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Fuzzy Bayesian inference for mapping vague and place-based regions: a 

case study of sectarian territory 

The problem of mapping regions with socially-derived boundaries has been a topic of 

discussion in the GIS literature for many years. Fuzzy approaches have frequently been 

suggested as solutions, but none have been adopted. This is likely due to difficulties 

associated with determining suitable membership functions, which are often as 

arbitrary as the crisp boundaries that they seek to replace. This paper presents a novel 

approach to fuzzy geographical modelling that replaces the membership function with a 

possibility distribution that is estimated using Bayesian inference. In this method, data 

from multiple sources are combined to estimate the degree to which a given location is 

a member of a given set and the level of uncertainty associated with that estimate. The 

Fuzzy Bayesian Inference approach is demonstrated through a case study in which 

census data are combined with perceptual and behavioural evidence to model the 

territory of two segregated groups (Catholics and Protestants) in Belfast, Northern 

Ireland, UK. This novel method provides a robust empirical basis for the use of fuzzy 

models in GIS, and therefore has applications for mapping a range of socially-derived 

and otherwise vague boundaries. 
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Introduction 

The problem of social boundaries in GIS 

When describing a geographical area, there are two potential sources of uncertainty: the 

location of the area and its extent (Clementini and Di Felice, 1996). Here we are concerned 

with the latter case, in which it is clear where the area is located, but its boundaries cannot be 

unequivocally demarcated. This boundary uncertainty is referred to as geographical 

vagueness, the sources of which are enumerated by Montello (2003). There are several 

approaches to the categorisation of boundaries in GIS (e.g., Smith and Varzi, 2000; Montello, 

2003), but here we adopt the high-level typology presented by Fisher (1996), who categorised 

boundaries as real (normally implying a physical delimiting feature such as a river), 



perceived (understood by individuals, but not delimited) and imposed (normally 

administrative zones, i.e., all political and legal regions). Imposed boundaries are typically 

crisp, in that it is easy to unequivocally determine whether one is inside or outside the 

boundary. Perceived boundaries, however, exhibit geographical vagueness to some degree 

(Huck et al., 2014) and typically reflect the ways in which individuals understand the places 

that they occupy in their daily lives, such as the extent of their neighbourhood. Real 

boundaries can be either crisp or vague, often depending on the nature of the delimiting 

feature. Vague geographical regions are characterised by the fact that their bounds are not 

merely undetermined (i.e., merely unset or unconsidered), but rather are indeterminate (i.e., 

there are no unequivocal precise bounds that could be defined, even if it were so desired).  

Where they are socially-derived, the boundaries of vague regions are determined by the daily 

experience of individuals and, whilst it is easy to select a location that is definitely either 

inside or outside them, there is no unequivocal manner by which a precise boundary may be 

drawn (Clementini and Di Felice, 1996; Fisher et al., 2004). Nevertheless, their meaning is 

fully understood and people can reason about them (Clementini and Di Felice, 1996). Even 

seemingly well understood social concepts can be revealed to be vague when carefully 

considered (e.g., downtown; Montello et al., 2003). Geographers typically account for 

vagueness in socially-derived regions by distinguishing between geometric spaces, which are 

universally defined and precisely allocated (e.g., a census zone); and geographical places, 

which inherently exhibit variation between individuals and through time, and which do not 

exhibit defined locations or boundaries (Goodchild, 2011). 

Vague regions elude satisfactory representation using spatial primitives such as points, lines 

and polygons (Montello et al., 2003; Goodchild, 2011). This is because definitions of the 

perceived boundary must rely upon a multitude of perceived attributes of an area, which are 



often individualistic and may not relate to measurable phenomena (Carver et al., 2009). The 

representation must therefore consider not only the physical objects found therein, but also 

the meanings that those objects have for individuals and communities (Purves and Derungs, 

2015). Vague geographical entities might therefore be considered as both synergistic and 

incommensurable, a condition that is captured by Tolkien (2001: 10): “It is one of its 

qualities to be indescribable, though not imperceptible. It has many ingredients, but analysis 

will not necessarily discover the secret of the whole”. The representation of place remains of 

great importance in the field of GIS, and was described by Goodchild (2011) as one of the 

fundamental elements of our ability to deal with phenomena that are distributed in space. 

It has frequently been suggested that vague or place-based regions lend themselves better to 

fuzzy or probabilistic representations, as opposed to precise geometric models (e.g., Leung, 

1987; Montello et al., 2003; Evans and Waters, 2007). Fuzzy approaches, in which the degree 

of membership of a given set is determined by a membership function, have been applied in 

several areas of GIS research since early applications were first proposed by Burrough 

(1986), but there are few, if any, attempts to use such approaches for social phenomena. It is 

likely that this is a result of the difficulty associated with the robust definition of membership 

functions for social phenomena, in comparison with fields such as soil science and 

geomorphology where fuzzy approaches have been applied more widely. This paper 

therefore presents a Bayesian inference-based approach to fuzzy modelling that removes the 

need for a pre-defined membership function and so better lends itself to socially-derived 

boundaries. In support of this, we will briefly present an overview of the relationship between 

fuzzy and probabilistic methods, before describing our proposed method in more detail. We 

will then demonstrate our method using a case study relating to understanding patterns of 

intergroup segregation in Belfast, Northern Ireland.  



