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Abstract

Green transition is important for the economics of the OECD countries and their transition to
cleaner production. This paper estimates a knowledge production function consisting of a
system of innovation inputs, innovation outputs, and productivity with feedback effect from
productivity on innovation investments. The model accounts for productivity shock,
endogeneity of inputs, and their simultaneity and interdependence. Productivity shock is a
latent unobserved component that is specified in terms of observable factors. The model is
estimated using Bayesian methods organized around Marco Chain Sequential Monte Carlo
iteration techniques also known as Particle Filtering. For the empirical part, the paper uses
balanced panel data covering 27 OECD countries’ green innovation and patents activities
observed during the period 1990-2018. Our empirical results show evidence of significant
heterogeneity in productivity and its relationship with its identified determinants. The paper
also discusses the implications of these results for OECD countries’ green growth strategies.
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1. Introduction

Climate and environmental conditions have deteriorated, necessitating radical changes in fossil
fuel-based energy generation, production, transportation, distribution, and consumption. The
United Nations’ Sustainable Development Goals (The World Bank Group, 2015) and the Paris
agreement (UNFCC, 2015) provide guidelines on the importance of pressing changes needed
for managing a transition to clean and renewable energy sources. This transition in the energy
system involves, among other things, investments in developing new and renewable energy
forms and using energy saving technologies in combination with incentive programs like taxes,
subsidies, and regulations and their enforcement for achieving the 17 sustainable development
goals (SDGs). Increasing consideration for environmental quality and health has contributed
to an increased share of renewable energy and intensive use of energy-saving methods for
reducing dependence on carbon-based technologies.

Literature on renewable energy and knowledge about technologies for achieving the SDGs and
the realization of the Paris Agreement is rapidly growing. These studies have influenced the
design of environmental and energy policies and their effects on creating sustainable
economies. Developed nations that have varying institutional, regulatory, technological,
financial, and resource capacities for developing clean and renewable technologies are leading
the transition process in substituting brown technologies and fossil fuel energy with green
technologies and renewable sources. The progress is uneven due to heterogeneity in countries’
technological, financial, and institutional capacities which affect policy design and the overall
transition process. The war in Ukraine has strongly influenced the gravity of energy security
and supply, energy use and saving, and a mixed speeding up/down the energy transition and its
environmentally desired direction around the world.

Literature on renewable energy investigates the role that environmental policies play in
inducing technological changes for achieving sustainability goals. In particular, the emphasis
is on the role of R&D and innovation capacities and outcomes. Through institutional,
economic, and regulatory forces the national innovation system plays a key role in the process
of innovation capacity building and innovative activities. Empirical literature, in particular
studies which do comparative performance analyses of the differences between innovation
systems, finds that the institutional framework influences innovation performance and
outcomes (Kline and Rosenberg, 1986; Freeman, 1995; Furman et al., 2002; Gans and Stem,
2003; Balzat and Hanusch, 2004; Johnstone et al., 2010; Nagaoka et al., 2010; Matei and Aldea,
2012). Alternative methods of performance evaluation in the innovation field show that
performance is not necessarily related to leadership in transforming innovation inputs into
outputs of innovation. Public environmental policies and instruments differ in inducing
innovation of more costly technologies.

Industrialized countries cooperate closely for developing a common strategy and efficient and
shared approaches in coping with emission-related environmental deterioration. The common
strategy involves diverse policies for incentivizing public and private investments, investments
in education and R&D, and environmental regulations and their enforcement. Innovations in
renewable energy and energy-saving technologies are key components in addressing
environmental challenges. According to this common strategy, technological changes are
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endogenous and directed toward achieving sustainability goals. Countries differ by their
innovation systems, investments in renewable energy, and innovation outcomes measured as
the number of patents. In relation to this, this paper examines the impact of various
environmental and energy policy interventions on R&D investments, their outcomes, and the
evolution of renewable energy technologies in OECD countries. Due to limited green data
availability, this field of research has not been studied in detail till now.

This paper estimates a knowledge production function that consists of a system of innovation
inputs, innovation outputs, and productivity equations with feedback effect from higher
productivity on innovation investments. The model accounts for several aspects neglected in
single equation models. These include possible productivity shocks, endogeneity of production
inputs, simultaneity and interdependence relations, and heterogeneity and temporal effects.
Productivity shock is a latent unobserved component that is specified as a function of
observable factors. The model is estimated using Bayesian methods with iteration techniques
known as Particle Filtering. The empirical part is based on balanced panel data covering 27
OECD countries observed from 1990 to 2018. The results show evidence of an association
between public environmental interventions and green innovation activities and outcomes.
Significant heterogeneity in productivity and its relationship with its potential determinants is
also observed.

This study is motivated by generalizing the commonly used single equation patent models to a
knowledge production function including a system of innovation inputs, innovation outputs,
and productivity, and controlling for incorporating environmental, financial, technological,
regulatory, and innovation capacity factors as well as latent productivity shocks. The study
contributes to the literature in several ways. First, it conducts an up-to-date analysis of the
effects of factors that stimulate innovations, induces stringency of environmental policies, and
development of directed technologies around renewable energy. Second, it establishes the
sensitivity of the estimation results of the model in the form of a single and a system of
interdependent equations accounting for the effects of unobservable shocks, country- and time-
specific effects on innovation investments, and patenting activities within the area of renewable
energy.

The rest of this paper is organized as follows. OECD green innovation, panel data, and
definitions of the variables are given in Section 2. Section 3 discusses the literature on green
innovation capacity and policy instruments and their effects. Section 4 outlines the model and
its estimation. An analysis of the results, their sensitivity, and policy implications are presented
in Section 5. The final section gives the conclusion and policy recommendations.

2. Literature Review

Most developed nations have unique national innovation systems (NIS). These systems were
developed in the 1980s and 1990s (Freeman, 1987; Lundvall, 1988; Nelson, 1993). NIS
systems’ development was a result of increased recognition that knowledge and technology
development were important driving forces of competitiveness and economic growth. As part
of NIS’ focus areas, special attention was paid to the relationship between R&D, innovations,



and productivity (Griliches, 1986, 1995; Hall and Mairesse, 1995).

