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Stochastic Gradient MCMC for Nonlinear State
Space Models

Christopher Aicher∗, Srshti Putcha†, Christopher Nemeth‡, Paul Fearnhead‡, and Emily
Fox§

Abstract. State space models (SSMs) provide a flexible framework for modeling
complex time series via a latent stochastic process. Inference for nonlinear, non-
Gaussian SSMs is often tackled with particle methods that do not scale well
to long time series. The challenge is two-fold: not only do computations scale
linearly with time, as in the linear case, but particle filters additionally suffer
from increasing particle degeneracy with longer series. Stochastic gradient MCMC
methods have been developed to scale Bayesian inference for finite-state hidden
Markov models and linear SSMs using buffered stochastic gradient estimates to
account for temporal dependencies. We extend these stochastic gradient estimators
to nonlinear SSMs using particle methods. We present error bounds that account
for both buffering error and particle error in the case of nonlinear SSMs that
are log-concave in the latent process. We evaluate our proposed particle buffered
stochastic gradient using stochastic gradient MCMC for inference on both long
sequential synthetic and minute-resolution financial returns data, demonstrating
the importance of this class of methods.

Keywords: Bayesian inference, exponential forgetting, Markov chain Monte Carlo,
nonlinear state space model, particle filtering, stochastic gradient.

1 Introduction

Nonlinear state space models (SSMs) are widely used in many scientific domains for mod-
eling time series. For example, nonlinear SSMs can be applied in engineering (e.g. target
tracking, Gordon et al. 1993), in epidemiology (e.g. compartmental disease models, Dukic
et al. 2012), and to financial time series (e.g. stochastic volatility models, Shephard
2005). To capture complex dynamical structure, nonlinear SSMs augment the observed
time series with a latent state sequence, inducing a Markov chain dependence structure.
Parameter inference for nonlinear SSMs requires us to handle this latent state sequence.
This is typically achieved using particle filtering methods.

Particle filtering algorithms are a set of flexible Monte Carlo simulation-based
methods, which use a set of samples, also known as particles, to approximate the
posterior distribution over the latent states. Unfortunately, inference in nonlinear SSMs
does not scale well to long sequences: (i) the cost of each update requires full passes
through the data that scales linearly with the length of the sequence, and (ii) the number
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2 SGMCMC for Nonlinear SSMs

of particles (and hence the computation per data point) required to control the bias of
the particle filter scales linearly with the length of the sequence (Kantas et al., 2015).

Stochastic gradient Markov chain Monte Carlo (SG-MCMC) is a popular method for
scaling Bayesian inference to large data sets, replacing full data gradients with stochastic
gradient estimates based on subsets of data (Welling and Teh, 2011; Ma et al., 2015). In
the context of SSMs, naive stochastic gradients are biased because subsampling breaks
temporal dependencies in the data (Ma et al., 2017; Aicher et al., 2019). To correct
for this, Ma et al. (2017) and Aicher et al. (2019) have developed buffered stochastic
gradient estimators that control the bias. The latent state sequence is marginalized in a
buffer around each subsequence, which reduces the effect that breaking dependencies
has on the estimate of the gradient. However, the work so far has been limited to SSMs
where analytic marginalization is possible (e.g. finite-state HMMs and linear dynamical
systems).

In this work, we propose particle buffered gradient estimators that generalize the
buffered gradient estimators to nonlinear SSMs. Although straightforward in concept,
a number of unique challenges arise in this setting. First, we show how buffering in
nonlinear SSMs can be approximated with a modified particle filter. Second, we provide
an error analysis of our proposed estimators by decomposing the error into subsequence
error, buffering error, and particle filter error and analyze how this error propagates
to estimating posterior means with SGMCMC. Third, we extend the buffering error
bounds of Aicher et al. (2019) to nonlinear SSMs with log-concave likelihoods and show
that buffer error decays geometrically in buffer size, ensuring that a small buffer size
can be used in practice.

The theory we present highlights the importance of controlling bias in the estimate
of the gradient – as whilst the impact of a high variance estimator on the accuracy
of the SG-MCMC algorithm can be controlled by increasing the number of steps and
reducing the step size, it is not possible to change the implementation of the SG-MCMC
algorithm to reduce the impact of the bias. We then show theoretically that introducing
buffering enables us to control the bias of the estimates of the gradient – with the bias
decaying geometrically in the size of the buffer. We investigate the accuracy of our new
approach on a range of models with both synthetic and real data – and show that for
fixed computational cost we have obtained substantial gains in accuracy over alternatives.
This is due to the reduced bias relative to unbuffered versions of SG-MCMC and through
the fact that using stochastic gradient methods allows for more iterations of the MCMC
algorithm when compared to approaches that estimate gradients using all observations.

Python code for our Algorithm and for replicating our numerical studies is available
at https://github.com/aicherc/sgmcmc_ssm_code.

2 Background

2.1 Nonlinear State Space Models for Time Series

State space models are a class of discrete-time bivariate stochastic processes consisting
of a latent state process X = {Xt ∈ Rdx}Tt=1 and a second observed process, Y =

https://github.com/aicherc/sgmcmc_ssm_code
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{Yt ∈ Rdy}Tt=1. The evolution of the state variables is typically assumed to be a time-
homogeneous Markov process, such that the latent state at time t, Xt, is determined
only by the latent state at time t − 1, Xt−1. The observed states are conditionally
independent given the latent states. Given the prior X0 ∼ ν(x0|θ) and parameters θ ∈ Θ,
the generative model for X,Y is thus

Xt|(Xt−1 = xt−1, θ) ∼ p(xt |xt−1, θ), (1)

Yt|(Xt = xt, θ) ∼ p(yt |xt, θ),
where we call p(xt |xt−1, θ) the transition density and p(yt |xt, θ) the emission density.

