1	Geological control on carbon isotope equilibrium and kinetic
2	fractionation of CH ₄ -CO ₂ -HCO ₃ ⁻ in microbial coalbed and shale gas
3	systems
4	
5	Xiangrui Chen ^{1,2} , Mingxin Tao ^{2,*} , Zheng Zhou ³ , Greg Holland ⁴ , Yunpeng Wang ^{1,*}
6	
7	¹ State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy
8	of Sciences, 510640, China
9	² Faculty of Geographical Science, Beijing Normal University, 100875, China
10	³ Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK
11	⁴ Department of Earth and Environmental Sciences, The University of Manchester, M13 9PL, UK
12	
13	*Corresponding author. Email: mxtao@bnu.edu.cn; wangyp@gig.ac.cn
14	
15	Abstract
16	
17	Microbial coalbed gas (CBG) and shale gas (SG), predominately composed of methane (CH4)
18	and carbon dioxide (CO ₂), are important economic resources and potent greenhouse gases.
19	Although isotopic equilibrium of CH4 and CO2 has been observed in microbial CBG and SG
20	basins, it is difficult to judge under what geological conditions equilibrium is achieved.
21	Moreover, the effects of CO ₂ dissolution on the isotopic fractionation process need to be

22	considered. We use data from eight microbial CBG and SG basins to discuss the geological
23	conditions in which equilibrium and kinetic isotopic fractionation in CH ₄ -CO ₂ -HCO ₃ ⁻ system is
24	achieved. Based on isotopic equilibrium temperatures calculated using computer codes
25	developed in MatLab software, we show that, in deep and closed reservoirs, the CH ₄ -CO ₂ and
26	CH ₄ -HCO ₃ ⁻ are close to carbon isotope equilibrium. In contrast, in shallow and open reservoirs,
27	they are in disequilibrium. The CO_2 -HCO ₃ ⁻ is in disequilibrium in most reservoirs. We propose
28	that both low free energy gradients and long coexisting time of CH_4 and CO_2/HCO_3^- are
29	necessary to attain isotopic equilibrium. However, it is difficult to accurately estimate the
30	timescale for attaining isotope equilibrium among them. In general, a closed and deep CBG/SG
31	reservoir is likely to be geologically and geochemically stable over long timescales, favoring
32	isotopic equilibrium of CH ₄ -CO ₂ and CH ₄ -HCO ₃ ⁻ . However, a shallow and open reservoir is
33	unfavourable for their isotopic equilibrium due to shorter timescales for the coexistence of CH ₄ -
34	CO ₂ -HCO ₃ ⁻ . Using data from systems close to equilibrium, we estimated the percentage of CO ₂
35	in total CH_4 and CO_2 in CBG reservoirs in various basins to be from 27% to 50%, where
36	methanogenesis is mainly by CO ₂ reduction. This is significantly higher than the CO ₂ content
37	(1% to 15%) in gaseous CH_4 and CO_2 in these basins but is consistent with those (36% to 48%)
38	from culture experiments for coal conversion by methanogenesis. Further study shows that 53-
39	99% of the CO ₂ formed during CBG generation has dissolved into groundwaters to form
40	dissolved inorganic carbon (DIC) in CBG reservoirs. We propose that CO ₂ dissolution likely has
41	significantly affect the abundance and isotopic compositions of gaseous CO ₂ in subsurface.
42	

43 Keywords: Microbial gas; Carbon isotope; equilibrium or kinetic fractionation; CO₂
44 dissolution; CO₂/CH₄

1. Introduction

47	Microbial natural gas, whose predominate components are methane (CH ₄) and carbon
48	dioxide (CO ₂), is an important economic resource and a potent greenhouse gas. Isotopic
49	compositions of CH ₄ and CO ₂ can record the formation and evolution processes of microbial
50	natural gas (Whiticar et al., 1986; Milkov and Etiope, 2018). Although there is an ongoing
51	debate concerning the relative importance of kinetic and equilibrium processes in controlling
52	isotopic compositions and distributions of microbial natural gas, it is often assumed that kinetic
53	processes are dominant (Whiticar et al., 1986; Gropp et al., 2021; Turner et al., 2021). By
54	comparing isotopic fractionation factors $\alpha_{CO2-CH4}$ of microbial gas samples from natural
55	environments and culture experiments with those expected for equilibrium based on the
56	environmental temperatures, Whiticar et al. (1986) suggested that kinetic processes largely
57	control the isotopic compositions of microbial CH ₄ and CO ₂ . They proposed that many processes
58	such as, slow isotope exchange rate, rapid methanogenesis rate, admixture of methane with
59	different origins, and methane oxidation cause kinetic isotopic fractionation of CH ₄ and CO ₂ .
60	Based on isotopic kinetic effects $\delta^{13}C_{CH4}$, $\delta^{13}C_{CH4}$ vs. δD_{CH4} , $\delta^{13}C_{CH4}$ vs. $\delta^{13}C_{CO2}$, δD_{CH4} vs.
61	δD_{H2O} have been used frequently for tracing origins, migrations, and formation pathways of
62	microbial natural gas (Whiticar, 1999; Golding et al., 2013; Milkov and Etiope, 2018).
63	Isotopic equilibrium is also observed in microbial natural gas systems. Smith et al. (1981)
64	proposed that microbial CH ₄ approaches carbon isotopic equilibrium with CO ₂ in Australian
65	CBG. Meister et al. (2019) found that the microbial CH ₄ and CO ₂ from deep marine sediments
66	are close to carbon isotopic equilibrium. They proposed that methanogenic microbial organisms
67	catalyzed CH ₄ -CO ₂ isotopic equilibration. Turner et al. (2021) compiled an isotopic dataset

68	(n >800) of microbial CH ₄ and co-occurring CO ₂ and H ₂ O from various environments. By
69	comparing the differences between measured and calculated isotopic fractionation factors, they
70	found that CH4 was near carbon isotopic equilibrium with CO2 and hydrogen isotopic
71	equilibrium with H ₂ O in some samples from marine sedimentary and CBG/SG fields. However,
72	most samples from terrestrial environment and pure culture experiments do not achieve CH4-
73	CO ₂ /H ₂ O isotopic equilibrium. Turner et al. (2021) proposed that in low free energy gradient
74	environments, high degrees of enzymatic reversibility in methanogenesis can catalyze carbon
75	and hydrogen isotopic equilibrium of CO ₂ -CH ₄ -H ₂ O systems. However, it is difficult to identify
76	under what conditions availability of free energy to microorganisms is low.
77	Currently, although carbon isotope equilibrium of CH ₄ -CO ₂ has been observed in microbial
78	CBG and SG basins, it is difficult to judge under what geological conditions equilibrium of CH4
79	and CO ₂ can be achieved. In addition, CO ₂ is highly soluble in groundwater, the effects of
80	dissolution on isotopic equilibrium and kinetic fractionation need to be considered (Chen et al.,
81	2023). Many studies have shown that dissolved inorganic carbon (DIC) in the coproduced water
82	of microbial CBG/SG is mainly from CO ₂ dissolution (Golding et al., 2013). CH ₄ , CO ₂ and DIC
83	are the predominant carbon bearing components in CBG, SG and coexisting water systems.
84	HCO_3^- is the dominant DIC species in most groundwater (Myrttinen et al., 2012). Therefore, we
85	study the extent of carbon isotope fractionation in CH ₄ -CO ₂ -HCO ₃ ⁻ systems in microbial CBG
86	and SG basins. By comparing the differences between calculated isotopic equilibrium
87	temperatures of samples and their present reservoir temperatures, we aim to quantify the
88	importance of equilibrium and kinetic fractionation, and identify the reservoir conditions under
89	which kinetic or equilibrium fractionation processes dominate. Important applications associated
90	with equilibrium fractionation are also presented.

91 **2. Samples**

92

93 2.1 Sample sources

94 Samples collected and compiled in the study are from eight typical microbial CBG and SG 95 basins (Fig. 1), where gas and coproduced water samples have been collected, and the geological 96 and geochemical data of samples are more complete (See Supplementary Material). New 97 samples were collected from the Erlian Basin, China (Fig. 1). Samples from existing literature 98 that represent a range of gas formation depths and ages in the following reservoirs: the Fuxin 99 Basin in China (Chen et al., 2023), the Powder River (Bates et al., 2011), the San Juan (Zhou et 100 al., 2005), the Illinois (Schlegel et al., 2011), and the Michigan (Martini et al., 1998) Basins in 101 USA, the Surat and the Clarence-Moreton Basins (Owen et al., 2016) in Australia.

102

103 2.2 Collection and analytical methods for samples from the Erlian Basin

104 Eight CBG and coproduced water samples from the Erlian Basin were collected directly from 105 the CBG wellheads. Stainless steel cylinders with double valves were used to collect the CBG 106 samples. After connecting a cylinder to the CBG pipeline at the wellhead, flushing the cylinder 107 for 5mins to remove air and other contamination before sampling. Then filling up the cylinder 108 with the CBG. Water samples were filtered via glass fiber filter membranes and were collected in 109 500mL glass bottles without headspace. Before sampling, these bottles were flushed three times 110 repeatedly with coalbed water. In addition, four desorption gas samples from a coal core were 111 collected at the drill site in the Erlian Basin. The sampling protocol is: quickly isolating the coal 112 core into a gas desorption canister, closing and sealing the lid after filling the canister; after 3-4 113 minutes, opening the valve to discharge the gas mainly consisting of residual atmosphere,

114	reclosing the valve; after 48 hours, opening the valve to collect gas samples by displacement of
115	saturated NaCl solution. The coal samples are collected to measure $\delta^{13}C_{coal}$ values.