Literature review 

The relationship between fuzziness and probability 

There has historically been a great deal of disagreement in the literature with respect to 

whether fuzziness is the same as randomness and hence whether fuzzy models are the same as 

probabilistic models. Key arguments ‘for’ and ‘against’ this position are given in Cheeseman 

(1985) and Kosko (1990) respectively. Though both authors present acceptable solutions to 

the debate, this paper will adopt the position that fuzziness and randomness are distinct, 

which is both the most straightforward position and the one most frequently adopted in the 

GIS literature. In this view, both fuzzy and probabilistic systems represent uncertainty 

numerically in the interval [0-1], but they differ substantially in interpretation and the 

problems to which they should be applied. In simple terms, fuzziness represents the degree to 

which an event occurs (as a result of ambiguity in the event itself), whereas probability 

represents uncertainty about whether the event occurs (as a result of chance relating to the 

occurrence of the event) (Kosko, 1990).  

A formal distinction can be made by considering the extent to which ‘the thing’ (A) can be 

distinguished from its opposite (Ac), formally 𝐴 ∩ 𝐴𝑐 =  ∅. If A and Ac can be distinguished, 

then the event is probabilistic; otherwise it is fuzzy (Kosko, 1990). To provide examples in 

the context of a social phenomenon such as intergroup segregation: the question of the degree 

to which a location belongs to the territory of a given group is therefore fuzzy; whereas the 

question of whether one or more members of a given group are present in that location at a 

given time is probabilistic. The distinction here is clear, as the absence of an individual (i.e., 

the opposite of their presence) is readily discerned, whereas this is not the case for the degree 

to which a location is part of a territory. Though this distinction may appear unimportant at 

first glance: this difference in interpretation between fuzzy and probabilistic approaches is 



considerable and it is important that the two are not confused (Fisher, 1996). Indeed, Fisher 

(1996) identifies several instances in the literature, where prominent authors have 

erroneously taken the terms to be synonymous or interchangeable. 

A Bayesian approach to fuzzy membership  

One of the key challenges in the application of fuzzy methods to geographical problems is the 

difficulty associated with defining suitable membership functions (Ahlqvist et al., 2000). For 

example, it is one thing to recognise a mountain as a vague entity (e.g., Fisher and Wood, 

1998; Varzi, 2001; Smith and Mark, 2003), but quite another to determine a justifiable 

function with which a location can be evaluated for the degree to which it is part of the 

mountain (e.g., Fisher et al., 2004). This challenge is perhaps even greater in the case of 

socially defined place-based data because they are often defined by perceived bounds and so 

are inherently subjective, making it impossible to create a justifiable membership function.  

Fuzzy approaches have previously been combined with Bayesian methods because they lend 

themselves well to the formulation and analysis of subjective concepts (Taheri and 

Behboodian, 2001), though this has not yet been the case in the GIS literature and no spatial 

applications have previously been presented. Nevertheless, this relationship clearly has great 

potential in a geographical context, as Bayesian inference can be used to combine multiple 

types of evidence to determine the degree membership of a vague region (which is 

represented as a fuzzy set). The generalisation of Bayesian statistics to fuzzy data approaches 

has previously been referred to as ‘Fuzzy Bayesian Inference’ in the mathematical literature 

(Frühwirth-Schnatter, 1993); and we will adopt this terminology for the spatial 

implementation presented here.  

In Fuzzy Bayesian Inference (FBI), the membership functions upon which fuzzy methods 

usually rely are replaced with possibility distributions, which are more directly relatable to 



probability theory and so allow for the use of Bayes’ theorem (Gentili, 2021; Bacani and de 

Barros, 2017). The distinction between possibility and probability is the same as that between 

fuzziness and randomness (as described in the preceding section). The possibility distribution 

function therefore represents the state of knowledge of an agent, returning a value based on 

the current evidence ranging between 0 when a state is impossible and 1 when a state is 

totally possible (Gentili, 2021). To illustrate this, consider Bayes’ theorem in Equation 1: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴) ∙ 𝑃(𝐴)

𝑃(𝐵)
 

(1) 

In the conventional probabilistic format, Bayes’ theorem comprises the following terms:  

• ‘posterior probability’, P(A|B): the updated probability of state A, given data B. 

• ‘likelihood function’, P(B|A): the probability of the data B, assuming that state A is 

true 

• ‘prior probability’, P(A): our current belief about the probability of state A, before 

accounting for data B 

• ‘plausibility’ P(B): the probability of observing the data B irrespective of state A, 

which simply serves to normalise the resulting value to the scale 0-1.  

In our fuzzy (possibilistic) case, where A is the state and B is the supporting evidence, the 

possibility distribution is the likelihood function (Gentili, 2021), the prior probability is 

replaced by the prior possibility, the plausibility remains to serve to normalise the resulting 

membership value and the posterior probability is replaced by the posterior possibility 

distribution, from which we can derive a degree of membership on the scale [0-1]. To 

provide an example once again in the context of intergroup segregation, state A would be that 



a location was part of the territory of a given group and B would be data that will be used to 

update the posterior possibility of that state (e.g., the presence of individuals from either that 

or another group).  

