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Abstract4

In this paper we propose a general inefficiency model, in the sense that technical inefficiency is, simultaneously, a function5

of all inputs, outputs, and contextual variables. We recognize that change in inefficiency is endogenous or rational, and we6

propose an adjustment costs model with firm-specific but unknown adjustment cost parameters. When inefficiency depends7

on inputs and outputs, the firm’s optimization problem changes as the first order conditions must take into account the8

dependence of inefficiency on the endogenous variables of the problem. The new formulation introduces statistical challenges9

which are successfully resolved. The model is estimated using Maximum Simulated Likelihood and an empirical application10

to U.S. banking is provided.11
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1 Introduction15

In this paper we consider technical inefficiency as a function of inputs and outputs. The dominant paradigm in the literature is16

to use environmental or contextual variables as determinants of technical inefficiency (Battese and Coelli, 1988, 1995, Battese17

and Broca, 1997, and Wang, 2002). Such determinants are useful when one wishes to argue that inefficiency may depend on18

the context, regulation, etc. However, it is known that achieving higher efficiency levels is costly in terms of resources and,19

therefore, in terms of inputs and / or outputs ( Bogetoft and Hougaard, 2003). Using inputs and outputs as determinants20

of inefficiency opens up new problems and is by no means trivial as in the case of incorporating environmental or contextual21

variables. The reason is that most behavioral assumptions (cost minimization, profit or revenue maximization) require that22

inputs and / or outputs are selected optimally: When inefficiency depends on inputs and / or outputs, the decision making unit23

(DMU) optimization problem changes, as the first order conditions must take into account the dependence of inefficiency on the24

endogenous variables of the optimization problem.25

Our paper is related to Hampf (2017), who used sequential definitions of the production technology, to decompose cost26

inefficiency into rational and residual inefficiency as well as inefficiency caused by technical change. Related literature includes27

Fukuyama and Matousek (2018), Aparicio, Mahlberg, Pastor, and Sahoo (2014), Kapelko and Oude Lansink (2017), Kapelko,28

Oude Lansink, and Stefanou (2014), Tran and Tsionas (2016), Tsionas and Mamatzakis (2019), etc. In addition, Hampf (2017)29

provided lower bounds for unobserved adjustment costs based on unexploited cost reductions due to rational inefficiency. Specifi-30

cally, based on the decomposition into technical and allocative rational inefficiency, lower bounds for the radial and the non-radial31

adjustment costs can be estimated. Hampf (2017) suggested that parametric models could also be used, as in Park and Lesourd32

(2000). This study is in this direction of research, although we provide a completely new parametric model.33

2 Preliminaries34

Suppose x ∈ <K
+ is a vector of inputs, and we have a production function of the form:35

y = F (x)ev−u, (1)

where u ≥ 0 represents technical inefficiency and v is statistical noise. To describe inefficiency in a general input - output space36

we need to assume u = u(x, y). To see this consider Figure 1. From a point A it is possible to move to points B1, B2 or B3. Point37

B2 corresponds to a vertical movement (direction 2) corresponding to no change in the inputs. This change is rarely possible38

and points like B1 or B3 are more likely to occur in practice. This, however, requires simultaneous changes in both inputs and39

outputs.40

In addition, to move from A to any other point like B3 requires real resources in terms of both inputs and outputs, viz.41

it is costly to adjust inputs and outputs. A move from point A to B1 (direction 1) could occur when adjustment costs are42

high and inputs need to be reduced: In this case, however, output can be increased (direction 1) when, for example, managerial43
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Figure 1: Inefficiency depending on inputs x and outputs y
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practices improve. This increase in output may be also subject to adjustment costs when management (and, therefore, its cost)44

is unobserved. These adjustment costs are used to evaluate the feasibility of exploiting cost reductions caused by inefficiency.45

Point A could be interpreted as last period’s input-output combination and, in turn, moving to points like B1, B2 or46

B3, amounts to selecting a particular movement in the input-output space. Such movements (with the exception of “2”) are,47

however, costly and, in practice, the costs are unobserved. Moreover, it is not necessary to assume that such movements result48

in efficiency improvements and, in general, it is clear that inefficiency should depend on both inputs and outputs. Suppose that49

we write:50

ln y = f(lnx) + v − u(lnx, ln y), (2)

where f(lnx) = lnF (x). We should notice that the distribution of y conditional on x depends also on y through u(x, y). This51

may seem to prevent further analysis of the model as y appears on both sides of (2). Technically, what is required to obtain the52

distribution of y conditional on x is the Jacobian of transformation:53

∂v

∂ ln y
= 1 +

∂u(lnx, ln y)