116 Samples were analyzed at the Key Laboratory of Gas Geochemistry (Lanzhou), Institute of

117 Geology and Geophysics, Chinese Academy of Sciences. The molecular components of the gas

samples were analyzed by a MAT 271 trace gas mass spectrometer (Tao et al., 2007, 2020).

119 Compared with the recognized atmosphere value, the spectrometer shows a very high precision,

120 thus is suitable for the test of components of gas samples. The atmosphere sample measured on

121 the apparatus had a slight difference of <0.3% for N₂ and O₂ contents, <0.02% for Ar, and 0.04

122 to 0.07% for CO₂, respectively.

123 The carbon and hydrogen isotope values of the gas, dissolved CH_4 and DIC samples were

124 measured on a Gas Chromatograpy-Combustion-Isotope Ratio Mass Spectrometry (GC-C-

125 IRMS). Trace GC 1310 gas chromatograph installed with HP-PlotQ type (50m×0.53mm×10µm)

126 was used. The carrier gas was helium with a flow of 3mL/min and the inlet temperature was

127 200°C. The split ratio was 6:1. The GC oven conditions were initially held at 45°C for 3mins,

128 then heated to 240°C at a rate of 15°C/min and held for 20mins. For carbon isotope analysis, the

129 oxidation furnace temperature was 945°C. For hydrogen isotope analysis, the cracking furnace

130 temperature was 1450°C. The carbon isotope values were measured on Delta V Advantage

131 IRMS and reported relative to Vienna Pee Dee Belemnite (VPDB), namely, $\delta^{13}C_S = (R_S/R_{VPDB})$ -

132 1) ×1000, where R is the abundance ratio of ${}^{13}C$ and ${}^{12}C$, S denotes the sample. The hydrogen

133 isotope values were measured on MAT 253 IRMS and reported relative to Vienna Standard

134 Mean Ocean Water (VSMOW), namely, $\delta D_s = (R_s/R_{VSMOW}-1) \times 1000$, where R is the abundance

ratio of D and H, S denotes the sample. The precisions of $\delta^{13}C_S$ and δD_S are $\pm 0.5\%$ and $\pm 2\%$,

136 respectively. The dissolved CH₄ samples were pretreated by heating its container to acquire

gaseous CH₄. DIC samples were pretreated by injecting pure phosphoric acid to acquire CO₂ (Li
et al., 2007).

139

140 3. Calculation of equilibrium temperature in carbon isotopic exchange 141 reactions of CH₄-CO₂-HCO₃-

142

143 Typical carbon isotope exchange reactions among CH₄, CO₂ and HCO₃⁻ can be written as

144
$${}^{12}\mathrm{CO}_2 + {}^{13}\mathrm{CH}_4 \leftrightarrow {}^{13}\mathrm{CO}_2 + {}^{12}\mathrm{CH}_4 \tag{1}$$

145
$$H^{12}CO_3^- + {}^{13}CO_2^- \leftrightarrow H^{13}CO_3^- + {}^{12}CO_2^-$$
 (2)

146
$$\mathrm{H}^{12}\mathrm{CO}_{3}^{-} + {}^{13}\mathrm{CH}_{4} \leftrightarrow \mathrm{H}^{13}\mathrm{CO}_{3}^{-} + {}^{12}\mathrm{CH}_{4}. \tag{3}$$

147 The equilibrium fractionation factors (or equilibrium constants) of the reactions (1-3) are 148 temperature dependent (Urey, 1947; Myrttinen et al., 2012). In turn, the δ^{13} C values of CH₄, CO₂ 149 and HCO₃⁻ can be used to calculate their equilibrium temperatures.

Experimental and theoretical studies (Bottinga, 1969; Richet et al., 1977; Horita, 2001; Kueter et al., 2019; Chen et al., 2019; Turner et al., 2021) have shown that the Urey model (Urey, 1947; Liu et al., 2010) of the reaction (1) is suitable for calculating thermodynamic isotope equilibration between CH₄ and CO₂. Based on Urey model, in order to accurately and conveniently calculate the equilibrium temperatures of the reaction (1), we updated Chen's code by comparing the temperatures calculated by Chen et al. (2019) and Turner et al. (2021) (See Supplementary Material). Mook et al (1974) provided a reliable fit formular to calculate the equilibrium fractionation factors for the carbon isotopic exchange reaction between CO_2 and HCO_3^- in the temperature range of 0-125°C:

160
$$\epsilon_{\text{CO}_2-\text{HCO}_3^-} = -\frac{9866}{T} + 24.12$$
 (4)

161 where $\varepsilon = 1000(\alpha - 1)$,

162
$$\alpha_{\rm CO_2-HCO_3^-} = \frac{\delta^{13}C_{\rm CO_2} + 1000}{\delta^{13}C_{\rm HCO_3^-} + 1000}$$
(5)

163 We apply the formulars (4-5) to calculate the equilibrium temperature of the reaction (2).

164 Precise equilibrium temperatures for the exchange reaction (3) are difficult to achieve. 165 We apply the relationships of equilibrium constants of reactions (1-3) to judge whether the 166 calculated equilibrium temperature of the reaction (3) is consistent with the reservoir 167 temperature of samples. We first used the $\delta^{13}C_{HCO3}$ value and the reservoir temperature of sample to calculate the $\delta^{13}C_{CO2}$ value according the formulars (4-5), then we used the 168 calculated $\delta^{13}C_{CO2}$ value and the $\delta^{13}C_{CH4}$ value of sample to calculate the equilibrium 169 170 temperature. If the calculated temperature is consistent with the reservoir temperature, the HCO₃⁻ and CH₄ is close to carbon isotope equilibrium. According to the method, we 171 172 develop a code in Matlab to calculate the equilibrium temperature (See Supplementary 173 Material). By running the code and inputting a matrix consisted of reservoir temperatures, $\delta^{13}C_{HCO3}$ - values, and $\delta^{13}C_{CH4}$ values, the equilibrium temperature matrix can be calculated 174 175 with an absolute error $< 2^{\circ}$ C.

176

177 **4. Results**

179 4.1 Geochemical composition and origin of CBG from the Erlian Basin

180

181 94.6 to 96.8% (Table 1). The other significant component is CO₂, with concentrations of 3.2 to 182 3.9%. N₂ concentrations are from 0.0 to 1.5%. Ar concentrations are 0.02%. C₂₊ hydrocarbon gas 183 concentrations are below detection limit (< 0.01%). Therefore, C_{CH4}/(C_{C2H6} + C_{3C3H8}) ratios are 184 far greater than 1000, indicating the CBG in the Erlian Basin is dry gas, which is characteristic of microbial gas, late mature thermogenic gas, and/or abiotic gas (Milkov and Etiope, 2018). Erlian 185 186 CBG samples are derived from coalbeds so they are unlikely to be abiotic in origin. The source 187 coal is lignite with Ro values of 0.32-0.48%, indicating that these samples are not late mature 188 thermogenic gas. Therefore, the CBG in the Erlian Basin is likely microbial in origin. 189 In the gas and water samples from production wells, $\delta^{13}C_{CH4}$ and $\delta^{13}C_{CH4(aq)}$ (dissolved CH4) 190 values are from -59.8 to -58.4‰ and -56.9 to -56.1‰, respectively, the average of $\delta^{13}C_{CH4(aq)}$ -

In Erlian Basin gas samples, CH₄ is the dominant gas phase with concentrations ranging from

191 $\delta^{13}C_{CH4}$ is 2.6%; $\delta^{13}C_{CO2}$ values are from -0.5 to 1.6% (Table 1). The small difference of

192 $\delta^{13}C_{CH4}$ and $\delta^{13}C_{CH4(aq)}$ indicates that gaseous methane dissolution only has a small influence on

193 its carbon isotopic composition. In desorption gas samples, $\delta^{13}C_{CH4}$ and δD_{CH4} values are from -

194 60.6 to -56.2‰, and -267.2 to -239.2‰, respectively (Table 1). There is no significant difference

in carbon and hydrogen isotopic compositions of methane samples between desorption gas and

196 production gas. This characteristic suggests that $\delta^{13}C_{CH4}$ and δD_{CH4} values of the production gas

and desorption gas from coal core are stable and can be used as an effective tracer of CBG (Taoet al., 2021).

199 Plots of $\delta^{13}C_{CH4}$ vs. δD_{CH4} and $\delta^{13}C_{CO2}$ vs. $\delta^{13}C_{CH4}$ are important tools for distinguishing

200 origin of natural gases (Whiticar, 1999; Milkov and Etiope, 2018). In Fig. 2a, ($\delta^{13}C_{CH4}$ vs.

