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ABSTRACT  

In many European metropolitan areas, the urban transit system is a mixture of schedule- and frequency-

based services. This study proposes an integrated transit frequency and schedule design problem (ITFSDP), 

where frequencies and schedules are simultaneously determined, and develops a bi-objective model for the 

ITFSDP to minimise operation costs and total passenger-perceived generalised travel cost. Meanwhile, the 

passengers’ route choice behaviour is described by the bounded stochastic user equilibrium (BSUE). The 

in-vehicle congestion effect is represented using a set of constraints that differ in terms of the sitting and 

standing costs as sitting and standing passengers perceive crowding differently. This set of constraints 

captures the realistic behavioural feature that having occupied a seat, users remain seated at subsequent 

stops in the same vehicle. The problem is formulated as a mixed integer nonlinear programming problem, 

which is subsequently linearised to a mixed integer linear programming problem and solved using a branch-

and-bound algorithm. A column generation-and-reduction phase is embedded in the solution algorithm to 

obtain the bounded choice set according to the BSUE constraints. Experiments are conducted to illustrate 

the model’s properties and the performance of the solution method. In particular, we demonstrate a Braess-

like paradoxical phenomenon in the context of transit scheduling and highlight that well-synchronised 

transit services can deteriorate the network performance in terms of the total passengers’ generalised travel 

cost when considering passenger congestion costs due to crowding.  

Keywords: Public transport; Transit frequency and schedule design; Stochastic user equilibrium; Bounded 

choice model; Bilevel programming 

1. INTRODUCTION  

The existing studies on public transport planning address the transit frequency setting and the timetabling 

problems separately and do not simultaneously focus on both problems (Ceder and Wilson 1986; Guihaire 
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and Hao 2008). However, many European urban transit systems involve a mixture of systems, such as 

frequency-based services in the centre and schedule-based services in the suburbs, and many passengers 

rely on more than one type of service to complete a journey. For example, in Greater Copenhagen, bus line 

150S is operated based on frequency; specifically, the number of runs per hour departing from the terminal 

is predetermined by the operator (Movia 2020a). In contrast, bus line 350S is operated based on a schedule; 

specifically, a predetermined timetable is provided to passengers, and the operator must comply with the 

timetable (Movia 2020b). Meanwhile, passengers travelling between Lundtofteparken and Elmegade may 

need to transfer from 150S to 350S (see Appendix A for an overview from Google Maps). To enhance the 

coordination for providing a seamless travel experience to retain existing users and attract new users, it is 

of practical significance to simultaneously design the two types of services. In this study, this problem is 

named as integrated transit frequency and schedule design problem (ITFSDP) and a bi-objective 

optimisation model is developed to solve it. To be more specific, the frequencies associated with frequency-

based lines and the timetables related to the schedule-based lines are determined to minimise operation 

costs and total passenger-perceived generalised travel cost. In addition to considering operational 

constraints associated with the two types of services, we also incorporate constraints to characterise 

passengers’ route choice behaviour and capture a realistic seating behaviour such that once having occupied 

a seat, users remain seated at subsequent stops in the same vehicle. To a certain extent, the considered 

problem can be viewed as that of determining the frequency and schedule for high- and low-frequency lines, 

respectively. However, we label the services of high- and low-frequency lines as frequency- and schedule-

based services, respectively, as our considered problem is more general in the sense that lines operating 

based on a schedule or frequency do not necessarily have a low or high frequency, respectively. This 

situation is in accordance with the existing public transport system in Copenhagen (Eltved et al. 2019; 

Gardner et al. 2021).  
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1.1.  Literature Review  

Transit network design problems have received considerable attention over the last two decades. Such 

problems involve five stages, namely, network design, frequency design, schedule design, vehicle 

scheduling, and crew scheduling (Ceder and Wilson 1986). A comprehensive discussion of all stages of the 

transit network design problem has been provided by Guihaire and Hao (2008), Schöbel (2017), Farahani 

et al. (2013), Cancela et al. (2015) and Ibarra-Rojas et al. (2015). Since this study aims at determining 

frequencies and schedules, we focus on reviewing the literature related to the frequency design and schedule 

design stages. 

  To solve the frequency design problem, Borndörfer et al. (2007) developed a multicommodity flow 

model in which passengers can be freely routed to minimise the total travel cost. Bertsimas et al. (2021) 

extended this model by considering the passengers’ transfer behaviour. Goerigk and Schmidt (2017) 

developed a bilevel mixed integer programming model to determine the frequency, assuming that the 

passengers select the shortest path in the lower level. Szeto and Jiang (2014) incorporated hard capacity 

constraints into the lower-level transit assignment model and developed a metaheuristic algorithm based on 

the Karush–Kuhn–Tucker conditions of the lower-level problem to derive the descent direction for updating 

frequencies. Martínez et al. (2014) formulated a mixed integer linear programming (MILP) model that 

avoided the bilevel structure and proposed a metaheuristic algorithm for solving large network applications.  

To solve the schedule design problem, several researchers have focused on the schedule-

synchronisation problem via a mixed integer programming approach. Ceder et al. (2001) and Ceder and Tal 

(2001) considered the number of simultaneous bus arrivals and proposed a mixed integer formulation to 

determine the departure times of buses. Ibarra-Rojas and Rios-Solis (2012), Ibarra-Rojas et al. (2016) and 

Fouilhoux et al. (2016) explicitly devised a binary decision variable representing the feasibility of 

synchronisation and determined a schedule to maximise the number of synchronisations. Instead of 

counting the number of synchronisations, Wong et al. (2008) directly minimised the passengers’ waiting 

time, which was expressed as a set of constraints. Ávila-Torres et al. (2018) developed a model to determine 
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the frequency and schedule in an integrated manner. However, in their model, the frequency was computed 

in a pre-processing step instead of being simultaneously optimised with a schedule. 

 The existing approaches aim at optimising the services of a fleet operated homogeneously, i.e., based 

on either frequency or schedule. In practice, transit lines or fleets owned by different operators may operate 

differently. In this scenario, commuters may rely on more than one type of service to complete a journey 

(Eltved et al. 2019). In this context, it is desirable to develop an integrated optimisation model, similar to a 

multimodal transport network design problem, which may be more effective than the existing approaches 

when different transport modes are jointly considered (Bertsimas et al. 2020).   

 To consider the passengers’ route choice behaviour in a frequency or schedule design problem, the 

prevailing behavioural assumptions pertain to the user-optimal (Mesa et al. 2014; Schmidt and Schöbel 

2015; Szeto and Jiang 2014; Goerigk and Schmidt 2017) and stochastic user equilibrium (SUE) (Li et al. 

2010). The SUE is more general than the user-optimal. Notably, a multinomial logit (MNL) SUE model 

can approximate a user-optimal model by setting a large scaling parameter. Nevertheless, the SUE model 

is built upon the assumption that each route has a positive probability of being chosen, irrespective of the 

degree of its nonoptimality. This assumption may not hold in practice due to passengers’ time constraints. 

To address this aspect, Watling et al. (2018) developed a more realistic bounded SUE (BSUE), assuming 

that passengers only consider alternatives with costs within a cost bound to the minimum cost alternative. 

The BSUE model is more general than the MNL SUE model as the MNL SUE model has been proven to 

be a special case of the BSUE model when the bound approaches infinity. Therefore, in this study, the 

BSUE is used to reflect the passenger route choice behaviour. 