∂ ln y
, (3)

so that the distribution has density:54

pln y(ln y) = pv (ln y − f(lnx) + u(lnx, ln y)) · |1 + ∂u(lnx, ln y)

∂ ln y
|. (4)

Inefficiency dependence on both inputs and outputs can be motivated based on Figure 1 where inefficiency changes require55

changes in both inputs and outputs. These changes are, however, costly, in real life since increasing or decreasing inputs (and56

the associated changes in outputs) is, generally speaking, costly. A typical example is when labor or capital have to be increased57

or decreased: Increases take time and are costly while decreases may be subject to labor laws or disinvestment which is also58

time-consuming as well as costly. In particular, less utilization of equipment services implies costs of depreciation among others59

like maintenance and repair and similar costs are in place when equipment services have to be increased. Labor service utilization60

can be increased only with time and obvious additional costs per unit. These considerations imply that, in general, input-output61

changes are costly and resemble a situation close to the one in Figure 1. An alternative is to use a directional distance function,62

3



see Chambers, Chung, and Färe (1996), and Chung, Färe, and Grosskopf (1997). Deriving optimal directions has received some63

attention, see Peyrache and Daraio (2012) who recommend sensitivity analysis to different direction vectors, and Färe, Grosskopf,64

and Whittaker (2013) who propose to estimate the optimal directions by maximizing inefficiency with respect to the direction65

vectors. This line of research has been explored in Atkinson, Primont, and Tsionas (2018). The methodology presented here is66

different in several respects. First, we can estimate directly adjustment costs. Second, directions are implicitly defined as the67

movement from point A to points like B1, B2 or B3 can be estimated. Third, these directions are endogenized in the model68

via the adjustment costs for each input and output. Fourth, technical inefficiency is directly a function of inputs, outputs and69

control or contextual variables, so that effects of input-output changes on inefficiency can be estimated directly. This introduces70

statistical challenges which are successfully resolved. To the best of our knowledge, there are no models that can incorporate71

the influence of input-output-contextual variables on technical inefficiency, simultaneously.72

3 The model73

Suppose x ∈ <K
+ is a vector of inputs, y ∈ <M

+ is a vector of outputs and z ∈ <J is a vector of control or environmental variables.74

Feasible combinations of inputs and outputs are described by:75

T =
{
x ∈ <K

+ , y ∈ <M
+ , z ∈ <J |x, y, z can be produced

}
. (5)

The firm maximizes profits:76

max
(x,y,z)∈T

: p′y − w′x, (6)

where w ∈ <K
+ is a vector of input prices and p ∈ <M

+ and is a vector of output prices. We represent the technology using an77

output distance function (ODF, Fare and Primont, 1995, p. 11):78

D(x, y, z) = min {ϑ : (x, y/ϑ, z) ∈ T } (7)

It is non-decreasing, positively linearly homogeneous, increasing and convex in y, and decreasing and quasi-concave in x.79

Moreover, D(x, y) ≤ 1 ∀(x, y) ∈ T with D(x, y) = 1 if and only if (x, y) is efficient. If TE is the Farrell-type output oriented80

measure of technical efficiency, then81

D(x, y) = 1/TE. (8)

Alternatively, we can write:82

D(x, y) = e−u ≤ 1, (9)

where u ≥ 0 represents technical inefficiency. In this paper we assume that technical inefficiency may be a function of inputs,83

outputs and the control variables:84

u = u(x, y, z)∀(x, y, z) ∈ T . (10)
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The problem of the firm instead of (6) is:85

max(x,y,z) : p
′y − w′x− 1

2

∑M
m=1 c

y
mpm(ym − yom)2 − 1

2

∑K
k=1 c

x
kwk(xk − xo

k)
2 − 1

2

∑J
j=1 c

z
j (zj − zoj )

2

subject to D(x, y, z) = e−u(x,y,z).
(11)

The adjustment cost coefficients (for outputs and inputs) are expressed in terms of prices of outputs and inputs. In (11),86

yo, xo and zo are the previous period values of outputs, inputs and the controls. There are adjustment costs cym for each output,87

cxx for each input, and czj for each control. If a variable can be adjusted without cost we can simply set the respective adjustment88

cost to zero. If it is beyond the control of the form we can set it to infinity or a very large number. The first order conditions89

to the problem are as follows:90

pm {1− cym(ym − yom)} = λ
{

∂D
∂ym

+ ∂u
∂ym

e−u
}
∀m = 1, ...,M,

wk {1 + cxk(xk − xo
k)} = −λ

{
∂D
∂xk

+ ∂u
∂xk

e−u
}

∀k = 1, ...,K,

czj (zj − zoj ) = −λ
{

∂D
∂zj

+ ∂u
∂zj

e−u
}

∀j = 1, ..., J.