 δD_{CH4}), isotopic data of the gas samples fall in the common zone of microbial and thermogenic

202	gas. However, high $\alpha_{\text{CO2-CH4}} = (\delta^{13}C_{\text{CO2}} + 1000)/(\delta^{13}C_{\text{CH4}} + 1000))$ values of 1.059-1.065
203	(Table 1) suggest that the CBG samples are unlikely thermogenic, because the $\alpha_{\rm CO2-CH4}$ value of
204	thermogenic gas is generally less than 1.04 (Whiticar, 1999; Golding et al., 2013). Fig. 2b
205	$(\delta^{13}C_{CO2} \text{ vs. } \delta^{13}C_{CH4})$ also shows that the CBG samples are mainly microbial in origin. High
206	$\delta^{13}C_{DIC}$ values (15.1-15.7‰) of coproduced water provide further support for a microbial origin,
207	because δ^{13} C of DIC from other origins are usually less than 2‰ (Golding et al., 2013). In the
208	Erlian Basin, the coalbed water is Na-HCO ₃ -Cl type with pH values from 7.32-7.76 (Sun et al.,
209	2018), which is favorable for biogenic methanogenesis. All evidence suggests that the Erlian
210	CBG is mainly microbial gas.
211	The fractionation factor $\alpha_{CO2-CH4}$ is often employed to infer methanogenic pathways. The
212	$\alpha_{CO2-CH4}$ values for CO ₂ reduction and fermentations of acetate or methylated substrates are
213	generally between 1.05 (or 1.06) and 1.09, and between 1.03 (or 1.04) and 1.06, respectively
214	(Whiticar, 1999; Golding et al., 2013). In Erlian samples, $\alpha_{CO2-CH4}$ values are from 1.059 to
215	1.065, suggesting that the methanogenesis pathway is mainly CO ₂ reduction (Fig. 3).
216	
217	4.2 Origins and formation pathways of CBG and SG from other basins
218	Previous studies have reported that the CBG and SG in the Fuxin (Chen et al., 2023), the
219	Powder River (Flores et al., 2008), the Illinois (Schlegel et al., 2011), the Michigan ((Martini et
220	al., 1998), the Surat (Owen et al., 2016), and the Clarence-Moreton (Owen et al., 2016) Basins
221	are mainly microbial gas, and CO ₂ reduction is the dominant methanogenesis pathway. Fig. 2b
222	shows that most of gas samples used in this study are mainly microbial gas. Moreover, high α_{CO2}
223	$_{CH4}$ values > 1.06 (except for the Fuxin and the San Juan samples) suggest that CO ₂ reduction is
224	the dominant methanogenesis pathway in these gases (Fig. 3).

225	For the Fuxin Basin samples, the $\alpha_{CO2-CH4}$ indicator is unreliable because stronger
226	hydrodynamic activity in Fuxin coalbed aquifers has significantly affected the $\delta^{13}C_{CO2}$ values.
227	Chen et al (2023) proposed that the groundwater flow has carried away ¹³ C-enriched CO ₂
228	dissolved in coalbed water, leading to low $\delta^{13}C_{CO2}$ values and thus low $\alpha_{CO2\text{-}CH4}$ values in Fuxin
229	CBG samples. In general, the $\Delta D_{H2O-CH4}$ ($\Delta D_{H2O-CH4}=\delta D_{H2O}-\delta D_{CH4}$) range associated with
230	methanogenic pathway by CO ₂ reduction is from 150 to 180‰ (Whiticar, 1999; Chen et al.,
231	2023). In Fuxin samples, the $\Delta D_{H2O-CH4}$ values are from 148 to 178‰, suggesting that CO_2
232	reduction is the dominant methanogenic pathway in the Fuxin Basin.
233	Zhou et al. (2005) reported that the methane from the overpressured area of the San Juan
234	Basin is dominantly microbial. High $\Delta^{13}C_{CO2-CH4}$ ($\Delta^{13}C_{CO2-CH4}=\delta^{13}C_{CO2}-\delta^{13}C_{CH4}$) values of 53.5
235	to 61.6‰ suggest that methanogenesis is mainly by CO ₂ reduction. In the underpressured area of
236	the basin, some samples fall into zone of the thermogenic gas in Fig. 2b. However, other samples
237	fall into the zone of secondary microbial gas in Fig. 2b, indicating that the CBG in the area is
238	likely a mixture of secondary microbial gas with thermogenic gas. Secondary microbial CBG can
239	be generated after thermogenic CBG formation due to basin uplift and meteoric recharge.
240	Microbial CBG from high-rank coalbeds with Ro greater than 0.5% is usually secondary
241	microbial gas (Strąpoć et al., 2011). Primary microbial CBG is generated in the early stage of
242	coalification with the Ro of the coal less than 0.4%. The coal Ro values in the San Juan Basin are
243	greater than 0.5%, so the microbial CBG in the basin is secondary microbial gas.
244	
245	4.3 Kinetic and equilibrium isotopic fractionations of CH ₄ -CO ₂ -HCO ₃ ⁻ in microbial CBG and SG

246 systems

247 Considering uncertainty from analytical measurement and theoretical calculation, we assume 248 that CH_4 - CO_2 - HCO_3 - system in our samples is close to carbon isotope equilibrium when the 249 absolute value of T-T₀ is less than or equal to 10°C, where T (including T_1 , T_2 , and T_3) and T_0 250 denote the isotope equilibrium temperature and the reservoir temperature, respectively (Figs. 4-6, 251 Table 2). The T₁, T₂, and T₃ are calculated by the δ^{13} C values of CH₄-CO₂, δ^{13} C values of CH₄-252 DIC, and δ^{13} C values of CO₂-DIC, respectively. The reasons for the threshold of 10°C for T-T₀ 253 are as followed. Considering the range of T_0 is about from 10°C to 45°C in our samples, we 254 define that CH_4 - CO_2 - HCO_3^- system is near carbon isotopic equilibrium when the $|T-T_0|$ value is 255 less than 4°C if T and T₀ are exact values. However, there exists measured and calculated errors 256 for T_0 and T. We assume that the error of measured T_0 is $\pm 1^{\circ}$ C, and the error of calculated T 257 from theoretical equation is $\pm 2^{\circ}$ C. The uncertainty of measured δ^{13} C value of CH₄-CO₂-HCO₃⁻ 258 system is $\pm 0.5\%$ (see Method section), the 1% error of $\delta^{13}C_{CO2}$ - $\delta^{13}C_{CH4}$ under the range of 10-259 45° C can lead to $< 3^{\circ}$ C error. Therefore, the total error is about 10° C (4+1+2+3). 260 The calculated result shows that the extent of isotopic equilibrium of CH₄-CO₂ and CH₄-261 HCO₃⁻ is correlated with reservoir depth of CBG and SG in most samples (Figs. 4-5). For 262 example, CH_4 is close to carbon isotopic equilibrium with CO_2 and/or HCO_3 in most samples 263 with relatively deep burial depths, such as, samples from the deep coalbeds of the Powder River, 264 the San Juan, and the Surat/Clarence-Moreton Basins, as well from the deep shale rocks of the 265 Illinois and the Michigan Basins (Figs. 4-5). These results not only support previous inferences 266 that CH₄ and CO₂ can be near carbon isotopic equilibrium in microbial natural gas (Gropp et al., 267 2021; Turner et al., 2021), but also show CH_4 can be near carbon isotopic equilibrium with 268 HCO_3^{-} in microbial natural gas. However, carbon isotopic equilibrium is not present between 269 CH₄ and coproduced CO₂/HCO₃⁻ in most samples with shallow burial depths, such as, samples

270	from the shallow coalbeds of the Powder River, the Illinois, and the Surat/Clarence-Moreton
271	Basins (Figs. 4-5). Most samples in this study are in CO ₂ -HCO ₃ ⁻ carbon isotope disequilibrium
272	(Fig. 6), so kinetic process largely controls carbon isotope fractionation between them.
273	
274	5 Discussion
275	
276	5.1 Geological controls on the isotopic fractionation of CH ₄ -CO ₂ and CH ₄ -HCO ₃ ⁻ in microbial
277	CBG and SG basins
278	Both equilibrium and kinetic isotopic effects of CH ₄ -CO ₂ have been observed in microbial
279	CBG and SG basins (Turner et al., 2021). The availability of free energy to methanogens and
280	anaerobic methanotrophs are often used to explain isotopic fractionation processes. When free
281	energy gradients are low, enzymes catalyze reactions are reversible, thus can catalyze both the
282	forward reduction of CO_2 to CH_4 and the reverse oxidation of CH_4 back to CO_2 . This
283	reversibility promotes carbon isotope exchange reactions between CH ₄ and CO ₂ , and leads to
284	isotopic equilibration (Valentine et al., 2004; Stolper et al., 2014; Yoshinaga et al., 2014; Turner
285	et al., 2021). In contrast, high free energy gradients lead to enzymes catalyze reactions are
286	wholly or partially irreversible, and only can catalyze the forward reduction of CO ₂ to CH ₄ , thus
287	lead to kinetic isotopic fractionation of CH ₄ -CO ₂ . In general, in microbial CBG/SG system,
288	available organic carbon is less reactive, which could result in low free energy gradients for
289	methanogens and thus promote isotope exchange reaction of CH ₄ -CO ₂ .
290	In the most methane samples used in this study, methanogenesis pathway is mainly CO_2
291	reduction, and anaerobic methanotrophs is insignificant. According to previous interpretation,
292	during CO ₂ reduction to CH ₄ in the CBG and SG reservoirs, CO ₂ (including gaseous and

293	dissolved CO ₂) content is high, but H ₂ content is very limited (Vinson et al., 2017; Turner et al.,
294	2021). Low H ₂ content is favorable for isotopic equilibrium of CH ₄ -CO ₂ , because, at low free
295	energy gradients (i.e., low H ₂ content), the enzymes of methanogens are fully reversible,
296	promoting isotopic equilibrium of CH ₄ -CO ₂ (Valentine et al., 2004; Wang et al., 2015; Okumura
297	et al., 2016; Gropp et al., 2021). Rhim and Ono (2022) proposed that low dissolved H ₂ promote
298	isotopic equilibrium of CH ₄ -CO ₂ . However, in most samples with shallow burial depths, carbon
299	isotopic equilibrium is not present between CH4 and CO2 (Fig. 4). Laboratory methanogen
300	cultures also show that CH ₄ and CO ₂ are out of isotopic equilibrium even at low H ₂ content
301	(Okumura et al., 2016; Turner et al., 2021; Rhim and Ono, 2022). We propose that besides low
302	free energy gradient (i.e., low gaseous and/or dissolved H2 content), longterm coexistence of
303	CH ₄ -CO ₂ is necessary to attain isotopic equilibrium in microbial CBG and SG systems due to
304	isotope exchange rate between CH ₄ and CO ₂ in these systems are very sluggish (Games and
305	Hayes, 1976; Whiticar et al., 1986).