 In existing studies on frequency and schedule design, the effect of sitting and standing in modelling the 

in-vehicle congestion has not been considered. Intuitively, the aspect of a passenger being seated influences 

the comfort level, which affects the passengers’ route choice. This aspect has been empirically 

demonstrated in several studies (Wardman and Whelan 2011; Tirachini et al. 2016; 2017), which indicated 

that standing and sitting are valued differently by passengers. Although the effects of seating have been 

modelled in transit assignment models (Hamdouch et al. 2011; Schmöcker et al. 2011; Leurent 2014; Cats 
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et al. 2016; Tang et al. 2020), they have not been incorporated into a model to determine either frequencies 

or schedules.  

1.2. Paper contributions and structure 

The main contributions of this study are as follows. Firstly, we propose a new ITFSDP. Practically, it 

applies to an urban transit system where transit lines are operated in a mixed manner, i.e., some are based 

on the frequency, and some are based on the schedule. It differs from existing studies that determine the 

services of a fleet operated with only one type of service. Secondly, we develop a bi-objective optimisation 

model for the ITFSDP to minimise operation costs and total passenger-perceived generalised travel cost. It 

considers passengers’ route choice behaviour described by the BSUE. Furthermore, it uses a set of 

constraints to capture a realistic seating behaviour such that once having occupied a seat, users remain 

seated at subsequent stops. 

 The remainder of the paper is structured as follows. Section 2 introduces the assumptions and notations 

used in this paper and describes the formulation of the ITFSDP. Section 3 introduces the solution algorithm. 

Details of the numerical studies are presented in Section 4. Finally, Section 5 summarises our findings. 

2. MATHEMATICAL FORMULATION  

2.1.  Problem Statement 

We consider a finite planning horizon [0, ]T  for a transit network that contains both frequency- and 

schedule-based lines. The sets of links, nodes and lines in the network are denoted by E , N , and L , 

respectively. Each link e E  in the network is defined by a 3-tuple, ( ), ,e i j l= , which contains three 

elements, namely, tail node i N , head node j N , and transit line l L . Correspondingly, we use ( )t e , 

( )h e , and ( )e  to map the tail node, head node, and transit line associated with link e E , respectively. 

The in-vehicle travel time associated with link e E  is given by eT . 

 The sets of frequency- and schedule-based lines are respectively denoted as freL  and schL  with 

fre schL L L =  and fre schL L =   . A transit line l L  contains lM  stops, and the sets of stops and links 
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that the line traverses are denoted by  1 2, ,..., lM

l l l lS s s s=  and  11 2, ..., lM

l l l lA e e e
−

= . A bus of line l L   has 

a limited number of seats, denoted as seat

lCap . For a schedule-based line schl L  , the number of runs to be 

scheduled is lQ . The maximum and minimum headways are defined as max

lH  and min

lH . In general, to 

determine the maximum and minimum headways, various factors, such as resource constraints, safety 

considerations, and demand distribution, must be considered (Chen et al. 2019; Zhang et al. 2020). To the 

best of our knowledge, most existing studies on the network design problem treat these two values as 

exogenously defined parameters (for example, Wong et al. 2008; Ibarra-Rojas et al. 2016; Guo et al. 2017). 

Moreover, several studies do not consider these entities as critical constraints in the model, restrict the 

frequency (inverse of the headway) to be nonnegative (Borndörfer et al. 2007; Bertsimas et al. 2021), or 

confine the lower bound of the frequency (upper-bound headway) (Constantin and Florian 1995). 

 On the demand side, we are given the number of passengers travelling between certain pairs of nodes, 

known as origin-destination (OD) pairs. The set of all OD pairs is denoted by W . Note that an origin or 

destination must be a node in the network, but not vice versa. Each OD pair w W  is defined by four 

attributes, ( ), , ,w w w ww o d G TD= , where wo N  and wd N  denote the origin and destination nodes, 

respectively, and wG  represents the number of passengers whose departure time interval is wTD . As the 

time horizon is discretised into time intervals, demand wG  consists of all passengers departing within 

interval wTD . For simplicity, a passenger’s departure time equals the user’s arrival time at the first departure 

transit stop. Passengers travelling between the same origin and destination nodes with different departure 

time values are treated as different OD pairs owing to their difference in wTD .  

 The set of passenger paths connecting OD pair w W  is denoted by wR . A passenger path wr R  is 

composed of either one transit line or multiple lines when transfers are involved. To represent this 

phenomenon, 
,transferw

rN  denotes the set of stops at which passengers transfer. The sets of boarding and 

alighting stops in path wr R  are  ,transferw w

rN o  and  ,transferw w

rN d , respectively. At a boarding 
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(alighting) stop  ,transferw w

ri N o   (  ,transferw w

ri N d  ) along path wr R , the link that passengers board 

(alight) is indexed by 
,board

,

w

r ie (
,alight

,

w

r ie ). Correspondingly, the boarding (alighting) line is ( ),board

,

w

r ie  

( ( ),alight

,

w

r ie ). Finally, we use w

rN  and w

rE  to denote the sets of all stops and links traversed by path wr R .  

 The following assumptions are made throughout the analysis: A1) Travel demand wG  and departure 

time wTD  are known and deterministic (Nuzzolo et al. 2001; Hamdouch et al. 2011). Although the 

acquisition of OD data is beyond the scope of this study, it is acknowledged that given the penetration of 

smart card data and advanced methodologies for OD estimation (Hussain et al. 2021), more detailed OD 

matrices may be available in the future. In addition, an increasing number of recent studies have assumed 

that the time-dependent passengers’ demand data are known (Shafiei et al. 2020; Yin et al. 2021; Lee et al. 

2022). A2) A passenger boards the first arriving vehicle of the transit services on the chosen path. This is 

commonly used to simplify the computation of the waiting time in research on the transit assignment 

problem (De Cea and Fernández 1993; Toledo et al. 2010; Cortés et al. 2013). A3) The passengers’ travel 

behaviour is described by the BSUE (Watling et al. 2018). The choice set of used paths is determined by a 

parameter   that defines a bound on the generalised costs of paths that are considered attractive. Any paths 

that deviate more than   units from the actual minimum generalised cost path are not considered relevant 

and assigned a zero choice probability. Paths with costs below the bound defined by   are assigned a 

positive choice probability.  

 Based on these assumptions, a bi-objective optimisation model is developed to determine the following 

key decision variables simultaneously. 

 1) lf : Frequency of line frel L  operated based on frequency. The headway associated with line 

frel L  , lh , is 1
l

l

h
f

= .  

 2) arr

, ,l i q , dwell

, ,l i q , and dep

, ,l i q : Arrival, dwell, and departure time of the qth run of schedule-based transit line 

schl L , at stop li S . The dwell time is determined based on the number of boarding and alighting 
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passengers. Moreover, a minimum dwell time is imposed to reflect that vehicles halt at each stop for a 

certain duration, and stops cannot be skipped.  