Case study: modelling segregation and inter-group boundaries 

In order to provide an example of the benefits that FBI can have for analysis of socially-

derived geographical phenomena, we will provide a case study concerning the spatial 

analysis of intergroup segregation. There is a rich literature of the quantitative measurement 

of segregation, with a variety of indices and measures, the overwhelming majority of which 

are based on the use of administrative tessellations (e.g. census zones; Catney, 2018). Such 

approaches typically take these zones (comprising imposed boundaries) as a proxy for 

‘neighbourhoods’ or similar socially-derived areas (which typically exhibit perceived 

boundaries) and carry the implicit assumption that aggregated data can be used to infer 

individual experiences (Wong and Shaw, 2011; Farber et al., 2012). This approach carries 

with it three fundamental methodological challenges that are widely understood in the 

literature and equally apply to many other areas of research into geographical patterns of 

social phenomena. The first of these is the Ecological Fallacy (Robinson, 1950), whereby all 

locations and members of the population within each zone are implicitly (and incorrectly) 

assumed to share common characteristics. Such datasets and the analyses arising from them 

implicitly assume relationships between all individuals within a given zone and no 

relationship at all between members of different zones, effectively removing each zone (and 

by extension each individual) from its spatial context (Farber et al., 2012). The second issue 

is the Modifiable Areal Unit Problem (MAUP; Openshaw, 1981). The MAUP comprises two 

interrelated issues: (i) a zoning effect, representing a variance in results caused by the use of 

alternative areal unit delineations; and (ii) a scale effect, reflecting the sensitivity of the 



results and inferences to areal unit size. The former effect is clearly demonstrated in the 

context of the present research by Huck et al. (2019), who identify a ‘Small Area’ (a standard 

census unit for Northern Ireland) that appears to be mixed, but in fact represents two highly 

segregated communities aggregated into the same zone (also Davies et al., 2019). The latter 

effect is examined in detail by Wong (1997), who notes that simply using smaller zones can 

increase measured levels of segregation, as a result of the positive spatial autocorrelation of 

people in the same groups. The third issue is the Uncertain Geographic Context Problem 

(UGCoP; Kwan, 2012), which is a phenomenon arising due to the spatial and temporal 

uncertainty in the zones and the way in which they deviate from the actual areas they are 

intended to represent. A simple example of this problem is the use of census zones as a proxy 

for ‘neighbourhoods’, which is a common and convenient solution for many types of spatial 

analysis (Labib et al., 2020), but which fails to acknowledge that the imposed boundaries 

defined by administrative agencies are unlikely to map on to the individualistic notion of 

‘neighbourhood’ that is understood by the people living within it (Grannis, 2005; Goodchild, 

2011; Wong and Shaw, 2011).  

Approaches such as those described above also carry a fourth challenge that is specific to the 

study of segregation: an overwhelming focus upon only residential patterns of segregation 

(i.e., measures of segregation that consider only where people live, not where they work or 

spend their leisure time). However, there is an increasing recognition that individuals may 

experience different levels of segregation across their various socio-geographical spaces, not 

only residential spaces. As a result, authors such as Schnell and Yoav (2001); Wong and 

Shaw (2011); Farber et al. (2012); and Huck et al. (2019) have begun to develop a range of 

methods that allow for more individualistic ‘activity space’ approaches to understanding 

patterns of segregation. Understanding behaviour at the individual level is of vital importance 

to understanding dynamic patterns of segregation (Dixon et al., 2020a; Dixon and McKeown, 



2021). 

Approaches based on administrative tessellations have been extremely valuable in 

understanding the fundamental characteristics of urban residential segregation and the 

associated negative socioeconomic consequences (Dixon et al., 2020a). Nevertheless, such 

research has provided an incomplete understanding of the nature of segregation, ignoring the 

time that people spend outside the home (Wong and Shaw, 2011). A more complete 

understanding of segregation must account for the time that people spend at work, in places 

of education and in everyday activity spaces such as street corners, parks, markets and leisure 

facilities; as well as the time that they spend travelling in cars, on public transport and on foot 

(Dixon et al., 2020a; 2022). We will therefore present a spatial application of FBI to a 

geographical model of territory between segregated groups in Belfast, UK. In doing so, we 

will demonstrate how this approach addresses all four of the above challenges in order to 

provide a deeper understanding of patterns of sectarian territory in the region. 

Materials and methods 

Study area 

This study is based in a region of North Belfast, Northern Ireland, UK. Segregation in 

Northern Ireland principally occurs between the two main communities: Catholics and 

Protestants (Merrilees et al., 2018; Roulston and Young, 2013). The nature of the conflict is, 

however, far more complex than this religious nomenclature suggests: the chief driver of the 

conflict is ethno-political, with Unionist Protestants tending to identify as British and wishing 

to remain part of the United Kingdom and Nationalist Catholics tending to identify as Irish 

and wishing to unify with the Republic of Ireland (Mac Ginty et al., 2007; Merrilees et al., 

2018; Roulston and Young, 2013). Segregation and sectarianism are everyday realities for 

many residents of Northern Ireland (Roulston and Young, 2013) and despite the conflict 



officially ending with the ‘Good Friday Agreement’ in 1998, daily routines, practices and 

mobilities of individuals in North Belfast remain significantly impacted by the ongoing 

effects of sectarianism (Hamilton et al., 2008; Dixon et al., 2020b). Notably, residential 

patterns in this part of the city persist in a distinctive ‘checkerboard’ pattern in which 

nationalist and unionist communities exist in close proximity yet remain divided in their 

everyday activities and use of space, with divisions often enforced by physical barriers 

known as ‘peace walls’.  Specifically, we will focus on five pairs of adjacent 

Catholic/Protestant communities, which are indicated on Figure 1. 