For an arbitrary sequence {zi}, we use zi:j to denote the sequence (zi, zi+1, . . . , zj).
To infer the model parameters θ, a quantity of interest is the score function, the gradient
of the marginal loglikelihood, ∇θ log p(y1:T |θ). Using the score function, the loglikelihood
can be maximized iteratively via a (batch) gradient ascent algorithm (Robbins and
Monro, 1951), given the observations, y1:T .

If the latent state posterior p(x1:T |y1:T , θ) can be expressed analytically, we can
calculate the score using Fisher’s identity (Cappé et al., 2005),

∇θ log p(y1:T | θ) = EX|Y,θ[∇θ log p(X1:T , y1:T | θ)]

=

T∑
t=1

EX|Y,θ[∇θ log p(Xt, yt |xt−1, θ)]. (2)

If the latent state posterior, p(x1:T |y1:T , θ), is not available in closed-form, we can
approximate the expectations of the latent state posterior. One popular approach is via
particle filtering methods.

Particle Filtering and Smoothing

Particle filtering algorithms (see e.g. Doucet and Johansen, 2009; Fearnhead and Künsch,
2018) can be used to create an empirical approximation of the expectation of a function
H(X1:T ) with respect to the posterior density, p(x1:T |y1:T , θ). This is done by generating

a collection of N random samples or particles, {x(i)
t }Ni=1 and calculating their associated

importance weights, {w(i)
t }Ni=1, recursively over time. We update the particles and weights

with sequential importance resampling (Doucet and Johansen, 2009) in the following
manner.

(i) Resample auxiliary ancestor indices {a1, . . . , aN} with probabilities proportional

to the importance weights, i.e. ai ∼ Categorical(w
(i)
t−1).

(ii) Propagate particles x
(i)
t ∼ q(·|x(ai)

t−1 , yt, θ), using a proposal distribution q(·|·).

(iii) Update and normalize the weight of each particle,

w
(i)
t ∝

p(yt|x(i)
t , θ)p(x

(i)
t |x(ai)

t−1 , θ)

q(x
(i)
t |x(ai)

t−1 , yt, θ)
,
∑
i

w
(i)
t = 1 . (3)
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The auxiliary variables, {ai}Ni=1, represent the indices of the ancestors of the particles,

{x(i)
t }Ni=1, sampled at time t. The introduction of ancestor indices allows us to keep track

of the lineage of particles over time (Andrieu et al., 2010). The multinomial resampling
scheme given in (i) describes the procedure by which offspring particles are produced.

Resampling at each iteration is used to mitigate against the problem of weight
degeneracy. This phenomenon occurs when the variance of the importance weights grows,
causing more and more particles to have negligible weight. Aside from the multinomial
resampling scheme described above, there are various other resampling schemes outlined
in the particle filtering literature, such as stratified sampling (Kitagawa, 1996) and
residual sampling (Liu and Chen, 1998).

If the proposal density q(xt|xt−1, yt, θ) is the transition density p(xt|xt−1, θ) we
obtain the bootstrap particle filter (Gordon et al., 1993). By using the transition density

for proposals, the importance weight recursion in (3) simplifies to w
(i)
t ∝ p(yt|x(i)

t , θ).

When our target function decomposes into a pairwise sumH(x1:T ) =
∑T
t=1 ht(xt, xt−1)

– such as for Fisher’s identity ht(xt, xt−1) = ∇θ log p(yt, xt |xt−1, θ) – then we only need
to keep track of the partial sum Ht =

∑t
s=1 hs(xs, xs−1) in the filter (Doucet and

Johansen, 2009): see Algorithm 1.

Algorithm 1 Particle Filter

1: Input: number of particles, N , pairwise statistics, h1:T , observations y1:T , proposal
density q,

2: Draw x
(i)
0 ∼ ν(x0|θ), set w

(i)
0 = 1

N , and H
(i)
0 = 0 ∀i.

3: for t = 1, . . . , T do
4: Resample ancestor indices {a1, . . . , aN}.
5: Propagate particles x

(i)
t ∼ q(·|x(ai)

t−1 , yt, θ).

6: Update each w
(i)
t according to (3).

7: Update statistics H
(i)
t = H

(ai)
t−1 + ht(x

(i)
t , x

(ai)
t−1).

8: end for
9: Return H =

∑N
i=1 w

(i)
T H

(i)
T .

A key challenge for particle filters is handling large T . Not only do long sequences
require O(T ) computation, but particle filters require a large number of particles, N ,
to avoid particle degeneracy : the use of resampling in the particle filter causes path-
dependence over time, depleting the number of distinct particles available overall. For
Algorithm 1, the variance in H scales as O(T 2/N) (Poyiadjis et al., 2011). Therefore to
maintain a constant variance, the number of particles would need to increase quadratically
with T , which is computationally infeasible for long sequences. Poyiadjis et al. (2011);
Nemeth et al. (2016) and Olsson and Westerborn (2017) propose alternatives to Step 7
of Algorithm 1 that trade additional computation or bias to decrease the variance in
H to O(T/N). Fixed-lag particle smoothers provide another approach to avoid particle
degeneracy, where sample paths are not updated after a fixed lag (Kitagawa and Sato,
2001; Dahlin et al., 2015). All of these methods perform a full pass over the data y1:T ,
which requires O(T ) computation.
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2.2 Stochastic Gradient MCMC

One popular method to conduct scalable Bayesian inference for large data sets is stochastic
gradient Markov chain Monte Carlo (SGMCMC). Given a prior p(θ), to draw a sample
θ from the posterior p(θ|y) ∝ p(y|θ)p(θ), gradient-based MCMC methods simulate
a stochastic differential equation (SDE) based on the gradient of the loglikelihood
gθ = ∇θ log p(y|θ), such that the posterior is the stationary distribution of the SDE.
SGMCMC methods replace the full-data gradients with stochastic gradients, ĝθ, using
subsamples of the data to avoid costly computation.