(12)

We can express these conditions in equivalent form as follows:91

pmym {1− cym(ym − yom)} = λe−u
{

∂ lnD
∂ ln ym

+ ∂ lnu
∂ ln ym

u
}

∀m = 1, ...,M,

wkxk {1 + cxk(xk − xo
k)} = −λe−u

{
∂ lnD
∂ ln xk

+ ∂ lnu
∂ ln xk

u
}
∀k = 1, ...,K,

czjzj(zj − zoj ) = −λe−u
{

∂ lnD
∂ ln zj

+ ∂ lnu
∂ ln zj

u
}
∀j = 1, ..., J,

(13)

using (9). Denote ∂ lnD
∂ ln ym

= εDym,
, ∂ lnu

∂ ln ym
= εuym

, etc. In turn, we have:92

pmym {1− cym(ym − yom)} = λe−u
{
εDym

+ εuym
u
}
∀m = 1, ...,M,

wkxk {1 + cxk(xk − xo
k)} = −λe−u

{
εDxk

+ εuxk
u
}
∀k = 1, ...,K,

czjzj(zj − zoj ) = −λe−u
{
εDzj + εuzju

}
∀j = 1, ..., J.

(14)

To eliminate the Lagrange multiplier λ we have:93

p̃mym{1−cym(ym−yo
m)}

y1

{
1−cy1(y1−yo

1

} =
εDym+εuymu

εDy1
+εuy1

u
∀m = 2, ...,M,

w̃kxk{1+cxk(xk−xo
k)}

x1

{
1+cx1 (x1−xo

1)
} =

εDxk
+εuxk

u

εDx1
+εux1

u
∀k = 2, ...,K,

c̃zj zj(zj−zo
j )

z1(z1−zo
1)

=
εDzj

+εuzj
u

εDz1
+εuz1

u
∀j = 2, ..., J,

(15)

where p̃m = pm/p1, w̃k = wk/w1, and c̃zj = czj/c
z
1. This is a system of M + K + J − 3 equations in M + K + J endogenous94
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variables. The two of the three missing equations are provided by95

λ =
p1y1

{
1−cy1(y1−yo

1)
}
eu{

εDy1
+εuy1

u
} =

−w1x1{1+cx1 (x1−xo
1)}e

u

εDx1
+εux1

u
=

− cz1z1(z1−zo
1)e

u

εDz1
+εuz1

u
,

(16)

that is we have:96

y1

{
1−cy1(y1−yo

1)
}

εDy1
+εuy1

u
= −x1{1+cx1 (x1−xo

1)}
εDx1

+εux1
u

,

y1

{
1−cy1(y1−yo

1)
}

εDy1
+εuy1

u
= − z1(z1−zo

1)
εDz1

+εuz1
u
,

(17)

where we set w1 = cz1 = 1 without loss of generality, for normalization.97

The last equation is given by (9). The system consisting of (9), (15) and (17) can be written in the form:98

F(Y ; c, u, θ) = 0, (18)

where Y = [y′, x′, z′]′, F is a vector function in <M+K+J , c is the vector of adjustment costs, and θ ∈ Θ ⊆ <d is the vector99

of parameters in the ODF. If we have panel data, the adjustment coefficients are firm specific, and technical inefficiency is100

firm-specific and time-varying we have:101

F(Yit; ci, uit, θ) = vit ∀i = 1, ..., n, t = 1, ..., T, (19)

where102

vit|Yit ∼ NM+K+J(0,Σ). (20)

The first element of Σ is σ2
v and other elements in the first row and column of Σ are zero. Before proceeding we need to103

parametrize technical inefficiency and the ODF. For the ODF we assume a translog functional form. This can be written as:104

lnYit,1 = β0 +

N−1∑
j=1

βj ln Ỹit,j +

N−1∑
j=1

N−1∑
j′=1

βjj′ ln Ỹit,j ln Ỹit,j′ + vit − uit, (21)

where Ỹit = [yit,2/yit,1, ..., yit,M/yit,1, xit,1, ..., xit,K , zit,1, ..., zit,J ] ∈ <N−1, N = M + J + K.1 For technical inefficiency we105

assume:106

uit ∼ N+(µit, σ
2
u), (22)

i.e., it follows a truncated normal distribution, where µit is also a translog:107