In recent decades, green innovations and adaptation to environmental policies have been
considered a source of enhancement of firms’ competitiveness (Porter and van der Linde, 1995;
Chen et al., 2006). This increased attention on innovations and intellectual properties by
various stakeholders, investments in infrastructure, and environmental concerns encouraged
investments in education and learning. These led to the development of productive forces that
played an important role in the development and impact of NIS (Lundvall et al., 2002). Despite
significant progress in research in the field, empirical analyses of green policies, innovations,
and green patents in a knowledge production function framework and estimated with advanced
estimation methods are limited.

Literature has helped us to identify the important elements of an innovation system. With a
strong focus on organizations, Samara et al. (2012) break down the system into seven parts —
institutional conditions, knowledge and human resources, research activities, market
conditions, financial systems, innovation processes, and technological performance. In another
study, with a different focus on business models and networks, Cowhey and Aronson (2017)
divided NIS into five components — social networks and dynamic labor markets, shared assets
among innovating companies, flexible business models, financial models, and government
policies. Despite increased broadened elements of the innovation system, less attention has
been on green innovation and patents.

Different researchers have emphasized different aspects of NIS. For instance, for Calia et al.
(2007) innovation networks play a role in technological developments in business models’
reconfiguration. North (1990) maintains that institutions constitute the main base for the NIS
system. Nelson (1993) sees public research infrastructure as the core of the NIS system.
Furman et al. (2002) acknowledge that government policies play an active and determining
role in shaping innovation capacity. Danguy et al. (2014) investigate the surge in patenting. A
number of studies criticize NIS for being too wide (Lundvall, 2007) and for placing less
emphasis on the sources of innovations (Carlsson, 2007).

A national innovation system is assessed by its national innovation capacity (NIC). This
capacity is defined as a nation’s ability to develop and commercialize the flow of new
technologies to the market. This system was developed for analyzing NIS (Porter and Stern,
2002). The NIC concept is general and incorporates the endogenous growth theory and the
theory of international competitiveness. With regard to international competitiveness, NIC is
determined by common and cluster-specific innovation infrastructure and the quality of the
linkages between the clusters (Furman et al., 2002). NIC is used in cross-country analyses of
NIS, among others a panel of 27 OECD countries in this study (see also Maasoumi et al., 2020).
The variations in patenting are explained by R&D expenditure, the number of researchers, and
other variables affecting innovation capacity.

Porter and Stern (2002) computed an innovation capacity index to rank countries by their sub-
indices of scientists and engineers, innovation policies, and the cluster innovations’
environment and linkages. A similar capacity index was computed by Gans and Stern (2003)
using data from OECD countries. Johansson et al. (2015) explain the differences in European
countries’ innovation activities at the industry level using various determinants. In a number
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of studies, efficiency in innovations is studied by using a stochastic frontier analysis (Fu and
Yang, 2009). Fu and Yang found that infrastructure, technological progress, and institutions
have a strong effect on countries’ innovativeness and performance.

Recent literature in the field of innovations suggests that changes in relative prices of
production factors motivate firms to invent new production methods for reducing their
production costs. The rate and direction of innovations is influenced by production costs and
the increasing production costs of environmental policies. Thus, researchers have focused on
analyzing the relationship between policy and technological changes and evaluating the
efficiency of different policy instruments (Jaffe et al., 2002; Popp et al., 2010). Increased
availability of environmental data and the development of analysis methods has led to the
estimation of the influence that prices and environmental policies have on environment-related
innovations. Access to price data is a limitation that is substituted by different proxies related
to pollution abatement costs (Jaffe and Palmer, 1997; Brunnermeier and Cohen, 2003;
Johnstone et al., 2010, 2012). Unlike previous studies, we examine the effects of country-
specific institutional characteristics and policies on induced innovations and its outcomes.

Deteriorating environmental conditions and issues of sustainability have led to environmental
policies and regulations being designed for providing firms incentives to engage in directed
technological changes for developing specific technologies for cleaner production (Acemoglu
et al., 2012, 2016; Aghion et al., 2016). Research with emphasis on public interventions that
affect the impact of carbon taxes and research incentives to redirect innovations from brown to
green technologies has also been growing. Empirical research shows that the desired effects of
carbon taxes and research subsidies on innovations and technology transitions can be difficult
to achieve. Persistent efforts and interventions are needed to gradually reduce the cost of the
transition from brown to green technologies.

Previous studies elaborate mainly on pollution abatement costs, energy prices, policy
instruments, and the role of carbon taxes and subsidies (e. g. Popp, 2002; Brunnemeier and
Cohen, 2003; Faber and Hesen, 2004; Taylor, 2016). In recent decades, the development of
renewable energy (Heshmati et al., 2015), green innovations (Messeni-Petruzzelli et al., 2011,
Schiederig et al., 2012), environmental standards (Palmer et al., 1995), environmental
management (Wagner, 2007), and institutional support (OECD, 1997, 2009, 2019) has been
expanding. Gallini (2002) studied US patent reforms for exploring the effects of improved
intellectual property protection on the stimulation of innovations and efficient technology
transfers. Jaffe (2000) found it premature to judge the patent policies as having to strengthen
protection effects. Patents stimulate innovation activities, but they also constrain the use of
innovation output. Johnstone et al. (2010) examined the effect of environmental policies on
renewable energy technology innovations. They found that public policy incentivized patent
applications. Boldrin and Levine (2013) suggest various interim measures for mitigating the
damages caused by patents. Danguy et al. (2014) maintain that patent policy encouraged large
and stagnant incumbent corporations to block innovations and prevent competition in the
market.

The literature on green innovation in emerging Economies at the disaggregated firm and
regional levels is growing fast. Their main focus is on factors stimulating innovation and green



transition. Zhao et al. (2023) compare the impact of cooperative and independent green
innovation on carbon reduction in Chinese cities. Green cooperation reduces carbon emissions,
it improves industrial structure and decreases energy intensity, Zhang et al. (2023) explored
the relationship between green investment and green innovation. They find a positive influence
but heterogenous by age and information disclosure of Chinese heavy pollution listed
enterprises. In another study Wang et al. (2022) explores the impact of green bond and
financing constraints on green innovation and green technologies. The green bonds innovation
effect differs by the intensity of regulations and regional locations’ financial development. Fan
et al. (2023) studied the role of organizational and environmental factors in Turkish
manufacturing firms’ green innovation and achievement of sustainable development goals. The
finding shows evidence of an insignificant moderating role of knowledge absorptive capacity.
Tan et al. (2022) investigate the driving effect of regional integration development on green
innovation in China’s major urban agglomeration. Improving the regional integration level can
significantly drive green innovation development. Yang and Chi (2023) explore the effects and
mechanisms in the path selection to green transition by polluters. Green innovation is found
more conductive to strengthening R&D teams than green mergers and acquisitions.