306 Coalbeds and organic-rich shales serving as both source rocks and reservoirs of CBG and SG 307 are tight with low permeability. They can provide sealed reservoirs for CBG and SG storage. If 308 the reservoirs of microbial CBG and SG are geologically and geochemically stable over a long 309 timescale, isotope exchange reaction of CH₄ and CO₂/HCO₃⁻ catalyzed by methanogenic 310 microbial metabolism is likely to attain equilibrium (Okumura et al., 2016, Turner et al., 2021). 311 However, if the reservoirs are relatively open and unstable, many processes or factors such as,

312 short coexistence time of CH₄-CO₂-HCO₃⁻, mixing between microbial and thermogenic gas,

313 strong hydrodynamic activity, and anaerobic methane oxidation can significantly affect the

314 concentrations and isotopic compositions of CH₄-CO₂-HCO₃⁻ (Vinson et al., 2017). In this case,

315 the system is unlikely to attain equilibrium.

316	In the Erlian Basin, CBG was from the Lower Cretaceous Saihantala Formation (K _{1s}).
317	During and after the K_{1s} deposition, the basin has been more stable. In the sampling area, the
318	CBG with burial depths of 450-600m were well sealed by thick coalbeds, regionally confined
319	water, and thick mudstone caprocks (Sun et al., 2018). The conditions are favorable for
320	conservation of the CBG, providing sufficient time for the isotopic equilibrium between CH4 and
321	CO ₂ /HCO ₃ ⁻ . However, in relatively high-pressure and closed CBG reservoirs in the basin, high
322	CO ₂ solubility can lead to most of CO ₂ dissolved into groundwater to form DIC, and thus lead to
323	low abundance CO ₂ in CBG and high abundance CO ₂ (DIC) in coalbed water. However,
324	groundwaters insignificantly affect the abundance and carbon isotope composition of CH ₄ due to
325	low CH ₄ solubility (Chen et al., 2023). Some CO ₂ exsolution resulting from the reduction of
326	reservoir pressure in CBG recovery may significantly affect the δ^{13} C of CO ₂ , but insignificantly
327	affect δ^{13} C of DIC and CH ₄ , thus, CH ₄ -HCO ₃ ⁻ is close to isotope equilibrium, but CO ₂ -HCO ₃ ⁻
328	and CH ₄ -CO ₂ are in isotope disequilibrium (Figs. 4-6). For CBG and water samples from the
329	Fuxin Basin, CH ₄ -CO ₂ -HCO ₃ ⁻ system is in isotope disequilibrium at present reservoir conditions
330	(Figs. 4-6) because the groundwater flow in Fuxin coalbeds has carried away ¹³ C-enriched CO ₂
331	dissolved in coalbed water, thus cause low $\delta^{13}C_{CO2}$ and $\delta^{13}C_{DIC}$, leading to disequilibrium of
332	CH_4 - CO_2 - HCO_3^- system (Chen et al., 2023).

In the San Juan Basin, high production CBG wells are located in the overpressured region of the basin, while low production CBG wells are in the underpressured region. Overpressure is the result of recharge at an elevated outcrop on the basin margin, aquifer confinement by the Kirtland Shale and low-permeability Pictured Cliffs Sandstone, and basinward pinch-out of aquifer coalbeds (Scott et al., 1994). The hydrodynamic seal is favourable for the CBG accumulation and long storage in the deep and overpressured coalbeds, thus, the CH₄ and CO₂

339 /HCO₃⁻ is near isotopic equilibrium (Figs. 4-5). However, the relatively shallow and

340 underpressured coalbeds are unfavourable for long conservation of CBG. The processes, such as

341 CBG migration out of coalbeds and mixture of thermogenic and microbial gas, may cause CH₄

342 and CO_2 disequilibrium in some samples (Fig. 4).

343 For the Surat/Clarence-Moreton Basin samples, the deep CBG reservoirs (200-500m) are in a 344 closed-system and trapped on stable geological structures (Owen et al., 2016), favourable for the 345 CBG storage and accumulation. Hence, the coexistence of the CH_4 and HCO_3^{-1} is long enough to allow equilibrium to be reached (Fig. 5). However, the shallow CBG reservoirs (< 200m), which 346 347 are directly underlying or adjacent to the alluvium, are not ideal for the accumulation of CBG. 348 Sulfate reduction and various methanogenic pathways may have largely affected the contents and 349 isotopic compositions of CH_4 and HCO_3^- (Owen et al., 2016). Under these geological conditions, 350 CH₄ and HCO₃⁻ is unlikely to attain equilibrium (Fig. 5). In contrast, deep, closed reservoir 351 conditions in the Powder River, the Illinois and the Michigan Basins are conducive to obtaining 352 isotopic equilibrium between CH₄ and CO₂/HCO₃⁻ (Figs. 4-5). For the Powder River samples, 353 the extent of isotopic equilibrium of CH_4 - CO_2 and CH_4 - HCO_3 ⁻ in deep and closed coalbeds (203-354 475m) is higher than that in shallow coalbeds (98-310m). In the Illinois Basin, the extent of 355 isotopic equilibrium of CH₄-CO₂ and CH₄-HCO₃⁻ in shale reservoirs with depths of 233-857m is 356 higher than that in coalbeds with depths of 135-402m. In the Michigan Basin, the relatively deep 357 (200-650m) and geologically stable shale reservoirs are favourable for the SG accumulation and 358 long storage, thus the extent of isotopic equilibrium of CH₄-CO₂ and CH₄-HCO₃⁻ is high. 359 Overall, we proposed that a relatively deep and closed CBG/SG reservoir is geologically and

360 geochemically stable over long timescales, and thus is favourable for isotopic equilibrium of

361 CH₄-CO₂/HCO₃⁻. However, it is difficult to accurately estimate the timescale for attaining carbon

362 isotopic equilibrium of CH₄-CO₂ and CH₄-HCO₃⁻ in our samples. In complex microbial CBG 363 and SG environments, the rates of carbon isotope exchange of CH₄-CO₂ and CH₄-HCO₃⁻ are 364 unlikely to be estimated. This is because the rates depend on the structure of the enzyme 365 catalyzing reactions, and on the exact substrates participating in the reactions (Gropp et al., 366 2021). We have also not known that isotopic equilibrium of CO_2 -CH₄ and CH₄-HCO₃⁻ occurred 367 in methane formation process or after methane formation (Turner et al., 2021). 368 However, it is possible to roughly estimate the timescale for attaining isotope equilibrium of 369 CH₄-CO₂ and CH₄-HCO₃⁻ in our samples. For microbial CBG and SG samples used in the study, 370 their formation time is significantly later than the time of their reservoir formation. This is 371 because most of them formed after re-inoculation of coalbeds and shale rocks with methanogenic 372 microbial consortia via meteoric water recharge (Bates et al., 2011; Chen et al., 2023; Martini et 373 al., 1998; Owen et al., 2016; Schlegel et al., 2011; Scott et al., 1994). For example, methanogenic 374 microbes in Pennsylvanian coalbeds and upper Devonian shale rocks (Table 2) in the Illinois 375 Basin mainly originated from recent meteoric water recharge (<2 Ma) (Schlegel et al., 2011). 376 Therefore, the isotope equilibrium time of CO_2 -CH₄ and CH₄-HCO₃⁻ is less than 2 Ma in the 377 basin. Similarly, the equilibrium time of CO₂-CH₄ and CH₄-HCO₃⁻ is less than 21,000 years in 378 the Michigan Basin (Martini et al., 1998), less than 50,000 years in the Powder River (Bates et 379 al., 2011) and the Surat Basin (Baublys et al., 2015).

380

381 5.2 Kinetic carbon isotope fractionation of CO₂-HCO₃⁻ in microbial CBG and SG systems

382 When the δ^{13} C value of gaseous CO₂ is unknown in microbial gas basins, many studies often

383 used the δ^{13} C value of the coexisting DIC to estimate the δ^{13} C_{CO2} under the assumptions that

384	HCO_3^- is the predominant DIC species, and HCO_3^- is in carbon isotope equilibrium with CO_2
385	(Bates et al., 2011; Turner et al., 2021). However, this assumption needs to be verified.
386	In general, HCO ₃ ⁻ is the dominant DIC species in groundwaters. Because the pH values of
387	most groundwaters are often between 6.4 and 10.3, where HCO3 ⁻ is the dominant DIC species
388	(Myrttinen et al., 2012). However, from our calculated results, CO_2 and HCO_3^- are not in carbon
389	isotope equilibrium in most of samples (Fig. 6). Therefore, it is unreasonable to assume that
390	CO ₂ -HCO ₃ ⁻ is near isotopic equilibrium in microbial CBG/SG systems. As a result, the estimated
391	$\delta^{13}C_{CO2}$ value based on isotopic equilibrium of CO ₂ -HCO ₃ ⁻ may be unreliable.
392	Experimental studies have shown that the rates of carbon isotope exchange between
393	individual DIC species (H ₂ CO ₃ , HCO ₃ ⁻ , CO ₃ ²⁻) and gaseous CO ₂ are rapid even at low
394	temperature range of 0-100°C, because their isotopic equilibrium can be reached in time periods
395	of several hours to several days (<30 days) (Myrttinen et al., 2012). The rapid exchange rates
396	suggest that although the carbon isotope equilibrium of CO ₂ -HCO ₃ ⁻ is easy to achieve in
397	microbial CBG and SG reservoirs, the equilibrium is unstable.
398	CBG and SG recovery by dewatering and/or fracturing to reduce the reservoir pressure can
399	cause CO ₂ exsolution which may break isotope equilibrium of CO ₂ -HCO ₃ ⁻ . High CO ₂ solubility
400	can lead to most of CO ₂ dissolved into groundwater to form DIC, thus, lead to low abundance
401	CO ₂ in CBG and SG (typical < 5%) and high abundance CO ₂ (i.e., DIC) in groundwaters (Chen
402	et al., 2023). Hence, some CO ₂ exsolution may significantly affect the δ^{13} C of CO ₂ , but
403	insignificantly affect δ^{13} C of DIC, causing isotope disequilibrium of CO ₂ -HCO ₃ ⁻ . The
404	mechanism may explain the carbon isotope disequilibrium of CO ₂ -HCO ₃ ⁻ in our samples.
405	