      3) w

r : Generalised travel cost associated with path wr R  connecting OD pair w W . This term is 

defined as a weighted sum of different path characteristics, including in-vehicle travel time, waiting time, 

and congestion due to limited capacity. The coefficients associated with each characteristic, inveh , wait , 

and cap , can be interpreted as users’ perceived values for each characteristic and can be calibrated from 

survey data (Dell’Olio et al. 2011; Anderson et al. 2017; Nielsen et al. 2021). Alternatively, the cost term 

is similar to the concept of utility, which is a more commonly used term in the literature on using discrete 

choice models to depict travellers’ route choice behaviour. Given w

rE , which is the set of links traversed 

for path wr R  connecting OD pair w W , the path in-vehicle travel time can be computed in a 

straightforward manner. The waiting time can be expressed by a set of constraints (Section 2.3.1). To model 

the congestion cost associated with capacity constraints, the soft capacity constraint approach is used in this 

study. In other words, passengers are allowed to board a congested vehicle and thereby induce additional 

discomfort levels. This phenomenon is consistent with the transit system in Copenhagen and other cities, 

such as Hong Kong and Beijing. Specifically, we devise a linear function, as described in Section 2.3.2, 

which includes four parameters: a constant discomfort value independent of the number of passengers ( 0 ), 

a coefficient associated with the number of onboard passengers ( 1 ), a coefficient associated with the 

number of standing passengers ( 2 ), and an additional penalty ( 3 ) that is activated when the vehicle is 

congested or the number of passengers is more than the number of seats. These parameters can be calibrated 

with reference to the existing studies on crowding valuation (Wardman and Whelan 2011; Tirachini et al. 

2016; 2017). 

       4) BSUE

wR : Bounded path choice set for OD pair w W . Multiple paths may exist between an OD pair. 

According to assumption A3), if path wr R  is being traversed by passengers, its generalised travel cost 

w

r  must be no higher than a predefined bound value plus the minimum generalised cost of all paths 
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connecting OD pair w W . The set of paths satisfying this condition is named the bounded path choice set. 

In the optimisation model (Section 2.2), the path set is considered as a parameter. However, because the 

composition of a path depends on frequencies and schedules, the path set cannot be specified in advance. 

Thus, in the proposed algorithm described in Section 3.1, the path set is iteratively updated through a 

column generation-and-reduction step. 

 5) w

rp : Probability of passengers travelling between OD pair w W  selecting path wr R . The 

probability of selecting one path from the set is determined by the discrete choice model developed by 

Watling et al. (2018), which is formulated as constraints in Section 2.2. As the demand associated with an 

OD pair is known, the number of passengers travelling via a path can be calculated as w w

rG p . 

Table 1 Notation 

(a) Parameters 

Notation Description 

Network parameters 

T  Time horizon 

E  Set of links in the network  

N   Set of stops in the network  

eT  Travel time associated with link e E   

( ) ( ) ( ), ,t e h e e   Tail node, head node, and transit line associated with link e E   

OD-related parameters 

W   Set of OD pairs 

,w wo d   Origin and destination node of OD pair w W   

wTD  Departure time associated with OD pair w W   

wG   Travel demand between OD pair w W   

Route choice model–related parameters  

wR   Set of paths connecting OD pair w W   

  Nonnegative bound value to determine the bounded path choice set 

BSUE

wR   

Bounded path choice set. Set of paths satisfying the condition that the generalised travel cost 

of any path in the set is no higher than a predefined bound value () plus the generalised 

travel cost of the shortest path connecting OD pair w W . (Note: This term is considered 

an exogenous parameter to the nonlinear model described in Section 2.2, whereas it is 

determined iteratively in the algorithm). 

  Scale parameter used in the BSUE model 
w

rN  Set of nodes traversed by path 
wr R  connecting OD pair w W   
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,board

,

w

r ie , ,alight

,

w

r ie  
Link in which passengers board or alight at node 

w

ri N  along path 
wr R  connecting OD 

pair w W   

w

rE  Set of links traversed by path 
wr R  connecting OD pair w W   

, transferw

rN  
Set of transfer nodes along path 

wr R  connecting OD pair w W . The sets of boarding 

and alighting nodes are defined as  ,transferw w

rN o  and  ,transferw w

rN d , respectively. 

inveh ,
wait ,

cap   
Coefficients associated with different travel time components, i.e., in-vehicle time, waiting 

time, and congestion time, for computing the generalised travel cost 

0 ,
1 ,

2 ,
3   Coefficients used to compute the perceived congestion level 

4  
Parameter to represent the number of passengers in terms of the boarding/alighting time. 

Intuitively, this term represents the average time for a passenger to board/alight a bus.  

Transit system parameters  

L  Set of all transit lines 

freL ,
schL   Set of lines operated based on the frequency and schedule  

op

lC  Frequency-dependent operation cost for line l 

seat

lCap  Seating capacity of a vehicle of line l L   

lM  Number of stops traversed by line l L   

lS  Set of stops traversed by line l L  ,  1 2, ,..., lM

l l l lS s s s=  

lA  Set of links traversed by line l L ,  11 2, ..., lM

l l l lA e e e
−

=  

max

lH , 
min

lH   Maximum and minimum headway of line l L   

min

,l iD  Minimum dwell time of line l L  at stop 
li S   

lQ  Number of runs to be scheduled for line schl L  

weight  Weighting parameter associated with the operation cost in the objective function 

(b) Variables 

Transit system-related variables  

lh , 
lf    Headway and frequency of line frel L  

dwell

,l i   Dwell time of line l L  at stop li S   

arr

, ,l i q , dwell

, ,l i q , dwell

, ,l i q   Arrival, dwell, and departure time values of the qth run of line schl L  at stop li S  

Route choice-related variables  

w

rp  Probability of selecting path 
wr R  for passengers travelling between OD pair w W   

w

r  Generalised travel cost associated with path 
wr R  connecting OD pair w W   

,arr ,wait ,dep

, , ,, ,w w w

r i r i r it t t  
Arrival, waiting, and departure time at stop 

w

ri N  for passengers travelling between OD pair 

w W  via path 
wr R   

cap,seat

et   Perceived congestion level for sitting passengers traversing via link e E   

cap,stand

et   Perceived congestion level for standing passengers traversing via link e E   

,cap

,

w

r et   
Perceived congestion level for passengers of OD pair w W  traversing link e E  on path 

wr R   



11 

 

,board

, , ,

w

r l i q  
= 1, if passengers travelling between OD pair w W  via path 

wr R  board the qth run of line 

schl L  ; = 0 otherwise 

congest

e  
= 1 if the number of passengers onboard is less than the seating capacity when passing through 

link e E ; = 0 otherwise 

,seat

,

w

r e  
= 1 if a passenger of OD pair w W  using path 

wr R  is seated when traversing link e E  ; 

= 0 otherwise 
alight

, k
ll s

v   Number of passengers alighting at the kth stop of line l L   

board

, k
ll s

v  Number of passengers boarding the kth stop of line l L   

onboard

ev   Number of passengers aboard and traversing link e E   

2.2.  Concise Formulation of the bi-objective model for the ITFSDP 

To illustrate the model framework, the concise formulation is presented in the following equations: 

   
freBSUE

weight opmin
w

w w w

r r l l

w W l Lr R

G p C f 
 

+   ,  (1) 

Subject to 

   
min max

fre,l l lH h H l L    ,  (2) 

   fre1,l lh f l L=   ,  (3) 

   dep arr dwell

, , , , , , sch, , \{ }, 1,2,..,lM

l i q l i q l i q l l ll L i S s q Q  = +    = ,  (4) 

   
( ) ( ) ( ) ( ) ( ) ( )

dep arr

sch, , , ,
, , , 1,2,...,ee t e q e h e q e

T e E e L q Q + =    = , (5) 

   dep

, , sch0, , , 1,2,...,l i q l ll L i S q Q     = , (6) 

   1

dep max

sch, ,1
,

l
ll s

H l L    ,  (7) 

   min dep dep max

, , 1 , , sch, , \{ }, 1,2,..., 1lM

l l i q l i q l l l lH H l L i S s q Q + −     = − ,  (8) 

   arr

, , sch0 , , , 1,2,...,l i q l lT l L i S q Q     = , (9) 

 dwell min

, , , sch, , \{ }, 1,2,..,lM

l i q l i l l lD l L i S s q Q     = , (10) 

