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Abstract 15 

As a critical source of food and one of the most economically significant crops in the world, 16 

soybean plays an important role in achieving food security. Large area accurate mapping of 17 

soybean has long been a vital, but challenging issue in remote sensing, relying heavily on large-18 

volume and representative training samples, whose collection is time-consuming and 19 
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inefficient, especially for large areas (e.g., national scale). Thus, methods are needed that can 20 

map soybean automatically and accurately from single-date remotely sensed imagery. In this 21 

research, a novel Greenness and Water Content Composite Index (GWCCI) was proposed to 22 

map soybean from just a single Sentinel-2 multispectral image in an end-to-end manner without 23 

employing training samples. By capitalizing on the product of the NDVI (related to greenness) 24 

and the short-wave infrared (SWIR) band (related to canopy water content), the GWCCI 25 

theoretically provides the required information with which to discriminate between soybean 26 

and other land cover types. The effectiveness of the proposed GWCCI was investigated in four 27 

typical soybean planting regions with contrasting agricultural landscapes distributed in the four 28 

major soybean-producing countries in the world (i.e., China, the United States, Brazil and 29 

Argentina). In the experiments, the GWCCI method produced a consistently higher accuracy 30 

compared to three conventional benchmark classifiers (maximum likelihood classifier (MLC), 31 

support vector machine (SVM), random forest (RF)). The GWCCI achieved an average overall 32 

accuracy up to 95.66% and a Kappa coefficient up to 0.91 across the four study regions during 33 

the period 2017-2021. It was also found that the proposed method was applicable for soybean 34 

mapping using any cloud-free scene of imagery dated from, or even near, the time window, 35 

demonstrating the robustness of the GWCCI to image acquisition date. The proposed GWCCI 36 

method is straightforward, reliable and robust, and represents an important step forward for 37 

mapping soybean, one of the most significant crops grown globally. 38 

 39 
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Sentinel-2 imagery; Short-wave infrared (SWIR); Normalized Difference Vegetation Index 41 

(NDVI) 42 

 43 

1. Introduction 44 

Being rich in plant protein with high nutritional value, soybean is an important food and 45 

economic crop in the world, accounting for about 5% (Li et al., 2021a) of the world's cropland. 46 

As such, it has a vital role and impact on ensuring food security (Inglada et al., 2015; Matton et 47 

al., 2015). Soybean is employed primarily in processed food products, refined soybean oil, and 48 

animal feed. At the same time, soybean rhizobia can convert nitrogen in the air into nitrogen 49 

element that can be absorbed by vegetation, which is beneficial both to the soil and to the plant 50 

(Masuda et al., 2009). Detailed mapping of soybean spatial distribution and its real-time 51 

dynamic monitoring (Gómez et al., 2016; Defourny et al., 2019; Li et al., 2019; Li et al., 2021b, 52 

2021c) provide strong decision-support for both government and private sectors on a variety of 53 

critical issues involving the plantation and production of soybean and its business management. 54 

Traditional field survey methods require not only a great deal of human and material 55 

resources, but a large amount of time (Siyal et al., 2015). Moreover, governments usually report 56 

soybean statistics several months after the soybean crop is harvested. Such time delays in the 57 

availability of soybean information can hinder sound decision-making for soybean marketing 58 

and soybean planting (Nasrallah et al., 2018). Furthermore, the quality of the survey data cannot 59 

be guaranteed because of human subjectivity and errors (Liu et al., 2018). Compared to 60 

traditional field survey, remote sensing has unique advantages, including large-coverage (Song 61 
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et al., 2017; Konduri et al., 2020; Ajadi et al., 2021; Li et al., 2021a), timely observation 62 

(Thenkabail et al., 2012; Dado et al., 2020) and low cost. Since the late 1990s, various remote 63 

sensing image classification methods that can be broadly categorised into two classes 64 

(classifier-based and threshold-based), have been applied increasingly for crop mapping and 65 

monitoring (Zhang et al., 2022). 66 

For classifier-based methods, adequate samples are usually required to train a classifier and 67 

build the classification model (Picoli et al., 2018; Rußwurm and Körner, 2020). The Maximum 68 

Likelihood Classifier (MLC) is one of the most commonly used classifiers for crop 69 

classification (Zhong et al., 2016a; Ashourloo et al., 2019). However, suffering from the 70 

Hughes phenomenon (Chen et al., 1996), it is difficult for the MLC to achieve promising crop 71 

mapping results. Along with the rapid development of computer science, machine learning 72 

(ML) has entered the field of remote sensing-based crop classifications (Liu et al., 2018; Li et 73 

al., 2021c; Turkoglu et al., 2021). ML algorithms, such as the Support Vector Machine (SVM) 74 

and Random Forest (RF) (Teluguntla et al., 2018; Griffiths et al., 2019; Calderón-Loor et al., 75 

2021), provide a wide array of opportunities for crop classification based on remotely sensed 76 

data. These data-driven algorithms can increase classification accuracy and efficiency by 77 

operating on multidimensional data independent of data distribution (de Souza et al., 2015; Li 78 

et al., 2021a; Xu et al., 2021). Whereas, they belong to shallow-structured models and, as such, 79 

they cannot extract and utilize deep features of remotely sensed imagery (Xu et al., 2021). 80 

Furthermore, manual feature engineering (e.g., to produce texture features) is often needed, 81 

which is laborious and challenging. Deep learning (DL), a new form of ML, has been shown 82 
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in previous research to be capable of mining automatically deep information from time-series 83 

remotely sensed data (Castro et al., 2018; Marcos et al., 2018; Rußwurm and Körner, 2020). 84 

DL techniques can greatly enhance the capability to handle long sequential dependencies, and 85 

thus, typically outperform conventional ML algorithms in identifying crops (Zhong et al., 2019; 86 

Garnot et al., 2020). However, for these ML models (including DL models), they usually 87 

require a large number of training samples and, moreover, they can be hard to generalize the 88 

model to different regions and applications (Xu et al., 2020; Ajadi et al., 2021). These major 89 

issues limit the practical utility of ML methods for crop classification, especially over large 90 

spatial areas (Turkoglu et al., 2021). 91 

Threshold-based approaches (Boschetti et al., 2017) identify crops by quantifying the 92 

magnitude of, or variation in, vegetation indices (VIs) or the phenological metrics derived from 93 

VIs during the crop growth period (Xu et al., 2021). These methods are usually implemented 94 

on time-series images. For example, crops including rice (Kontgis et al., 2015; Qiu et al., 2015; 95 