 

Figure 1: The study area and North Belfast communities upon which this research focuses. 

Base map data © OpenStreetMap Contributors. 

Data collection 

Our approach comprises a spatial application of FBI to combine evidence from three primary 



sources and one secondary source in order to produce fuzzy surfaces in which each cell 

represents the degree of membership of the territory of a given group (Catholic or Protestant). 

The secondary dataset is the Northern Ireland Small Area (SA) data from the 2011 census, 

which was obtained from NISRA (2011) and includes the percentage of Catholic and 

Protestant residents in each area, from which the overall ratio can be calculated and the areas 

classified (illustrated in Figure 2A). This approach to representing territory only accounts for 

residential patterns and suffers from the problems described earlier, but provides a useful 

basis for our prior possibility, to which further evidence can then be added.  

All three primary datasets were collected during a continuous campaign between February 

and December 2016. The first primary dataset used in this research comprise survey data 

collected from 488 residents of the study area, of which 242 were Catholic and 246 

Protestant; 196 were male, 291 female and 1 did not disclose a gender. Participants were 

asked a range of questions relating to their experience of segregation, but here we only use 

whether they classify themselves as Catholic or Protestant and the location of their home. 

These data on Catholic and Protestant residential locations are illustrated in Figure 2B and 

the dataset and methodology are described in more detail in Dixon et al. (2020a). 

The second primary dataset comprises Participatory GIS (PGIS) data collected using the 

Map-Me platform1, which uses a ‘spraycan’ (or ‘airbrush’) interface for users to add data to 

the maps (Huck et al., 2014). This is intended to better capture the vagueness inherent in the 

data avoiding the imposition of ‘artificial precision’ (after Montello et al., 2003) by forcing 

place-based data into fixed boundaries. Participants use the zoom level of the map to control 

the level of precision and density of the spray; and this is therefore often used as a proxy for 

 

1 http://map-me.org  

http://map-me.org/


‘strength of feeling’ (Huck et al., 2019). Data were collected from 33 residents of the study 

area, of which 14 were Catholic, 17 Protestant and 2 ‘Other’; 21 were male and 12 female. 

Participants were asked to use the ‘spraycan’ interface to ‘spray paint’ onto a Google Map in 

response to the following prompts: “Please spray the areas you would consider to be 

Catholic”, “Please spray the areas you would consider to be Protestant” and “Please spray 

the areas you would consider to be Mixed” (i.e., not segregated). This PGIS survey was 

conducted in the form of a one-to-one mapping exercise with each participant to ensure that 

the data reflected participants’ intentions (i.e., the data were not affected by mistakes or 

difficulties using the platform etc.). The resulting dataset is illustrated in Figure 2C and 

described in detail in Huck et al. (2019), whilst the software is described in Huck et al. 

(2014).  

The third primary dataset comprises GNSS2 (Global Navigation Satellite System) traces 

collected for a period of up to 14 days from 196 participants, of which 93 were Catholic, 91 

Protestant and 12 ‘Other’; 79 male and 117 female. Data were collected using a custom 

Android mobile phone application, which recorded participants’ location at 4-second 

intervals and uploaded them to a server along with a timestamp and estimate of accuracy. 

Participants could pause the app for defined periods of time, but otherwise the application 

continued to track even if it was closed or the device restarted, ensuring high levels of data 

capture. The raw GNSS traces (comprising approximately 21.7 million data points) were 

processed as described in Davies et al. (2017). This dataset is illustrated in Figure 2D and is 

described in more detail in Hocking et al. (2018) and Dixon et al. (2020a). 

 

2 GNSS is the generic term for satellite-based navigational systems, prominent examples of which 

include GPS, GLONASS and Galileo. 



These four datasets comprise the evidence that will be combined using FBI in order to 

estimate a possibility distribution for each location in the study area (each cell in the surface), 

from which we can derive values for both membership and uncertainty. We will do this for 

both Catholic and Protestant territories, yielding two output surfaces: one in which each cell 

contains a value representing the degree to which a given location is part of a Catholic 

territory; and one in which each cell contains a value representing the degree to which a 

given location is part of a Protestant territory (we will refer to these values as ‘territoriality’). 

Note that both are required as the two datasets are not necessarily perfectly inverse of each 

other due to the presence of the ‘mixed’ and ‘other’ classifications in the input datasets. 

 

Figure 2: Key Datasets: (A) Small Area Census Zones, including percentage of Catholic and 

Protestant residents; (B) Location of 488 Catholic and Protestant households that were 

surveyed; (C) PGIS data from 33 participants relating to perceptions of Catholic and 



Protestant territory, as well as mixed areas; (D) GNSS Traces for 196 Catholic and Protestant 

participants. 