The most common method of the SGMCMC family is the stochastic gradient Langevin
dynamics (SGLD) algorithm (Welling and Teh, 2011; Nemeth and Fearnhead, 2021):

θ(k+1) ← θ(k) + ε(k) · (ĝθ +∇ log p(θ)) +N (0, 2ε(k)), (4)

where ε(k) is the stepsize and θ1 is an initialization of the chain. When ĝθ is unbiased
and with an appropriate decreasing stepsize, the distribution of θ(k) asymptotically
converges to the posterior distribution (Teh et al., 2016). Dalalyan and Karagulyan
(2019) provide non-asymptotic bounds on the Wasserstein distance between the posterior
and the output of SGLD after K steps for fixed ε(k) = ε and possibly biased ĝθ.

Many extensions of SGLD exist in the literature, including using control variates
to reduce the variance of ĝθ (Baker et al., 2019; Nagapetyan et al., 2017; Chatterji
et al., 2018) and augmented dynamics to improve mixing (Ma et al., 2015) such as
stochastic gradient Hamiltonian Monte Carlo (Chen et al., 2014), stochastic gradient
Nosé-Hoover thermostat (Ding et al., 2014), and stochastic gradient Riemannian Langevin
dynamics (Girolami and Calderhead, 2011; Patterson and Teh, 2013).

Stochastic Gradients for SSMs

An additional challenge when applying SGMCMC to SSMs is handling the temporal
dependence between observations. Based on a subset S of size S, an unbiased stochastic
gradient estimate of (2) is∑

t∈S
Pr(t ∈ S)−1 · EX|y1:T ,θ[∇θ log p(Xt, yt |Xt−1, θ)]. (5)

Although (5) is a sum over S terms, it requires taking expectations with respect to
p(x|y1:T , θ), which requires processing the full sequence y1:T . One approach to reduce
computation is to randomly sample S as a contiguous subsequence S = {s+1, . . . , s+S}
and approximate (5) using only yS∑

t∈S
Pr(t ∈ S)−1 · EX|yS ,θ[∇θ log p(Xt, yt |Xt−1, θ)]. (6)

However, (6) is biased because the expectation over the latent states xS is conditioned
only on yS rather than y1:T .
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To control the bias in stochastic gradients while also avoiding accessing the full se-
quence, previous work on SGMCMC for SSMs proposed buffered stochastic gradients (Ma
et al., 2017; Aicher et al., 2019).

ĝθ(S,B) =
∑
t∈S

EX|yS∗ ,θ[∇θ log p(Xt, yt |Xt−1, θ)]

Pr(t ∈ S)
, (7)

where S∗ = {s+ 1−B, . . . , s+ S +B} is the buffered subsequence such that S ⊆ S∗ ⊆
{1, . . . , T} (see Figure 1). When the ”buffer” extends outside of the original subsequence
(e.g. s+1−B < 1 or s+S+B > T ), then we can extend the model to {1−B, . . . , T +B}
and assume the observations yt outside of {1, . . . , T} are missing. In practice, we will
truncate S∗ by intersecting it with {1, . . . , T}.

The unbiased gradient estimate, which conditions on all data (5), is ĝ(S, T ) and the
estimator with no buffering (6) is ĝ(S, 0). As B increases from 0 to T , the estimator
ĝθ(S,B) trades computation for reduced bias. In particular, when the model and gradient

xs−1 xs xs+1 xs+2 xs+3 xs+4 xs+5

ys−1 ys ys+1 ys+2 ys+3 ys+4 ys+5

S S∗

Figure 1: Graphical model of S∗ with S = 3 and B = 1.

both satisfy a Lipschitz property, the error decays geometrically in buffer size B, see
Theorem 4.1 of Aicher et al. (2019). Specifically, for all S

‖ĝθ(S,B)− ĝθ(S, T )‖2 = O(LBθ · T/S), (8)

where Lθ is a bound for the Lipschitz constants of the forward and backward smoothing
kernels1

~Ψt(xt+1, xt) = p(xt+1 |xt, y1:T , θ),

~Ψt(xt−1, xt) = p(xt−1 |xt, y1:T , θ). (9)

The bound provided in (8) ensures that only a modest buffer size B is required (e.g.
O(log δ−1) for an accuracy of δ). Unfortunately, neither the buffered stochastic gradient

ĝθ(S,B) nor the smoothing kernels {~Ψt, ~Ψt} have a closed form for nonlinear SSMs.

3 Method

In this section, we propose a particle buffered stochastic gradient for nonlinear SSMs, by
applying the particle approximations of Section 2.1 to (7).

1We follow Aicher et al. (2019) and consider Lipschitz constants for a kernel Ψ measured in terms of
the p-Wasserstein distance between distributions of x, x′ and Ψ(x),Ψ(x′).
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3.1 Buffered Stochastic Gradient Estimates for Nonlinear SSMs

Let gPF
θ (S,B,N) denote the particle approximation of ĝθ(S,B) with N particles. We

approximate the expectation over p(x|yS∗ , θ) in (7) using Algorithm 1 run over S∗. In
the following we will use ν0 as the prior distribution for Xs+1−B, which is a natural
choice if the state process is stationary and ν0 is its stationary distribution; for other
cases better choices for the prior distribution of Xs+1−B may be possible.

The complete data loglikelihood, log p(yS , xS , θ), in (7) decomposes into a sum of
pairwise statistics

H =
∑
t∈S∗

ht(xt, xt−1) , (10)

where

ht(xt, xt−1) =


∇θ log p(xt, yt |xt−1, θ)

Pr(t ∈ S)
if t ∈ S,

0 otherwise.
(11)

We highlight that the statistic is zero for t in the left and right buffers S∗\S. Although
Ht is not updated by ht for t in S∗\S, running the particle filter over the buffers is
crucial to reduce the bias of gPF

θ (S,B,N).