Lu et al., 2017), winter crops (Zhang et al., 2021) and canola (Sulik and Long, 2016) are the 96 

prevalent crops classified by threshold-based approaches due to their differences in spectral or 97 

phenological features observed in the time-series profile. However, it can be challenging for 98 

these methods to separate crops at similar phenological stages (Domínguez et al., 2015; Tian et 99 

al., 2019a, 2019b), such as soybean and corn (Zhong et al., 2016a). Besides, in order to exploit 100 

the classification potential of multisource and/or multitemporal data sources as much as 101 

possible, a relatively large number of thresholds need to be determined subjectively in a 102 

conventional threshold-based approach, thus significantly limiting its efficiency and accuracy 103 
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(Kontgis et al., 2015).  104 

Belonging to an advanced threshold-based method, an index-based method with just one 105 

threshold being determined objectively, has received increasing attention in recent years 106 

(Ashourloo et al., 2019; Jia et al., 2019). Index-based approaches classify a specific crop type(s) 107 

from existing remote sensing data (or products) by enhancing the spectral differences between 108 

the targeted crop type (s) and others (Ashourloo et al., 2020; Qu et al., 2021). The advantages 109 

of index-based approaches include their mathematical simplicity and ease of computation 110 

(Ashourloo et al., 2019), thus, making them more practical. For instance, canola was accurately 111 

mapped from Sentinel-2 imagery at its flowering period by a novel index built on three spectral 112 

bands (red, green and near infrared bands) (Ashourloo et al., 2019); An index based on the 113 

spectral profile of near-infrared (NIR) and red bands during the cultivation, peak greenness and 114 

harvest stages was constructed to detect potato with time-series of Sentinel-2 images 115 

(Ashourloo et al., 2020); More recently, a Winter Wheat Index (WWI) was developed to 116 

identify winter wheat using the normalized difference vegetation index (NDVI) data acquired 117 

at the four critical growth stages of the crop (Qu et al., 2021). These previous researches well 118 

demonstrate that index-based approaches are not only more accurate, but more cost-efficient, 119 

in comparison with classifier-based approaches. Yet, to the best of our knowledge, an index 120 

that can well reflect the unique yet complex spectral characteristics of soybean and thus 121 

effectively distinguish this valuable crop from other land use/cover types from remotely sensed 122 

images, has so far not been designed.  123 

In previous studies, NDVI time-series data from Sentinel (Radočaj et al., 2020; Wang et al., 124 
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2020), Landsat (Zhong et al., 2014; Cai et al., 2018) and Moderate Resolution Imaging 125 

Spectroradiometer (MODIS) (de Souza et al., 2015; Picoli et al., 2018), were used for soybean 126 

identification. However, high classification accuracies were not attained because although 127 

sufficient spectral differences existed between soybean and non-crop land covers, serious 128 

spectral confusion arose between soybean and some crop types (Zhang et al., 2020). Meanwhile, 129 

the SWIR band was found to be sensitive to canopy water content and, thus, capable of 130 

discriminating soybean from certain other crops that had similar phenological stages, but varied 131 

in water content with soybean (e.g., corn) (Zhong et al., 2016a; Elsherif et al., 2018; Zhang and 132 

Zhou, 2019; Zhang et al., 2020; Song et al., 2021b). Furthermore, the variations in the greenness 133 

and canopy water content--two important biophysical properties of soybean, are usually 134 

correlated during its growth process (Colombo et al., 2008). For example, while the greenness 135 

of soybean increases along with crop development, its canopy water content increases too. Such 136 

a biophysical process provides us a new perspective to solve the complex issue of soybean 137 

mapping based on single and appropriate imagery, by jointly and simultaneously mining the 138 

information of NDVI and SWIR band. In this paper, time-series data of the NDVI and the 139 

short-wave infrared (SWIR), were jointly investigated to quantify and highlight dynamic 140 

changes in the spectral response of soybean over time. On this basis, a novel index named 141 

Greenness and Water Content Composite Index (GWCCI) was established to identify and map 142 

soybean using only a single imagery during its peak growing season. The effectiveness and 143 

robustness of GWCCI were comprehensively tested in four major soybean-producing countries, 144 

with diverse and various environmental conditions, across the world. 145 
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2. Materials 146 

2.1 Study areas 147 

Four study sites under varying environmental conditions, located in four major soybean-148 

producing countries (China, the United States (US), Brazil and Argentina) accounting for ~90% 149 

of the world's total soybean production (Wilcox et al., 2004; Schwalbert et al., 2020) (Fig.1), 150 

were chosen as our study areas to test the effectiveness and generalization of our method. 151 

 152 

Fig. 1. The geographical locations of the selected four counties (Hailun, China (a); De Witt, 153 

US (b); Bonfinopolis de Minas, Brazil (c); Rio Segundo, Argentina (d); marked in black 154 

rectangle with red dots inside), distributed in three continents including Asia, North America 155 

and South America in the world. Fig. 1(a-d) (the left and right panels), the corresponding false 156 

colour Sentinel-2 images (R: B7, G: B6, B: B3) of the four counties, respectively. 157 

The first selected site, Hailun (Fig. 1a) county, is located in Heilongjiang province, China. 158 

With rich, black soils, the province is a major soybean-producing region in China, accounting 159 

for over 40% of the country’s total soybean production (Li et al., 2021a). The county has a 160 

temperate continental monsoon climate, with four distinct seasons (severely cold in winter; hot 161 
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in summer), with rainfall and high temperatures concentrating in the same season. Soybean is 162 

seeded in spring (from late April to early May) and harvested in autumn (from late September 163 

to early October). The spatial pattern of soybean in this county is distributed densely. Due to 164 

the management of farmers (not farms), most of the soybean fields are small in area and have 165 

a long and narrow rectangular shape. In the US, the De Witt county (Fig. 1b), lying in the central 166 

area of the Corn Belt was chosen. The US Corn Belt consists of 12 states across the north-167 

central region of the US, and makes up over 75% of the US soybean production (Johnson, 2014) 168 

and 28% of the global soybean production (Riccetto et al., 2020), respectively. The belt is 169 

relatively flat with fertile soil, and the climate of the region is temperate continental climate 170 

(Haigh et al., 2015). As one of the most important crops of the belt, soybean is generally planted 171 

from early May to June, and harvested from late September to late October (Wang et al., 2019). 172 

In De Witt, farms are managed by farmers which control the agricultural production processes 173 

including crop sowing, fertilization and harvesting. The agricultural landscape composition of 174 

this county is relatively simple, with soybean and corn accounting for over 90% of the county’s 175 

crop production. 176 

In addition to the two counties in China and the US, two additional counties in Brazil and 177 

Argentina, respectively, were also selected to further test the proposed method. The 178 

Bonfinopolis de Minas (denoted as Bonfinopolis hereafter) county (Fig. 1c) is sited in the state 179 

of Minas Gerais, Brazil, one of the most productive agricultural zones for decades (Wilcox et 180 

al., 2004). Bonfinopolis has a typical tropical savanna climate, with high temperatures 181 

throughout the year and most of annual precipitation concentrated in summer (Sayago et al., 182 