µit = γ0 +

N−1∑
j=1

γj ln Ỹit,j +

N−1∑
j=1

N−1∑
j′=1

γjj′ ln Ỹit,j ln Ỹit,j′ . (23)

1Alternatively, we have estimated a Generalized Leontief functional form but the results are omitted as they were quite close to those of the translog.
Given the empirical data, this suggests some robustness to the functional form.
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Estimation relies on Maximum Simulated Likelihood (MSL) whose details are presented in the Technical Appendix.108

Quantities of interest like returns to scale, technical efficiency, technical efficiency change and productivity growth can be109

estimated as usual (see notes to Figure 4). Given the truncated normal specification in (22), we can define inefficiency as:110

RIit = E(uit), where E denotes (conditional) expectation. From Kumbhakar and Lovell (2000, p. 86) we have: E(uit) =111

σ∗

{
µ̃it

σ∗
+ ϕ(µ̃it/σ∗)

Φ(µ̃it/σ∗)

}
, where ϕ(·) is the standard normal density function, σ2

∗ =
σ2
vσ

2
u

σ2
v+σ2

u
, µ̃it =

µitσ
2
v−σ2

uεit
σ2
v+σ2

u
, εit = vit − uit in (21)112

(at the estimated parameters), and σ2
v is the uppermost left element of Σ.113

4 Data and empirical results114

The data is the same as in Malikov, Kumbhakar, and Tsionas (2016). We use data on commercial banks from Call Reports115

available from the Federal Reserve Bank of Chicago and include all FDIC insured commercial banks with reported data for116

2001:I-2010:IV. We focus on a selected subsample of relatively homogeneous large banks, viz. those with total assets in excess117

of one billion dollars (in 2005 U.S. dollars) in the first three years of observation. The data sample is an unbalanced panel with118

2,397 bank-year observations for 285 banks. We have the following desirable outputs: consumer loans (y1), real estate loans (y2),119

commercial and industrial loans (y3) and securities (y4). These output categories are the same as those in Berger and Mester120

(1997, 2003). Following Hughes and Mester (1998, 2013), we include off-balance-sheet income (y5) as output. The undesirable121

output is total non-performing loans (NPL). The variable inputs are labor, i.e., the number of full-time equivalent employees122

(x1), physical capital (x2), purchased funds (x3), interest-bearing transaction accounts (x4) and non-transaction accounts (x5).123

We also include financial (equity) capital (EQ) as an additional input to the production technology. However, due to the124

unavailability of the price of equity capital, we follow Berger and Mester (1997, 2003) and Feng and Serletis (2009) in modeling125

EQ as quasi-fixed. This is in line with Hughes and Mester’s (1993, 1998) in that banks may use equity as a source of funds. We126

derive the prices of variable inputs (w1 through w5) by dividing total expenses on each input by the respective input quantity.127

In Figure 2 we report sample distributions of adjustment cost parameters and inefficiency effects. Adjustment cost128

parameters are lowest for labor (x1), followed by purchased funds (x3), interest-bearing transaction accounts (x4) and physical129

capital (x2) which has the largest adjustment coefficient, which makes intuitive sense on prior grounds as equipment and capital,130

in general, cannot be adjusted easily. The reason why this makes sense is because the model captures at least some part of131

what is going on in the real world with input and output adjustments. This is, conventionally, ignored and interest focuses132

on inefficiencies without crediting the firm with rational (profit-maximizing) adjustments in the input-output space. However,133

ignoring these adjustments overestimates (irrational) inefficiency and does not allow for inefficiency reductions realized through134

changes in outputs and inputs.135

Inefficiency effects in the form of elasticities (∂ logE(u)
∂ log Y ) are, for the most part, positive for all outputs and negative for all136

inputs with the exception of x2. Output adjustment costs are highest for NPLs and lowest for y4 (securities) with other adjustment137

costs lying somewhere in between. For selected inputs and outputs, sample distributions by percentile are shown in Figure 3. It138

is important to mention that these elasticities serve as bank-specific directional parameters in the input-output space as in Figure139
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Table 1: Adjustment costs
Value s.d.