Recent literature has also focused on innovation efficiency. One example is a quantitative
measurement of a firm’s process innovations output using a German community innovation
survey (Rammer, 2023). The focus is on dimensions of output, and process innovation’s effects
on cost reduction, quality improvements, and demand function. The drivers of exploitative and
explorative innovation activities’ efficiency are studied by Nigg-Stock et al. (2023). Different
motivations and price competition, outside pressure of product, and quality competition have
positive effects on turnover growth. Collaboration is a key source of new knowledge and open
innovation (Audretsch, et al., 2023). The innovation performance of SMEs is facilitated by the
type of collaboration partners based on UK data, knowledge collaboration with suppliers,
customers, and universities domestically and with competitors internationally. Tekic and Filler
(2023) conceptualize how artificial intelligence (Al) may impact innovation and their
management process using the three pillars of data, new tech, and talent. Innovation in the era
of Al is a data-driven process affecting all dimensions of the innovation process and its
management. It also affects collaboration in innovation and creates challenges.

A review of the literature shows that innovation studies is growing in number and coverage.
However, the models are relatively simple and do not account for endogeneity, simultaneity,
and interdependence biasing the results. This study fills the gap by focusing on green
innovation and patents and covering a large sample of developed and innovative countries.
Given the shortcoming, the research area is expanded. The countries share similar green growth
and energy transition strategies observed over several decades of environmental deterioration
and technology and policy development. It also uses an advanced knowledge production model
consisting of a system of innovation inputs, innovation outputs, and productivity with feedback
effect from productivity on innovation investments. In addition, the model accounts for
productivity shock, endogeneity of inputs and their simultaneity and interdependence, as well
as heterogeneity in productivity and its relationship with its identified determinants.



3. Data

Research and development (R&D) expenditure and number of scientific personnel are among
the proxies used in measuring innovation capacity. However, these represent innovation inputs
rather than innovation outputs. Griliches (1990) and Crepon et al. (1998) modelled the
knowledge production function relationship such that innovation inputs and innovation outputs
were separated. They defined innovation inputs as innovation investments, while innovation
outputs were a result of innovation activities defined as new products and processes (L66f and
Heshmati, 2002, 2006).

Patent registration systems follow a standardized procedure that is comparable across countries
issuing patent rights. To obtain a patent for a new product or process, an innovator must choose
to apply for a patent and disclose all related information to the innovation. If accepted, the
patent office grants exclusive rights to an innovator for a limited period for which the patent
lasts. To qualify as a patent, the innovation must be novel, non-obvious, and commercially
viable (Dernis and Guellec, 2002; Hascic and Migotto, 2015). If the application is rejected, the
disclosed information is lost. Thus, no submission of an application for a patent or no disclosure
of information is a way of protecting information without a patent, but the inventor runs the
risk that the innovation can be exploited by any person/firm at any time and register a patent.
Patents provide protection for intellectual properties and incentives to engage in rewarding
innovation activities. The state awarding monopoly of knowledge to inventors has been
criticized by societies.

In empirical studies, innovation outputs are measured as the number of patents or new products
and processes’ share of the sales. The use of the number of patents has the disadvantage that
only a limited number of innovations are registered, not all innovations are patented, and
patents do not account for the value generation of the innovations. In measuring the sales share
it is difficult to separate old and new products and processes. If the share is easily separated, it
is a better measure than the number of patents. This share accounts for the value intensity of
patents and their value generation dynamics. Thus, both patents and share of sales measures of
innovation can be subject to measurement errors and double counting due to overlapping
between patent families versus individual patents. Despite measurement difficulties, patents
are the best available and comparable source of data on innovation outcomes across countries
(also see, Johnstone et al., 2010). Since green innovation is incremental innovation with strong
public knowledge property, the patent application is a more relevant measure of innovation
outcome.

To account for simultaneity, endogeneity, interdependence, and feedback effects, we use a
system of equations that includes investments in R&D, innovation outputs, and productivity,
equations. The system of equations captures the effects of R&D investments on innovation
outputs and the latter’s effect on productivity as well as feedback effects of higher productivity
on increased investments in R&D. L66f and Heshmati (2002, 2006) illustrate this modelling
approach empirically by using firm-level innovation panel data.

Innovations in the area of renewable energy are a key component of the OECD’s strategy for
combating the global environmental threat. The data used in this study allows us to examine
the impact of various public policies on the evolution of renewable energy technologies in
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OECD countries. The strategy involves policies related to public and private investments in
energy-saving technologies, investments in education and R&D, and the development of
environmental standards and regulations. The aim is to assess the impact of various public
environmental policies such as environmental stringency and environmental taxes and
regulations on renewable energy innovations and patents. The data is balanced panel data
covering 27 OECD countries observed from 1990 to 2018. The source of the data is OECD’s
statistics on energy, environment, and development.

The variables used in the model’s specification are classified into dependent, independent,
environmental, and control variables. The key dependent variable, innovation output, is defined
as the total number of green patents per capita (PATENT) registered at the country level. The
different number of patents at the national level which is an aggregate of the outcomes of
innovation activities is a relatively large number and as such is continuous. Apart from a few
observations (related to Iceland) none of the other OECD countries had a zero-patent level
during the study period. Some countries such as Iceland, Slovenia, Slovak, Portugal, Greece,
New Zealand, and Ireland were less active in green R&D and patenting. The major countries
which were active in green R&D were Korea, Japan, Germany, France, and the UK. A second
dependent variable is innovation input defined as R&D investment per capita (R&Dinv). It is
measured as the government’s budget allocations for R&D which are decomposed into green
and non-green components. R&D here consists of only the green component. The third
dependent variable is productivity or GDP per capita (GDPcap). The dependent variables are
measured per capita to neutralize the differences in population size in the sample countries.