A Greenness and Water Content Composite Index (GWCCI) for soybean mapping  

10 
 

2017). Agriculture in Bonfinopolis is intensified by a double cropping system, and soybean is 183 

generally planted in the first season in spring and summer (approximately from October to 184 

April) (Zhong et al., 2016a). The Rio Segundo (Fig. 1d) county, Argentina, is located in the 185 

heart of the Pampas where over 90% of the country’s soybean is produced (Al-Mamoori et al., 186 

2021). The climate of the county is classified as dry subhumid with an annual rainfall amount 187 

of nearly 800 mm (mainly concentrated in summer) (Sayago et al., 2017). Two summer crop 188 

types, corn and soybean, planted in October and harvested as late as May, dominate the county 189 

(Antonio et al., 2021). 190 

Obviously, the selected four study areas (with detailed description in Table 1) differing in 191 

climate, phenology, cropping system, planting structure, and crop management, are suitable for 192 

testing the effectiveness of the proposed approach. 193 

Table 1 Detailed descriptions of the study areas. MSC_SA: annual maps of soybean cover 194 

over South America by Song et al. (2021a). 195 

Study sites 
(counties) 

Location Main crops 
Soybean 
planting 
ratio (%) 

Average 
field size of 

soybean 
(km2) 

Cropping 
system 

Resources 
of 

Reference 
Soybean phenology 

Hailun 
Heilongjiang 

province, 
China, Asia 

soy, corn, 
rice, potato, 

onion, 
golden 
berry 

34.50 0.032 
Single 

cropping 
system 

field survey 

Soybean is seeded in 
spring (from late April to 
early May) and harvested 
in autumn (late September 
to early October). 

De Witt 
Illinois, USA, 
North America  

soybean, 
corn 

40.15 0.636 
Single 

cropping 
system 

CDL+  
google 
earth 

Soybean is generally 
planted from early May to 
June, and harvested from 
late September to late 
October. 

Bonfinopolis 
 

Minas Gerais, 
Brazil,  

soybean, 
corn, cotton 

17.50 0.429 
Double 

cropping 
MSC_SA 

+  
Soybean is generally 
planted in the first season 
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South America  system google 
earth 

in spring and summer 
(approximately from 
October to April). 

Rio Segundo 
Córdoba, 
Argentina,  

South America  

soybean, 
corn 

47.45 0.924 
Double 

cropping 
system 

MSC_SA 
+  

google 
earth 

Summer crops 
predominate the county, 
where soybean is planted 
in October and harvested 
as late as May. 

 196 

2.2 Data in this study 197 

2.2.1 Ground reference data 198 

Ground reference data were collected in each of the study areas. For Hailun (Fig. 1a), field 199 

survey was conducted along the road network in early August, 2021. A total of 670 field 200 

patches were identified and digitised using the ArcGIS 10.7 software. For the De Witt in the 201 

US (Fig. 1b), ground reference data was acquired according to the Cropland Data Layer (CDL) 202 

achieved annually by the US Department of Agriculture (USDA) (Boryan et al., 2011). The 203 

CDL has been used as the reference in a wide range of crop mapping applications (Li et al., 204 

2019; Zhang et al., 2019b; Li et al., 2020; Li et al., 2021b) in the light of its very high quality. 205 

For example, the average accuracy of corn and soybean is over 90% for the year of 2021. As 206 

for the two counties in South America, the reference of soybean was obtained from the product 207 

of annual maps of soybean cover over South America (denoted as MSC_SA) by Song et al. 208 

(2021a) with an average overall accurate of 95% from 2017 to 2019. In the latter three counties 209 

in the North America and South America, 40 crop patches (including soybean and non-soybean) 210 

were randomly selected and digitised in each county with the support of the ArcGIS 10.7 211 

software. 212 

To ensure that training and testing samples were taken from different patches, all the 213 
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collected reference patches of each study area were split randomly into two subsets, 214 

respectively: approximately 70% for training and the remaining 30% for testing. A stratified 215 

random sampling scheme was adopted to produce samples within the training and testing 216 

patches. For each county, pixels falling into the training patches were used as training samples 217 

to train the supervised classifiers, whereas a total of 2000 pixels (1000 soybean pixels and 1000 218 

non-soybean pixels) were randomly selected from the testing patches and used for classification 219 

accuracy testing (Liu et al., 2020). 220 

2.2.2 Sentinel-2 data 221 

The Sentinel-2 (S2) images with cloud cover of less than 10% were employed for soybean 222 

mapping and classification across the study areas. The S2 images dated during the period 2017-223 

2021 were collected from the Sentinel Scientific Data Hub of the European Space Agency 224 

(ESA) (2017-2018) and the Google Earth Engine (GEE) (2019-2021) (da Silva Junior et al., 225 

2020) respectively, for all study areas except for the county of China, where only images of the 226 

year 2021 were used due to the lack of ground reference data during the year of 2017-2020 227 

(Table 2). Note, the proposed approach was established based on the analysis of spectral 228 

variations over Hailun, and thus their S2 time-series images of a full year (“full year” in Table 229 

2) in 2021 were employed for the derivation of index; whereas in each of the other study sites, 230 

only S2 images within a time period (roughly corresponding to the peak growing season) were 231 

acquired. The preprocessing stage of the S2 images from ESA (2017- 2018), involving the 232 

default atmospheric and topographic corrections and the resampling of bands, was undertaken 233 

by using the Sen2Cor toolbox (version.9.0, ESA, 2021) and the SNAP software. There are 13 234 
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bands in S2: five visible and near-infrared bands (Bands 2-4, and 8, 10m; Band 8A, 20m); three 235 

red edge bands (Bands 5-7; 20m); two SWIR bands (Bands 11-12; 20m) (Liu et al., 2021), and 236 

three other bands (Bands 1, 9 and 10; 60m). The first 10 bands (Bands 2-8, 8A and Bands 11-237 

12) were used in this research as they were designed for vegetation monitoring (Berger et al., 238 

2012), and the original bands with a spatial resolution of 20m were resampled to 10m to 239 

maintain consistency of spatial resolution. Moreover, since the spatial extent of each county 240 

covers more than one scene of remotely sensed image, the image dataset of each date in each 241 

study area was acquired through image mosaicking (with usable images in a specific time 242 

period (e.g., 7.15-8.30)) and masking with the corresponding county’s boundary. 243 

Table 2 Date of Sentinel-2 image acquisitions for soybean mapping in each study site. In Hailun, S2 244 

images with a “full year” of 2021 were included for deriving GWCCI, but only a single dated S2 image 245 

in the parenthesis was used for soybean mapping. In other study sites, an image dataset of each year 246 

might be mosaicked with usable images acquired within a time period (e.g., 7.15-8.30 for De Witt in 247 