10−2×
Outputs

y1 2.75% 1.23
y2 3.44% 0.87
y3 2.81% 1.33
y4 4.77% 1.45
y5 5.22% 0.28

Inputs
x1 3.73% 0.67
x2 9.45% 0.86
x3 5.82% 0.71
x4 7.82% 1.55

NPL 8.77% 2.33

1. For the most part, and based also on the results reported in Figure 3, the directions are positive for inputs and negative140

for outputs suggesting an adjustment process (relative to Figure 1) that is more complicated relative to the straightforward141

northwest or northeast directions. With more than one input and output this adjustment process is necessarily more complex.142

The results of Figure 3 can be useful when bank-specific directions are sought on a quantile-based basis. To understand the143

nature of adjustment cost parameters better we convert the cy and cx into percentages in terms of the corresponding input and144

output values. The results are reported in Table 1. From these results we see that output adjustment costs are 4-5% but input145

adjustment costs are more variable ranging from 3% to just under 10%. The adjustment costs due to NPLs average to 8.77%146

(s.d. 2.33%). Since we have 285 banks with total assets more than a billion USD, these adjustment costs are sizable, giving147

in turn a justification for inefficiency which is about 15% on the average. These real costs in other words, imply that relative148

movements in the input-output space are costly and inefficiency cannot be reduced at will. In a certain sense this is why the149

presence of inefficiency is “rational” and is justified by the technology or cost / profit structure of US commercial banks. From150

the policy point of view it seems relatively unlikely that inefficiency and adjustment costs are due to the “quiet life hypothesis”151

which states that commercial banks can trade some inefficiency for the monopolist’s “quiet life”. Inefficiency appears to be due152

to the impossibility of certain adjustments in the input-output space or inertia due to the technology and profit-maximizing153

behavior. This is why an argument like “reduce inefficiency first and bail out later” may not work for commercial banks as the154

amount of reductions in inefficiency is rather limited by the technology and profit-maximizing behavior. Surely, some amount155

of inefficiency can be reduced directly but for the most part inefficiency is just the way things are given the technology and156

behavioral assumptions about commercial banks in the US.157

The distribution of weights ws at the MSL parameter estimates θ̂ is reported in Figure A1 of Technical Appendix (left158

panel). In the right panel of Figure A1 we report 20 representative (kernel) densities of the weights corresponding to specific159

observations (i, t) across all simulations at the MSL parameter estimates θ̂. In Figure 4, reported is the sample distribution of160

technical inefficiency (upper left), technical change (upper right), efficiency change (lower left) and productivity growth (lower161

right). Cost efficiency is rit = e−uit where uit is technical inefficiency. Technical change is measured by ey,it which is the elasticity162
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Figure 2: Sample distributions of adjustment cost parameters and inefficiency effects
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Notes: All adjustment cost parameters are relative to x5 (non-transaction accounts). We have the following desirable outputs: consumer loans (y1), real estate
loans (y2), commercial and industrial loans (y3) and securities (y4). These output categories are the same as those in Berger and Mester (1997, 2003). Following
Hughes and Mester (1998, 2013), we include off-balance-sheet income (y5) as output. The undesirable output is total non-performing loans (NPL). The variable
inputs are labor, i.e., the number of full-time equivalent employees (x1), physical capital (x2), purchased funds (x3), interest-bearing transaction accounts (x4)
and non-transaction accounts (x5). We also include financial (equity) capital (e) as an additional input to the production technology.

Figure 3: Sample distributions of inefficiency effects
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loans (y2), commercial and industrial loans (y3) and securities (y4). These output categories are the same as those in Berger and Mester (1997, 2003). Following
Hughes and Mester (1998, 2013), we include off-balance-sheet income (y5) as output. The undesirable output is total non-performing loans (NPL). The variable
inputs are labor, i.e., the number of full-time equivalent employees (x1), physical capital (x2), purchased funds (x3), interest-bearing transaction accounts (x4)
and non-transaction accounts (x5). We also include financial (equity) capital (e) as an additional input to the production technology.
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Figure 4: Aspects of the model
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time. Efficiency change is ECit = ln(rit/ri,t−1). Productivity growth is PGit = ey,it + ECit.

of (21) with respect to time. Efficiency change is ECit = ln(rit/ri,t−1). Productivity growth is PGit = ey,it + ECit. Efficiency163

change is positive for some banks and negative for others, and the same is true for productivity growth. Moreover, technical164

inefficiency ranges from 5% to 35%.165

5 Concluding remarks166

In this paper we propose a generalized (distance function) model where inefficiency depends on both inputs and outputs.167