  
( )( )( )

( )( )( )
BSUE

" BSUE

BSUE

' " BSUE

'

exp min : " 1
, ,

exp min : " 1
w

w w w

r r
w w

r
w w w

r r

r R

r R
p w W r R

r R

   

   


− −  − −
=   

− −  − −
, (11) 

   

BSUE

1 
w

w

r

r R

p w W


=    , (12) 

   BSUE0, ,w w

rp w W r R    . (13) 

Two objectives are considered, and we use the weighted sum method to aggregate them into one objective 

function. The first term in objective function (1) corresponds to the total passengers’ generalised travel cost, 
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in which w

r  is the generalised travel cost of path wr R , and w w

rG p  is the number of passengers travelling 

via the path. The second term in the objective function corresponds to the frequency-dependent operation 

cost, which is obtained by multiplying the total frequency by a frequency-dependent operation cost 

parameter (Fan and Machemehl 2006; Tirachini et al. 2010). The two costs are generally conflicting; a 

higher frequency corresponds to lower generalised passenger travel costs owing to the reduction in the 

passengers’ waiting time but higher operation costs.  

 Equations (2) and (3) are the operational constraints for the frequency-based lines. Equation (2) ensures 

that the maximum and minimum headway values for the frequency-based lines are adhered to. Equation (3) 

defines the reciprocal relationship between the frequency and headway.  

 The operational constraints for the schedule-based services are presented as Equations (4)–(10). 

Equation (4) indicates that the departure time of the qth run of line 
schl L  from stop 

li S  is determined by 

the vehicle’s arrival and dwell times. Equation (5) indicates that the arrival time at the head node of link 

e E , ( )h e , is the sum of the departure time from its tail node, ( )t e , and travel time between the two 

consecutive stops via the line associated with the link, ( )e . Equation (6) is the nonnegativity constraint 

for departure times. According to Eq. (7), the first vehicle departs from the terminal before the maximum 

headway. Equation (8) represents the headway constraint for schedule-based lines. Equation (9) ensures 

that the last vehicle arrives at the last stop no later than the end of the modelling period. Equation (10) sets 

the minimum dwell time. Section 3.3.3 presents an equation for explicitly computing the dwell time. 

 Equations (11)–(13) represent the BSUE assignment constraints. Equation (11) specifies that between 

OD pair w W , the probability of selecting path BSUE

wr R  depends on a scaling parameter   as in the 

traditional SUE model (Sheffi 1985), bound parameter  , and generalised travel cost 
w

r . Equations (12) 

and (13) are definitional constraints. We formulate these constraints in a manner that is slightly different 

from that used in Watling et al. (2018). Our constraints are formulated explicitly using bounded choice set 
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BSUE

wR  that will be iteratively provided by the column-generation-and-reduction algorithm (see Section 3), 

while Watling et al. (2018)’s formulation is built upon all choices.    

 Because the proposed integrated model uses both frequencies and schedules as the decision variables, 

the optimal objective value obtained from the integrated optimisation model should be no greater than that 

of a model that optimises either frequency- or schedule-based lines. This is because the optimal solution to 

a model that optimises either the frequency or the schedule is a feasible solution to the integrated 

optimisation model, and a feasible solution cannot have a lower objective value than the optimal solution 

in a minimisation problem. This aspect stresses the significance of the proposed integrated optimisation 

approach. Moreover, this aspect implies that the objective value of the model that only optimises the 

frequency or schedule assigns an upper-bound value to the integrated model, inspiring us to develop a 

branch-and-bound algorithm. 

2.3.  Formulation of the Generalised Path Cost   

The generalised path cost is defined as  

   

 ,transfer

inveh wait ,wait cap ,cap

, , , ,  
w ww w
r rr

w w w w

r e r i r e

e E e Ei o

T t t w W r R   
  

= + +      . (14) 

The first term on the right-hand side represents the in-vehicle travel time cost. The second term represents 

the waiting time cost, with 
,wait

,

w

r it  described in Section 2.3.1. The third term aggregates the perceived 

congestion cost of all links traversed by path r, with 
,cap

,

w

r et  described in Section 2.3.2.  

2.3.1. Waiting time  

At boarding stop i, the waiting time of the passengers travelling between OD pair w via path r is the 

difference between the passengers’ arrival and departure time values at that stop, expressed as 

    ,wait ,dep ,arr ,transfer

, , , , , ,w w w w w w

r i r i r i rt t t w W r R i N o= −      , (15) 

where the passengers’ arrival time 
,arr

,

w

r it  is defined as  

   
,arr

,
, ,w

w w w

r o
t TD w W r R=    , and (16) 
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( ) ( )

,arr ,dep

, ,
, , ,w w w w

e rr h e r t e
t t T w W r R e E= +     .  (17) 

Equation (16) indicates that the arrival time at the first stop (origin) equals the departure time of that OD 

pair. According to Equation (17), the arrival time at the head node of the link traversed by passengers is 

computed by adding the link travel time to the departure time at the tail node of the link.  

 Under the assumption that passengers board the first arriving vehicle, the following conditions hold if 

the line that users board at node i, ( ),board

,

w

r ie , is a schedule-based line.   

   ( ),arr dep ,board ,transfer ,board

, , ,1 , , ,1 , sch,  if 1, , , ,w w w w w w

r i l i r l i r r it w W r R i N o l e L  =      =   ,  (18) 

  ( )dep ,arr dep ,board ,transfer ,board

, , 1 , , , , , , , sch,  if 1, , , , ,1w w w w w w

l i q r i l i q r l i q r r i lt w W r R i N o l e L q Q −    =      =    ,  (19) 

   ( ),board ,transfer ,board

, , , , sch

1

1, , , ,
lQ

w w w w w

r l i q r r i

q

w W r R i N o l e L
=

 =      =    (20) 

If passengers board the first run of a line, Equation (18) holds; otherwise, Equation (19) holds. Equation 

(20) specifies that users only board one vehicle at a stop. Passengers’ departure time, 
,dep

,

w

r it , depends on the 

line boarded and can be mathematically expressed as  

   ( ),dep ,arr dwell ,board ,board

, , , , fre

1
, , , ,

2

w w w w w w

r i r i l l i r r it t h w W r R i N o l e L= + +      =   , and (21) 

   ( ),dep ,board dep ,board ,board

, , , , , , , sch

1

, , , ,
lQ

w w w w w w

r i r l i q l i q r r i

q

t w W r R i N o l e L
=

=       =   . (22) 

According to Equation (21), if passengers board a frequency-based line, their departure time is the sum of 

their arrival time, expected waiting time approximated by half of the line’s headway and dwell time. 

According to Equation (22), if passengers board a schedule-based line, they depart at the departure time of 

the vehicle that they board. Computation of the dwell time, 
dwell

,l i , is described in Section 2.3.4. 

2.3.2. Perceived congestion level associated with the capacity constraint 

The perceived congestion levels for seated and non-seated passengers are distinguished and formulated as  

  
( )

( )( )

cap,seat onboard onboard seat

0 1

cap,stand onboard onboard seat congest

0 1 2 3

,  if ;                                         
,

,otherwise    

e e e e

e e e ee

t v v Cap
e E

t v v Cap

 

   

 = + 


 
= + + − + 

, (23) 

where congest

e  indicates whether link e is congested and defined as 
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( )

( )

onboard seat

congest

onboard seat

1, if 
,

0, if 

e e

e

e e

v Cap
e E

v Cap

 = 
  

= 

 . (24) 

In Equation (23), if the number of onboard passengers is smaller than the capacity, implying that all 

passengers onboard may be seated, the seating capacity cost is a linear function of the number of onboard 

passengers. When the number of onboard passengers is larger than the capacity, two penalty terms are 

incorporated: one term based on the number of standing passengers, and the other term representing a 

constant penalty, capturing the stepwise increase in the congestion cost. 