2021).  248 

Counties Location 2021 2020 2019 2018 2017 

Hailun China Full year (7.19) \ \ \ \ 

De Witt USA 7.15-8.30 7.15-8.30 7.15-8.30 8.4 8.29 

Bonfinopolis Brazil 1.15-3.13 \ 1.15-3.13 1.20 2.24 

Rio Segundo Argentina 2.05-2.20 2.05-2.20 2.05-2.20 2.14 2.19 

 249 

3. Methods 250 
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In this paper, we developed a novel Greenness and Water Content Composite Index (denoted 251 

as GWCCI) that combines NDVI and the shortwave infrared (SWIR) band to accurately map 252 

soybean in its peak growing season. The GWCCI was established by first investigating the 253 

critical phenological stage for soybean identification and then designing a proper means of 254 

combining both NDVI and SWIR to maximally reflect the information difference between 255 

soybean and other land cover types. The workflow of this research consists of the following 256 

three components (Fig. 2): (1) data preparation, including data acquisition and standard image 257 

preprocessing (i.e., atmospheric and geometric correction, and image mosaicking); (2) 258 

derivation of the GWCCI, which includes phenological analysis of soybean and other land 259 

cover types, and the analysis of the spectral dynamics of both NDVI and SWIR, and the 260 

definition of the index; and (3) application of the GWCCI for soybean mapping and validation 261 

of the soybean mapping results. 262 
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 263 

Fig. 2. Workflow of this research for soybean mapping. 264 

3.1 Phenological analysis 265 

Here, the GWCCI was derived based on the full year S2 images and the corresponding 266 

ground reference data in Hailun. Based on field investigation and the related literature (Paul et 267 

al., 2021), the land cover types in the two counties include three major crops (soybean, corn, 268 

rice), woodland, built-up area, water, and some other minor crops (e.g., potato, adzuki bean, 269 

gold berry, which are uniformly called “other crops”). 270 

The phenological calendars (Zhang et al., 2020) of three main crops (i.e., soybean, corn and 271 

rice) and other crops, are shown in Fig. 3. Specifically, the rice is sowed before mid-April, 272 

followed by its phenological stages of emergence, planting, greening up, tillering, booting, 273 
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heading, milky, maturity and senescence. The sowing stage of dryland crops normally occurs 274 

in late April (soybean and other crops) or around mid-April (corn), followed by the 275 

phenological stages of emergence, three leaves, blooming, pod bearing, seed filling and 276 

senescence (Hu et al., 2018). All these detailed phenological stages can be broadly divided into 277 

three distinct growth stages; the early growing season (early May to mid-July), the peak (mid) 278 

growing season (mid-July to late August) and the late growing season (late August to mid-279 

October) (Ashiq et al., 2021). The peak growing season of the crops is critical since it is during 280 

this time that biomass reaches a peak, as do other indicators like greenness and canopy water 281 

content. From Fig. 3 it can be seen that there is some overlap between the phenological 282 

properties of these crops, since they are all grown in the same term with a hydrothermal 283 

synchronization. 284 

 285 

Fig. 3. Phenological calendars for major crops and other crops. 286 

3.2 Analysis of spectral dynamics 287 

3.2.1 NDVI time-series profile 288 

NDVI is a widely used vegetation index that represents the greenness of vegetation. The 289 

greater the NDVI, the greater the greenness (Chen et al., 2021). For Sentinel-2 imagery, NDVI 290 

can be calculated using the red (ρRED) and near-infrared (ρNIR) spectral bands (Eq. (1)): 291 



A Greenness and Water Content Composite Index (GWCCI) for soybean mapping  

17 
 

NDVI = 𝜌𝜌NIR−𝜌𝜌RED
𝜌𝜌NIR+𝜌𝜌RED

                            (1) 292 

By using Eq. (1) and Sentinel-2 time-series data, the NDVI time-series profile was acquired 293 

to explore the greenness of the land cover types. The NDVI time-series profiles derived from 294 

GEE during the whole year of 2021 are shown in Fig. 4 for each individual land cover type. 295 

Specifically, the whole growing season of soybean includes the early growing season (EGS) 296 

(day of year (DOY)∈[120,195]), the peak growing season (PGS) (DOY∈[195,240]) and the 297 

late growing season (LGS) (DOY∈[240,285]), as marked by the black line segments above 298 

the time series profiles (Fig. 4). 299 

 300 

Fig. 4. The NDVI time-series profiles of the main land cover types. 301 

As shown in Fig. 4, there exist distinct differences in NDVI dynamics between the crops (i.e., 302 

soybean, corn, rice and other crops) and non-crop land covers (i.e., built-up area, woodland and 303 

water). The NDVI values of non-crops tend to be relatively stable, whereas those of crops 304 

(soybean, corn, rice and other crops) become gradually larger with an increase in the day of the 305 

year (DOY) during the EGS of soybean, peaking at its DOY≈218, and then declining in its 306 

LGS. In addition, the difference between the main crops (soybean, corn and rice) and other 307 
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crops in NDVI increased gradually during the PGS of soybean (as illustrated by the orange 308 

double arrows in Fig. 4). Though the NDVI of soybean is confused with that of corn, woodland 309 

and rice at the PGS of soybean, the latter two types of land cover can be identified readily by 310 

using the SWIR band, due to their extremely high water content. Therefore, separating soybean 311 

and corn, both of which have higher biomass and similar phenological features, will be the key 312 

to the success of soybean mapping. 313 

3.2.2 Separability of spectral bands for soybean and corn 314 

To help to identify more features with which to separate soybean and corn, 100 sample pixels 315 

were selected randomly for the crops of soybean and corn in each scene of the Sentinel-2 time-316 

series imagery based on ground reference data. The time-series spectral reflectance profiles of 317 

soybean and corn, ranging from January to late November, 2021, were then plotted (Fig. 5) 318 

with the support of the GEE platform (Xiong et al., 2017). 319 

 320 
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Fig. 5. The annual variation of 10 spectral bands from the S2 images for soybean (a) 321 

and corn (b). 322 

As shown by Fig. 5, the major difference in the spectral profile of soybean (Fig. 5a) and corn 323 

(Fig. 5b) occurred in the time period from late June (DOY≈175) to late August (DOY≈240), 324 

as marked by the two red dotted lines. The reflectance of both soybean and corn started to 325 

increase from DOY≈175, peaked at DOY≈200, and then began to decline slowly until 326 

DOY≈240. Within the time period of DOY∈(175,200), both the reflectance of soybean and 327 

corn rose continuously in a linear manner but with different gradients; the reflectance of 328 

soybean increased more sharply than corn, achieving the largest spectral difference at 329 