Statistical challenges are involved as, to put things in a simplified matter, in a production function model, inefficiency depends168

on both inputs and outputs. The challenges from dependence on output are successfully resolved. Moreover, we recognize that169

inefficiency can be rational due to adjustment costs involved in the re-structuring in the input-output space. The model is170

successfully applied to a data set of large U.S. banks. Limitations of the model, and thus possible avenues for future research171

include, among others, conversion of parts of the model in semiparametric or nonparametric components. The semiparametric172

component may lift the parametric specification in either the form of the ODF, the inefficiency specification part or possibly173

both. This involves identification problems and may not be easy in practice. A fruitful avenue for future research may also174

involve more general adjustment cost processes, possibly in a nonparametric way, which would enrich our understanding of175

inefficiency and associated changes in the input-space of the firm. From the policy viewpoint, and to keep in mind for future176

applications, our inefficiency estimates take into account and, therefore, they are robust to rational, profit-maximizing, changes177
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in inputs and outputs. It would be interesting to come up with new measures of rational inefficiency where overall inefficiency178

is decomposed into rational and residual (or “irrational”). One possible way of doing this is to follow Hampf (2017) and define179

residual inefficiency as deviation from its conditional expectation. Although this is certainly possible it would be much more180

interesting to build residual inefficiency directly into the model.181

Technical Appendix182

The density corresponding to (22) is:183

p(uit) = (2π)−1/2σ−1
u Φ(−µit/σu)

−1 exp

(
− (uit − µit)

2

2σ2
u

)
, uit ≥ 0, (A.1)

where Φ(·) is the standard normal distribution function. Define the Jacobian of transformation:184

J (Yit; ci, uit, θ) = ||∂F(Yit; ci, uit, θ)/∂Yit||. (A.2)

Due to the complexity of (19) the Jacobian is computed numerically. Define c = [c′1, ..., c
′
n]

′ and u = [uit, i = 1, ..., n, t =185

1, ..., T ]. Then the likelihood function is:186

L (θ, c,Σ;Y ) ∝ |Σ|−nT/2

∫
<nT

+

exp

{
− 1

2

n∑
i=1

T∑
t=1

F(Yit; ci, uit, θ)
′Σ−1F(Yit; ci, uit, θ)

}
n∏

i=1

T∏
t=1

J (Yit; ci, uit, θ)p(uit; θ)du. (A.3)

where p(uit; θ) is the density of technical inefficiency in (22). Concentrating with respect to Σ we have:187

L (θ, c;Y ) ∝
∫
<nT

+

||A(Y ; c, u, θ)||−nT/2
n∏

i=1

T∏
t=1

J (Yit; ci, uit, θ)p(uit; θ)du, (A.4)

where A(Y ; c, u, θ) =
∑n

i=1

∑T
t=1 F(Yit; ci, uit, θ)F(Yit; ci, uit, θ)

′. To estimate the model we use Maximum Simulated188

Likelihood (MSL). Specifically, given an importance density function I(uit;α) where α ∈ A ⊆ <dα , if
{
u
(s)
it , s = 1, ..., S

}
is a set189

of S i.i.d draws from the distribution whose density is I(uit;α), we can approximate (A.4) using:190

L (θ, c;Y ) ∝ S−1
S∑

s=1

||A(Y ; c, u(s), θ)||−nT/2
n∏

i=1

T∏
t=1

J (Yit; ci, u
(s)
it , θ)

p(u
(s)
it ; θ)

I(u(s)
it ;α)

, (A.5)

As importance density we choose a product of truncated normal densities, N+(µ̃it, σ̃
2
u). To determine µ̃it and σ̃2

u we191

assume:192

µ̃it ∼ N (ã1, b̃
2
1), lnσ

2
u ∼ N (ã2, b̃

2
2). (A.6)

Then the problem reduces to finding a good setting for the parameters α =
[
ã1, ã2, b̃1, b̃2

]
. Our strategy is to draw µ̃it193
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and σ2
u randomly from (A.6), compute the importance weights:194

w
(s)
it =

p(u
(s)
it ; θ)/I(u(s)

it ;α)∑S
s′=1 p(u

(s′)
it ; θ)/I(u(s′)

it ;α)
, (A.7)

and examine whether
{
w

(s)
it , s = 1, ..., S

}
is not degenerate in the sense that most weights are zero and only a few are close to195

unity. In practice, we consider ws = (nT )−1
∑n

i=1

∑T
t=1 w

(s)
it and, in turn, examining whether at least 30% of these weights are196

non-zero. As these weights depend on θ we first choose α so that the weights ws are not degenerate for the initial values of θ.197

