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Figure 1: The MakeDevice workfow. (a) The MakeDevice web app automatically detects Jacdac hardware modules that make 
up a prototype when connected over USB. The user can then arrange 3D models of these on-screen to suit their desired device 
form-factor. (b) The MakeDevice web app automatically generates manufacturing data for a custom ‘carrier’ circuit board onto 
which the same Jacdac modules can be securely mounted, and also generates the CAD fles for an enclosure for the device. (c) 
The modules, carrier circuit board and enclosure are readily screwed together to create a robust, deployable device. 

ABSTRACT 
Embedded devices are now commonplace, and hardware prototyp-
ing toolkits have become a popular approach for hobbyists and 
professionals to create embedded hardware prototypes. However, 
moving from prototype into small scale manufacture use introduces 
complexity and cost, restricting embedded device development ’be-
yond the prototype’. Challenges include the need to design custom 
PCB for manufacture, and the design and fabrication of a device en-
closure to ensure the robust enough for deployment. In response, we 
present MakeDevice: a web-based tool that leverages an existing 
modular hardware prototyping platform, Jacdac, to enable low-
complexity route to generate a custom ‘carrier’ PCB upon which 
modules can be mounted and electrically connected. MakeDevice 
also automatically generates CAD fles for custom enclosures with 
apertures to suit. We show how such enclosures can be generated 
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using 3D printing and 2D stencils. In this way, MakeDevice low-
ers the barriers in moving from prototype to viable low-volume 
deployment of embedded hardware. 

CCS CONCEPTS 
• Hardware → PCB design and layout; Software tools for EDA; 
Software tools for EDA; • Human-centered computing → User 
interface management systems. 
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1 INTRODUCTION 
Digital hardware is evermore central to modern life, in various 
forms ranging from environmental sensing, to forming the ears and 

https://doi.org/10.1145/3569009.3573106
https://doi.org/10.1145/3569009.3573106
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569009.3573106&domain=pdf&date_stamp=2023-02-26


TEI ’23, February 26-March 1, 2023, Warsaw, Poland , Kobi Hartley, Joe Finney, Steve Hodges, Peli de Halleux, James Devine, and Gabriele D’Amone 

eyes of the growing "internet of things" (IoT). To complement this 
growth, a plethora of design and production tools and services seek 
to democratise the process of creating new hardware. Most notably, 
modular hardware ecosystems such as Phidgets [20], Jacdac [17] 
and others [31] abstract away many of the complexities of electronic 
engineering and hardware design, allowing novices and amateurs 
to engage with embedded hardware development [34]. Research 
tends to focus on the value of these modular hardware ecosystems 
with respect to prototyping: many of these toolkits provide low-
code or low-technical routes to a desktop prototype. But if the user 
wants to move beyond a prototype to a device that is robust enough 
for deployment, there is not the same level of support. This issue 
is made more apparent when compared to the level of software 
support in taking devices beyond the prototype, with platforms such 
as Micropython [37], Arduino [11] and even low-code block-based 
approaches like MakeCode [16]. 

Progressing from a desktop hardware prototype to a robust de-
vice that can be deployed often requires a signifcant technical and 
fnancial investment [29]. Issues can include, but are not limited to: 
the design of a custom PCB, sourcing of materials and components, 
the design of a suitable enclosure, and the assembly of completed 
units – which collectively can be costly, time-consuming, and re-
quire specialist skills. Not surprisingly these activities are out of 
reach for many budding innovators [41], preventing many hard-
ware prototypes from being explored and realising their potential 
for impact. Recent work, drawing on the concept of long-tail hard-
ware [25] has highlighted how these barriers hinder innovation 
and called for tools to ease the transition from hardware prototypes 
to deployable devices. One recent example which seeks to make 
custom device development more accessible is Applicanizer [18], 
which demonstrates how HTML elements can be used for rapid 
hardware prototyping. Also, in relation to fabrication of enclosures, 
relevant work includes Enclosed [43] and Curveboard [44]. How-
ever, use of these is still complex for some users, assuming certain 
technical knowledge, and in some cases requiring the user to write 
code. 