Note that gPF
θ (S,B,N) allows us to approximate the non-analytic expectation in

(7) with a modest number of particles N , by avoiding the particle degeneracy and full
sequence runtime bottlenecks, as the particle filter is only run over S∗, which has length
S + 2B � T .

3.2 SGMCMC Algorithm

Using gPF
θ (S,B,N) as our stochastic gradient estimate in SGLD, (4), gives us Algorithm 2.

Algorithm 2 Buffered PF-SGLD

1: Input: data y1:T , initial θ(0), stepsize ε, subsequence size S, buffer size B, particle
size N

2: for k = 1, 2, . . . ,K do
3: Sample S = {s+ 1, . . . , s+ S}
4: Set S∗ = {s+ 1−B, . . . , s+ S +B}.
5: Calculate gPF

θ over S∗ using Alg. 1 on (11).
6: Set θ(k+1) ← θ(k) + ε · (gPF

θ +∇ log p(θ)) +N (0, 2ε)
7: end for
8: Return θ(K+1)

Algorithm 2 can be extended by (i) averaging over multiple sequences or varying
the subsequence sampling method (Schmidt et al., 2015; Ou et al., 2018), (ii) using
different particle filters such as those listed in Section 2.1, and (iii) using more advanced
SGMCMC schemes such as those listed in Section 2.2.
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4 Error Analysis

In this section, we analyze the error of our particle buffered stochastic gradient gPF
θ and

its effect on approximating posterior means with finite sample averages using Algorithm 2.
We first present error bounds for approximating posterior means using SGLD with biased
gradients (Theorem 1). We then present bounds on the gradient bias and MSE of gPF

θ ,
extending the error bounds of Aicher et al. (2019) (Theorem 2). In particular, we provide
bounds for the Lipschitz constant Lθ of the smoothing kernels (9) without requiring an
explicit form for the smoothing kernels (Theorem 3), allowing (8) to apply to nonlinear
SSMs.

4.1 Error of Biased SGLD’s Finite Sample Averages

We consider the estimation error of the posterior expected value of some test function of
the parameters φ : Θ→ R using samples θ(k) drawn using SGLD with a fixed step size
ε and stochastic gradients gθ.

Let φ̄ be the posterior expected value

φ̄ = E p(θ|y)[φ(θ)] , (12)

and let φ̂K,ε be the K-sample estimator for φ̄

φ̂K,ε =
1

K

K∑
k=1

φ(θ(k)) . (13)

The error of the finite sample average |φ̂K,ε − φ̄| has been previously studied for
SGLD with unbiased gradients by Vollmer et al. (2016) and Chen et al. (2015). Following
Chen et al. (2015), we make the following assumption on φ.

Assumption 1. Let L be the generator of the Langevin diffusion

L[ψ(θt)] = −∇ log p(θt) · ∇ψ(θt) +
ε2

2
tr(∇2ψ(θt)) .

Then, we define ψ to solve the Poisson equation

1

K

K∑
k=1

L[ψ(θ(k))] = φ̂K,ε − φ̄ . (14)

We assume that ψ(θ) and its derivatives (up to third order) are bounded.

We now present Theorem 1, which bounds the error of a finite sample Monte Carlo
estimator based on SGLD when the stochastic gradients ĝθ are potentially biased.

Theorem 1 (Error of Finite Sample Average). If the gradient gθ is smooth in θ, the
test function φ satisfies a moment condition (Assumption 1) and the bias and MSE of
the gradient estimates ĝθ are uniformly bounded, that is,

‖E ĝθ − gθ‖ ≤ δ and E ‖ĝθ − gθ‖2 ≤ σ2 for all θ , (15)
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then there exists some constant C > 0, such that the bias and MSE of φ̂K,ε satisfy

|E φ̂K,ε − φ̄ | ≤ C ·
(

1

Kε
+ δ

)
+O(ε) , (16)

E |φ̂K,ε − φ̄ |2 ≤ C
(

1

K2ε2
+
σ2

K
+ δ2 +

δ

ε

)
+O

(
1

Kε
+ δε+ ε2

)
. (17)

The bias bound, (16), is a direct application of Theorem 2 in Chen et al. (2015).
The MSE bound, (17), is an extension of Theorem 3 in Chen et al. (2015) when the
stochastic gradient estimates ĝθ are biased (i.e. δ 6= 0). The additional bias terms δ arise

from keeping track of additional cross terms in (φ̂K,ε − φ̄)2. The proof of Theorem 1 is
presented in the Supplement (Aicher et al., 2023).

From Theorem 1, we see that the error bounds on φ̂K,ε are more sensitive to the bias
δ of ĝ than the variance σ2: the term involving σ2 decays with increasing K, while terms
involving δ do not decay regardless of stepsize ε or number of samples K. A similar
conclusion comes from the bound on error of SGLD in Theorem 4 of Dalalyan and
Karagulyan (2019): the impact of bias on the error bound is not affected by step size,
whereas the impact of the variance can be reduced by taking more steps of smaller size;
however, we do not require the posterior distribution be log-concave.

Therefore for the samples from Algorithm 2 to be useful, it is important for the bias
of gPF

θ to be controlled.

4.2 Gradient Bias and MSE Bounds

To apply Theorem 1 to the samples from Algorithm 2, we develop bounds on the bias δ
and MSE σ2 of our particle buffered stochastic gradients gPF

θ .

Theorem 2 (Bias and MSE Bounds for gPF
θ ). For fixed θ, if the model and gradi-

ent satisfy a Lipschitz condition and there is a bound on the autocorrelation between
EX|y1:T∇ log p(yt, Xt|Xt−1, θ) for different t, then the bias δ and MSE σ2 of gPF

θ is
bounded by

δ ≤ γ ·
[
C1 · LBθ +O

(
S + 2B

N

)]
, (18)

σ2 ≤ 3γ2 ·
[
C2

1 · L2B
θ + C2S +O

(
(S + 2B)2

N

)]
, (19)

where γ = maxt Pr(t ∈ S)−1 and C1, C2 are constants with respect to S,B,N .