The independent variables are classified into three groups: investment, production, and
environment-related. Investment-related variables include investments in education and
cooperative private R&D. Production-related variables include gross domestic production,
openness, capital stock, market capitalization, financial development, R&D personnel,
workforce, and population. Environment-related variables consist of green policies or
environmental stringency, green taxes, protection of intellectual property rights, and waste
generated and emissions. These variables influence innovation investments and outcomes.

The total capital stock (CAPsto) measured in billion US dollars represents the countries’ R&D
infrastructure and the productivity of the labor force (Labor). Market capitalization (MKTcap)
of listed domestic companies measured as a percentage of GDP is another capital variable.
Gross domestic product (GDP) is measured in million US dollars and expressed in per capita
(GDPtot). A third capital variable is the IMF financial development index (FINdev). This index
summarizes how developed the financial institutions and financial markets are in terms of
depth and access. Welfare cost (WELcos) is defined as the sum of the costs of premature
mortalities caused by exposure to ambient PM2.5, ambient ozone, and lead. All three welfare
costs are measured in GDP share equivalent. The variable welfare cost measures the welfare
cost of production by neglecting environmental quality and regulations.

Population (POPUL) and GDP are two aggregate measures of the size of the economy.
Openness (OPEN) is measured as exports and imports’ share of GDP. It reflects access to green
technologies, finances, knowledge, and management. R&D personnel (R&Dper) is measured
as the aggregate number of persons involved in R&D activities per 1,000 employees. Share of



co-inventions in green inventions (INVcoop) is used for capturing public-private and
university-private cooperation in innovation activities. Government expenditure on tertiary
education (EDUter) measured as a percentage of GDP is a crucial determinant of
innovativeness.

The variable environmental policy stringency (ENVpol) indicates stringency in environmental
standards and regulations which aim at incentivizing R&D investments and innovations in
renewable energy. Environmental tax (ENVtax) is another variable that measures the tidiness
of environmental policies. It is measured as a percentage of GDP. Innovation investments and
their outcomes are protected by intellectual property rights (IPRpro) measured as an index.
Other than these regulatory measures, a few variables incentivize society to self-regulate its
behaviour. These include the production-based carbon dioxide emissions index (CO2) and
municipal waste (WASTE) generated in kg per capita and per annum. Finally, a time trend
(TREND) is included for capturing the unobservable effects of both positive and negative
technological changes.

All monetary variables including GDP, R&D investments, and capital stock are expressed in
USD and are in constant 2010 prices. To ease the interpretation of the estimated effects
(elasticities) the continuous variables are in logarithmic form and several variables are
measured as a percentage share of GDP. The logarithmic variables are green patents, green
R&D, capital stock, total GDP, GDP per capita, population, and municipal waste quantity.
Descriptive statistics and correlation coefficients of the data and the variables in non-
logarithmic form are presented in Tables 1 and 2.

Insert Tables 1 and 2 about here

4. Model

The basic model is as: Let g;; denote the production function where it is used to estimate
productivity, x; ;) € R*i (j € {1,2,3,4}) are various vectors of inputs with conformable
coefficients g € R¥, and &t,(j) are random error terms. t;, is innovation output (patents or

other measures of knowledge capital) and R;; is R&D investment or innovation input. The
model is written as:

Qit = Xit,(1) By + V1Tie + €ie1) (1)
Tit = Xit,2) B2y T V2Rie + €2, 2)
Rit = Xit,3)'B(z) + V3wir + €it,3) (3)

where ys corresponds to the coefficients of the endogenous variables.

Here x;; (1) includes a vector of production inputs of CAPsto, Labor, MKTcap, and OPEN;
X;t,2) Includes a vector of factors determining innovation output such as INVcoop, R&Dper,
EDUter, and IPRpro, WASTE, CO2, FINdev, and WELcos; and x;; () includes a vector of

determinants of innovation inputs such as IPRpro, WASTE, CO2, FINdev, ENVpol, WELcos,
and ENVtax. Of course, the endogeneity of inputs in (1) is standard and should be treated with



care (see Marschak and Andrews, 1944).

According to more recent literature (Olley and Pakes, 1996; Levinsohn and Petrin, 2003;
Ackerberg et al., 2007, 2015; Kasahara and Rodrigue, 2008; Wooldridge, 2009; Doraszelski
and Jaumandreu, 2013; Petrin and Sivadasan, 2013; Lee at al., 2019; Gandhi et al., 2020; and
Hu et al., 2020) the production function (1) can be modified as:

it = xit,(1)’ﬁ(1) + &i,(1) T Wi (4)

where w;; is a productivity shock known to the producers but not the researchers. To be more
specific, consider the value-added formulation of the production function as:

Yie = Po + Brkit + Pilic + wir + &t (5)

Ackerberg et al. (2007) use materials m;, to express the demand function as a function of
capital, labor, and productivity shock, m;; = f(k;, Lir, w;¢). If this materials demand function
is invertible in the productivity shock, we obtain w;; = f Y (k;, Lz, m;). SO, We can write
the production function as:

Vit = Bo + Bickie + Bilie + FCV (kie, Ly mie) + €0 = Pe(kie, Liey mye) + €41 (6)
Under the assumption that:
Wi = PWit—q + it (7)
we can write the production function as:
Yit = Bo + Brkit + Bilic + p{cbt—l(ki,t—l' li,t—l'mi,t—l) — Bo — Brkit — Bllit} + (it
= Bo(1 = p) + Br(kir — pkic—1) + Bi(lit — plit—1) + pPr_q1(kit—1, lit—1, Mir—1) + iz

Identifying all parameters is possible and for the functional form ®(k, [, m) we can use a third-
degree polynomial approximation as in Olley and Pakes (1996). Moreover, country-specific
effects are included in all equations although in the production function (4) they are more
critical.