 $406 \qquad 5.3 \ Estimation \ of \ total \ yield \ ratio \ of \ CO_2/CH_4 \ in \ microbial \ CBG \ reservoirs$

407	Large amounts of CH ₄ and CO ₂ can be formed during microbial conversion of coal into
408	natural gas. Knowing the total yield ratio of CO ₂ /CH ₄ is critical for elucidating the formation
409	mechanisms and predicting emissions to atmosphere. However, it is often difficult to estimate
410	their yield ratio in situ coalbeds, because several processes can significantly affect their yields.
411	These include mixing between microbial and thermogenic gas, extent of methanogenesis,
412	migrations, methane oxidation, CO2 dissolution, and precipitation and dissolution of carbonate
413	minerals (Vinson et al., 2017). Based on carbon isotope equilibrium of CH ₄ -CO ₂ and CH ₄ -
414	HCO ₃ ⁻ , we estimate CO ₂ percentage in total CH ₄ and CO ₂ in microbial CBG reservoir, where
415	methanogenesis pathway is mainly CO ₂ reduction.
416	In the subsurface, dissolution of CO ₂ can significantly affect the abundance and isotopic
417	compositions of gaseous CO ₂ due to its high solubility (Chen et al., 2023). Gilfillan et al. (2009)
418	suggested that solubility trapping in formation water was the dominant CO ₂ sink. The $\delta^{13}C_{DIC}$
419	values of most samples used in this study are greater than 5‰, which suggest strongly that the
420	DIC is mainly from CO ₂ dissolution, because δ^{13} C of DIC from other origins are usually less
421	than 2‰ (Golding et al., 2013). Furthermore, the solubility of CO ₂ could be more than 10 times
422	that of CH4 under certain temperature, pressure and salinity conditions (Fig. 7a). In the coalbed
423	water from the Surat/Clarence-Moreton Basin, the concentration of HCO ₃ ⁻ is dozens of times that
424	of dissolved CH4 (Fig. 7b). Large amounts of water are often produced in CBG recovery
425	(Hamawand et al., 2013; Meng et al., 2014), suggesting that significant CO ₂ dissolution occurs in
426	groundwater associated with coalbeds. Hence, we propose that the dominant states of CO_2 in
427	CBG reservoirs are gaseous and dissolved states. However, the dominant state of CH4 is gaseous
428	due to its low solubility.

429	Many studies have shown that $\delta^{13}C_{coal}$ is stable, coal rank has negligible effect to $\delta^{13}C_{coal}$	
430	(Whiticar, 1996; Rahman et al., 2017). For example, the range of Ro of 5# coalbed from the	
431	Illinois Basin is from 0.55% to 4.79%. However, the range of $\delta^{13}C_{coal}$ is only from -25.3% to	
432	24.9‰ (Rahman et al., 2017). The Ro values of Huangxian coal increase from 0.39% to 1.79	%
433	in pyrolysis experiments but, the $\delta^{13}C_{coal}$ variability is only 0.26‰ (Lu et al., 1994). We assu	med
434	that δ^{13} C values of coals were invariable during microbial CBG formation. Because the domi	nant
435	products are CH ₄ and CO ₂ during microbial CBG formation, and the $\delta^{13}C_{coal}$ value is usually	
436	greater than the $\delta^{13}C_{CH4}$ value, but smaller than the $\delta^{13}C_{CO2}$ value, therefore, we propose that	the
437	formation of ¹³ C-depleted CH ₄ and ¹³ C-enriched CO ₂ make δ^{13} Ccoal stable.	
438	Based on the above analysis and discussion that 1) dominant state of CH ₄ in coalbed	
439	reservoirs is gaseous, and dominant states of CO ₂ are gaseous and dissolved; 2) The formatic	ns
440	of ¹³ C-depleted CH ₄ and ¹³ C-enriched gaseous and dissolved CO ₂ make $\delta^{13}C_{coal}$ stable; 3)	
441	Existing of isotopic equilibrium of CH ₄ -CO ₂ and/or CH ₄ -HCO ₃ ⁻ suggests that the CBG reser	voir
442	has been more closed, thus, the primary microbial CH ₄ and CO ₂ are likely to be well retained	in
443	<i>situ</i> coalbeds. Therefore, we can apply the gas and water samples in which CH ₄ -CO ₂ and/or O	CH4-
444	HCO_3^- are near isotope equilibrium to estimate the CO_2 percentage in total CH_4 and CO_2 in	
445	microbial CBG basin by the following formulas	
446	$f \delta^{13}\mathbf{C}_{\text{CO2}} + (1 - f)\delta^{13}\mathbf{C}_{\text{CH}_4} \approx \delta^{13}\mathbf{C}_{coal}$	(6)
447	$f \delta^{13} \mathbf{C}_{\mathrm{DIC}} + (1 - f) \delta^{13} \mathbf{C}_{\mathrm{CH}_4} \approx \delta^{13} \mathbf{C}_{coal}$	(7)

448 where f is CO₂ percentage (X_{CO2}/(X_{CO2} +X_{CH4})) in total CH₄ and CO₂. In microbial CBG 449 reservoirs, the $\delta^{13}C_{DIC}$ is usually greater than that of CO₂, therefore, the calculated f using the 450 equations (6) and (7) represent the upper and lower limits of X_{CO2}/(X_{CO2} +X_{CH4}), respectively. 451 In each basin, the average isotopic values (${}^{13}C_{CH4}$, $\delta^{13}C_{CO2}$, $\delta^{13}C_{DIC}$ and $\delta^{13}C_{coal}$) of samples 452 near isotope equilibrium of CH₄-CO₂ and/or CH₄-HCO₃⁻ are used to estimate $X_{CO2}/(X_{CO2} + X_{CH4})$ 453 values. In these basins, the estimated lower limits of $X_{CO2}/(X_{CO2} + X_{CH4})$ are from 27% to 50%, 454 which are significantly higher than the $CO_2/(CH_4+CO_2)$ values of 1-15% in CBG samples (Table 455 3). However, the $X_{CO2}/(X_{CO2} + X_{CH4})$ values are consistent with the $CO_2/(CH_4 + CO_2)$ values from 456 culture experiments for conversion of coal to methane. For example, culture experiments using 457 bituminous coal as the sole carbon source and the microorganisms from the CBG coproduced 458 waters from the Illinois Basin, USA produced CH₄ and CO₂, whose yields are 3.14m³/ton/day 459 and 2.58m^3 /ton/day in 20 days, respectively (Zhang et al., 2015). The ratio of CO₂/(CO₂ + CH₄) 460 is 38%. Water and coal samples from a CBG well in the Jharia block, India yielded 461 $CO_2/(CH_4+CO_2)$ ratio of 39% (Rathi et al., 2019). And culture experiments using anthracite coal 462 and water samples from the Qinshui Basin, China produced average yield CO₂/(CH₄+CO₂) ratios 463 of 36% to 48% (Xiao et al, 2013). In relatively high-pressure and closed CBG reservoirs, high 464 CO₂ solubility and low CH₄ solubility can cause low CO₂ content, high CH₄ content, and thus 465 low $CO_2/(CH_4+CO_2)$ ratio in CBG. However, the extent of the dissolution of both CO_2 and CH_4 466 are low in culture experiments due to low-pressure conditions and short experiment timescales. 467 For this reason, the CO₂/(CH₄+CO₂) values from culture experiments are consistent with the 468 $X_{CO2}/(X_{CO2} + X_{CH4})$ values from the field samples. This consistence also suggests that our 469 estimated values are more reliable.

The percentage of dissolved CO₂ in total CO₂ (including gaseous and dissolved CO₂) is
estimated by using the formula

472
$$f_1 = 1 - \frac{1/m - 1}{1/n - 1}$$
(8)

473 where m and n denote the $X_{CO2}/(X_{CO2} + X_{CH4})$ values and the $CO_2/(CH_4 + CO_2)$ values,

474 respectively. The results show that 53-99% of the CO₂ has dissolved into groundwaters to form

475 DIC in CBG reservoirs (Table 3). Therefore, we propose that CO₂ dissolution likely has

- 476 significantly affect the abundance and isotopic compositions of gaseous CO₂ in subsurface.
- 477

478 6 Conclusions and outlook

479

480 This study supports previous inferences that CH₄ and CO₂ can be near carbon isotopic 481 equilibrium in microbial CBG and SG basins. It also suggests that CH_4 and HCO_3^- can be near 482 carbon isotopic equilibrium in these basins. However, CO_2 and HCO_3^- are not in carbon isotopic 483 equilibrium in these basins. We propose that, low free energy gradients (i.e., low H₂ content) and 484 long coexistence time of CH₄-CO₂-HCO₃⁻ are necessary to achieve isotopic equilibrium. In 485 general, a relatively deep and closed CBG/SG reservoir is geologically and geochemically stable 486 over long timescales, favoring isotopic equilibrium of CH₄-CO₂ and CH₄-HCO₃⁻. However, it is 487 difficult to accurately estimate the timescale for attaining equilibrium of CH₄ and CO₂/HCO₃⁻ in 488 natural samples. Conversely a shallow and open CBG/SG reservoir where CH₄ and CO₂/HCO₃⁻ 489 coexist for shorter time periods is unfavourable for their isotopic equilibrium. We estimated the 490 lower limits of the percentage of CO₂ in total CH₄ and CO₂ in CBG reservoirs in various basins 491 to be from 27% to 50%, where methanogenesis is mainly by CO₂ reduction. However, the 53-492 99% CO₂ have dissolved into groundwaters to form DIC in CBG reservoirs. CO₂ dissolution 493 could significantly affect abundance and isotopic compositions of CO₂ in CBG. CO₂ dissolution 494 effect in natural gas geochemistry needs to be studied further.