From Theorem 2, we see that the bias δ (18) can be controlled by selecting large
enough N and B when Lθ < 1.

We now sketch the proof of Theorem 2 and discuss its assumptions. The complete
proof can be found in the Supplement (Aicher et al., 2023).



10 SGMCMC for Nonlinear SSMs

We decompose the error between gPF
θ and the full gradient gθ through ĝθ(S,B) and

ĝθ(S, T ) into three error sources:

‖gPF
θ (S,B,N)− gθ‖ ≤ ‖gPF

θ (S,B,N)− ĝθ(S,B)‖︸ ︷︷ ︸
particle error (I)

+

‖ĝθ(S,B)− ĝθ(S, T )‖︸ ︷︷ ︸
buffering error (II)

+ ‖ĝθ(S, T )− gθ‖︸ ︷︷ ︸
subsequence error (III)

. (20)

(I) Particle error : the Monte Carlo error of the particle filter. From Kantas et al.
(2015), the asymptotic bias and MSE of a particle approximation to the sum of R
test functions (using Algorithm 1) is O(R/N) and O(R2/N) respectively. Since
gPF(S,B,N) is a particle approximation to the sum of R = S + 2B test functions
(i.e., ht(xt, xt−1)), we have

‖E gPF
θ (S,B,N)− ĝθ(S,B)‖ = O

(
γ · S + 2B

N

)
E ‖gPF

θ (S,B,N)− ĝθ(S,B)‖2 = O
(
γ2 · (S + 2B)2

N

)
, (21)

where γ is a upper bound on the sampling scale factor γ = maxt Pr(t ∈ S)−1.

Using a more advanced particle filter, such as the “PaRIS” or “Poyiadjis N2”
algorithm, Corollary 6 of Olsson and Westerborn (2017) gives a tighter bound for
the MSE

E ‖gPF
θ (S,B,N)− ĝθ(S,B)‖2 = O

(
γ2 · S + 2B

N

)
.

However in our experiments, we found that the improved MSE of these other
particle filters was not worth the additional computational overhead for the
small subsequences we considered, where S + 2B . 100. See experiments in the
Supplement (Aicher et al., 2023).

(II) Buffering error,: error in approximating the latent state posterior p(x1:T |y1:T ) with
p(x1:T |yS∗). The error stems from conditioning on only a buffered subsequence yS∗

instead of y1:T and the initial distribution approximation ν0 for Xs+1−B. If the

smoothing kernels {~Ψt, ~Ψt} are contractions for all t (i.e. Lθ < 1), then according
to (8), the error in this term is proportional to γLBθ . In Section 4.3, we show
sufficient conditions for Lθ < 1.

(III) Subsequence error : the error in approximating Fisher’s identity using a randomly
chosen subsequence of data points. The error in this term depends on the sub-
sequence size S and how subsequences are sampled. Because we sample random
contiguous subsequences of size S, the MSE scales O(γ2S 1+ρ

1−ρ ), where ρ is a bound

on the autocorrelation between EX|y1:T∇ log p(yt, Xt|Xt−1, θ) for different t. See
the Supplement (Aicher et al., 2023) for details.
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Combining these error bounds gives us Theorem 2.

We present examples of the asymptotic bias and MSE bounds given by Theorem 2
for four different gradient estimators in Table 1. The four gradient estimators are: (i)
naive stochastic subsequence (without buffering) gPF(S, 0, N) (ii) buffered stochastic
subsequence gPF(S,B,N), (iii) fully buffered stochastic subsequence gPF(S, T,N), and
(iv) full sequence gPF(T, T,N). For simplicity, we assume the subsequences S are sampled
from a strict partition of 1 : T such that γ = T/S and assume B is on the same order
as S (i.e. B is O(S)).

Table 1: Asymptotic bias and compute cost for four different gradient estimators.
Gradient (S,B,N) Bias δ Compute

Naive Subsequence (S, 0, N) C1 · T/S +O(T/N) O(SN)
Buffered Subsequence (S,B,N) C1 · LBθ · T/S +O(T/N) O(SN)

Fully Buffered Subsequence (S, T,N) O(T/N) O(TN)
Full Sequence (T, T,N) O(T/N) O(TN)

From Table 1, we see that without buffering, the naive stochastic gradient has a
C1 · T/S term in the bias bound δ. The fully buffered subsequence and full sequence
gradients remove the buffering error entirely, but require O(TN) computation. Instead,
our proposed buffered stochastic gradient controls the bias, with the geometrically
decaying factor LBθ , using only O(SN) computation.

4.3 Buffering Error Bound for Nonlinear SSMs

To obtain a bound for the buffering error term (II), we require the Lipschitz constant Lθ
of smoothing kernels {~Ψt, ~Ψt} to be less than 1. Typically the smoothing kernels ~Ψt, ~Ψt

are not available in closed-form for nonlinear SSMs and therefore directly bounding the
Lipschitz constant is difficult. However, we now show that when the model’s transition
and emission densities are log-concave in xt, xt−1, we can bound the Lipschitz constant

of ~Ψt, ~Ψt in terms of the Lipschitz constant of either the prior kernels ~Ψ
(0)
t , ~Ψ

(0)

t , or the

filtered kernels ~Ψ
(1)
t , ~Ψ

(1)

t

~Ψ
(0)
t := p(xt |xt−1, θ), ~Ψ

(1)
t := p(xt |xt−1, yt, θ),

~Ψ
(0)

t := p(xt |xt+1, θ), ~Ψ
(1)

t := p(xt |xt+1, yt, θ), (22)

Unlike the smoothing kernels, the prior kernels are defined by the model and are therefore
usually available. If the filtered kernels are available, then they can be used to obtain
even tighter bounds.