DOY≈200 (the dotted blue line in Fig. 5), at which a peak value of 0.60 and 0.50 was obtained 330 

for soybean and corn respectively. Therefore, the middle of July (around day 200) was 331 

identified as the optimum date, based on which an index can be designed for distinguishing 332 

soybean and corn. 333 

To quantify the separability of soybean and corn, a metric D𝑖𝑖
𝑡𝑡 was proposed as follows: 334 

                                 D𝑖𝑖
𝑡𝑡 = �Smin

𝑡𝑡,𝑖𝑖 − Cmax
𝑡𝑡,𝑖𝑖 �                                                                (2) 335 

 Smin
𝑡𝑡,𝑖𝑖 = Min�S𝑗𝑗B𝑖𝑖𝑡𝑡�𝑗𝑗 = (1,2,3, … ,𝑛𝑛); 𝑖𝑖 = (1,2,3, … ,10) �                               (3) 336 

                        Cmax
𝑡𝑡,𝑖𝑖 = Max�C𝑗𝑗B𝑖𝑖𝑡𝑡�𝑗𝑗 = (1,2,3, … ,𝑛𝑛); 𝑖𝑖 = (1,2,3, … ,10) �                                 (4) 337 

where 𝑖𝑖 is band 𝑖𝑖 in the Sentinel-2 image, 𝑗𝑗 is the sample ID of soybean or corn; and 𝑡𝑡 is 338 

the date (day of the year, DOY, 𝑡𝑡 ∈ int[0,365]). In band 𝑖𝑖, D𝑖𝑖
𝑡𝑡 is the difference between the 339 

band’s minimum spectral value of soybean (Minsoybean) and the band’s maximum spectral 340 

value of corn (Maxcorn ) on day 𝑡𝑡 ; Smin
𝑡𝑡,𝑖𝑖  and Cmax

𝑡𝑡,𝑖𝑖  is the minimum and the maximum 341 
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reflectance of soybean and corn in band 𝑖𝑖 on the day 𝑡𝑡, respectively, which were obtained at 342 

5th and 95th percentiles of the samples for each of the type aiming to eliminate the effect of 343 

noise (e.g., residual cloud and poor-quality pixels) (Zhang et al., 2022). A positive value of D𝑖𝑖
𝑡𝑡 344 

refers to the situation without spectral intersections between soybean and corn.  345 

 346 

Fig. 6. The 𝐷𝐷𝑖𝑖𝑡𝑡 metric plotted for each of the 10 spectral bands. (RE: Red edge; N-NIR: 347 

Narrow NIR). 348 

Based on Eqs. (2)-(4), D𝑖𝑖
𝑡𝑡  was calculated for each of the 10 spectral bands (Fig. 6). As 349 

illustrated by Fig. 6, the only positive D𝑖𝑖
𝑡𝑡  value (0.0486) appeared for the SWIR1 band 350 

(denoted as SWIR hereafter), indicating that SWIR was the most sensitive spectral band for 351 

separating soybean and corn. To test the effectiveness of the SWIR band for separating soybean 352 

and corn, the SWIR time-series profile was generated for each of the land covers (Fig. 7) using 353 

the Sentinel-2 images derived from the GEE platform based on the reference data. 354 
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 355 

Fig. 7. The SWIR time-series profiles of the main land cover types. 356 

The shortwave infrared reflectance is inversely proportional to canopy water content of 357 

vegetation (Yilmaz et al., 2008; Jacquemoud et al., 2009; Zhang et al., 2019a). From the SWIR 358 

time-series profiles of the main land cover types (Fig. 7), it can be seen that there was a 359 

distinct spectral difference between soybean vs. corn, rice, woodland and water. It was 360 

noteworthy that a clear spectral difference between soybean and corn appeared in the 361 

PGS of soybean, peaking at DOY≈218 (similar to the timing of peak NDVI (Fig. 4)). 362 

In addition, small differences between the two crops could also be observed from the 363 

figure during the EGS and LGS of soybean. 364 

3.3 Definition of the Greenness and Water Content Composite Index (GWCCI) 365 

From the above analysis, it was found that during its PGS, soybean maintained an especially 366 

high-level greenness and canopy water content, and based on which, soybean could be 367 

separated from the rest of the land cover types. Therefore, a Greenness and Water Content 368 

Composite Index (GWCCI) was developed by combining the NDVI and SWIR band as 369 

follows:  370 
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GWCCI = NDVI𝑡𝑡 ∗ 𝜌𝜌SWIR𝑡𝑡                                                    (5) 371 

where, 𝜌𝜌SWIR is the reflectance of the SWIR band, t is the date (within PGS) of S2 image. Fig. 372 

8 depicts the GWCCI time-series profile for each land cover type across a full year of 2021. 373 

 374 

Fig. 8. The GWCCI time-series profiles of the main land cover types. 375 

As shown in Fig. 8, the signal of the soybean is greatly enhanced by the GWCCI during the 376 

peak growing season (PGS), whereas those of the other land cover types are normally reduced, 377 

thus greatly highlighting the signal difference between them. Therefore, based on the proposed 378 

GWCCI, soybean can be identified and mapped with just one scene of remotely sensed imagery 379 

within PGS. Soybean mapping using the GWCCI approach was implemented by first 380 

calculating GWCCI map from S2 image, and then map soybean though an automatic 381 

determination of optimal threshold with a grid search method (Zhang et al., 2018b). 382 

The time period of PGS with a start and end date (𝑡𝑡1, 𝑡𝑡2), which is defined as Time Window 383 

(TW), is a prerequisite for image acquisition and soybean mapping. To determine TW, we 384 

adopted the index of Green Chromatic Coordinate (GCC) (Sonnentag et al., 2012; Zhang et al., 385 

2018a; Shen et al., 2022), which is calculated with the following steps: 386 



A Greenness and Water Content Composite Index (GWCCI) for soybean mapping  

23 
 

                                                           GCC =  
G

R + G + B
                                                         (6) 387 

where R, G and B denote the value of red, green and blue bands, respectively. 388 

GCC increases gradually as crop plants germinate and grow, and tends to be stable during 389 

the peak growing season with a little change rate (𝜌𝜌𝑡𝑡), which can be calculated as follows: 390 

                                                         𝜌𝜌𝑡𝑡 =  
GCC𝑡𝑡 − GCC𝑡𝑡−1

GCC𝑡𝑡−1
                                                     (7) 391 

where 𝑡𝑡  is the date; GCC𝑡𝑡  and GCC𝑡𝑡−1  is the GCC value on date  𝑡𝑡 and (𝑡𝑡 − 1) , 392 

respectively; 𝜌𝜌𝑡𝑡 is the change rate of GCC on date 𝑡𝑡. TW is defined as follows: 393 