 The perceived congestion level associated with link e on path r can be computed as   

   ( ),cap ,seat cap,seat ,seat cap,stand

, , ,1 , , ,w w w w w

r e r e e r e e rt t t w W r R e E=  + −      , (25) 

where 
,seat

,

w

r e  is a binary variable indicating whether the passengers of OD pair w using path r have a seat 

when traversing link e, defined as  

 ,seat

,

1,  if the passengers travelling via route  have a seat
, , ,

0,  otherwise                                                            

w w w

r e r

r
w W r R e E

=
    

=
.  (26) 

Equation (25) implies that the congestion cost associated with the capacity constraint differentiates between 

sitting and standing. To identify passengers’ seating status, the following constraints are devised.  

1

,seat ,seat 1

, ,
, , , , 1,2,..., 1,  and ,k k

l l

w w w k k w

l l l l rr e r e
w W r R l L k A e e A E+

+       = −   , (27) 

( )  ,seat congest ,transfer

,
, , , , 1,2,..., , ,k k

l l

w w k w k w w

l l l r l rr e e
w W r R l L k A e A E t e N o =      =     ,  (28) 

1 1

,seat congest

, k k
l l

w

r e e+ +    , , , , 1,2,..., 1,  and w k w

l l l rw W r R l L k A e A E    = −   , (29) 

1 1

congest ,seat ,seat

, ,k k k
l l l

w w

e r e r e+ + +    , , , , 1,2,..., 1,  and w k w

l l l rw W r R l L k A e A E    = −    . (30) 

According to Equation (27), if passengers have a seat on the kth link of line l, k

le , they remain seated on the 

subsequent link traversed by line l if they do not transfer to other lines. Eqs. (28)–(30) establish the link 

between the congestion status and seating status. Equation (28) indicates that at a boarding stop, the 

passengers’ seating status is in accordance with the congestion status of the link to be boarded. Equations 

(29) and (30) indicate that when passengers travel continuously from the kth link to the (k+1)th link of line 
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l, if link k

le  is congested and link 1k

le +  is not, they have a seat on link 1k

le + . The correctness of these equations 

is demonstrated in Appendix E.  

 To facilitate the formulation of onboard

ev  in Equation (23), we consider three consecutive intermediate 

stops traversed by line l, ( )1 1, , , 2,..., 1k k k

l l l ls s s k M− + = − , and two links between the three nodes, 1k

le −  and k

le . 

The number of onboard passengers on link k

le  is determined by the number of onboard passengers on the 

preceding link 1k

le − , number of passengers alighting from line l at node k

ls , alight

, l
kl s

v , and number of passengers 

boarding line l at node l

ks , board

, l
kl s

v . Mathematically, this value can be expressed as  

   1

alight

,
0,

ll s
v l L=   , (31) 

   1 1

onboard board

,
,

l le l s
v v l L=   ,  (32)

   1

onboard onboard alight board

, ,
, , 2,.., 1k k k k

l l l l
le e l s l s

v v v v l L k M−= − +   = − . (33) 

Equations (31) and (32) define the initial values for the alighting and onboard passengers. Equation (33) 

represents the formulation for the links between the second and last stops.  

 The abovementioned three equations are used only to illustrate the concept. For schedule-based services, 

we can trace the number of passengers boarding a particular run based on the schedule and passengers’ 

arrival time. Thus, an additional subscript q is introduced for indexing a run in the equations. For frequency-

based services, we cannot identify the bus or vehicle boarded by the passengers as no timetable information 

is available. Nevertheless, the passengers’ boarding and alighting time values can be determined through 

variables ,dep

, k
l

w

r s
t  and ,arr

, k
l

w

r s
t , respectively. To use this information to compute the congestion cost, we divide 

the planning horizon into a set of time intervals. Passengers boarding the same frequency-based line in the 

same time interval are aggregated. A similar idea was adopted by Schmöcker et al. (2008). The detailed 

formulations are presented in Appendix B.  

2.3.3. Dwell time 

The dwell time for line l at stop i is computed as 



17 

 

   ( )( )  dwell min alight board

, , 4 , ,max , max , , , \ lM

l i l i l i l i l lD v v l L i S s =    . (34) 

This term takes the higher value from the minimum dwell time of line l at stop i, 
min

,l iD , and the time required 

for passengers to board and alight. Intuitively, 4  is interpreted as the average time for a passenger to 

board/alight a bus. Practically, this term can be obtained via a survey and specified for different types of 

vehicles and platforms to achieve high accuracy. Nevertheless, in this study, we assume a homogeneous 

value and use ( )alight board

, ,max ,l i l iv v  to compute the critical number of passengers that determines the boarding 

and alighting time by implicitly assuming that passengers use different doors for boarding and alighting. 

This aspect is consistent with the bus operation in the Copenhagen metropolitan area, in which the front 

door of the bus is used for boarding, and the back door is used for alighting. If there is only one door and 

boarding is only allowed after alighting, ( )alight board

, ,max ,l i l iv v  should be replaced with ( )alight board

, ,l i l iv v+ . 

2.4.  Solution Existence and Uniqueness  

The existence of a solution to the proposed model (concise formulation in Section 2.2) depends on two 

conditions: 1) Whether there exists a feasible frequency and schedule setting that satisfies the operational 

constraints (Equations (2)–(10)); and 2) Given a feasible frequency and schedule setting, whether there 

exists a feasible BSUE flow solution. The feasibility of operational constraints (i.e., Equations (2)–(10)) 

can be evaluated in a straightforward manner. In the following analysis, we investigate the second condition.  

 Denoting ( ) , ,= f h τ  as the set of frequency and timetable settings that satisfy the operational 

constraints, we present the following proposition.  

Proposition 1: If    and 0  , a feasible solution always exists when 
BSUE 1,wR w W=   . 

Proof.    means that there exists a solution that satisfies the operational constraints. We only need to 

show that there exists a feasible BSUE flow distribution. As 
BSUE 1wR = , the difference between the 

maximum and minimum path costs is zero, which is less than or equal to a nonnegative  . In other words, 
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by assigning all passengers to the only path in the choice set, constraints (11)–(13) can be satisfied. 

Therefore, a feasible solution to the problem exists. 

 This proposition indicates that if there is only one path in the choice set, there always exists a feasible 

BSUE solution despite the bounding value  . This property enables us to develop a column generation 

method starting with one path to solve the problem.  

Proposition 2: Multiple solutions for the optimisation problem can exist.  

Proof. This aspect is proved using the example in Appendix C.  

 According to the example in Appendix C, the existence of multiple optimal solutions can be attributed 

to the trade-off among different path attributes, i.e., waiting and congestion. Notably, this trade-off implies 

that even if the policymakers impose additional constraints on the transit operator for several cost 

components, i.e., maximum transfer waiting time or maximum congestion level, a global optimal design 

can be obtained by compromising other attributes. Moreover, this aspect demonstrates that the model 

formulation is flexible as the cost components between the frequency- and schedule-based lines can be 

reallocated, i.e., by reducing the waiting time cost for the frequency-based service but increasing the 

perceived congestion cost for the schedule-based services. This aspect justifies the benefits of the integrated 

design of frequency- and schedule-based services. It can easily be shown (Appendix D) that a feasible 

solution to the problem may not exist if the choice set is not properly determined. The example in Appendix 

D indicates that the infeasibility occurs because the input choice set violates the requirements of the BSUE 

constraints, rendering it risky to use a k-shortest path method to generate the initial choice set as the solution 

existence cannot be ensured.  