Theorem 3 (Lipschitz Kernel Bound). Assume the prior for x0 is log-concave in x. If
the transition density p(xt |xt−1, θ) is log-concave in (xt, xt−1) and the emission density
p(yt |xt) is log-concave in xt, then

‖~Ψt‖Lip ≤ ‖~Ψ(1)
t ‖Lip ≤ ‖~Ψ(0)

t ‖Lip (23)
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‖ ~Ψt‖Lip ≤ ‖ ~Ψ
(1)

t ‖Lip ≤ ‖ ~Ψ
(0)

t ‖Lip. (24)

Therefore

Lθ = max
t
{‖~Ψt‖Lip, ‖ ~Ψt‖Lip}

≤ max
t
{‖~Ψ(1)

t ‖Lip, ‖ ~Ψ
(1)

t ‖Lip}

≤ max
t
{‖~Ψ(0)

t ‖Lip, ‖ ~Ψ
(0)

t ‖Lip} (25)

This theorem lets us bound Lθ with the Lipschitz constant of either the prior kernels
or filtered kernels. The proof of Theorem 3 is provided in the Supplement (Aicher et al.,
2023) and uses Caffarelli’s log-concave perturbation theorem (Villani, 2008; Colombo
et al., 2017). Examples of SSMs for which Theorem 3 applies include the linear Gaussian
SSM, the stochastic volatility model, or any linear SSM with log-concave transition and
emission distributions.

Theorem 3 lets us calculate analytic bounds on Lθ for the buffering error of Theorem 2.
We provide explicit bounds for Lθ for the linear Gaussian SSM and stochastic volatility
model in Section 5.1 with proofs in the Supplement (Aicher et al., 2023).

5 Experiments

We first empirically test the bias of our particle buffered gradient estimator gPF
θ on

synthetic data for fixed θ. We then evaluate the performance of our proposed SGLD
algorithm (Algorithm 2) on both real and synthetic data.

5.1 Models

For our experiments, we consider three models: (i) the linear Gaussian SSM (LGSSM),
a case where analytic buffering is possible, to assess the impact of the particle filter;
(ii) the stochastic volatility model (SVM) (Shephard, 2005), where the emissions are
non-Gaussian; and (iii) the generalized autoregressive conditional heteroskedasticity
(GARCH) model (Bollerslev, 1986), where the latent transitions are nonlinear.

Linear Gaussian SSM

The linear Gaussian SSM (LGSSM) is

Xt | (Xt−1 = xt−1, θ) ∼ N (xt |φxt−1 , σ
2),

Yt | (Xt = xt, θ) ∼ N (yt |xt , τ2), (26)

with ν0(x0) = N (x0 | 0, φ2

1−σ2 ) and parameters θ = (φ, σ, τ).

The transition and emission distributions are both Gaussian and log-concave in x, so
Theorem 3 applies. In the Supplement (Aicher et al., 2023), we show that the filtered
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kernels of the LGSSM are bounded with the Lipschitz constant Lθ = |φ| · σ2/(σ2 + τ2).
Thus, the buffering error decays geometrically with increasing buffer size B when

|φ| < (1 + τ2

σ2 ). This linear model serves as a useful baseline since the various terms in
(20) can be calculated analytically.

Stochastic Volatility Model

The stochastic volatility model (SVM) is

Xt | (Xt−1 = xt−1, θ) ∼ N (xt |φxt−1 , σ
2),

Yt | (Xt = xt, θ) ∼ N (yt | 0 , exp(xt)τ
2), (27)

with ν0(x0) = N (x0 | 0, φ2

1−σ2 ) and parameters θ = (φ, σ, τ).

For the SVM, the transition and emission distributions are log-concave in x, allowing
Theorem 3 to apply. In the Supplement (Aicher et al., 2023), we show that the prior

kernels {~Ψ(0)
t , ~Ψ

(0)

t } of the SVM are bounded with the Lipschitz constant Lθ = |φ|. Thus,
the buffering error decays geometrically with increasing buffer size B when |φ| < 1.

GARCH Model

We finally consider a GARCH(1,1) model (with noise)

Xt | (Xt−1 = xt−1, σ
2
t , θ) ∼ N (xt | 0, σ2

t ),

σ2
t (xt−1, σ

2
t−1, θ) = α+ βx2

t−1 + γσ2
t−1,

Yt | (Xt = xt, θ) ∼ N (yt |xt , τ2), (28)

with ν0(x0) = N (0, α
1−β−γ ) and parameters θ = (α, β, γ, τ). Unlike the LGSSM and

SVM, the noise between Xt and Xt−1 is multiplicative in Xt−1 rather than additive. This
model’s transition distribution is not log-concave in (xt, xt−1) and therefore our theory
(Theorem 3) does not hold. However, we see empirically that buffering can help reduce
the gradient error for the GARCH in the experiments below and in the Supplement
(Aicher et al., 2023).

5.2 Stochastic Gradient Bias

We compare the error of stochastic gradient estimates using a buffered subsequence
with S = 16, while varying B and N on synthetic data from each model. We generated
synthetic data of length T = 256 using (φ = 0.9, σ = 0.7, τ = 1.0) for the LGSSM,
(φ = 0.9, σ = 0.5, τ = 0.5) for the SVM, and (α = 0.1, β = 0.8, γ = 0.05, τ = 0.3) for the
GARCH model.

Figures 2-4 display the bias of our particle buffered stochastic gradient gPF
θ (S,B,N)

and gθ averaged over 1000 replications. We evaluate the gradients at θ equal to the
data generating parameters. We vary the buffer size B ∈ [0, 16], the subsequence size
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Figure 2: Stochastic gradient bias varying buffer size B for S = 16 for different values of
N . (left) LGSSM φ, (middle) SVM φ, (right) GARCH β. Error bars are 95% confidence
interval over 1000 replications.
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Figure 3: Stochastic gradient bias varying subsequence size S for No Buffer (B = 0)
and Buffer (B > 0) for different values of N . (left) LGSSM φ, (middle) SVM φ, (right)
GARCH β. The buffer size B = 8 for LGSSM and GARCH and B = 16 for the SVM.
Error bars are 95% confidence interval over 1000 replications.