                       {TW ∈ �𝑡𝑡1，𝑡𝑡2�|𝜌𝜌𝑡𝑡1 = −𝜀𝜀 < 𝜌𝜌𝑡𝑡 < 𝜌𝜌𝑡𝑡2 = 𝜀𝜀, |𝜌𝜌𝑡𝑡| < 𝜀𝜀 }                           (8) 394 

where 𝑡𝑡1, 𝑡𝑡2 are the start and end date of TW respectively, and 𝜀𝜀 is a user-defined threshold. 395 

3.4 Accuracy assessment 396 

The performance of the proposed method was evaluated with four commonly used accuracy 397 

assessment indices, including the overall accuracy (OA%), producer’s accuracy (PA%), user’s 398 

accuracy (UA%), and Kappa coefficient (𝑘𝑘 ). A benchmark comparison study was also 399 

undertaken with three traditional classification approaches (MLC, SVM, and RF) (Xu et al., 400 

2021). MLC, one of the most commonly used classifiers (Zhong et al., 2016a; Ashourloo et al., 401 

2019), is based on the assumption of a Gaussian distribution. SVM, a non-parametric classifier 402 

that makes no assumptions about the distributions of the underlying data, classifies imagery by 403 

establishing a hyper-plane using kernel functions (Azadbakht et al., 2019; Zhang et al., 2021). 404 

RF is essentially an ensemble classifier which has been employed widely for soybean mapping 405 

due to its robustness and convenience (Zhong et al., 2016b; Liu et al., 2019; Li et al., 2020). 406 

The control parameters of the three benchmark classifiers were determined following the 407 
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suggestions of Zhang et al. (2020). 408 

 409 

4. Results 410 

4.1 Time window and optimal thresholds of GWCCI for soybean mapping 411 

The change rate (𝜌𝜌)of GCC and the corresponding TW were determined for each country 412 

by using Eqs. (6) -(8) (Fig. 9). As shown by Fig. 9 (a) and (b), located in the North Hemisphere, 413 

the two counties in China and the US have a similar TW, with an interval of 45 days from day 414 

195 to day 240 (as marked by the black bold line segments) determined by the change rate of 415 

GCC with a threshold (ε) of 0.001 (Eqs. (7) -(8)). In contrast, TWs for the selected counties in 416 

the South Hemisphere were relatively narrower, with an interval of 30 days from day 40 to day 417 

70 (ε=0.01) for Brazil’s Bonfinopolis (Fig. 9 (c)), and 20 days from day 40 to day 60 (ε=0.005) 418 

for Argentina’s Rio Segundo (Fig. 9 (d)), respectively. 419 
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 420 

Fig. 9 Variations in change rate (ρ) of the GCC time-series (blue lines) during the whole 421 

growing season for Hailun, China (a); De Witt, US (b); Bonfinopolis, Brazil (c); and 422 

Rio Segundo, Argentina (d). The black bold line segment in each subfigure illustrates 423 

the length of PGS. Red curve shows the profile of the GCC time series, with the peak 424 

value marked by a green arrow. 425 

Based on the calculated TWs, the optimal threshold of GWCCI of each county in each of 426 

the years (listed in Table 2) was calculated and summarized in Table 3. It can be seen from the 427 

table that the optimal threshold values of GWCCI are relatively stable across the study areas 428 

from 2017 to 2021, mainly fluctuating around 0.17. 429 
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Table 3 The optimal thresholds of the GWCCI determined using a grid search algorithm. 430 

Counties 2021 2020 2019 2018 2017 

Hailun 0.1700 \ \ \ \ 

De Witt 0.1700 0.1739 0.1766 0.1705 0.1700 

Bonfinopolis 0.1759 \ 0.1695 0.1703  0.1709  

Rio Segundo 0.1695 0.1735 0.1701 0.1703  0.1700  

 431 

4.2 Soybean mapping results 432 

The soybean mapping results by the GWCCI approach across the four counties in 2021 were 433 

achieved and presented in Fig. 10 (left panel) (Hailun (Fig. 10A), De Witt (Fig. 10B), 434 

Bonfinopolis (Fig. 10C) and Rio Segundo (Fig. 10D)). The proposed method was also 435 

compared with the benchmarks. For a better visual comparison effect, some typical areas 436 

marked by red rectangles in the GWCCI’s soybean maps (Fig. 10 (left panel)) were zoomed, 437 

with results of the proposed method and benchmarks being illustrated in Fig. 10 (right panel). 438 

The GWCCI was generally able to classify the soybean fields accurately with precise field 439 

boundary information, delivering results in relatively good consistency with the reference data, 440 

as illustrated by the green circles in Fig. 10. In contrary, obvious classification mistakes were 441 

found in some benchmark methods (MLC, SVM and RF), as marked by the red circles. For 442 

example, in Hailun, a large piece of soybean field identified by GWCCI (see Fig. 10A (a3)) 443 

was erroneously omitted by all three benchmarks. In addition, linear soybean fields (e.g., Fig. 444 

10A (a1, a2 and a4)) and the boundary of a large soybean field (e.g., Fig. 10A (a3)) captured 445 



A Greenness and Water Content Composite Index (GWCCI) for soybean mapping  

27 
 

by GWCCI were undetected by the other methods. For the county in the North Hemisphere, 446 

the soybean field marked with a green circle (Fig. 10B (b1)) in De Witt was exactly detected 447 

by the GWCCI, but some of its soybean pixels were underestimated by MLC, as marked within 448 

the red circle. Meanwhile, compared with the benchmarks, a more accurate classification was 449 

achieved for soybean-dominated pixels (soybean pixels mixed with a small ratio of other land 450 

covers) by GWCCI (Fig. 10B (b2)), with clearly less omission of soybean pixels. Besides, 451 

soybean fields with relatively large areas in Bonfinopolis were identified accurately with high 452 

geometric fidelity by the GWCCI (Fig. 10C (c1, c2, c3)), but they were partially omitted by 453 

SVM and RF, or nearly completely omitted by MLC (Fig. 10C (c2, c3). Moreover, small and 454 

fragmented soybean fields in Rio Segundo were detected entirely by the GWCCI (Fig. 10D 455 

(d1, d2, d3)), whereas most of these soybean pixels were more or less undetected by the three 456 

comparators. In short, the GWCCI acquired desirable results in which soybean fields were 457 

accurately separated from other land cover types with not only little salt-and-pepper noise, but 458 

also high geometric fidelity. 459 

 460 

 461 
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 462 

Fig. 10. Soybean maps (in the left panel) achieved by GWCCI for the Hailun (A), De 463 

Witt (B), Bonfinopolis (C) and Rio Segundo (D). Zooms of classification results (in the 464 

right panel) obtained by the four methods (from left to right: Ground reference (GR) 465 

soybean fields delineated using purple lines on the false colour S2 images (R: B7, G: 466 

