced by propofol
and sevoflurane anesthetics was significantly greater
than in awake state [49] and it was similar in the form
as the one we showed here with sleep. Similarly, the
eyes-closed resting state had higher delta-to-alpha
coupling function than the eyes-opened resting state
[31], and it was of similar form as the one we ob-
served here for sleep, though the resting awake state
had much lower and more varying form of the cou-
pling function. Importantly, the current result about
sleep stages showed that the delta-to-alpha coupling
function increases gradually from awake to deep sleep
in NREM3 stage. In fact, the delta-to-alpha cou-
pling function was most similar between the gener-
alized deep anesthesia and the NREM3 deep sleep
stage. This points towards some commonality of re-
duced arousal and awareness in these global states,
thus adding to the discussion about the differences
and similarity of sleep stages and anesthesia phases,
specifically the EEG signal in NREM3 sleep being
similar to that of the phase 2 anesthesia [74, 75, 76].

Finally, it is worth noting that we presented the
methodological framework for the whole-night sleep
recordings, however, the framework carries important
implications and can readily be used also for other
forms of sleep recordings, or other neural states more
generally.
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