This paper presents MakeDevice a work-in-progress tool that 
explores these challenges with an emphasis on providing users 
with a low-code, low-technical way to move from a hardware pro-
totype towards a more easily replicated and deployable hardware 
device. This is achieved through a novel combination of services 
and tools built on top of Jacdac, a low-cost, open-source hardware 
and software platform for plug-and-play physical computing [17]. 
MakeDevice extends Jacdac’s plug-and-play properties, allowing 
users to connect a collection of Jacdac modules, auto-layout these 
onto a custom carrier PCB and generate enclosure designs using 
a range of approaches. MakeDevice produces fabrication fles for 
the carrier PCB and enclosures in the form of Gerbers, STL and 
SVG fles. We show how devices can be created from wired desktop 
prototypes using MakeDevice. 

2 RELATED WORK 
In this section we discuss work related to this project. First we 
detail prototyping tools and the implications these have for users 
wishing to develop new hardware, as well as how prototyping kits 
can lower the barrier making this process even more accessible for 

less technical users. Additionally, we draw on recent research which 
highlights problems associated with moving beyond the prototype. 

2.1 Hardware Prototyping 
2.1.1 Prototyping Tools. More recent advances in prototyping tools 
have focused on enabling users to quickly generate functional pro-
totypes. This has been done using conductive ink on paper enabling 
users to draw, print or apply their circuits to 3D objects [36], As 
well as systems like CircuitStack [42], which uses stacks of paper 
with conductive ink which are attached under a breadboard with 
mounted components. This idea has been extended in work using 
conductive 3D printing for physical prototyping [23]. Tools like 
Fritzing [30] provide circuit design applications for users to connect 
wires between components on a breadboard. Recently, auto-Fritz 
[33] shows this process can be made even easier through auto-
completion. As well as tools such as Instant Inkjet Circuits [28], 
which allows for printing of highly conductive traces onto paper 
or plastic using commercially available printers. Similarly, tools 
such as AutoDesk’s TinkerCAD [4] provide an accessible platform 
to for CAD design which can be used for PCB enclosures. How-
ever, these tools still require a strong understanding of CAD design 
and requirements and can still be time consuming for those with 
relatively simple requirements for a device enclosure. 

2.1.2 Prototyping Kits. Hardware prototyping toolkits are increas-
ingly common and have proven to be extremely efective at lowering 
the barrier for hardware prototyping. Such kits vary widely in their 
audience, modality, technology and cost [31]. Some kits consist of a 
single development board and can be complete computers like the 
Raspberry Pi [35] or single board micro-controllers such as Arduino 
Uno [1] and BBC micro:bit [10]. Modular hardware kits, which bring 
a number of advantages, are also popular [12, 21, 22, 32, 39]. Firstly, 
the modularity abstracts away complexity of certain aspects of 
hardware development such as identifying and sourcing particular 
components, detailed circuit design and production. Secondly, mod-
ularity itself allows to the ad-hoc rearrangement and replacement 
of modules with ease - in this sense modular hardware kits push 
hardware closer to software, where in software the developer can 
easily replace or rearrange blocks of code throughout the develop-
ment process. These qualities enable fast and iterative prototyping, 
allowing development and exploration of new devices and interac-
tion techniques. As a result these hardware kits are used frequently 
in research to investigate new technologies [26, 27, 38] and have 
also been shown to be key contributors to innovation [19, 40]. 

While hardware prototyping toolkits have lowered the barrier 
to entry allowing a range of hobbyists or causal users to engage 
with hardware, most are suitable for only prototyping. Such kits 
still present problems in terms of form (modules loosely connected 
together by wires) and scale (assembling and sourcing hardware 
modules can be costly and time consuming). 