B6, B: B3), GWCCI, MLC, SVM and RF). 467 
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4.3 Accuracy assessment 468 

The accuracy of the soybean mapping based on the GWCCI was assessed quantitatively and 469 

compared with the MLC, SVM and RF classifiers, by using confusion matrices constructed 470 

with the testing data and the corresponding classification results (Table 4). The GWCCI 471 

achieved consistently the highest mapping accuracy in four study areas, with an average OA 472 

up to 96.29% (2.82%-to-7.23% higher than the benchmarks) and an average Kappa coefficient 473 

up to 0.92 (0.06-to-0.15 higher than the benchmarks). Amongst the three benchmarks, the 474 

accuracy of SVM ranked first, with an average OA of 93.47% and an average Kappa 475 

coefficient of 0.86, followed by the RF, and MLC delivered the least accuracy, with an average 476 

OA of 89.06% and an average Kappa coefficient of 0.77. 477 

Table 1 Quantitative assessment of the classification accuracy of the GWCCI method and the 478 

three benchmarks, with the optimum result (in bold) of each column for each county. 479 

Counties Methods OA (%) Kappa (𝑘𝑘) PA (%) UA (%) 

Hailun 

MLC 95.79 0.88 94.89 99.76 

SVM 96.84 0.91 96.19 99.81 

RF 96.36 0.90 95.57 99.81 

GWCCI 97.80 0.93 99.71 97.56 

De Witt 

MLC 81.40 0.63 63.50 98.91 

SVM 96.00 0.92 92.00 99.90 

RF 92.65 0.85 91.10 94.01 

GWCCI 96.15 0.92 92.30 99.00 
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Bonfinopolis 

MLC 88.40 0.77 76.80 99.90  

SVM 91.20 0.82 82.50 99.88  

RF 94.75 0.90 90.70 98.69  

GWCCI 96.65 0.93 99.00 93.72  

Rio Segundo 

MLC 90.65 0.81 81.30 99.90  

SVM 89.85 0.80  79.70  99.00  

RF 86.55 0.73  73.20  99.86  

GWCCI 94.55 0.89  94.00  95.14  

 480 

4.4 Robustness of the GWCCI approach 481 

The robustness of the GWCCI approach over multiple years was investigated first. In 482 

addition to the year of 2021, the approach was also implemented from 2017 to 2020 over the 483 

three selected counties in the American continent, and the soybean accuracies are presented in 484 

Table 5. As illustrated by the table, the OA of the extended four years (2017-2020) is consistent 485 

with that of year 2021 for each of the three counties. That is, the GWCCI performed well, and 486 

relatively stable, across the five years. For example, the OA of the De Witt from 2017 to 2021 487 

fluctuated around 96%, with a standard deviation (SD) of merely 0.73%. Similarly, consistently 488 

accurate and steady OAs (>93%) were also acquired in other two South Hemisphere counites 489 

over the study period, especially for the Bonfinopolis with only a difference of 1.10% between 490 

the greatest and the lowest OA. These desirable results demonstrate the robustness of the 491 

proposed approach over multiple years. 492 
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Table 5 OA achieved by GWCCI across the selected counties over the period 2017-2021. 493 

Numbers followed by a star (*) indicated that the corresponding soybean maps achieved by the 494 

GWCCI were based on the images dated within time window (i.e., PGS). 495 

Counties 

Overall accuracy (%) 

2021 2020 2019 2018 2017 

De Witt 96.15* 97.25* 96.90* 96.25* 95.10* 

Bonfinopolis 96.65 \ 95.55 96.45* 96.60* 

Rio Segundo 94.55 93.30 93.25 94.45* 94.60* 

 496 

Robustness of the GWCCI over time window (TW) was further investigated. Since optical 497 

remotely sensed images are vulnerable to cloud, shadow, haze and fog (Ashourloo et al., 2020), 498 

S2 images dated within the optimal TW (OTW) might not always be available, especially for 499 

the shorter OTW counties in Brazil (30 days) and Argentina (20 days). Rather, using alternative 500 

remotely sensed images, the actual time window (ATW) for the county of Brazil and Argentina 501 

was 58 and 30 days, respectively (Fig. 11). However, such a significant difference between 502 

ATW and OTW had no substantial impact on the classification accuracy, as shown in Table 5 503 

(where an accuracy value marked by “*” was from OTW, the rest from ATW). For example, 504 

the difference in OA between the two periods 2017-2018 (using OTW marked by “*” (Table 505 

5)) and 2019 to 2021 (using images beyond time window) for Rio Segundo is only 0.83%. 506 
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 507 

Fig. 11. The length (day) of Optimal time window (OTW) and actual time window (ATW) for 508 

China/US, Brazil, and Argentina.  509 

5. Discussion 510 

Timely and accurate mapping of soybean has long been an important, but complex challenge 511 

in remote sensing due to the considerable spectral overlap between soybean and other major 512 

crops (e.g., corn and rice). In this research, a novel crop index (named GWCCI) was proposed 513 

for mapping soybean using Sentinel-2 data. The GWCCI was constructed with the NDVI and 514 

SWIR bands, based on analysis of the spectral dynamics of crops. The proposed method was 515 

applied for soybean classification in four major soybean-producing countries in the world that 516 

differed in geography, soybean field size, phenology cropping system and crop management. 517 

Capitalizing on the feature dimensions of NDVI and SWIR, the GWCCI method was able to 518 

highlight the information differences between soybean and other land cover types, and provide 519 

a relatively long-time window for soybean information separation. The classification results 520 

indicate that the GWCCI method can effectively and accurately map soybean fields by using a 521 

single remotely sensed multispectral image, and it achieved the highest classification accuracy 522 

(with an average OA of 96.29% and 𝑘𝑘  of 0.92) in comparison with the three traditional 523 
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benchmark approaches (MLC, SVM and RF). The major advantages of the GWCCI method 524 

include the following two aspects: 1) The proposed concise, robust, and convenient GWCCI 525 

approach can be employed for mapping soybean automatically independent of training datasets, 526 

which saves expensive labor and computational resources that are required for traditional 527 

machine learning data training and sampling collection processes using time-series imagery. (2) 528 

The relatively long-time window for the computation of GWCCI may facilitate large-scale 529 

cloud-free data collection, given the fact that the soybean growing stage is commensurate with 530 

rainfall, promoting practical application of the GWCCI. Moreover, it may allow soybean 531 

detection ahead of time, which can be carried out as early as mid-July, up to three months before 532 

the soybean harvest, the time normally required by time-series based mapping approaches. 533 

In this research, the GWCCI method incorporates the feature dimension benefits of the 534 