(8)

We have many variables that we can relate to productivity shock w;;. We assume that these are
flexible functions of quasi-fixed inputs and productivity:

Wit = pWig—q1 + Xit,a) Bay T VaTie + VaRic + €t (2, 9)

where €;; 4 is an error term. Therefore, in this case, we do not use only one input like materials
to invert their demand function to obtain productivity w;; as a function of quasi-fixed and
variable inputs. Instead, we have many such candidate variables, x;; 4 including EDUTter,
FINdev, GDPgrow, ENVpol, ENVtax, and WELcos. The Jacobian of this system is equal to
J =11+ y1(yovs + v4)|. Our final system of equations is (4), (2), (3), and (9).

The endogenous variables y;, include g, 7;R;; . Denote exogenous variables x; =
[Xit, 1) Xit,2)'» Xie,3)' ]+ residuals & = [&r,(1), €it,(2), Eir,3)] » and suppose vector 6 =
By’ B2y Bezy'» Bay'» Y1, V2, V3, Yar p]’ cONtains all unknown structural parameters. Then, we
can write our system of equations as:

F(Yit, Xit, wi; 0) = &¢, (10)

10



along with productivity shock (9).

As we have a latent unobserved productivity shock component w;; we use Bayesian methods
organized around Sequential Monte Carlo (SMC) techniques also known as Particle Filtering
(PF). Our particular implementation is based on Creal and Tsay (2015) and is described in
Appendix A. We use Creal and Tsay (2015) for 1,000 particles per Markov Chain Monte Carlo
(MCMC) iteration which is based on Girolami and Calderhad’s (2012) study involving 150,000
iterations omitting the first 50,000 in the interest of mitigating possible start-up effects. The
Girolami and Calderhad (2011) MCMC scheme is presented in Appendix B.

The SMC methods are capable of modelling non-linear systems and high-dimensional
distributions that cannot be satisfactorily handled by classical techniques (Cape et al., 2007).
Kantas et al. (2009) in overview of SMC filtering and smoothing methods discuss the
advantages and disadvantages and computational costs of various SMC algorithms developed
to estimate the static parameters of a general state-space model.

5. Analysis of the Results
5.1 Estimation results

In this section, we estimate the system of equations. Country-specific and time-specific effects
are also included in innovation inputs (2) and innovation outputs (3). Country-specific effects
are included in the production function (4) and productivity shock function (9). The estimated
results investigating the factors that influence green innovation reported in Table 3 are posterior
moments. The method quantifies the uncertainty. The posterior summarizes all we know
factoring in the new evidence.

The results of the production function (g;;) show that all the coefficients are statistically
significant at less than 1 percent level of significance. The sum of capital and labor coefficients
is less than 1 suggesting decreasing returns to scale. Both market capitalization and openness
contribute positively to the production level. Innovation output measured as patents contributes
strongly to production.

The results for the innovation outputs (z;;) show that all the determinants except for waste are
statistically significant and positively contribute to the generation of patents. The strongest
effect is attributed to key innovation inputs namely R&D investments and R&D personnel.
Investment cooperation, financial development, investments in higher education, and
intellectual property protection also promote innovations and patent registrations. Increased
CO2 emission also positively affects innovation outputs.

Table 3. Posterior moments (OECD 1990-2018, NT=27x29=783 observations)

Variables Production Innovation Innovation Productivity
function, q;; output, T;; input, R;; shock, w;;
CAPsto 0.225 (0.045) — — —
Labor 0.682 (0.019) — — —
MKTcap 0.081 (0.014) — — —
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OPEN 0.145 (0.022) — — —

Tit 0.360 (0.071) — — 0.116 (0.043)

R;; — 0.655 (0.172) 0.357 (0.044)
INVcoop — 0.171 (0.032) — —
R&Dper — 0.331 (0.019) — —
EDUter — 0.082 (0.021) — 0.030 (0.013)

IPRpro — 0.043 (0.012) || 0.225 (0.019) —
WASTE — —0.013 (0.012) | | -0.044 (0.016) —

CcOo2 — 0.074 (0.015) || 0.085 (0.024) —
FINdev — 0.055 (0.017) || 0.215 (0.065) || 0.078 (0.017)

GDPgrow — — — 0.021 (0.007)
Wit — 0.455 (0.177) || 0.422 (0.035) —

Wi -1 — — — 0.912 (0.015)
ENVpol — — 0.188 (0.033) ||-0.015 (0.0013)
WELcos — 0.045 (0.010) || 0.071 (0.039) || —0.033 (0.015)
ENVtax — — 0.091 (0.018) || —0.128 (0.025)

Note: Posterior standard deviations in parenthesis.

Our estimation results of the innovation inputs (R;;) equation show that protection of
intellectual properties, increased emissions, and higher financial development increase
innovation inputs. Farooq et al. (2022) find positive and significant effects of market
capitalization on investment decisions. Liang et al. (2023) also studied the environmental
impacts of market capitalization energy transition and natural resources on the reduction in
Co2 emissions. Waste unexpectedly has a negative effect on innovation inputs. Strict
environmental regulations increased environmental taxes, and higher welfare costs of
environment-related mortalities all contribute to increasing investments in innovation
activities. Productivity shock also strangely raises innovation activities.

An estimation of the productivity shock (w;;) shows that the lagged value of the productivity
shock explains a large share (0.912) of variations in the productivity shock. Innovation inputs
and innovation outputs both have positive effects on productivity. Investments in higher
education and a higher level of financial development positively affect productivity.
Productivity is also positively associated with countries” GDP growth rates. The stringency of
the environmental policies, environmental taxes, and mortality welfare costs which are sources
of increased environmental production costs are all negatively associated with productivity.

5.2 Aspects of Productivity

Productivity estimates (w;;) are reported in Table 4. It shows the sample statistics for w;;S
across all observations at the given parameter estimates (posterior means). An analysis of the
distribution of productivity which is both time- and country-variant shows that the distribution
is skewed to the left with a relatively small dispersion. The growth rate is concentrated in the
positive region in the interval -0.0085 and +0.0395.

Table 4. Productivity estimates, w;;, based on the parameter estimates (posterior
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means)

Mean 0.0233

Median 0.0225

Std. Dev. 0.0173
95% [-0.0085, 0.0395]

The density of estimates of productivity growth is presented in Figure 1. It compares the
distribution of the sample mean with parameter uncertainty and the given parameter estimates.
The straight line is the density of sample-mean w;; induced by Markov Chain Monte Carlo
(MCMC) so it takes the parameter’s uncertainty into account. The dashed line represents the
density of the sample distribution of w;;s across all observations at the given parameter
estimates (posterior means) related to Table 3. The straight line is the density of average
productivity growth which takes parameter uncertainty into account.