3. SOLUTION METHOD  

The proposed model is a mixed integer nonlinear programming (MINP) problem owing to Equations (1), 

(3), (11), (22) and (25), even though the logical constraints can be rewritten as linear constraints in a 

straightforward manner, including Equations (18), (19), (23), and (25). The basic concept underlying a 

typical algorithm for solving the MINP problem is to relax the problem to a nonlinear programming 
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problem or MILP problem and generate and refine bounds by solving the relaxed problem (Bonami et al. 

2012). Considering this concept, we use various techniques to obtain a relaxed MILP formulation and 

develop a branch-and-bound algorithm to solve it, given that the upper and lower bounds of the relaxed 

formulation can be derived. Because the problem formulation requires knowledge of the choice set, BSUE

wR , 

as an input for the assignment constraints, we embed a column generation-and-reduction phase in the 

algorithm. In the following subsections, we present an overview of the solution algorithm, followed by an 

explanation of the key steps.  

3.1.  Overview of the Solution Algorithm 

The process flow of the generic solution algorithm can be summarised as follows. 

Step 1. Initialisation. 

 Step 1.1. Set iteration counter I as 0. 

 Step 1.2. Generate an initial feasible frequency and timetable setting, denoted as , ,I I I  f h τ , where 

 lf=f ,  lh=h , and dep

, ,

I

l i q =  τ . 

 Step 1.3. Generate an initial path set ,w IR  for each OD pair w W  (Section 3.2). 

 Step 2. Solving the relaxed model. 

 Step 2.1. Formulate the relaxed integer linear problem by using the generated path set information 

(Section 3.3). 

 Step 2.2. Solve the relaxed problem by using the branch-and-bound method (Section 3.4).  

  If a solution is obtained, denote the solution as 1 1 1, ,I I I+ + +  f h τ ; otherwise, terminate the solution 

algorithm.  

Step 3. Column generation-and-reduction. 

 Step 3.1. Generate a new path set 
,w I

R  for each OD pair w W  (Section 3.2). 

 Step 3.2. Compare path sets 
,w I

R  and ,w IR . 

  1) If 
, , ,

w I w IR R w W=   , terminate the algorithm and output the optimal solution. 

       2) Denote the path cost associated with path r in path sets 
,w I

R  and ,w IR  as ,w I

r  and ,w I

r , respectively. 

a) Column generation. 

If 
,w I

r R  and ,w Ir R  with  , ,

,

' ''
'''

min min , min ,
w I w I

w I w w

r r r
r Rr R

w   


 +  , update path set 

 , 1 , ,w I w IR R r w+ =   . 

b) Column reduction. 

If , 1w Ir R +   and  , ,

,

' ''
'''

min min , min ,
w I w I

w I w w

r r r
r Rr R

w   


 +  , update path set 

 , 1 , \ ,w I w IR R r w+ =  .  
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  Set I = I + 1 and return to Step 2.  

 In Step 1, the existing frequency and timetable setting can be used as the initial feasible solution, and 

an initial path set can be generated using the label-setting algorithm developed by Florian (2004). Step 3 

represents the column generation-and-reduction phase, in which the newly generated path set is compared 

with the existing path set. If a newly generated path satisfies the path set requirement of the BSUE, it is 

added to the existing path set. If an existing path violates the requirement, it is removed from the existing 

path set. If any perturbation occurs to the path set, a new relaxed formulation based on the updated path set 

is solved (return to Step 2); otherwise, the algorithm is terminated. The algorithm convergence depends on 

whether the new path set generated is different from the existing path set. In the worst case, when all of the 

paths in a network are included in the path set, the algorithm is terminated. Moreover, in Step 2.2, the 

algorithm terminates when there is no feasible solution to the relaxed MILP problem because of the large 

choice set, as illustrated in Appendix D. 

3.2.  Relaxed Formulation   

The nonlinear expressions can be categorised as expressions with binary variables, if-then constraints, 

bilinear equations, and BSUE constraints. The following subsections introduce the linearisation techniques 

for only the BSUE and bilinear constraints as the BSUE constraints are developed for the first time in this 

study and the latter constraints are used in defining the -feasible solution algorithm.  

3.2.1. BSUE constraints 

Following the work of Liu and Wang (2015), to linearise the BSUE constraints, we first transform Equation 

(11) into equivalent constraints with logarithmic expressions and use a set of equations to linearise the 

logarithmic expressions. First, we reformulate Equation (11) considering the fraction between the 

probabilities of two paths r and r’ as  

   
 ( )( )
 ( )( )

BSUE

BSUE

' ' BSUE

exp min : 1
, , , ' , '

exp min : 1

w w w
w

r r
wr

w w w w
r r r

r Rp
w W r r R r r

p r R

   

   





− −  − −
=    

− −  − −
. (35) 
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Subsequently, we introduce an auxiliary variable w

ry , defined as 

     ( )( )BSUE BSUEexp min : 1, ,w w w w w

r r ry r R r R w W   
= − −  − −    . (36) 

Next, Equation (35) is reformulated as  

   ( ) ( ) ( ) ( )' ' BSUEln ln ln ln , , ' , ',w w w w w

r r r rp p y y r r R r r w W− = −     . (37) 

By introducing two more auxiliary variables w

r  and w

rz , we transform Equation (37) into the following 

equations:  

   ' ' BSUE, , ' , ',w w w w w

r r r rz z r r R r r w W − = −     , (38) 

   ( ) BSUEln , ,w w w

r rp r R w W =    ,  (39) 

   ( ) BSUEln , ,w w w

r rz y r R w W=    . (40) 

In addition, we reformulate Eq. (36) as 

   ( )  ( )BSUE BSUEln 1 min : , ,w w w w w

r r ry r R r R w W   
+ = − −  −    . (41) 

Through this formulation, we can apply the techniques developed by Liu and Wang (2015) to linearise the 

logarithmic expressions.  

3.2.2. Bilinear equations 

There are two bilinear terms in the model, objective function (1) and constraint (3). Following the work of 

Adjiman et al. (1998), bilinear terms are approximated by their convex envelope. For example, for 

constraint (3), given the ranges of headway, ,h h   , and frequency, ,f f 
  , the following equations 

approximate bilinear constraint (3): 

    fre1 ,l l l l l lh f h f h f l L + −   ,  (42) 

   fre1 ,l l l l l lh f h f h f l L + −   , (43) 

   
fre1 ,l l l l l lh f h f h f l L + −   , (44) 

   fre1 ,l l l l l lh f h f h f l L + −   . (45) 

 The relaxation of the bilinear constraints may lead to infeasible solutions to the problem because the 

solution to the relaxed formulation can only be guaranteed to satisfy constraints (42)–(45) instead of the 
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original reciprocal constraint (3). To address this issue, we define the -feasibility, which can be 

mathematically expressed as follows: 

Definition: ( ),f h  is -feasible if it satisfies constraints (2), (4)–(13), (42)–(45), and 

   fre1 ,l lh f l L−     .  (46) 

Accordingly, we can define an optimal -feasible solution as the optimal solution that satisfies constraint 

(46) instead of constraint (3).  