495	This study and previous studies (Valentine et al., 2004; Gropp et al., 2021; Turner et al., 2021)
496	show that CH ₄ formed mainly by CO ₂ reduction can be near carbon and hydrogen isotopic
497	equilibrium with coexisting CO ₂ , HCO ₃ ⁻ and H ₂ O in natural gas reservoirs. However, it is not
498	clear whether CH ₄ formed by acetoclastic or methylotrophic can be near isotopic equilibrium
499	with coexisting CO_2 , HCO_3^- and H_2O in subsurface. If methanogenesis pathways have a weak
500	influence on isotopic equilibrium of CH ₄ -CO ₂ -HCO ₃ ⁻ -H ₂ O system, the empirical isotopic proxies,
501	such as, $\alpha_{CO2-CH4}$ and $\Delta D_{H2O-CH4}$, for distinguishing methanogenesis pathways would not be
502	reliable because under the equilibrium condition, $\alpha_{\rm CO2-CH4}$ and $\Delta D_{\rm H2O-CH4}$ are mainly dependent
503	on temperature rather than methanogenesis pathways.
504	
505	

506 Author Contributions

507 X.C., M.T. and Z.Z. designed this research project. X.C. and M.T collected and analyzed
508 samples. X.C. and Z.Z wrote the paper. Y.W. and G.H. made significant contribution in data
509 interpretation and discussion.

510

511 **Declaration of competing interest**

512 The authors declare that they have no known competing financial interests or personal

513 relationships that could have appeared to influence the work reported in this paper.

514

515 Acknowledgments

516 We thank Yuzhen Ma, Zhongping Li and Qian Wang for assistance in sample collection and 517 measurement. We thank Hongyan Ma and Zhao Huang for assistance in drawing map. Thanks to

518	Huabei Oilfield Company. This research was funded by the National Natural Science Foundation
519	of China (41772122), China Postdoctoral Science Foundation (2021M703223), Project of Stable
520	Support for Youth Team in Basic Research Field, CAS (YSBR-017), the Strategic Priority
521	Research Program of the Chinese Academy of Sciences (XDA14010103), National Key
522	Research and Development Plan of China (2017YFC1503004-03), and Natural Environment
523	Research Council of UK (Grant Ref: NE/T004452/1).
524	
525	Supplementary Material
526	Supplementary Material included Research Data is available in the attachment.
527	
528	References
529	
530	Akinfiev, N.N., Diamond, L.W., 2010. Thermodynamic model of aqueous CO2-H2O-NaCl
531	solutions from -22 to 100°C and from 0.1 to 100 MPa. Fluid Phase Equilibr. 295, 104-124.
532	Bates, B.L., McIntosh, J.C., Lohse, K.A., Brooks, P.D., 2011. Influence of groundwater
533	flowpaths, residence times and nutrients on the extent of microbial methanogenesis in coal
534	beds: Powder River Basin, USA. Chem. Geol. 284, 45–61.
535	Baublys, K.A., Hamilton, S.K., Golding, S.D., Vink, S., Esterle, J., 2015. Microbial controls on
536	the origin and evolution of coal seam gases and production waters of the Walloon
537	Subgroup; Surat Basin, Australia. Int. J. Coal Geol. 147, 85–104.
538	Bottinga, Y., 1969. Calculated fractionation factors for carbon and hydrogen isotope exchange in
539	the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim.
540	Cosmochim. Acta 33, 49–64.

541	Chen, X., Tao, M., Zhou, Z., Li, D., 2019. A new theoretical calculation of the equilibrium
542	constant and temperature for the carbon isotope exchange reaction between CH ₄ and CO ₂ .
543	Geothermics 79, 140–144.

- 544 Chen, X., Wang, Y., Tao, M., Zhou, Z., He, Z., Song, K., 2023. Tracing the origin and formation
- 545 mechanisms of coalbed gas from the Fuxin Basin in China using geochemical and isotopic 546 signatures of the gas and coproduced water. Int. J. Coal Geol. 267, 104185.
- 547 Diamond, L.W., Akinfiev, N.N., 2003. Solubility of CO₂ in water from -1.5 to 100°C and from
- 548 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase
 549 Equilibr. 208, 265-290.
- Duan, Z., Møller, N., Greenberg, J., Weare, J. H., 1992. The prediction of methane solubility in
 natural waters to high ionic strength from 0 to 250°C and from 0 to 1600 bar. Geochim.
 Cosmochim. Acta 56, 1451-1460.
- Flores, R.M., Rice, C.A., Stricker, G.D., Warden, A., Ellis, M.S., 2008. Methanogenic pathways
 of coal-bed gas in the Powder River Basin, United States: The geologic factor. Int. J. Coal
 Geol. 76, 52–75.
- Games L. M., Hayes J. M., 1976. Isotopic and quantitative analysis of the major carbon fractions
 in natural water samples. Anal. Chem. 48, 130–135.
- 558 Gilfillan, S.M., Lollar, B.S., Holland, G., Blagburn, D., Stevens, S., Schoell, M., Cassidy, M.,
- 559 Ding, Z., Zhou, Z., Lacrampe-Couloume, G., Ballentine, C., 2009. Solubility trapping in 560 formation water as dominant CO₂ sink in natural gas fields. Nature 458, 614–618.
- Golding, S.D., Boreham, C.J., Esterle, J.S., 2013. Stable isotope geochemistry of coal bed and
 shale gas and related production waters: A review. Int. J. Coal Geol. 120, 24–40.
- 563 Gropp, J., Iron, M.A., Halevy, I., 2021. Theoretical estimates of equilibrium carbon and

- hydrogen isotope effects in microbial methane production and anaerobic oxidation of
 methane. Geochim. Cosmochim. Acta 295, 237–264.
- Hamawand, I., Yusaf, T., Hamawand, S.G., 2013. Coal seam gas and associated water: a review
 paper. Renew. Sust. Energ. Rev. 22, 550–560.
- Horita, J., 2001. Carbon isotope exchange in the system CO₂-CH₄ at elevated temperatures.
 Geochim. Cosmochim. Acta 65, 1907–1919.
- 570 Kueter, N., Schmidt, M.W., Lilley, M.D., Bernasconi, S.M., 2019. Experimental determination
- of equilibrium CH₄-CO₂-CO carbon isotope fractionation factors (300-1200°C). Earth
 Planet. Sci. Lett. 506, 64-75.
- 573 Li, Z. Tao, M., Li, L., Wang, Z., Du, L., Zhang, M., 2007. Determination of isotope composition
 574 of dissolved inorganic carbon by gas chromatography-conventional isotope-ratio mass
 575 spectrometry. Chin. J. Anal Chem. 35, 1455–1458.
- Liu, Q., Tossell, J. A., Liu, Y., 2010. On the proper use of the Bigeleisen-Mayer equation and
 corrections to it in the calculation of isotopic fractionation equilibrium constants. Geochim.
 Cosmochim. Acta 74, 6965–6983.
- Lu, S., Huang, D., Cheng, K., 1994. Characteristics of solid residue samples and its evolution in
 a simulation experiment of generation and migration of coal formed hydrocarbon (in
 Chinese). Petrol Explor Dev. 21, 46–51.
- 582 Martini, A.M. Walter, L.M., Budai, J.M., Ku, T.C.W., Kaiser, C.J., Schoell. M., 1998. Genetic
- and temporal relations between formation waters and biogenic methane: Upper Devonian
 Antrim Shale, Michigan Basin, USA. Geochim. Cosmochim. Acta 62, 1699–1720.
- 585 Meister, P., Liu, B., Khalili, A., Bottcher, M.E., Jørgensen, B.B., 2019. Factors controlling the 586 carbon isotope composition of dissolved inorganic carbon and methane in marine

587	porewater: An ev	aluation by	reaction-transi	port modelling	. J. Mar. S	vst. 200.	103227.
201		uruuron oy	reaction trains	Joit modeling	• • • • • • • • • • •	, 200,	105221.