Figure 1. Aspects of productivity growth

with parameter uncertainty
N — — — - given parameter estimates

-0.04 -0.03 -0.02 -0.01 o 0.01 0.02 0.03 0.04a 0.05

sample mean estimate of i

To show the importance of parameter uncertainty we report 100 representative sample densities
of w;;s corresponding to 100 different MCMC parameter draws in Figure 2. The distribution
has clearly shifted to the right and has a larger variance because of the parameter’s uncertainty.

Figure 2. Sample densities of productivity growth (w;,) using 100 representative
MCMC parameter draws

100

density

productivity growth w;
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In Figures 3 to 7 we plot the bivariate marginal posterior distributions of productivity w;, and
various other determinant variables. The determinant factors of concern are welfare costs, the
environmental policy’s stringency, green patents, green R&D, and financial development.

Figure 3. Bivariate densities of productivity growth (w;;) and welfare costs (WELcos)
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Figure 4. Bivariate densities of productivity growth (w;;) and the environmental
policy’s stringency (ENVpol)
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Figure 5. Bivariate densities of productivity growth (w;;) and log green patents
(PATENT)
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Figure 6. Bivariate densities of productivity growth (w;;) and log of green R&D
(R&Dinv)
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Figure 7. Bivariate densities of productivity growth (w;;) and financial development
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Table 2 provides a simple pairwise correlation relationship between the variables. The striking
feature of the bivariate posterior densities is the multimodality of the distribution of
productivity shock w;; and various other variables which is probably due to country
heterogeneity in innovations and patenting. What is also striking is the tight positive
relationship between log green patents and log green R&D investments in Figures 5 and 6, as
well as the tight negative overall relationship (despite the multimodality) between w;; and the
welfare costs of environment-related mortality in Figure 3. The relation between productivity
growth and the financial development index is also positive in Figure 7. The relationship
between productivity growth and the stringency of the environmental policy is more complex
(as evidenced in Figure 4) as there are many local modes corresponding to different clusters of
this relationship in the data. The same evidence from Figure 7 suggests that the relationship
between productivity growth and the financial development index is possibly non-linear and,
additionally, multimodality suggests the presence of several clusters distinguished by the
countries’ level of technological and innovation capacity. A positive effect of financial
development on innovation and productivity is supported by Tao, et al. (2023) who investigate
how financial development affects carbon emission intensity under different types of
information and communication technology. The relationship is found to be non-linear and
heterogeneous. In another study, Ren et al. (2023) finds that financial development
significantly reduces carbon emissions in the long term but not in the short term.

15



5.3 Variations in productivity growth

Next, we present the development of the posterior means of productivity growth (w;;) for each
sample OECD country over time (Figure 8). The list of countries appears in a footnote in Figure
8. The countries are grouped into five groups alphabetically. Figure 8.a shows that Canada
followed by Australia performed better in productivity growth than Austria, Belgium, and
Denmark. Figure 8.b shows that Germany followed by France dominated Finland, Greece, and
Iceland in productivity growth. The third group of countries reported in Figure 8.c shows that
Japan and South Korea were more productive than Ireland, Italy, and Mexico. In the fourth
group reported in Figure 8.d Poland surprisingly dominates over the Netherlands, New
Zealand, Norway, and Portugal most of the time. Finally, in the last group of countries reported
in Figure 8.e, the USA clearly dominates Slovakia, Slovenia, Spain, Sweden, Switzerland, and
UK. The countries with continuous positive trends in productivity growth are Belgium, Iceland,
Ireland, New Zealand, Portugal, and the UK. In terms of the level of productivity growth, the
USA, Japan, and Germany are the most innovative countries.

The reporting of heterogenous results suggests that future research should deepen the analysis
of the estimated model by addressing the indicators of clusters of countries regarding their
technological, management, and innovation capacity. The focus should be on whether green
transition contributes to increased economic growth and the characteristics explaining the
growth effect. Another area of extension is an analysis of the role that market forces and
different policy factors play. These and many similar issues should be analysed and tested with
a focus on sensitivity analysis of the result.

Figure 8. Development of productivity growth (w;,) over time?
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2 List of countries: 1. Australia, 2. Austria, 3. Belgium, 4. Canada, 5. Denmark, 6. Finland, 7. France, 8. Germany,
9. Greece, 10. Iceland, 11. Ireland, 12. Italy, 13. Japan, 14. South Korea, 15. Mexico, 16. The Netherlands, 17.
New Zealand, 18. Norway, 19. Poland, 20. Portugal, 21. Slovakia, 22. Slovenia, 23. Spain, 24. Sweden, 25.
Switzerland, 26. United Kingdom, 27. Unites States of America.
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6. Summary and Conclusion

Despite their relative similarities in the level of development and possibilities of access to and
sharing of knowledge, OECD countries are endowed differently with primary energy sources,
and they use different energy mixes. Therefore, differences in technological capacity, energy
endowments, energy mix, and environmental policies induce heterogeneity in innovation
activities and outcomes. As green innovation policies are important, we examine them here in
the context of OECD countries, considering the endogeneity of innovation inputs and
innovation outputs at the ‘heart of the model” which is a knowledge production function
accounting for latent productivity shocks’ effects.

We also examined the role of several determinants on countries’ productivity performance. The
bivariate posterior densities indicate the multimodality of the distribution of productivity and
various other variables which might be due to country heterogeneity in green innovations and
patenting. Our results provide evidence of a positive relationship between green patents and
green R&D investments and the financial development index, as well as a negative relationship
between productivity and welfare costs of environment-related mortalities. The relationship
between productivity growth and the stringency of the environmental policy is more complex
and multimodal which is attributed to different clusters of the relationship in the data. The
relationship between productivity growth and the financial development index is possibly non-
linear and multimodal suggesting the presence of multiple clusters. The clusters are
distinguished by the level of technological and innovation capacity of the countries studied.