S ∈ [1, T ] and the number of samples N ∈ {100, 1000, 10000}. For the LGSSM, we also
consider N =∞, by calculating gPF

θ (S,B,∞) using the Kalman filter (Kalman, 1960),
which is tractable in the linear setting. We calculate gθ using the Kalman filter for the
LGSSM, and use gθ ≈ gPF

θ (T, 0, 107) for the SVM and the GARCH model, assuming
that N = 107 particles is sufficient for an accurate approximation in these 1-dimensional
settings.

Figure 2 shows the bias as we vary the buffer size B for different N and S = 16. From
Figure 2, we see the trade-off between the buffering error (II) and the particle error (III)
in the bias bound, (18) of Theorem 2. For all N , when B is small, the buffering error
(II) dominates, and therefore the MSE decays exponentially as B increases. However
for N < ∞, the particle error (III) dominates for larger values of B. In fact, the bias
slightly increases due to particle degeneracy, as |S∗| = S + 2B increases with B. For
N =∞ in the LGSSM case, we see that the bias continues to decreases exponentially
with large B as there is no particle filter error when using the Kalman filter.

Figure 3 shows the bias as we vary the subsequence size S for different N and with
and without buffering. We see that buffering helps regardless of subsequence size (as the
bias for all buffered methods are lower than the no buffer methods for all S ∈ [2, 64]).
We also see that increasing S can increase the bias for fixed N (when buffering) as the
particle error (III) dominates.

Figure 4 shows the bias as we vary the number of particles N for the four different
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Figure 4: Stochastic gradient bias varying N for different S,B. (left) LGSSM φ, (middle)
SVM φ, (right) GARCH β. (top) x-axis is N , (bottom) x-axis is runtime in seconds. No
Buffer is gPF(16, 0, N), Buffer B = B is gPF(16, B,N), Buffer B = T is gPF(16, T,N),
and Full is gPF(T, T,N). The moderate buffer size B = 8 for LGSSM and GARCH and
B = 16 for the SVM. Error bars are 95% confidence interval over 1000 replications.

methods correspond to Table 1. In the top row, we compare the bias against N and
in the bottom row, we compare the bias against the runtime required to calculate gPF

θ .
We see that the method without buffering (orange) is significantly biased regardless of
N , where as buffering with moderate B (blue), buffering with large B = T (red), and
using the full sequence (green) have similar (lower) bias as we increase N . However the
runtime plots show that buffering with moderate B takes significantly less time.

In summary, Figures 2-4 show that buffering cannot be ignored in these three example
models: there is high bias for B = 0. In general, buffering has diminishing returns when
B is excessively large relative to N .

In the Supplement (Aicher et al., 2023), we present plots of the bias varying B,S,N
using different particle filters (PaRIS and Poyiadjis N2) instead of the naive PF. We
find that they perform similarly to the naive PF for the small subsequence lengths |S∗|
considered, while taking ≈ 10 times longer to run. We also present plots of the bias as
we vary the parameters of the data generating model. We find that as the parameters
become more challenging (e.g. Lθ → 1), we need to increase both B and N to control
bias; otherwise, the buffer stochastic subsequence methods are more biased than using
full sequence gradient.

5.3 SGLD Experiments

Having examined the stochastic gradient bias, we now examine using our buffered
stochastic gradient estimators in SGLD (Algorithm 2).
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SGLD Evaluation Method

We measure the sample quality of our MCMC chains {θ(k)}Kk=1 using the kernel Stein
discrepancy (KSD) for equal compute time (Gorham and Mackey, 2017; Liu et al., 2016).
We choose to use KSD rather than classic MCMC diagnostics such as effective sample
size (ESS) (Gelman et al., 2013), because KSD penalizes the bias present in our MCMC
chains. Whilst it can be hard to interpret the absolute value of KSD for any problem, it
is informative for comparing between different algorithms. Given a sample chain (after

burnin and thinning) {θ(k)}K̃k=1, let p̂(θ|y) be the empirical distribution of the samples.
Then the KSD between p̂(θ|y) and the posterior distribution p(θ|y) is

KSD(p̂, p) =

dim(θ)∑
d=1

√√√√√ K̃∑
k,k′=1

Kd0(θ(k), θ(k′))

K̃2
, (29)

where
Kd0(θ, θ′) = 1

p(θ|y)p(θ′|y)∇θd∇θ′d(p(θ|y)K(θ, θ′)p(θ′|y)) (30)

and K(·, ·) is a valid kernel function. Following Gorham and Mackey (2017), we use the
inverse multiquadratic kernel K(θ, θ′) = (1 + ‖θ − θ′‖22)−0.5 in our experiments. Since
(30) requires full gradient evaluations of log p(θ|y) that are computationally intractable,
we replace these terms with corresponding stochastic estimates using the full particle
filter estimate, gPF

θ (Gorham et al., 2020).

SGLD on Synthetic LGSSM Data

To assess the effect of using particle filters with buffered stochastic gradients, we first
focus on SGLD on synthetic LGSSM data, where calculating ĝθ(S,B) is possible. We
generate training sequences of length T = 103 or 106 using the same parametrization as
Section 5.2.

We consider three pairs of different gradient estimators: Full (S = T ), Buffered
(S = 40, B = 10) and No Buffer (S = 40, B = 0) each with N = 1000 particles using
the particle filter and with N = ∞ using the Kalman filter. To select the stepsize,
we performed a grid search over ε ∈ {1, 0.1, 0.01, 0.001} and selected the method with
smallest KSD to the posterior on the training set. We present the KSD results (for the
best ε) in Table 2 and trace plots of the metrics in Figure 5.