- Meng, Y., Tang, D., Xu, H., Li, Y., Gao, L., 2014. Coalbed methane produced water in China:
 status and environmental issues. Environ. Sci. Pollut. Res. 21, 6964–6974.
- 590 Milkov, A.V., Etiope, G., 2018. Revised genetic diagrams for natural gases based on a global
 591 dataset of >20,000 samples. Org. Geochem. 125, 109–120.
- Mook, W.G., Bommerson, J.C., Staverman, W.H., 1974. Carbon isotope fractionation between
 dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176.
- 594 Myrttinen, A., Becker, V., Barth, J.A.C., 2012. A review of methods used for equilibrium isotope
- fractionation investigations between dissolved inorganic carbon and CO₂. Earth-Sci
 Rev.115, 192–199.
- Okumura, T., Kawagucci, S., Saito, Y., Matsui, Y., Takai, K., Imachi, H., 2016. Hydrogen and
 carbon isotope systematics in hydrogenotrophic methanogenesis under H₂-limited and H2enriched conditions: implications for the origin of methane and its isotopic diagnosis. Prog.
 Earth Planet. Sci. 3, 1–19.
- Owen, D.D.R., Shouakar-Stash, O., Morgenstern, U., Aravena, R., 2016. Thermodynamic and
 hydrochemical controls on CH₄ in a coal seam gas and overlying alluvial aquifer: New
 insights into CH₄ origins. Sci. Rep 6, 1–20.
- Rahman, M.W., Rimmer, S.M., Rowe, H. D., Huggett, W.W., 2017. Carbon isotope analysis of
 whole-coal and vitrinite from intruded coals from the Illinois Basin: No isotopic evidence
 for thermogenic methane generation. Chem Geol, 453, 1-11.
- 607 Rathi, R., Lavania, M., Singh, N., Sarma, P. M., Kishore, P., Hajra, P., Lal, B., 2019. Evaluating
- 608 indigenous diversity and its potential for microbial methane generation from thermogenic
- 609 coal bed methane reservoir. Fuel, 250, 362–372.

- 610 Rhim, J.H., Ono, S., 2022. Combined carbon, hydrogen, and clumped isotope fractionations
- 611 reveal differential reversibility of hydrogenotrophic methanogenesis in laboratory cultures.
- 612 Geochim. Cosmochim. Acta 335, 383–399.
- 613 Richet, P, Bottinga, Y., Javoy, M. A., 1977. Review of Hydrogen, Carbon, Nitrogen, Oxygen,
- 614 Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules. Annu. Rev.
 615 Earth Planet. Sci. 5, 65–110.
- 616 Schlegel, M.E., Mcintosh, J.C., Bates, B.L., Kirk, M.F., Martini, A.M., 2011. Comparison of
- 617 fluid geochemistry and microbiology of multiple organic-rich reservoirs in the Illinois Basin
- 618 , USA: Evidence for controls on methanogenesis and microbial transport. Geochim.
- 619 Cosmochim. Acta 75, 1903–1919.
- Scott, A.R., Kaiser, W.R., Ayers Jr, W.B., 1994. Thermogenic and secondary biogenic gases,
 San Juan basin, Colorado and New Mexico-implications for coalbed gas producibility.
 AAPG bull. 78, 1186–1209.
- Smith J. W., Gould K. W., Rigby D., 1981. The stable isotope geochemistry of Australian coals.
 Org. Geochem. 3, 111–131.
- 625 Stolper D., Lawson M., Davis C. L., Ferreira A. A., Santos Neto E. V., Ellis G. S., Lewan M. D.,
- Martini A. M., Tang,Y., Schoell M., Sessions A. L., Eiler J. M., 2014. Formation
 temperatures of thermogenic and biogenic methane. Science 344, 1500–1503.
- Sun, H., 2015. The simulation of coal reservoir soluble gas and research on hydrogeologic gas
 controlling in Fukang Mining Area (in Chinese) [D]. China University of Mining and
 Technology. 57-58.
- Sun, Q., Wang, W., Tian, W., Sun, B., Chen, Y., Yang, Q., Chen, H., Yang, M., Qi, L., 2018.
 Accumulation patterns of low-rank coalbed methane gas in the Jiergalangtu Sag of the

- 633 Erlian Basin (in Chinese). Nat. Gas Ind. 38, 59–66.
- Suto, N., Kawashima, H., 2016. Global mapping of carbon isotope ratios in coal. J Geochem
 Explor, 167, 12–19.
- 636 Tao, M., Chen, X., Li, Z., Ma, Y., Xie, G., Wang, Y., Wei, L., Wang, A., Huang, Z., 2021.
- 637 Variation characteristic and mechanism of carbon isotope composition of coalbed methane
 638 under different conditions and its tracing significance. Fuel, 302, 1–9.
- Tao, M., Chen, X., Ma, Y., Wang, Y., Li, Z., Xiao, W., Huang, Z., 2020. Geological–
 Geochemical models and isotope fractionation laws and control factors of thermogenic
 coalbed gas in Panxian, China. Energy Fuels, 34, 2665-2673.
- Tao, M., Shi, B., Li, J., Wang, W., Li, X., Gao, B., 2007. Secondary biological coalbed gas in the
- Kinji area, Anhui province, China: Evidence from the geochemical features and secondarychanges. Int. J. Coal Geol. 71, 358–370.
- Turner, A.C., Korol, R., Eldridge, D.L., Bill, M., Conrad, M., Miller, T.F., Stolper, D.A., 2021.
- Experimental and theoretical determinations of hydrogen isotopic equilibrium in the system
 CH₄-H₂-H₂O from 3 to 200°C. Geochim. Cosmochim. Acta 314, 223–269.
- 648 Urey, H.C., 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc (Lond.).
 649 562–581.
- Valentine, D.L., Chidthaisong, A., Rice, A., Reeburgh, W.S., Tyler, S.C., 2004. Carbon and
 hydrogen isotope fractionation by moderately thermophilic methanogens. Geochim.
 Cosmochim. Acta 68, 1571–1590.
- Vinson, D.S., Blair, N.E., Martini, A.M., Larter, S., Orem, W.H., McIntosh, J.C., 2017.
- 654 Microbial methane from in situ biodegradation of coal and shale: A review and reevaluation
- of hydrogen and carbon isotope signatures. Chem. Geol. 453,128–145.

- 656 Wang, D.T., Gruen, D.S., Sherwood Lollar, B., Hinrichs, K.U., Stewart, L.C., Holden, J.F.,
- 657 Hristov, A.N., Pohlman, J.W., Morrill, P.L., Könneke, M., Delwiche, K.B., Reeves, E.P.,
- 658 Sutcliffe, C.N., Ritter, D.J., Seewald, J.S., McIntosh, J.C., Hemond, H.F., Kubo, M.D.,
- 659 Cardace, D., Hoehler, T.M., Ono, S., 2015. Nonequilibrium clumped isotope signals in
 660 microbial methane. Science 348, 428–431.
- Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and
 oxidation of methane. Chem. Geol. 161, 291-314.
- Whiticar, M. J., 1996. Stable isotope geochemistry of coals, humic kerogens and related natural
 gases. Int. J. Coal Geol. 32, 191–215.
- Whiticar, M.J., Faber, E., Schoell, M., 1986. Biogenic methane formation in marine and
 freshwater environments: CO₂ reduction vs. acetate fermentation—isotope evidence.
 Geochim. Cosmochim. Acta 50, 693–709.
- Kiao, D., Peng, S., Wang, B., Yan, X., 2013. Anthracite bio-degradation by methanogenic
 consortia in Qinshui basin. Int. J. Coal Geol. 116, 46–52.
- 670 Yoshinaga, M. Y., Holler, T., Goldhammer, T., Wegener, G., Pohlman, J.W., Brunner, B.,
- Kuypers, M.M., Hinrichs, K.U., Elvert, M., 2014. Carbon isotope equilibration during
 sulphate-limited anaerobic oxidation of methane. Nat. Geosci. 7, 190–194.
- 673 Zhang, J., Liang, Y., Pandey, R., Harpalani, S., 2015. Characterizing microbial communities
- dedicated for conversion of coal to methane in situ and ex situ. Int. J. Coal Geol. 146, 145–
 154.
- ⁶⁷⁶ Zhou, Z., Ballentine, C.J., Kipfer, R., Schoell, M., Thibodeaux, S., 2005. Noble gas tracing of
- 677 groundwater/coalbed methane interaction in the San Juan Basin, USA. Geochim.
- 678 Cosmochim. Acta 69, 5413–5428.
- 679

Fig. 1. Locations of basins in the study. (1) Erlian Basin, China. (2) Fuxin Basin, China. (3)
Powder River Basin, USA. (4) San Juan Basin, USA. (5) Illinois Basin, USA. (6) Michigan
Basin, USA. (7) Surat Basin, Australia. (8) Clarence-Moreton Basin, Australia.

Fig. 2. (a) Genetic diagram of $\delta^{13}C_{CH4}$ vs. δD_{CH4} for CBG samples from the Erlian Basin (after 687 Milkov and Etiope, 2018). (b) Genetic diagram of $\delta^{13}C_{CO2}$ vs. $\delta^{13}C_{CH4}$ for CBG and SG samples 688 689 from various basins (after Milkov and Etiope, 2018). The two diagrams show that most of gas 690 samples are microbial in origins. The exception includes some samples from the San Juan 691 Basin. F: methyl-type fermentation; CR: CO₂ reduction; SM: secondary microbial. Data from 692 the Fuxin, the Powder River, the San Juan, the Illinois, and the Michigan Basins are from 693 literature (Bates et al., 2011; Chen et al., 2023; Martini et al., 1998; Schlegel et al., 2011; Zhou 694 et al., 2005) (See Supplementary Material). The new samples are from the Erlian Basin. 695

696

Fig. 3. Plot of $\delta^{13}C_{CH4}$ vs. $\delta^{13}C_{CO2}$ for CBG and SG samples from various basins. In general, α_{CO2-CH4} values for CO₂ reduction and methyl-type fermentation range from 1.06 to 1.09, and 1.03 to 1.06, respectively. The distribution characteristics of data suggest that CO₂ reduction is the dominant methanogenesis pathway in most gas samples. Data from the Fuxin, the Powder River, the San Juan, the Illinois, and the Michigan Basins are from literature (Bates et al., 2011; Chen et al., 2023; Martini et al., 1998; Schlegel et al., 2011; Zhou et al., 2005) (See Supplementary Material). The samples from the Erlian Basin are new.