Next we examine them for degeneracy at the final estimates. If they are degenerate we proceed with another draw for α and198

we repeat the same process until non-degeneracy is obtained. After a number of iterations of this procedure final weights were199

non-degenerate and we satisfied ourselves that their distribution was not too far away from a uniform, using visual means. The200

final distribution could be described well by a beta distribution with parameters 3.42 and 1.75, approximately. The simulated201

likelihood is optimized using a subspace-search algorithm.2Initial conditions are obtained from a version of the model without202

adjustment costs and without dependence of technical inefficiency on x, y and z. Finally, the function:203

f(x, y, z) = D(x, y, z)− Ee−u(x,y,z), (A.8)

must satisfy the standard theoretical properties of ODF (non-decreasing, positively linearly homogeneous, increasing and convex204

in y, and decreasing and quasi-concave in x) along with f(x, y, z) ≤ 0 ∀(x, y, z) ∈ T . Since D(x, y, z) is in levels but Ee−u(x,y,z)
205

has a different functional form, the separate components of the function in (A.8), in principle, can be identified. Without the206

expectation, both D(x, y, z) and e−u(x,y,z) are quadratic functions in x, y, z and no separate identification is possible if both are207

translog (or another common functional form for that matter). To examine identification in practice, we consider minus the208

Hessian of the log likelihood:209

H = −∂2 lnL (θ, c;Y )

∂(θ, c)∂(θ, c)′
, (A.9)

a positive-definite matrix near the maximum of the log likelihood function. The determinant of the Hessian should be non-zero210

if we have identification, so, we can consider the smallest eigenvalue of H (say λmin) which should be bounded away from zero.211

As this depends on the data Y , we average across all observations.212

2Subplex is a subspace-searching simplex method for the unconstrained optimization of general multivariate functions. Like the Nelder-Mead simplex
method it generalizes, the subplex method is well suited for optimizing noisy objective functions. The number of function evaluations required for
convergence typically increases only linearly with the problem size, so for most applications the subplex method is much more efficient than the simplex
method. We use the Fortran 77 implementation in netlib.
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Figure A.1: Distribution of importance weights from Maximum Simulated Likelihood
Left panel: The distribution of weights ws at the MSL parameter estimates θ̂. Right panel: 20 representative kernel densities of

the weights corresponding to specific observations (i, t) across all simulations at the MSL parameter estimates θ̂.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

weights, w
it
(s)

Figure A.2: Identification (sample distribution of λmin)
Notes: Model A has no dependence of inefficiency on x, y, z. Model B has no adjustment costs. Model C has no dependence of

inefficiency on x, y, z and no adjustment costs.

1 2 3 4 5 6 7

smallest eigenvalue of Hessian, 
min

full model
model A
model B
model C

Notes: To examine identification in practice, we consider minus the Hessian of the log likelihood: H = − ∂2 ln L (θ,c;Y )

∂(θ,c)∂(θ,c)′ , a positive definite matrix near the
maximum of the log likelihood function. The determinant of the Hessian should be non-zero if we have identification so we can consider the smallest eigenvalue
of H (say λmin) which should be bounded away from zero. As this depends on the data Y , we can average across all observations.

Finally, we report parameter estimates of the model in Table A1 for the ODF parameters and Table A2 for the frontier213

parameters..214
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Table A1. Translog ODF parameters 

Reported are estimates 𝛽𝑗 and 𝛽𝑗𝑗′ of the translog functional form. The first 10 are the linear 

terms and the remaining are interactive terms. 

        estimate      s.e. 