Fuzzy Bayesian inference 

Our approach seeks to construct one FBI model for each cell in a surface that covers 

the full extent of the study area. Each location will therefore have a separate possibility 

distribution, which is initialised with a prior possibility using the residential ratios calculated 

from the Small Area census data. This approach is described as the use of an informed prior 

(i.e., one based on pre-existing knowledge, information or belief), which is preferable to 

starting with a flat prior (i.e., starting with no information). Despite the issues that we have 

described arising from sole reliance upon this dataset as a measure of territory, it nevertheless 

provides a sensible starting point for an inference model. It also has the advantage of spatial 

contiguity, meaning that there will be at least some data for all locations in the study area. We 

then iteratively add evidence from each of the three primary datasets to determine a new 

posterior possibility distribution. Each iteration of our spatial implementation of FBI 

comprises two distinct steps. The first step requires the use of an evidence function to gather 

spatial data (evidence) from the dataset in question (either survey, PGIS and GNSS data) and 

process this into a distance-weighted evidence value. The second step then actually 

incorporates this evidence value into the model for a given location to estimate the posterior 

possibility distribution.  

In the first step, the evidence for a given cell being a member of catholic or protestant 

territory is gathered using the evidence function, the specifics of which are likely to vary 

between applications of FBI. The simplest version of this would be a count of data points 

within a given distance of the cell location, though in practice it is likely that some form of 

distance weighting function will be applied to ensure that data closest to the cell location are 

privileged over more peripheral data. In this example, our evidence function comprises an 



inverse distance weighted squared (IDW2) score based on an attribute-weighted count of all 

data points relating to each group within a certain distance of the cell centre (the bandwidth), 

as per Equations 2 and 3. Data are weighted twice in this instance: once based on their 

location (using IDW2 as described above), and once based on their attributes (depending on 

the dataset, as described below). This provides a good ‘general’ example of an evidence 

function that could be applied to a range of datasets and applications. As with many GIS 

algorithms that require a bandwidth parameter, there is rarely clear empirical evidence to 

support the selection of a specific bandwidth value. Effort should be made to ensure that this 

value reflects the nature of the phenomena in question insofar as is possible, though the 

impact of minor changes in bandwidth will be limited due to the IDW2 weighting. 

𝑣𝑔 =  { 𝑚𝑔 ∩ 𝑐𝑟 } 

(2) 

Where: 𝑣𝑔 is the evidence relating to group 𝑔 (Catholic or Protestant) for a given cell 

location; calculated as the intersection between: 𝑚𝑔, which is the complete set of data points 

(evidence) relating to group 𝑔; and 𝑐𝑟, which is a circle of radius 𝑟 (the selected bandwidth) 

centred at the given cell location. 

𝑒𝑔 = ∑ 𝑤𝑖 ( 1 −
√(𝑥 −  𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 

𝑟
 )

2|𝑣𝑔|

𝑖=0

  

(3) 

Where: 𝑒𝑔 is the evidence value for group 𝑔 at a given cell location; |𝑣𝑔|is the length of the 

evidence set; 𝑥 and 𝑦 represent the projected coordinates of the given cell location; 𝑥𝑖 and 𝑦𝑖 

are the projected coordinates of data point 𝑖; and 𝑤𝑖  is the weighting value for data point 𝑖, 



which may be dataset specific and can vary either by data point or by dataset. In this case, 

weighting values (𝑤𝑖) for the PGIS data were calculated on a scale of 0-1, determined by the 

zoom level at which the PGIS data were created (as a proxy for strength of feeling; Huck et 

al., 2019), with data produced at the smallest scale given the lowest weight and vice versa. 

For the GNSS data, 𝑤𝑖  was the number of individuals that produced the data, with a larger 

number of individuals resulting in a greater weighting. In absence of evidence to support 

weighting the Survey data, 𝑤𝑖  was fixed at 1 for this dataset. 

In the second step, the evidence values for each group and location (𝑒𝑔 for Catholic and 

Protestant territory) are then used to construct a Multinomial possibility distribution, with the 

parameter vector drawn from a Dirichlet distribution. The relationship between these 

distributions is well established in Bayesian methods, with the latter representing the 

conjugate prior of the former. This simply means that, for a possibility distribution that 

conforms to a Multinomial distribution, the prior possibility distribution will conform to a 

Dirichlet distribution, which is useful as knowing the distributions beforehand significantly 

reduces the required amount of computation in the FBI process.  

When applied to probability distributions and continuous parameters, the denominator in 

Bayes formula (Equation 1) often becomes either computationally or analytically intractable 

for all but the most trivial models (Blei et al., 2017). It is therefore common practice in 

Bayesian inference to estimate the posterior distribution using a Markov Chain Monte Carlo 

(MCMC) approach, which allows us to sample from (and therefore estimate) the posterior 

distribution without the need to solve Equation 1 directly.  Once the evidence distribution 

has been calculated from all three evidence datasets, we therefore use the No U-Turn Sampler 

(an efficient MCMC algorithm; Hoffman and Gelman, 2014) to estimate the parameters of 

the posterior possibility distribution based on 1000 sample draws. Once we have estimated 



our posterior probability distribution, we simply report the mean (our value for the degree to 

which a location is a member of the given group territory) and the width of the 95% credible 

interval, which provides our value for the uncertainty associated with this membership value. 