2.2 Moving Beyond a Prototype 
While moving from a software prototype to a deployment is not 
always a simple process, innovations in cloud technologies now 
mean it is more accessible than ever. This coupled with tools like 
Azure [15] and Amazon Web Services (AWS) [14] which provide 
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both technical and low-code routes to deploy services to large num-
bers of people. Hardware presents a number of diferent challenges, 
while hardware prototyping kits allow users to engage and iterate 
on desktop prototypes, anything beyond this often requires the cre-
ation of an entirely new electrical device, sourcing of components 
and design or sourcing of enclosures. These processes are complex 
and costly, as such are often reserved only for those with the capital 
and expertise to do so [24, 25, 29]. 

Often, moving beyond a hardware prototype requires a level of 
refactoring, where circuit layout and components are combined 
onto a single PCB, which can be replicated and mass produced with 
ease. This is most commonly achieved using specialist PCB design 
tools such as Altium [6], Eagle [9] and KiCad [13]. While these 
ofer an encompassing range of features that cater extremely well 
for experienced engineers, as well as associated documentation for 
less experienced individuals - they are still overly complex, time 
consuming. 

A number of online tools, with higher levels of abstraction cater 
to users wanting to transition beyond their hardware prototype, 
such as Sparkfun a la carte [3] and Gepetto [2]. These tools provide 
services which often involve other 3rd party individuals carrying 
out the re-design or design checks of devices, as a result they are 
quite costly. Furthermore, in the case of Sparkfun a la carte and 
Gepetto they still require quite specifc knowledge of the necessary 
electronic components. 

3 DESIGN AND IMPLEMENTATION 
The overall workfow of MakeDevice can be seen in Figure 1. Start-
ing with a desktop prototype consisting of Jacdac hardware mod-
ules, we show how the MakeDevice web app enables a user to 
arrange 3D models of these into the desired confguration, and then 
generates manufacturing fles for a custom ‘carrier’ PCB onto which 
the modules can be securely mounted and electrically connected 
using screws. MakeDevice is an entirely web-based tool which uses 
TypeScript and React supported through a number of 3rd party 
packages. The choice of web-based tool was driven by two factors – 
frstly, it lowers the barrier of entry, providing a no-install solution 
that is platform independent. Secondly, it allows for tighter inte-
gration with existing web-based tooling, particularly Jacdac’s web 
stack. Use of MakeDevice does not require the creation of an ac-
count, nor does it store any user data on the server – all operations, 
other than fetching content, occur client-side. The user portrait of 
MakeDevice is particularly engineered towards users who are not 
familiar with PCB design or CAD tools, but still want to explore 
device forms which are more robust. In order to use MakeDevice, 
users already have a working wired prototype, thus will come with 
an idea of which modules to add. MakeDevice provides the ability 
for the user to explore the layout of modules and the resulting 
device form factor. 

3.1 MakeDevice Interface Design and PCB 
Models 

The MakeDevice user interface (see Figure 2) allows users to add 
3D models of Jacdac modules from a list, or if Jacdac module(s) 
are connected to the same PC over USB they can be automatically 
added and arranged. The position of modules can be changed by 

Figure 2: Using MakeDevice, 3D models of Jacdac modules are 
easily arranged on-screen into the user’s preferred positions 
and orientations. 

dragging them on the canvas, and buttons allow the user to rotate 
or remove them. 

Modules are represented as 3D models in glTF [5] format; we 
show examples of models generated from three popular PCB design 
tools [6, 9, 13]. These models can be exported directly from KiCad 
as VRML and converted using the free tool CAD Assistant [7] to 
glTF. Alternatively, for modules created using Altium or Eagle, 
they are exported as VRML and silkscreen is defned as non-bomb 
component, so that it is exported as part of the 3D model. STL 
models are used to generate apertures of the appropriate size and 
shape for a given module. The models are stored remotely and 
fetched from a server – there is no requirement for the user to add 
or alter any existing modules to make use of them in MakeDevice. 