    1     -0.0423    0.0055 

    2    - 0.1774    0.0034 

    3    - 0.0073    0.0030 

    4      -0.1195    0.0134 

    5     0.0123    0.0039 

    6     0.0031    0.0094 

    7     0.2430    0.0103 

    8     0.0056    0.0025 

    9      0.0652    0.0069 

   10      0.1725    0.0019 

   11      -0.0895    0.0009 

   12     -0.1228    0.0067 

   13      0.1673    0.0083 

   14      0.1211    0.0090 

   15     -0.1338    0.0013 

   16      0.0493    0.0035 

   17     -0.2904    0.0078 

   18     -0.2644    0.0022 

   19     -0.0773    0.0037 

   20     -0.0317    0.0174 

   21      0.1352    0.0118 

   22      0.0883    0.0082 

   23     -0.0304    0.0022 

   24     -0.0366    0.0177 



   25     -0.1838    0.0033 

   26     -0.0750    0.0061 

   27      0.0891    0.0061 

   28      0.0300    0.0084 

   29     -0.1878    0.0018 

   30     -0.0023    0.0021 

   31     -0.0346    0.0028 

   32      0.1003    0.0014 

   33      0.1086    0.0075 

   34      0.0135    0.0029 

   35      0.0162    0.0040 

   36      0.1331    0.0111 

   37      0.1820    0.0177 

   38     -0.0491    0.0095 

   39     -0.0736    0.0027 

   40      0.0807    0.0075 

   41     -0.0495    0.0051 

   42     -0.0269    0.0077 

   43     -0.1285    0.0027 

   44     -0.0191    0.0028 

   45     -0.0246    0.0135 

   46      0.1085    0.0040 

   47      0.2692    0.0056 

   48      0.0871    0.0083 

   49      0.0275    0.0052 

   50      0.0136    0.0078 

   51     -0.0559    0.0013 

   52     -0.0746    0.0173 

   53     -0.0401    0.0025 



   54      0.0860    0.0077 

   55     -0.3195    0.0009 

   56     -0.1174    0.0080 

   57      0.1149    0.0124 

   58     -0.0411    0.0003 

   59      0.1136    0.0001 

   60      0.0588    0.0049 

   61      0.1335    0.0023 

   62     -0.0391    0.0020 

   63     -0.0374    0.0116 

   64      0.0558    0.0222 

   65      0.0318    0.0096 

  



Table A2. Frontier parameters 

      Reported are estimates 𝛾𝑗 and 𝛾𝑗𝑗′ of the translog frontier functional form. The first 10 are 

the linear terms and the remaining are interactive terms. 

 

       estimate      s.e. 

    1     -0.2106    0.0062 

    2      -0.0158    0.0185 

    3     -0.0539    0.0024 

    4      -0.0980    0.0156 

    5     0.0411    0.0014 

    6      0.1196    0.0024 

    7     0.0508    0.0020 

    8     0.0296    0.0033 

    9      0.1400    0.0034 

   10      0.0345    0.0063 

   11      0.0787    0.0008 

   12      0.0198    0.0101 

   13     -0.0381    0.0054 

   14      0.0510    0.0159 

   15      0.0009    0.0033 

   16     -0.0834    0.0036 

   17     -0.1854    0.0090 

   18      0.1152    0.0060 

   19      0.0483    0.0113 

   20      0.1212    0.0026 

   21     -0.0188    0.0064 

   22     -0.1790    0.0039 

   23      0.0057    0.0033 

   24      0.0653    0.0204 



   25      0.0335    0.0111 

   26     -0.1803    0.0110 

   27     -0.1008    0.0004 

   28      0.0580    0.0001 

   29     -0.0334    0.0104 

   30      0.0353    0.0039 

   31      0.1192    0.0053 

   32     -0.0189    0.0019 

   33     -0.0923    0.0083 

   34      0.3020    0.0016 

   35      0.0926    0.0040 

   36     -0.0196    0.0011 

   37     -0.0079    0.0119 

   38      0.0806    0.0055 

   39     -0.0691    0.0179 

   40     -0.1917    0.0084 

   41      0.0412    0.0163 

   42     -0.0571    0.0081 

   43      0.0398    0.0023 

   44      0.0989    0.0153 

   45     -0.0153    0.0047 

   46     -0.1220    0.0046 

   47     -0.1271    0.0042 

   48      0.1082    0.0014 

   49     -0.1640    0.0120 

   50      0.1593    0.0073 

   51      0.0446    0.0082 

   52      0.1559    0.0034 

   53      0.0731    0.0029 



   54     -0.1014    0.0063 

   55     -0.1197    0.0104 

   56      0.1342    0.0093 

   57     -0.1001    0.0017 

   58      0.0559    0.0147 

   59     -0.1140    0.0128 

   60     -0.0383    0.0001 

   61      0.0906    0.0140 

   62     -0.0637    0.0002 

   63      0.0505    0.0122 

   64      0.0602    0.0118 

   65     -0.0435    0.0050 