3.3.  Branch-and-Bound Method 

To solve the relaxed formulation in Step 2 of the algorithm described in Section 3.1, a branch-and-bound 

algorithm is developed. In the algorithm, the frequencies of the frequency-based transit lines are the 

branching variables. Each node in the branch-and-bound tree is associated with a feasible frequency region, 

and new branches are generated by evenly dividing the feasible region into two. The lower bound value 

associated with each node is obtained by solving the relaxed MILP problem formulated using the techniques 

introduced in Section 3.2, whereas the upper-bound value is obtained by solving the relaxed MILP problem 

based on a fixed frequency.  

4. NUMERICAL EXAMPLES  

Experiments are conducted to illustrate the properties of the formulation and performance of the solution 

algorithm. The input data for the experiments are available in a GitHub repository 

(https://github.com/hkujy/NDPwithBSUE). 

4.1.  Schedule-Synchronisation ‘Paradox’  

In this test, we demonstrate a novel paradoxical phenomenon under the BSUE. A two-link network is 

constructed, as shown in Figure 1. The network contains two schedule-based lines, with each line containing 

one vehicle to be scheduled. The seating capacity of the two lines is 50 and 100, respectively. The 

generalised travel cost function associated with each link is marked next to the link. A before-and-after 

study is conducted. In the before and after scenarios, the scheduled departure of line 2 pertains to time 10 

and 0, respectively. 
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Figure 1 Network and data for demonstrating the paradoxical phenomenon 

 The results of the two scenarios are presented in Table 2. The last column shows that the total 

generalised travel cost for the passengers is larger in the after scenario. This finding highlights a paradoxical 

phenomenon that well-synchronised transit services can deteriorate the network performance measured by 

the total generalised travel cost of the passengers. Similar to Braess’ paradox (Sheffi 1985; Nagurney and 

Boyce 2005; Braess et al. 2005), the occurrence of the paradox is rooted in the passengers’ perception error 

and the consideration of congestion cost on a crowded bus.  

Table 2 Results of the before-and-after study for demonstrating the paradoxical phenomenon 

Cases Paths 
Whether a path is 

used  

Path 

flow 

Generalised path travel 

cost 

Total generalised 

travel cost 

Before 
Path 1 Yes 150.00 32.50 

4875.00 
Path 2 No - (51.00) 

After 
Path 1 Yes 142.48 32.12 

4885.34 
Path 2 Yes 7.52 41.00 

 

 Compared with the well-known Braess’ paradox, the originality of our results is twofold. First, we 

consider the SUE with a bounded choice model, and thus, this study represents the first attempt at 

investigating the paradoxical phenomenon under such a travel behaviour assumption. Second, we consider 

the schedule synchronisation in the transit network, which is a different scenario than that considered in 

Braess’ example, implying that it may not always be beneficial to create a synchronised timetable to reduce 

the total generalised travel cost of the passengers.    

O D 

  

  

Demand = 150; departure time is 0; ; . 

 Departure time 

Before After 

Line 1 0 0 

Line 2 10 0 

 

Path 2: Line 2 

Path 1: Line 1 

* Note: x in the function represents the number of passengers travelling via the link 
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4.2.  Effect of   on the Solution  

Watling et al. (2018) proved that when   approaches infinity, the MNL SUE model becomes a special case 

of the BSUE model. However, the operator must understand the influence of different behaviour 

assumptions on the network design solutions and the effect of changes in   on the scheduling results. This 

aspect is illustrated in this experiment. Consider a network with two nodes and three parallel schedule-

based lines connecting the two nodes. The link travel times associated with the three lines are 15, 18, and 

23 min, respectively. We consider 100 passengers departing from origin A at time 5 towards destination B. 

Because this experiment is aimed at examining the solutions at different   values, we mitigate the 

congestion effects by setting the seating capacity of each bus line as 100 and the congestion coefficients in 

Equation (23) as 0 1 20, 0.01, 0  = = = , and 3 0 = . 

Tables 3(a)–(b) list the timetable, path cost, and total generalised travel cost obtained under different 

  values and those defined using the SUE model, respectively. When the BSUE model is used, the 

departure time of line 1 is set as 5, which synchronises with the passengers’ departure time. The 

corresponding values for the other two lines are zero, implying that they are not used by the passengers 

departing at time 5, resulting in zero flow. This phenomenon occurs because the BSUE allows the path 

choice probability to be 0 or 1, thereby avoiding the assignment of flow to long paths. Therefore, the optimal 

timetable is set in a manner that ensures that passengers use only one path, i.e., the path with the least travel 

time. In contrast, under the SUE, the departure times of all three lines are synchronised with the passengers’ 

departure times.  

This example demonstrates that the travel behaviour model affects the network design solution. The 

effects can be attributed to the assumption of the passenger choice set, which determines the setting of the 

timetable to synchronise with the passengers’ departure times to minimise their total generalised travel cost. 

In general, the total generalised travel cost based on the BSUE is expected to be lower than that based on 

the SUE as the BSUE limits the size of detours that a passenger is willing to make, and the probabilities 

below the bounds are adjusted proportionally. If the network is optimised based on one of the two conditions, 
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the optimised networks will be different when the BSUE or SUE are used; however, the BSUE-optimised 

network is unlikely to have a higher cost than the SUE-optimised network.  

Table 3 Effect of   on the solution  

(a) Departure time results 

 1 =  3 =  5 =  SUE 

Line 1 5 5 5 5 

Line 2 0 0 0 5 

Line 3 0 0 0 5 

(b) Path cost and probability 

 1 =  3 =  5 =  SUE 

 w

p  w

rp  w

r  w

rp  w

r  w

rp  w

r  w

rp  

Path 1 via Line 1 16 1.00 16 1.00 16 1.00 15.5 0.51 

Path 2 via Line 2 18 0.00 18 0.00 18 0.00 18.3 0.33 

Path 3 via Line 3 23 0.00 23 0.00 23 0.00 23.2 0.16 

Total generalised travel 

cost 
1600 1600 1600 1767.5 

4.3.  Seating Constraints and Dwell Time 

The four-node network in Figure 2 is considered to highlight the merits and demerits of the seating capacity 

constraints. The network contains two lines: both lines are set to be schedule-based, and each line has one 

vehicle to be scheduled with 100 seats. Three OD relations are considered: 60, 60, and 10 passengers 

travelling from nodes A to D, A to B, and B to D, respectively. All passengers depart at time 0.  

 

   Figure 2 Four-node network 

Figure 3 plots the trajectories of bus line 1 and one passenger path between OD pair AD. Figure 3 (a) also 

indicates the minimum dwell time and additional dwell time associated with boarding and alighting. In 

Figure 3 (b), the values of 
seat

,r e  are marked next to the trajectory with different colours. 
seat

,1 0r =  because 

120 passengers from OD pairs AB and AD board at stop A, rendering the vehicle congested, with several 

A B C D 

Line 1 Line 2 
Link No. Transit line Tail Node Head node Travel time 

1 1 A B 5 

2 1 B C 4 

3 1 C D 3 

4 2 B C 2 

5 2 C D 4 

 

Link 1 

Link 2 Link 3 

Link 4 Link 5 
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passengers left without a seat. At stop B, passengers of OD pair AB alight, the vehicle becomes uncongested, 

and passengers of OD pair AD take a seat. In this case, 
seat seat

,4 ,5 1r r =  = . This figure illustrates that the 

proposed seating capacity exhibits the following features: 1) When a passenger travels from a congested 

link to an uncongested link, the user can obtain a seat, and 2) once a passenger occupies a seat, the user 

remains seated if the user does not transfer to other lines. In addition, it is also demonstrated in Appendix 

F that differentiating the sitting and standing effect will affect the schedule and users’ travel experience.   