This process is repeated with a separate model for every cell in the output raster surface for 

each community. All analysis was undertaken in Python 3.8 and the source code repository, 

complete with example data, is given at the end of this manuscript.  

Results 

To illustrate the proposed method, fuzzy surfaces describing the membership of a given 

location to the Catholic and Protestant territories were calculated using a 20m resolution (cell 

size) and 40m bandwidth (radius). Both surfaces are illustrated in Figure 3. 

 

Figure 3:  Fuzzy surfaces describing the degree to which a given location is a member of (A) 

Catholic and (B) Protestant territory. Road data © OpenStreetMap Contributors. 



Comparison with the small area census data 

To explore the benefits of this approach, we will provide a brief comparison with traditional 

zonal (census-based) approaches to understanding territory. Because census data only report 

data relating to residences but are spatially contiguous and so also incorporate non-residential 

areas, their use in attempts to understand territory can be misleading. This occurs, for 

example, where Small Area zones contain non-residential facilities that are shared, but which 

are misclassified in conventional analyses because the census data only accounts for 

residences (which are segregated). This is an example of the Ecological Fallacy (Robinson, 

1950), whereby all of the area inside the zone is erroneously considered to match the 

characteristics of the residential part. In the study area, shared facilities are often located in 

the vicinity of residential areas as part of attempts to promote integration, such as through the 

creation of ‘integrated schools’ (i.e., schools intended to be attended by both Catholic and 

Protestant children) and other ‘shared’ facilities that are created to promote interaction 

between members of both groups. One such example is Cliftonville Integrated Primary 

School, which is located in the Catholic Cliftonville community and is accordingly 

represented as such in the Census data (>92% Catholic, Figure 4Ai). In the fuzzy surfaces, 

however, the school is recognised as a mixed ‘island’ (i.e., a relatively low possibility of 

membership to either community) in this otherwise strongly Catholic territory (black dot, 

figure 4Aii and 4Aiii). There are many examples of such facilities (integrated schools, parks, 

shopping centres etc.) that are ‘lost’ due to the spatial aggregation inherent in the production 

of administrative tessellations. 

A second example occurs where census zones are plotted across multiple neighbourhoods, 

causing them to be aggregated and misrepresent the actual underlying patterns. This is an 

example of the MAUP (Openshaw, 1981) as well as the UGCoP (Kwan, 2012), in that the 

implicit assumption that suitably small zones can act as a proxy for neighbourhoods fails 



either spatially, temporally, or both. An illustration of this effect occurs in the Bellevue ward 

(Figure 4B), where there are multiple examples of Small Area zones that are plotted across 

perceived community boundaries, normally where community boundaries are quite small. In 

the case of the Bellevue ward, this has created an erroneous ‘mixed’ area in the census data 

(Figure 4Bi, 54% Catholic and 43% Protestant), whereas in fact the area is strongly Catholic 

(Figure 4Bii and 4Biii).  In this case, it is likely that the Small Area encloses two highly 

segregated communities, as opposed to one mixed one, which is an example of both the 

MAUP and the spatial component of the UGCoP, as the assumption that the Small Area is 

representative of a neighbourhood is flawed. However, as is clear from Figure 4Bii and 

4Biii, this is no longer the case and the surrounding area is now predominantly Catholic. This 

is likely due to temporality component of the UGCoP, as the study area contains many areas 

of housing that will change territory over time because of demographic shifts in the area. For 

example, there is a widely held perception that wealthier and more socially mobile members 

of the Protestant community tend to leave the area for more desirable areas, resulting in a so-

called 'greening' of North Belfast as their places are taken by Catholics, leading to shifts in 

local territorial boundaries and increases in social tensions. 

Finally, we should also consider situations in which a fuzzy model might not be expected to 

perform as well, such as where there are very sharp boundaries between territories (normally 

accompanied by a physical boundary such as a peace wall), which does coincide with a Small 

Area zone boundary, meaning that the census data provides a good representation. Such an 

example can be found in the boundary between the Duncairn (Protestant) and New Lodge 

(Catholic) communities, which occurs along Duncairn Gardens (a main road) and is defined 

by a series of peace walls that provide a precise physical boundary (Figure 4Ci). Here, the 

fuzzy surfaces have performed well, maintaining relatively sharp edges whilst allowing for 

the ‘mixed’ behaviour on the road itself and the comparatively less segregated industrial 



buildings that open onto Duncairn Gardens, some of which are separated from the more 

segregated residential areas by the peace walls (Figure 4Cii and 4Ciii). 

 

Figure 4: Comparison of Small Area census data (i) with fuzzy possibility surfaces for 

Catholic (ii) and Protestant (iii) territory, illustrating all three datasets for three locations to 

demonstrate how FBI addresses (A) the Ecological Fallacy (Cliftonville Integrated Primary 

School), (B) The UGCoP (Bellevue) and (C) sharp boundary (between New Lodge and 

Duncairn). 