NDVI and SWIR bands by choosing the period that is most discriminative between soybean 535 

and other crops, that is, when soybean greenness and canopy water content are most different 536 

to those of other crops (e.g., corn). NDVI is used typically to represent the greenness of 537 

vegetation (He et al., 2021; Chen et al., 2021). During the growing stage, the greenness of 538 

soybean increases steadily with the gradual emergence of more lush foliage, and reaches a peak 539 

in the PGS. Meanwhile, the plant height of corn increases sharply while soybean grows more 540 

slowly relatively. The height difference between soybean and corn also peaks in the PGS with 541 

a significant difference in canopy water content, as captured by the SWIR band (Zhong et al., 542 

2016a; Zhang et al., 2020). Therefore, both soybean and corn reach not only high greenness, 543 

but also high water content differences. The multiplication of NDVI and SWIR, as adopted by 544 
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the proposed GWCCI, reflects comprehensively the spectral differences amongst the different 545 

land cover types, as illustrated by Table 6. For example, with both large values of NDVI and 546 

SWIR, soybean achieves a large GWCCI value, while corn has a medium GWCCI value due 547 

to the large NDVI, but small SWIR. Moreover, the construction of GWCCI depending on 548 

soybean’s biophysical mechanism of its correlated development of the greenness and canopy 549 

water content provides a new strategy for detecting other similar vegetation from remotely 550 

sensed images. 551 

Table 2 The effect of GWCCI as the product of NDVI and SWIR for different land cover types 552 

(H=High; M=Medium; L=Low). Soybean is the only crop with a high value of the GWCCI. 553 

Land cover types NDVI SWIR GWCCI 

Soybean H H H 

Corn H L M 

Rice H L M 

Other crops L H M 

Woodland H L M 

Built-up area L H M 

Water L L L 

Spectral differences at certain phenological stages are used commonly to classify crops, as 554 

was done in the current research (Konduri et al., 2020; Ajadi et al., 2021). Diverse spectral 555 

bands carry a variety of spectral information, which can reflect the greenness, brightness, or 556 

water content (Liu et al., 2020; Li et al., 2021a) of crops, amongst others, such as to support 557 
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classification. However, data redundancy may appear in some spectral bands, which can impact 558 

the classification accuracy negatively (Zhong et al., 2016a; Zhang et al., 2021). In this paper, a 559 

correlation analysis was conducted for the 11 variables utilized (10 spectral bands and NDVI) 560 

based on 1000 samples chosen randomly from the Sentinel-2 image (Table 7). It was found 561 

that the correlation coefficient between NDVI and SWIR was 0.4, which can be regarded as a 562 

weak correlation, and was not statistically significant (Sheugh and Alizadeh, 2015; Zhou et al., 563 

2016). Meanwhile, SWIR produced a large correlation with the remaining nine bands, which 564 

were, thus, considered to contain some duplicate information statistically. The relative 565 

independence of each variable in the GWCCI (i.e., NDVI and SWIR) is critical for accurate 566 

soybean information extraction, as well as the rich (full band) spectral information contained 567 

inside the two variables of GWCCI. 568 

Table 7 The correlation (r) of 11 variables from the imagery of Sentinel-2 in mid-July. 569 

 Blue Green Red 
Red 

Edge1 

Red 

Edge2 

Red 

Edge3 
NIR 

Red 

Edge4 

SWIR1 

(SWIR) 
SWIR2 NDVI 

Blue 1 0.90 0.86 0.88 0.85 0.81 0.81 0.81 0.86 0.85 0.17 

Green 0.90 1 0.85 0.98 0.96 0.92 0.91 0.91 0.96 0.96 0.31 

Red 0.86 0.85 1 0.81 0.77 0.71 0.71 0.71 0.78 0.78 -0.13 

Red 
Edge1 0.88 0.98 0.81 1 0.98 0.93 0.92 0.92 0.99 0.99 0.37 

Red 
Edge2 0.85 0.96 0.77 0.98 1 0.97 0.96 0.96 0.99 0.99 0.46 

Red 
Edge3 0.81 0.92 0.71 0.93 0.97 1 0.99 1.00 0.94 0.92 0.58 

NIR 0.81 0.91 0.71 0.92 0.96 0.99 1 0.99 0.92 0.91 0.60 
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Red 
Edge4 0.81 0.91 0.71 0.92 0.96 1.00 0.99 1 0.93 0.92 0.58 

SWIR1 
(SWIR) 0.86 0.96 0.78 0.99 0.99 0.94 0.92 0.93 1 0.99 0.40 

SWIR2 0.85 0.96 0.78 0.99 0.99 0.92 0.91 0.92 0.99 1 0.38 

NDVI 0.17 0.31 0.13 0.37 0.46 0.58 0.60 0.58 0.40 0.38 1 

Note: Correlation is significant at the 0.05 level. 570 

While contributing major advantages over traditional soybean mapping methods, some 571 

limitations still exist in the proposed GWCCI. First, the GWCCI was derived with 572 

representative agricultural landscape consisting of major crops (soybean, corn, rice) and some 573 

local crops, yet there is still room for improvement, especially for handling complex landscapes 574 

with greater crop diversity. Second, although the probability of achieving a cloud-free image 575 

mosaic for the GWCCI computation is extremely high with different dates of imagery within 576 

the GWCCI time window, it is still not guaranteed that it will be possible to acquire complete 577 

optical remotely sensed data covering a large region, which may lead to misclassification over 578 

cloud covered areas (Kontgis et al., 2015; Picoli et al., 2018; Zhang et al., 2020).  579 

6. Conclusions 580 

We developed a new vegetation index named GWCCI for the soybean mapping and 581 

classification, a goal that has been challenging to-date due to the considerable spectral overlap 582 

between soybean and other crops. The proposed GWCCI is a simple, reliable and cost-effective 583 

approach for mapping soybean. We evaluated extensively the proposed GWCCI across four 584 

counties distributed in four major soybean-producing countries in the world during the period 585 

from 2017 to 2021. When compared against three benchmark methods (MLC, SVM and RF) 586 
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the GWCCI produced consistently the most accurate results in terms of the OA, Kappa index 587 

and Producer’s Accuracy, demonstrating the wide applicability potential of the GWCCI across 588 

a variety of agricultural landscapes over multiple years. Moreover, in a further experiment, the 589 

GWCCI was shown to be fairly robust to choose of image acquisition date, thus, facilitating 590 

computation of the index from a time-series contaminated by clouds. The GWCCI, thus, can 591 

produce a high classification accuracy for in-season soybean classification while reducing costs, 592 

for example, avoiding the need for the collection of massive training datasets and preprocessing 593 

large time-series images. Given that soybean represents approximately 5% of all crops grown 594 

globally, the GWCCI has great potential for widespread application in operational settings, for 595 

example, as the basis for decision-making in support of economic production and to ensure 596 

local food security. 597 
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