    
Figure 3 Illustration of dwell time and seating constraints 

 A demerit of the method is that the seating status depends only on the aggregated congestion status. 

When passengers from various OD pairs mingle at one congested station, a more accurate estimation must 

be performed to determine the number of standing and seating passengers for each path. However, in this 

case, it may be necessary to introduce additional nonlinear expressions to split the aggregated congestion 

flow among all paths based on a certain proportion, thereby increasing the model complexity. A similar 

issue is encountered when accounting for the boarding and alighting times in computing the passengers’ 

path time. The boarding and alighting time values depend only on the aggregated passenger flow. When 

calculating the passengers’ path time, it is possible that some passengers alight before others and have a 

lower value of alighting time. The alighting times cannot be differentiated by the current method. We leave 

this for future research.  

  

a) Trajectories of bus line 1 b) Trajectory of path (A → Link 1→Link 4 

→Link 5 → D) between OD pair AD 

 

 

 

 

  
1 min 

(minimum dwell time) 

1 min 

(minimum dwell 
time) 

 

0.49 min 
(additional time due to 

boarding/alighting) 
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4.4.  Case Studies Based on the DTU–CPH Network  

 

Figure 4 Main public transport services between DTU and CPH 

The following numerical examples are based on the main public transport services between the Technical 

University of Denmark (DTU) and Copenhagen Airport (CPH), as shown in Figure 4. The travel times are 

marked in the parentheses next to the name of the line. We consider one hour of travel demand containing 

20 passenger groups, in which every 3 min, a group of 10 passengers wishes to depart. The modelling 

horizon T is set to be 120 min to ensure that the last group of passengers arrive at their destination within 

the modelling period. The parameters are set as follows: min 0.05f = , max 0.2f = , inveh 0.43 = ,

wait 0.575 = , and 0.15 = . The algorithm is coded in C#, and the relaxation model is solved using 

CPLEX 12.7. The maximum computation time for the CPLEX solver and gap value are set as 2 h and 0.01, 

respectively. The program is implemented on a computer with an Intel® Xeon® CPU E5-2697 @ 2.30 

GHz and 12 GB RAM processor. 

4.4.1. Performance of the algorithm  

According to our preliminary tests, if excessively many paths are included in the branch-and-bound 

algorithm, CPLEX cannot find a solution. Therefore, we add a restriction that only one new path can be 

added to the path set per iteration in the experiments and develop a path-adding strategy. The strategy 

computes a gap value for each newly generated path, which is the difference between its generalised travel 

cost and the minimum generalised cost connecting the same OD pair in the existing path set. The path that 

has the minimum gap value is selected to add to the existing path set.  

0 1 2 3
Line B (20) 

Line E (17) 

300S (9) 

M2 (15) 

150S (29) 

Øresundstog (19) 

Frequency-based service 

Schedule-based service 
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 Figure 5 shows the convergence of the algorithm for different values of . The total generalised travel 

cost is not always decreased. This phenomenon can be attributed to three reasons. The first reason pertains 

to the paradoxical phenomenon described in Section 4.1. The second reason is that the column generated 

in each iteration in this study is the unused path that satisfies the bound choice set condition. This does not 

necessarily ensure that the objective is achieved, as the column generation method has been devised for 

solving large linear programming problems. Third, there exists a trade-off among different cost components 

when more paths are considered in the bounded choice set. Although a large path set can disperse the 

congestion cost and boarding and alighting time values, the path set could contain paths that have a higher 

in-vehicle travel time, thereby inducing a higher total generalised travel cost. The computation time values 

for  =   =  and  =  are 115 min, 47 min, and 81 min, respectively. This shows that there may not 

exist a linear relationship between the computation time and  In general, the computation time does not 

impede the application because the proposed model is used for planning (the operators in Copenhagen 

revise schedule/frequency every half year) and the operator can select a small set of lines to be optimised 

(such as the setting in this example). Nevertheless, the development of an efficient solution algorithm is 

essential for the application of this method in large networks.   

 

   Figure 5 Objective values over iterations for different values of   

 Notably, the value of  is used to characterise the user behaviour and must be calibrated from empirical 

studies. Decision makers should not arbitrarily set the value as 2, as in this example, to design the service 

based on the lower total generalised travel cost. Moreover, decision makers must implement the solution 
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obtained in the last iteration and not the iteration pertaining to the minimum cost. For example, when 

 =  if the solution with the minimum objective is selected, several paths considered by the passengers 

may be overlooked by the decision makers, and the transit lines serving these paths may not be well 

coordinated. Therefore, when users travel these paths, they might encounter a higher generalised travel cost. 

In conclusion, the consideration of more realistic travel behaviour introduces not only additional complexity 

into the mathematical modelling but also difficulties associated with the interpretation of the results, as the 

results are not as straightforward as those obtained using models in which passengers are assumed to only 

travel via the shortest path or frameworks that do not contain a transit assignment model.  

4.4.2. Trade-off between the operation cost and total generalised travel cost  

Figure 6 Effect of weight  

To illustrate the trade-off between the operation cost and total travel cost, we set opC  as 5000 and increase 

the weighting parameter weight  (which indicates the importance of the operation cost) from 1 to 5. The 

resultant operation and generalised travel costs are plotted in Figure 6 (a). A trade-off can be observed 

between the operation and generalised travel costs, which indicates that the reduction in the operation cost 

is accompanied by an increase in the passengers’ generalised travel cost. Figure 6 (b) shows that the 

frequencies of the two frequency-based lines vary with the increase in weight .   
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5. CONCLUSION 

A mixed integer nonlinear programming model was developed to optimise transit systems that consist of 

both frequency- and schedule-based services. The model can simultaneously determine the optimal 

frequencies for the frequency-based services and timetables for the schedule-based services while 

considering that the passengers’ route choice behaviour follows the SUE with a bounded choice model. A 

set of constraints was established to model the passengers’ seating behaviour, considering that a passenger 

who occupies a seat will remain seated at the subsequent stops of the same line. To solve the model, various 

linearisation techniques were used to reformulate the nonlinear model into a MILP model, which was then 

solved using a branch-and-bound algorithm. Numerical studies were conducted to demonstrate the 

properties of the formulation and performance of the solution method. The notable findings are summarised 

as follows: 1) We illustrated the occurrence of a novel schedule-synchronisation paradoxical phenomenon 

under the SUE with a bounded choice model. According to the ‘paradox’, a well-synchronised schedule 

can worsen the network performance indicated by the total generalised travel cost; 2) We compared the 

effects of different travel behaviour assumptions, i.e., BSUE and SUE, on the solution, and the results 

indicated that the design based on the BSUE could achieve a lower total generalised travel cost than that 

associated with the SUE.  

 This study can be extended in various directions. In particular, this study represents the first attempt at 

incorporating the state-of-the-art BSUE travel behaviour model for determining the transit frequency and 

schedule. This behavioural model can be incorporated into other transport network design problems. In 

addition, the BSUE implicitly assumes that passengers select the route set themselves. Future research can 

examine the scenario in which passengers make the decision based on the travel strategy (Marcotte et al. 

2004; Zimmermann et al. 2021) or receive routing recommendations (Corman 2020; Jiang and Ceder 2021). 

Moreover, to obtain a model that can be implemented in practice and assist decision makers, it is desirable 

to develop a heuristic or metaheuristic solution method for large-network applications.  
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