3.2 Carrier PCB Generation and Construction 
All Jacdac modules have four plated mounting holes; one is con-
nected to power, one to data and two to ground. We use these 
mounting holes to attach the modules to a custom carrier PCB gen-
erated by MakeDevice. A module’s mounting holes are also used 
to electrically connect the module – in MakeDevice we auto-route 
copper traces connecting each module’s data and power mounting 
holes (see Figure 3). For ground, we use a ground plane on the bot-
tom side of the carrier PCB. Once the user has fnished with their 
design, they can generate Gerber fles for carrier PCB fabrication. 
These fles are generated from the carrier PCB dimensions and loca-
tions of each module. Gerber is a common format used to describe 
PCB circuit board designs for manufacture and is accepted by all 
PCB manufacturing companies. The fles generated by MakeDevice 
are therefore suitable for direct submission to a PCB fabrication 
service, with no need for modifcation or verifcation. 

In Figure 3, we show the Gerber manufacturing data generated by 
MakeDevice and the corresponding physical carrier PCB produced 
by one of the many online PCB fabrication services. The PCB has 
mounting holes in each corner, which act as a way to mount the 
carrier PCB inside an enclosure. Mounting holes are also created 
for each module to be attached in the appropriate orientation. The 
modules can be attached to the carrier PCB in a variety of ways, 
here we use M3 steel screws and nuts. 
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Figure 3: The Gerber manufacturing data generated by 
MakeDevice (left) can be used to fabricate a physical PCB 
(middle). Modules can then be attached using standard M3 
steel screws and nuts (right). 

3.3 Enclosures 
MakeDevice can also generate enclosures for devices, this is achieved 
mostly though JSCAD [8]. A box of the appropriate dimensions 
can be generated, based on the size of the carrier PCB. STL models 
of the apertures associated with each module are automatically in-
corporated using geometry subtraction through constructive solid 
geometry (CSG). This results in apertures of the right size and shape 
for a given module in the correct place. The resulting geometry of 
the enclosure can be exported as an STL, which is suitable for 3D 
printing. Alternatively, a 2D SVG can be exported, which can be 
used for laser cutting or as a stencil to craft lower-fdelity enclosures 
out of cardboard. 

4 MAKEDEVICE EXAMPLE DEVICES 
In this paper we show three examples of devices created using 
MakeDevice. There is a running example device which is frst shown 
in Figure 1. This device has two sliders and a rotary control, and 
forms a melody box where the actuators are used to control volume, 
tempo and pitch of a melody generated by the micro:bit. Figures 2 
and 3 show how that device was created in the MakeDevice web 
app, and the resulting carrier circuit board that was generated, 
manufactured and assembled. The auto-generated enclosure for the 
device is shown in Figure 4. Figure 5 shows how MakeDevice can 
be used to create enclosure lids from materials such as cardboard 
and wood, in addition to 3D printed plastic. The cardboard lid was 
created by cutting through an overlaid inket printed paper template 
with a craft knife, while the wooden lid was lasercut. 

In addition to the running example, we also present two addi-
tional complete devices created with MakeDevice, shown in Figure 
6. The frst is a transmitting device which includes 3 buttons and a 
micro:bit; the buttons are used to control the lights of the second 
receiving device consisting of a Jacdac RGB LED ring module, and 
micro:bit with a Jacdapter module. Together these make up a wire-
less red/amber/green status display. Figure 5 shows diferent lid 
options for the transmitter unit. 

5 DISCUSSION, LIMITATIONS & FUTURE 
WORK 

We have presented an approach to moving beyond a prototype 
that removes some of the complexity associated with evolving a 
design to make it more suitable for deployment, lowering the sig-
nifcant barrier typically associated with this process. Specifcally, 

we demonstrated how our MakeDevice web-based platform can be 
used to arrange 3D models of the Jacdac modules in an existing 
prototype on an on-screen carrier PCB. MakeDevice then automat-
ically generates the CAD fles necessary for fabricating both that 
carrier PCB and an enclosure to house the assembled circuitry. By 
simplifying the process of PCB creation through automatic routing 
and Gerber generation, we obviate the need for users to do any 
PCB design themselves. Similarly we remove the need for users 
or design a custom enclosure by automatically generating CAD 
fles that incorporate the necessary apertures, lowering the barriers 
further. By providing multiple enclosure outputs: 3D printable STL 
models and SVG stencils suitable for machining or laser cutting, 
we allow for a number of approaches depending on users’ needs 
and equipment at hand. 