The development of the posterior means of productivity growth for each sample OECD country
over time showed that Canada, Australia, Germany, France, Japan, South Korea, Poland, and
the USA performed better in green innovations within the sub-groups of countries. This list
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may deviate from the list of countries traditionally leading innovations and patents. This
difference is due to green innovations as a result of environmental considerations which are
not necessarily prioritized in the same way by all the countries and are certainly not directly
related to their level of technological development. Countries with a continuous positive trend
in productivity growth during the era of green innovations are Belgium, Iceland, Ireland, New
Zealand, Portugal, and the UK. In terms of level of productivity growth, the USA, Japan, and
Germany with strong innovation infrastructures are the most innovative countries. These three
countries are heterogeneous in their focus and allocation of resources to green policies and the
environment. Better coordination of environmental policy and energy transition directed at
convergence in technology level, innovation cooperation, technology sharing, and transfer will
enhance the greening of the economy and contribute to achieving sustainable development
goals globally.

This study has a number of policy implications for green innovations. The heterogeneity in
technological capacity, initial energy endowments, energy mix, and practiced progressive
environmental policies can be actively used for enhancing OECD countries’ efficiency and
productivity in innovation activities and outcomes. This effort can be extended to facilitate
innovation cooperation within OECD and spillover of technology and management to
developing countries. Evidence of a positive relationship between green patents and green
R&D investments and financial development can be promoted while the negative relationship
between productivity and welfare costs of environment-related mortalities can be limited. The
multimodality of the distribution of productivity and various other factors and multiple clusters
of relationships between productivity growth and the stringency of environmental policy can
be used as a toolkit for selecting policy options for supporting inclusive green growth at the
global level. OECD countries performing better, and traditionally leading green innovations
and patents are a result of their environmental considerations and not necessarily directly
related to their level of technological development and strong innovation infrastructure. Better
coordination of environmental policy among countries and energy transition directed at
convergence with green resources and green technology sharing and transfer will enhance the
greening of the global economy and the speed of transition. A faster greening at a global scale
will promote achieving the sustainable development goals at a lower cost in these countries
and also to the benefit of resource-poor developing countries. Ideally, it would be ideal to
analyse the reality of different countries and based on the conditions give suggestions for
country-specific green innovation and economic growth, respectively. However, this is beyond
the scope of this paper, but upon the availability of data will be considered in future research.
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Appendix A

We use a recent advance in sequential Monte Carlo methods known as the Particle Gibbs (PG)
sampler (see Andrieu et al., 2010). The algorithm allows us to draw paths of the state variables
in large blocks. Particle Filtering is a simulation-based algorithm that sequentially
approximates continuous, marginal distributions using discrete distributions. This is performed
by using a set of support points called ‘particles’ and probability masses (see Creal, 2012 for a
review).

The PG sampler draws a single path of the latent or state variables from this discrete
approximation. As the number of particles M goes to infinity, the PG sampler draws from the
full conditional distribution. As mentioned in Creal and Tsay (2015, p. 339): ‘The PG sampler
is a standard Gibbs sampler but defined on an extended probability space that includes all the
random variables that are generated by a particle filter. Implementation of the PG sampler is
different than a standard particle filter due to the “conditional” resampling algorithm used in
the last step of resampling. Specifically, for draws from the particle filter to be a valid Markov
transition kernel on the extended probability space, Andrieu et al. (2010) note that there must
be a positive probability of sampling the existing path of the state variables that were drawn at
the previous iteration. The pre-existing path must survive the resampling steps of the particle
filter. The conditional resampling step within the algorithm forces this path to be resampled at
least once. We use the conditional multinomial resampling algorithm from Andrieu et al.
(2010), although other resampling algorithms exist, see Chopin and Singh (2013).

We follow Creal and Tsay (2015). Suppose the posterior is p(8, Ay.r|y1.7) Where A,.r denotes
the latent variables who’s prior can be described by p(A:|A¢—1, 8). In the PG sampler, we can
draw the structural parameters 8|A;.;,y,;.r as usual from their posterior conditional
distributions. This is important because, in this way, we can avoid mixture approximations or
other Monte Carlo procedures that need considerable tuning and may not have good
convergence properties. As such posterior conditional distributions are standard, we omit the
details and focus on drawing the latent variables.

Suppose we have A(ll% from the previous iteration. The Particle Filtering procedure consists of

two phases:
Phase I: Forward filtering (Andrieu et al., 2010).

e Draw a proposal AE’T) from an importance density q(Ai,t|A§,T31, H,m=2,.., M.

e Compute the importance weights as:
w = m

. =1,.., M. (A1)
l,t 4 4 4
q( A AT, 0)
- : (m) wie”
 Normalize the weights: w;, * = —*——7,m=1,.., M.
' m'=1 Wit

e Resample the particles {A(i?),m = 1, ..., M} with probabilities {Wi(;”),m =1,.., M}

In the original PG sampler, the particles are stored for t = 1, ..., T, and a single trajectory is
sampled using the probabilities from the last iteration. An improvement of the original PG
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sampler was proposed by Whiteley et al. (2010), who suggested drawing the path of the latent
variables from the particle approximation using Godsill et al.’s (2004) backward sampling
algorithm. In the forward pass, we store the normalized weights and particles and we draw a
path of the latent variables as detailed below (the draws are from a discrete distribution):

Phase II: Backward filtering (Godsill et al., 2004; Chopin and Singh, 2013).

(m)
LT

e Compute the backward weights: wr o %™ p(A; 141 |AT, ).

e Attimet =T draw aparticle A; = A

t|T it
- wm
o Normalize the weights: W, ;’ = —"—r,m = 1,..., M.
m’:]_wt|T

o Draw aparticle A}, = AE?) with probability Wt((;)-

Therefore, A} 1.7 = {Aj1, ..., Ajr} is adraw from the full conditional distribution. The backward
step often results in dramatic improvements in computational efficiency. For example, Creal
and Tsay (2015) find that M = 100 particles is enough. There remains the problem of selecting
an importance density q(A;¢|A;¢-1,6). We use an importance density implicitly defined by
Ajp =a;¢ + Z§=1bz,t A’f’t_l + h; & Where &;, follows a standard (zero location and unit
scale) student-t distribution with v = 5 degrees of freedom, that is, we use polynomials in
A; ¢4 of order P. We select the parameters a; ¢, b; ¢, and h; . during the burn-in phase (using

P=1and P =2) so that the weights {Wi(;n),m =1,..,M} and {Wt(g‘),m =1,..,M} are

approximately not too far from a uniform distribution.
Chopin and Singh (2013) analyzed the theoretical properties of the PG sampler and proved that

the sampler was uniformly ergodic. They also proved that the PG sampler with backward
sampling strictly dominated the original PG sampler in terms of asymptotic efficiency.