704

705 Fig. 4. Comparation of the calculated equilibrium temperature T_1 and the reservoir temperature 706 T_0 in various basins. T_1 is equilibrium temperature calculated by using δ^{13} C values of CH₄-CO₂. 707 Horizontal lines denote the threshold of $\pm 10^{\circ}$ C for T₂-T₀. In the samples from the Erlian and the 708 Fuxin Basins, CH₄-CO₂ is not in carbon isotopic equilibrium. For most samples from the deep 709 coalbeds of the Powder River (PR) Basin, CH₄-CO₂ is close to carbon isotopic equilibrium. 710 However, CH₄-CO₂ is in disequilibrium in most samples from shallow coalbeds. In the San Juan 711 (SJ) Basin, CH₄-CO₂ is close to carbon isotopic equilibrium for samples with deep burial depths, 712 however, CH₄-CO₂ is in disequilibrium for half of shallow samples. For most SG samples from 713 the deep shales of the Illinois Basin, CH₄-CO₂ is close to carbon isotopic equilibrium. For half of 714 samples from the shallow coalbeds in the basin, CH₄-CO₂ is in disequilibrium. In the Michigan 715 Basin, CH₄-CO₂ is close to carbon isotopic equilibrium in most samples.

717

718 Fig. 5. Comparation of the calculated equilibrium temperature T₂ and the reservoir temperature 719 T₀ in various basins. T₂ is equilibrium temperature calculated by using δ^{13} C values of CH₄-720 HCO_3 . Horizontal lines denote the threshold of $\pm 10^{\circ}C$ for T₂-T₀. In the Erlian Basin samples, 721 CH₄-HCO₃⁻ is close to carbon isotopic equilibrium. In the Fuxin Basin samples, CH₄-HCO₃⁻ is in 722 carbon isotopic disequilibrium. For most samples from the deep coalbeds of the Powder River 723 (PR) Basin, CH₄-HCO₃⁻ is close to carbon isotopic equilibrium. However, CH₄-HCO₃⁻ is in 724 disequilibrium in most shallow samples. In the deep CBG reservoirs in the San Juan (SJ) Basin, 725 CH₄-HCO₃⁻ is close to carbon isotopic equilibrium. For most samples from the deep shales of the 726 Illinois Basin, CH₄-HCO₃⁻ is close to carbon isotopic equilibrium. For some samples from the 727 shallow coalbeds in the basin, CH₄-HCO₃⁻ is in disequilibrium. In the Michigan Basin samples,

- 728 CH₄-HCO₃⁻ is close to carbon isotopic equilibrium. In the Surat/Clarence-Moreton (SCM) Basin,
- 729 CH₄-HCO₃⁻ is close to carbon isotopic equilibrium for samples from deep coalbeds, however, it
- 730 is in disequilibrium for most samples from shallow coalbeds.
- 731

732

Fig. 6. Comparation of the calculated equilibrium temperature T₃ and the reservoir temperature

734 T_0 in various basins. T₃ is equilibrium temperature calculated by using δ^{13} C values of CO₂-

HCO₃⁻. Horizontal lines denote the threshold of $\pm 10^{\circ}$ C for T₃-T₀. It indicates that CO₂-HCO₃⁻ is

in carbon isotope disequilibrium in most of samples.

737

Fig. 7. Comparison of CO₂ and CH₄ dissolution effects. (a) The solubility ratio of CO₂/CH₄

vinder certain temperature, pressure and salinity conditions. The date are from Duan et al. (1992),

Sun, (2015), Diamond and Akinfiev, (2003), and Akinfiev and Diamond, (2010). (b) The

741 concentration ratio of DIC and dissolved CH₄ in coalbed water from the Surat and the Clarence-

742 Moreton Basins. The date are from Owen et al. (2016).

744 **Table 1.**

G 1	Molecular composition (%)				Isotop	130					
Sample	CH ₄	CO_2	N_2	Ar	$\delta^{13}C_{CH4}$	δD_{CH4}	$\delta^{13}C_{\rm CO2}$	$\delta^{13}C_{CH4(aq)}$	$\delta^{13}C_{\text{DIC}}$	$-\Delta^{13}CCH4(aq)-CH4$	α _{CO2-CH4}
J-1	96.5	3.5	0.0	0.02	-59.8	-253.5	-0.1	-56.1	+15.6	3.7	1.063
J-2	94.6	3.9	1.5	0.02	-58.5	-254.9	-0.5	-56.9	+15.1	1.6	1.062
J-3	96.8	3.2	0.0	0.02	-59.7	-258.5	+1.6	-56.2	+15.6	3.5	1.065
J-4					-58.4	-259.7	-1.5	-56.9	+15.7	1.5	1.059
J5-1					-56.2	-267.2					
J5-2					-58.0	-239.2					
J5-3					-60.6	-246.9					
J5-4					-57.1	-254 7					

745 Molecular and isotopic compositions of CBG and coalbed water samples from the Erlian Basin^{*}

^{*} Samples J-1 to J-4 are from different CBG production wells, J5-1 to J5-4 are desorbed gas samples from a coal

747 core; $\delta^{13}C_{CH4(aq)}$ denotes dissolved methane $\delta^{13}C_{CH4}$; $\Delta^{13}C_{CH4(aq)-CH4} = \delta^{13}C_{CH4 aq} - \delta^{13}C_{CH4}$; $\alpha_{CO2-CH4} = (\delta^{13}C_{CO2} + \delta^{13}C_{CD4})$

748 +1000/(($\delta^{13}C_{CH4}$ +1000); "--" denotes that data is not measured.

750 **Table 2.**

Desin	Trues	Stuature	Depth (m)	*Temperature (°C)							
Dasin	Туре	Stratum		T ₀	T_1	T ₂	T ₃	T_1 - T_0	T_2 - T_0	T_3-T_0	
Erlian	CBG	LC	480-600	25	44~60	25~31	-41~-21	19~35	0~6	-66~-46	
Fuxin	CBG	LC	<1800	38~48	109~144	57~82	-58~-32	66~101	14~39	-102~-75	
PR	CBG	Tertiary	98-310	15.6~22.1	23~97	21~82	-4~34	4~75	2~60	-26~17	
			203-475	16.6~25.5	14~100	9~41	-87~64	-5~79	-13~22	-108~48	
SCM	CBG	MT	60-186	20.3~32.4		18~208			-5~186		
			200-500	27.9~34.2		23~41			-8~10		
SJ	CBG	UC	654-872	46	36~235			-10~189			
			#776-981	46	47~77	52		1~31	6		
Illinois	CBG	Р	135-402	13.1~20.3	16~76	-22~52	-89~4	1~59	-35~35	-102~-15	
	SG	UD	233-857	9.0~29.7	9~34	2~37	-25~66	-6~27	-13~26	-34~53	
Michigan	SG	UD	200-650	9.4~24.8	10~31	8~26	0-43	-7~22	-14~14	-24~24	

751 Summary of measured and calculated temperatures for all samples from various basins

752 PR: Powder River; SCM: Surat/Clarence-Moreton; SJ: San Juan. LC: Lower Cretaceous; UC: Upper Cretaceous;

753 MT: Middle Triassic; P: Pennsylvanian; UD: Upper Devonian. "--" denote that the data is not provided.

* T_0 denotes measured reservoir temperature. T_1 , T_2 and T_3 denote calculated temperatures by using $\delta^{13}C$ values of

755 CH₄-CO₂, CH₄-HCO₃⁻, and CO₂-HCO₃⁻, respectively.

756 [#] For samples with depths of 776-981m, the average values of $\delta^{13}C_{DIC}$ and $\delta^{13}C_{CH4}$ are used to calculate T₂, because

757 only the average $\delta^{13}C_{DIC}$ value of 23‰ is reported (Scott et al., 1994).

759 **Table 3.**

760 Calculated percentage of CO₂ in total CH₄ and CO₂ and percentage of dissolved CO₂ in total

761 CO_2 in various microbial CBG basins.

Desim	_	Average	value (‰)		$CO_2/(CO_2+$	[#] Xco ₂ /(Xco ₂ +X _{CH4}) (%)		CO ₂ (%)	
Dasin	$\delta^{13}C_{CH4}$	$\delta^{13}C_{CO2}$	$\delta^{13}C_{DIC}$	$^{*}\delta^{13}C_{coal}$	CH4) (%)	Lower	Upper	Gaseous	Dissolved
Erlian	-59.1±0.7		15.5±0.2	-22.0	4±1	50	-	2	98
PR	-58.5 ± 1.5	9.6±2.4		-25.7	5±5		48		
	-58.6 ± 1.4		18.8 ± 2.2	-25.7	8±9	43		11	89
SCM	-55.3±2.7		$18.0{\pm}4.1$	-24.5		42			
Illinois	-58.8 ± 1.0		20.3 ± 3.3	-25.1	1±0	43		1	99
SJ	-43.7 ± 0.6	16.9 ± 0.3	23.0	25.7	15±2	27	30	47	53

762 PR: Powder River; SCM: Surat/Clarence-Moreton; SJ: San Juan. "--" denotes the data is not measured or calculated.

^{*} The $\delta^{13}C_{coal}$ values of five coal samples from the Erlian Basin are -22.6, -21.8, -22.0, -21.4, and -21.9‰; The

 $\delta^{13}C_{coal}$ value of the Illinois Basin is from Rahman et al. (2017); The $\delta^{13}C_{coal}$ values from other basins are from Suto

766 *#* Lower/Upper: calculated lower/upper limit of percentage of CO₂ in total CH₄ and CO₂.

and Kawashima (2016).