From Figure 5, we see that the methods without buffering (B = 0) have higher MSE
as they are biased. We also see that the full sequence methods (S = T ) perform poorly
for large T = 106.

The KSD results further support this story. Table 2 presents the mean and standard
deviation on our estimated log10 KSD for θ. Tables of the marginal KSD for individual
components of θ can be found in the Supplement (Aicher et al., 2023). The methods
without buffering have larger KSD, as the inherent bias of ĝθ(S,B = 0) led to an incorrect
stationary distribution. The full sequence methods perform poorly for T = 106 because
of a lack of samples that can be computed in a fixed runtime.
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Figure 5: Comparison of SGLD with different gradient estimates on synthetic LGSSM
data: T = 103 (left), T = 106 (right). MSE of estimated posterior mean to true φ = 0.9.

In the Supplement (Aicher et al., 2023), we present similar results on synthetic SVM
and GARCH data. Also in the Supplement (Aicher et al., 2023), we present results
on LGSSM in higher dimensions. As is typical in the particle filtering literature, the
performance degrades with increasing dimensions for N fixed.

SGLD on Exchange Rate Log-Returns

We now consider fitting the SVM and the GARCH model to EUR-USD exchange rate
data at the minute resolution from November 2017 to October 2018. The data consists
of 350,000 observations of demeaned log-returns. As the market is closed during non-
business hours, we further break the data into 53 weekly segments of roughly 7,000
observations each. In our model, we assume independence between weekly segments and
divide the data into a training set of the first 45 weeks and a test set of the last 8 weeks.
Full processing details and example plots are in the Supplement (Aicher et al., 2023).
Our method (Algorithm 2) easily scales to the unsegmented series; however the abrupt
changes between starts of weeks are not adequately modeled by (27)

We fit both the SVM and the GARCH model using SGLD with four different gradient
methods: (i) Full, the full gradient over all segments in the training set; (ii) Weekly, a
stochastic gradient over a randomly selected segment in the training set; (iii) No Buffer,
a stochastic gradient over a randomly selected subsequence of length S = 40; and (iv)
Buffer, our buffered stochastic gradient for a subsequence of length S = 40 with buffer
length B = 10. To estimate the stochastic gradients, we use Algorithm 1 with N = 1000.
To select the stepsize parameter, we performed a grid search over ε ∈ {1, 0.1, 0.01, 0.001}
and selected the method with smallest KSD. We present the KSD results in Table 3.
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Table 2: KSD for Synthetic LGSSM. Mean and SD. Results are shown after running
each method for a fixed computational time.

log10KSD
S B N T = 103 T = 106

T – 1000 0.85 (0.08) 4.92 (0.40)
∞ 0.64 (0.17) 4.85 (0.36)

40 0 1000 1.58 (0.03) 4.68 (0.10)
∞ 1.55 (0.03) 4.68 (0.11)

40 10 1000 0.68 (0.25) 3.43 (0.19)
∞ 0.61 (0.21) 3.25 (0.29)

Table 3: KSD for SGLD on exchange rate data. Mean and SD over 5 chains each. Results
are shown after running each method for a fixed computational time.

log10KSD
Method SVM GARCH

Full 4.03 (0.14) 2.84 (0.30)
Weekly 3.87 (0.08) 2.81 (0.21)
No Buffer 4.48 (0.01) 2.09 (0.09)
Buffer 3.56 (0.08) 2.19 (0.05)

For the SVM, we see that buffering leads to more accurate MCMC samples, Ta-
ble 3 (left). In particular, the samples from SGLD without buffering have smaller φ, τ2

and a larger σ2, indicating that its posterior is (inaccurately) centered around a SVM
with larger latent state noise. We also again see that the full sequence and weekly
segment methods perform poorly due to the limited number of samples that can be
computed in a fixed runtime.

For the GARCH model, Table 3 (right), we see that the subsequence methods out
perform the full sequence methods, but unlike in the SVM, buffering does not help with
inference on the GARCH data. This is because the GARCH model that we recover on the
exchange rate data (for all gradient methods) is close to white noise β ≈ 0. Therefore the
model believes the observations are close to independent, hence no buffer is necessary.

6 Discussion

In this work, we developed a particle buffered stochastic gradient estimators for nonlinear
SSMs. Our key contributions are (i) extending buffered stochastic gradient MCMC with
particle filtering for nonlinear SSMs, (ii) analyzing the error of our proposed particle
buffered stochastic gradient gPF

θ (Theorem 2) and its affect on our SGLD Algorithm 2
(Theorem 1), and (iii) generalizing the geometric decay bound for buffering to nonlinear
SSMs with log-concave likelihoods (Theorem 3). We evaluated our proposed gradient
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estimator with SGLD on both synthetic data and EUR-USD exchange rate data. We
find that buffering is necessary to control bias and that our stochastic gradient methods
(Algorithm 2) are able to out perform batch methods on long sequences.

Possible future extensions of this work include relaxing the log-concave restriction
of Theorem 3, extensions to Algorithm 2 as discussed at the end of Section 3.2, and
applying our particle buffered stochastic gradient estimates to other applications than
SGMCMC, such as maximising loglikelihoods or optimization in variational autoencoders
for sequential data (Maddison et al., 2017; Naesseth et al., 2018).

Supplementary Material

See the Supplement (Aicher et al., 2023) for all additional material. In Supplement A, we
provide additional details and proofs for the error analysis of Section 4. In particular, we
provide the proof of Theorem 1 in Supplement A.1, the proof of Theorem 2 in Supplement
A.2, the proof of Theorem 3 in Supplement A.3 and applications of Theorem 3 for LGSSM
and SVM in Supplement A.4. In Supplement B, we provide additional particle filter and
gradient details for the models in Section 5.1. In Supplement C, we provide additional
details and figures of experiments.
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