Uncertainty in the fuzzy surfaces 

The uncertainty for each of the surfaces in Figure 3 is derived from the 95% credible interval 

of the possibility distribution for each cell in the surface, the result of which is shown in 

Figure 5. In spatial applications of FBI, it is essential to report uncertainty maps alongside 



the results to ensure that results are expressed with the appropriate level of confidence, 

allowing the quality of evidence to be evaluated. Areas of high uncertainty can therefore 

either be discarded or further evidence can be collected to reduce uncertainties to acceptable 

levels.  

 

Figure 5:  Surfaces describing the level of uncertainty (width of the 95% credible interval of 

the possibility distribution) at each location in (A) the Catholic territorial surface and (B) the 

Protestant territorial surface. Road data © OpenStreetMap Contributors. 

As expected, uncertainties are lowest in the communities from which participants were drawn 

(identified in Figure 1) and highest in the peripheral zones of the map, where we did not 

collect sufficient data to make a reliable estimate of territorial membership. The visibility of 

Small Area boundaries to the northwest of the Figure 5, for example, demonstrates that little 

or no further evidence has been added to the prior possibility in these regions. The 

uncertainties within our target communities are generally very small, with the largest 

occurring either at locations in which we collected less data such as Cliftonville golf club 

(approx. 2km west of Glandore / Skegoneill, labelled 2 on the map) and the cluster of schools 



and churches between Fort William Park and Somerton road (approx. 1km north of Glandore 

/ Skegoneill, labelled 2 on the map); or in locations that are shared by both groups, such as 

Cityside Retail Park (approx. 1km south west of New Lodge / Tigers Bay, labelled 3 on the 

map) and Hillview Retail Park (immediately south east of Glenbryn / Ardoyne, labelled 4 on 

the map). 

Composite fuzzy territoriality map 

 

Figure 6:  A fuzzy map of territoriality demonstrating the degree to which each part of the 

area is a member of either Catholic or Protestant territory. Areas with the darkest colours are 



members of their respective territory to the greatest degree, whereas areas with the lighter 

colours are more likely to be shared. Areas for which the level of uncertainty was greater than 

0.1 are excluded. 

Based on the FBI and associated uncertainty surfaces above, it is a simple matter to extract 

only those areas for which there is a high degree of confidence in the territoriality value to 

create a fuzzy representation of the ‘core’ community territories. Figure 6 presents a 

composite surface of areas for which the degree of uncertainty was 0.1. A standard ‘sieve’ 

operation has been used to remove extremely small areas of territory. Darker colours indicate 

territorial membership to a greater degree, whereas the lighter colours indicate areas that are 

shared. As with the individual layers presented in Figure 3, variations in membership both 

between (inter-territorial) and within (intra-territorial) territories are clear, as are the patterns 

of segregation and sharing.  

Discussion and conclusion 

This paper is not intended as a criticism of the use of administrative tessellations in research, 

as they are well suited to the purposes for which they are intended. However, the uncritical 

use of crisply defined polygons as a proxy for socially-derived regions is widely understood 

to be inadequate and there is a clear need for new approaches. This paper demonstrates one 

such approach, which allows researchers to gain deeper insight into geographical areas with 

perceived boundaries by combining information from multiple data sources. Fuzzy 

approaches have long been recognised as a potential solution for modelling vague 

geographical entities, but applications of fuzzy methods to social boundaries are extremely 

rare in the literature. One isolated example that has similarities to the approach presented here 

is provided by Gao et al. (2017), who present two approaches to mapping cognitive regions  

through the synthesis of multiple geotagged datasets from web and social media sources. 

These approaches, however, which are based on a grid-based and point-clustering approaches 



combined with an evaluation of agreement between the data sources, provide neither the 

formal analytical framework, nor the ability to evaluate uncertainties afforded by FBI. 

A major contributing factor to the lack of uptake of fuzzy approaches to social boundaries is 

the challenge in producing justifiable membership functions for vague geographical entities 

(i.e., those with perceived boundaries), which can often prove to be as arbitrary as the 

administrative zones that they seek to replace. Here, we address this issue by demonstrating 

how a spatial implementation of FBI can be used to produce possibility distributions that 

describe both the expected degree of membership of a given location to a set (i.e., Catholic or 

Protestant territory) and the level of uncertainty associated with that value. The ability to 

combine primary and secondary evidence from multiple official (e.g., census), empirical 

(e.g., GNSS Traces, Survey) and qualitative (e.g., PGIS) datasets, means that we can capture 

multiple facets of what ‘territory’ means to both those who are included and excluded from it, 

which in turn facilitates a more sophisticated and nuanced analysis. In the context of the case 

study, this sophistication includes the ability to look beyond only residential patterns of 

segregation and instead provide a holistic model that accounts for both residential and 

activity space patterns, as well as both official and individual views. 

There are two key limitations to this spatial application of FBI that might impact upon 

adoption. First is the requirement for extensive data collection. Most work on residential 

segregation exploits government census data, which is readily available and the product of a 

huge investment of time and money. The FBI case study presented here required the 

collection of large amounts of additional primary data (the survey, PGIS and GNSS data) to 

provide evidence for the inference of the possibility distribution, which may limit 

applications to only those projects that are adequately resourced to undertake such work. 