With respect to limitations, there are some clear areas for im-
provement. Firstly, the process of taking MakeDevice outputs to 
fabrication can still be complicated. Many users of prototyping plat-
forms are not aware of PCB fabrication services or the associated 
process of placing an order, and these may still block them from 
moving beyond their prototype. The MakeDevice online editing ex-
perience is currently quite basic; arbitrary module orientations are 
not supported, the carrier board must be rectangular, the apertures 
associated with modules are not fexible, and the height of modules 
is currently fxed – to name a few examples we plan to address. Fi-
nally, while formats for enclosures are readily generated, 3D prints 
or laser cutting is not suited to scale, given the time and resources 
required [29]. As well as this, enclosures are currently automatically 
generated, but there are cases where levels of customisation may be 
needed, such as adding extra apertures or changing the dimensions 
to accommodate other components. 

Currently MakeDevice generates PCB fabrication fles that a 
user must upload themselves to a PCB fabrication service, and deal 
with any subsequent design rule queries. This process could be fur-
ther simplifed through utilising APIs provided by PCB fabrication 
services like JLCPCB or Eurocircuits for the upload and ordering 
of carrier PCBs. In this way users will not have to consider the 
selection of a fabrication service or the complexity associated. This 
can be extended to cover enclosure manufacture also, given the 
difculty of scaling personal fabrication practices, especially in 
relation to 3D printing. Again APIs can be used here to provide 
users with an easy way to scale the number of devices through 
using 3D printing or laser cutting farms provided by services such 
as ShapeWays or iMaterialise. 

While the current enclosure approaches for manufacture will 
serve a variety of needs, 3D printed or laser cut enclosures are 
not particularly suited to cases where environmental or shock pro-
tection is needed. Many of-the-shelf enclosures accommodate for 
this, but the process of identifying suitable enclosures and sourcing 
them at scale is still complex for some user groups. In response, we 
propose to provide support through MakeDevice for sourcing and 
selecting appropriate already available of-the-shelf enclosures, in 
which the carrier PCB can be placed. Should the enclosure require 
modifcation to support apertures, we provide SVG stencils of aper-
tures, which can be used to machine or laser cut the enclosures. 
In this way we will provide further support for the design-from-
manufacture approach. 
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Figure 4: STL models of an enclosure lid and base, automatically generated and exported by MakeDevice. 

Figure 5: Examples of lid outputs from MakeDevice. From left to right: hand-cut cardboard, laser cut wood and 3D printed 
plastic. 

Figure 6: Example of devices generated using MakeDevice, on the left a controller with 3 buttons which controls the colour of 
the LEDs in the device on the right. 
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Additionally while MakeDevice presents an intial approach to 
fattening by attaching existing Jacdac modules to a custom carrier 
PCB, there is space for further fattening where the components 
within some or all of the modules themselves are condensed onto 
fewer PCBs or event the carrier board itself, and any redundant 
components are removed. 

Finally, we are currently conducting user studies of MakeDevice 
that will form the basis of future evaluation and provide additional 
directions for future work. 

6 CONCLUSION 
In this work we presented MakeDevice, a web tool that allows users 
to move from a desktop hardware prototype to a robust, deploy-
able device with minimal technical input. MakeDevice provides an 
intuitive way to arrange modules onto a carrier PCB, as well as to 
automate the generation of PCB fabrication fles, and models or 
stencils used to create enclosures. In this way, MakeDevice lowers 
some of the technical barriers faced by users wanting to move from 
desktop hardware prototype to hardware devices that are robust 
enough for deployment. This work represents a frst step in address-
ing barriers to evolving beyond a prototype, however there are clear 
directions for improvement. Over time, we hope that MakeDevice 
and tools like it will further democratise the production of new 
hardware devices. We believe that allowing users to more easily 
create functional, deployable devices from a prototype will unlock 
future innovation. 
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