Correlation of nanoscale electromechanical and mechanical properties of twisted double bi-layer graphene via UFM, **PFM**, and **E-HFM**

S. Gonzalez-Munoz¹, A. Canetta², K. Agarwal¹, J. Spièce², P. Gehring² and O. V. Kolosov¹ ¹Lancaster University, ²Université Catholique de Louvain

Introduction

- □ The 2D stack interlayer twist angle changes the lattice periodicity, creating a Moiré pattern.¹
- \Box This causes atomic reconstruction² \rightarrow affecting the system's *electronic* band structure and its physical properties.

Moiré pattern detection via Force

□ Twisted double bilayer graphene (TDBG) on hexagonal boron

Торо.

feedb.

Lancaster University

UCLouvain

Amplifier

GRAPHENE

FLAGSHIP

RENATE

Probe.

 f_{AM}

 V_{UFM}

Microscopy.

Local changes of mechanical properties \rightarrow analysis of Young's modulus.

^(C) Picosecond-scale time-domain relaxation with nanoscale lateral resolution.

Results

Topography:

10 nm

- nitride (h-BN).
- □ TDBG is composed by two AB-stacked bilayer graphene sheets rotated at the magic angle (1.1°) .

V_{probe} (

V_{piezo}

Y PFM, UFM and E-HFM allow to image in a detailed way the Moiré pattern of TDBG.

- \checkmark Elongated triangular domains pattern \rightarrow presence of local non-uniform strain or pinning of stacking sites.
- Young's modulus is reduced by approximately 5 GPa along the domain walls with respect to the stacking domains.

References

1. He, F. et al. ACS Nano 15 (2021).

- 2. Yoo, H. et al. Nat. Mater. 18 (2019).
- 3. Yamanaka K. et al. Appl. Phys. Lett. 64 (1994).

4. McGilly, L. J. et al. Nat. Nanotechnol. 15 (2020).

5. Zeng Q. et al. Adv. Sci. 8 (2021).

We acknowledge financial support from the F.R.S.-FNRS of Belgium, the Federation Wallonie-Bruxelles, the FWO, the European Union's Horizon 2020 Research and Innovation Program–Graphene Flagship Core3, the EPSRC HiWiN project, the French RENATECH network and the DIM-SIRTEC.