Clearly, shifts toward open data (including the web- and social media-based datasets such as 



those used by Gao et al., 2017) will help with this in some areas by preventing the duplication 

of efforts, but it is likely that this will remain a barrier to adoption for some applications. As 

with any inference-based approach, the quality and representivity of the input datasets are 

also of great importance, as systematic biases in the data will inevitably be reproduced in the 

resulting maps, so rigorous collection techniques are required to ensure meaningful outputs.  

The second key limitation is that FBI is highly computationally intensive due to the use of the 

MCMC simulation to estimate the posterior possibility distribution, which is computationally 

intensive. In most cases, it would not be possible to determine the uncertainties associated 

with the resulting surfaces without this simulation step, though alternative approaches such as 

quadratic approximation would provide a more efficient estimate for some simple models 

(see McElreath, 2020). To address this issue, the model presented here was calculated in 40 

subregions that were processed in parallel using a cluster computing facility and then stitched 

together at the end. Where such facilities are not available, the computational burden of this 

approach would be significant, which could limit the extent of the study area or the resolution 

of the output surfaces. However, given the increasing popularity of Bayesian methods in 

recent years, there are promising examples of ways in which to increase the computational 

efficiency of MCMC processes (e.g., Rajabi and Ataie-Ashtiani, 2016). It is likely that such 

advancements will continue to improve the computational efficiency of MCMC, thus 

reducing the computational burden of spatial applications of FBI. 

The outputs presented here were primarily intended as inputs to other types of model, such as 

Agent Based Models that require agents to have a detailed understanding of the environment 

that cannot be satisfactorily obtained from census data alone. However, the output maps 

clearly hold substantial value in their own right, providing new perspectives on patterns of 

segregation, territoriality and the use of shared spaces, which would have great value in the 



formulation of future policy. FBI also creates rich possibilities for the exploration of the 

different lived and perceived landscapes of spatial division. For example, data from different 

groups of participants could be analysed separately to understand similarities and differences 

in the ways in which boundaries are understood. For example, in the context of our case 

study, FBI would permit the exploration of questions such as whether young people who 

grew up in the years following the Good Friday Agreement view sectarian boundaries in 

north Belfast in the same way as older residents who lived through ‘the Troubles’. Factoring 

in varying and perhaps even contested boundary perceptions into Bayesian models might 

yield quite different maps of the divided city and thus reveal deeper and more understanding 

of how perceptions vary between groups existing within the study area. 

Similarly, if evidence is continually fed into an FBI model with a temporally weighted 

evidence function, then it would permit these patterns to be tracked over time. This could 

provide authorities, NGOs and communities to gain deeper insight into the patterns that have 

such a significant impact upon their daily lives and allowing policies and interventions to be 

evaluated by observing temporal changes in attitude and behaviour. From this perspective, 

FBI could prove to be a valuable tool for providing up-to date understandings of territories, 

which would have a significant impact upon the effective targeting of activities intended to 

promote integration in the study’s area. This might include, for example, supporting on-going 

efforts to remove approximately 100 peace walls that currently exist within the study area 

(DoJ, 2019) by supporting decision making around which walls to remove and evaluating of 

the impact of the removal of walls upon territorial boundaries. Further research should seek 

to apply datasets produced using FBI to models of segregation, including the development of 

new and improved segregation metrics and the adoption of the temporal approach described 

above. The FBI method should also be applied to a range of other vague social regions, such 

as the determination of ‘communities of interest’ for use in electoral mapping (e.g., Phillips 



and Montello, 2017). 

In his discussion of place in GIS, Goodchild (2011) identifies that, whilst GIS has been 

accused of taking an excessively simplistic view of many complex geographical ideas, there 

are clear benefits to this approach with respect to the ease with which the resulting data can 

be analysed, visualised and modelled. However, as Pickles (1995) recognised, there has also 

been much discussion throughout the history of GIS around the extent to which technologies 

bias, filter or otherwise intrude on the interactions between people and their environment 

(also Montello et al., 2003). This discussion is of great relevance here, as it is common for 

researchers to simply adopt census data as a proxy for neighbourhoods, communities, 

territories and similar simply because they are readily available as a secondary data source. 

FBI provides an approach that permits the modelling of vague geographical areas that can 

illustrate both inter- and intra-territorial differences without falling foul of widely understood 

issues such as the Ecological Fallacy, the MAUP or the UGCoP, whilst also navigating the 

challenges associated with fuzzy methods that required defined membership functions. We 

contend that convenience should not dictate the approaches taken in scientific applications, 

and that methodological innovations such as those presented in this paper can provide novel 

alternatives that enable deeper insights to be gained into a range of vague geographical 

entities. 

Data and codes availability statement 

All Python code and data for the FBI analysis is available under an Open Source / Open Data 

License at https://github.com/jonnyhuck/fuzzy-bayesian-inference. The spatial data includes 

from the PGIS (real) GNSS tracking (simulated) and Survey (simulated). The real GNSS and 

Survey data could not be published as there is a significant risk of identifying individual 

participants. Small Area census data are available from NISRA at 

https://github.com/jonnyhuck/fuzzy-bayesian-inference


https://www.nisra.gov.uk/support/geography/northern-ireland-small-areas. The Android 

Application used for GNSS data collection is available at https://github.com/jonnyhuck/bmp-

pathways-app. 
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