Alternatively, when the dimension of the state vector is large, we can draw A; ;.7, conditional
on all other paths A_; ;.7 that are not path i. Therefore, we can draw from the full conditional
distribution p(A; 1.7[A—i 1.7, ¥1.7, 6).

Appendix B

The algorithm uses local information about both the gradient and the Hessian of the log-
posterior conditional of @ at the existing draw. A Metropolis test is used for accepting the
candidate generated but the Girolami and Calderhead (2011, GC) algorithm moves
considerably faster relative to our scheme described previously. It has been found that the GC
algorithm’s performance is vastly superior relative to the standard Metropolis-Hastings
algorithm and the autocorrelations are much smaller.

Suppose L(8) = log p (0]X) is used to denote for simplicity the log posterior of 8, X denotes
the data, and {U;;,i = 1, ...,n,t = 1, ..., T}. The dimensionality of @ is dg. Moreover, define
the estimated covariance matrix:
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d
G(0) = est. covﬁlog p (X]0), (B.1)

which is the empirical counterpart of:

2
GO(O) ]EYIB aeae,

The Langevin diffusion is given by the stochastic differential equation:

log p (X|0) (B.2)

de(t) = %%L{B(t)}dt + dB(t) (B.3)
where

VoL{8()} = —G~H{B()} Vo L{O(D)} (B.4)

is the so-called ‘natural gradient’ of the Riemann manifold generated by the log posterior. The
elements of the Brownian motion are:

G~ '{e(t)}dB;(t)

de
_ 0 _ (B.5)
= 1GOMY2 ) = [ymbolGHBO}16{OO}2]de
j=1
+ [,/G{e(t)}dB(t)]i
The discrete form of the stochastic differential equation provides a proposal as:
0; ,
g? £ % irgo _1/p0y06(@®)
=67 +—{671(0°)V,L(6")} t5 zj=1{6 (6°)};; tr { (0°) ——— 36;

— g2 chle { —1(00) a(e 0) —1(00)} + {8\/6_1(00)50}1,
j=1 j ij

= n(6°,¢); +{eJ/G1(6°)5°},

where 6° is the current draw and ¢ is selected during the burn-in phase so that 20-30 percent
of all candidates are eventually accepted. The proposal density is:

q(616°) = Ny, (b’, £2671(6%)) (B.6)

and convergence to the invariant distribution is ensured by using the standard form Metropolis-
Hastings probability:

min {1 p(8| "X)‘I(9°I5)}

. —— L B.7
p(6°]-,X)q(616°) (8.7
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Table 1. Descriptive statistics of the variables, NT=27x29=783 observations.

lead

Variable | Definition Mean Std. Dev | Minimum Maximum
Id Country ID 14.000 7.794 1.000 27.000
Year Year of observation 2004 8.372 1990 2018
A. Dependent variables:
Patents Green patents 1143.296 2531.171 0.000 14434.150
R&Dinv | Green R&D investments 161.141 217.656 0.100 1381.122
B. Investment variables:
EDUter | Gov. exp. on tertiary educ. 1.240 0.468 0.155 2.695
INVcoop | Co-invest. in green 54.979 17.854 0.000 100.820
innovation
FINdev Financial development index 0.638 0.180 0.000 1.000
C. Infrastructure variables:
R&Dpers | R&D personnel 11.309 4.460 0.382 24.554
CAPsto | Capital stock 198738.473 | 764017.695 55.383 | 5774143.097
Labor Labor 57.338 7.897 37.738 81.333
MKTcap | Market capitalization, listed 62.732 45.962 1.191 291.233
companies
GDPtot | GDP total per capita 37645.104 | 17436.867 | 5510.660 92121.420
GDPcap | GDP per capita employed 72356.134 | 19044.720 | 21575.480 | 149918.190
OPEN Openness (IMP+EXP)/GDP 76.512 37.670 16.014 224.755
POPUL | Population 39746.572 | 59726.619 254.790 | 328012.000
D. Environmental variables:
ENVpol | Env. policy stringency 1.932 0.933 0.167 4.133
ENVtax | Env. related taxes 2.355 0.859 0.100 5.372
IPRpro Index of IPR strength 4.052 0.764 1.024 4.875
WASTE | Municipal waste per capita 509.184 137.042 198.270 979.940
Cco2 Prod. based CO2 emissions 97.915 13.142 53.670 148.510
WELcos | Cost of mortalities, ozone, 4,983 1.759 1.888 9.318
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Table 2. Pearson correlation coefficients, NT=783 observations.

7

14

Variable 1 2 3 4 5 6 8 9 10 11 12 13 15 16 17 18 19
1 Patents 1.000
2 R&Dinv 0.668 | 1.000
3 Ré&Dper 0.158 | 0.087 | 1.000
4 INVcoop 0.216 | 0.232 | 0.120 | 1.000
5 EDUter 0.148 | 0.151 | 0.503 | 0.011 | 1.000
6 CAPsto 0.623 | 0.243 | 0.085 | 0.049 | 0.303 | 1.000
7 Labor -0.12 | 0.097 | 0.569 | 0.235 | 0.370 | 0.06S9 | 1.000
8 MKTcap 0.218 | 0.177 | 0.376 | 0.114 | 0.169 | 0.068 | 0.069 | 1.000
9 FINdev 0.374 | 0.422 | 0.439 | 0.226 | 0.143 | 0.198 | 0.183 | 0.648 | 1.000
10 | ENVpol 0.238 | 0.228 | 0.537 | 0.287 | 0.324 | 0.101 | 0.141 | 0.183 | 0.515 | 1.000
11 | ENVtax 0.277 | 0.256 | 0.191 | 0.146 | 0.237 | 0.073 | -0.07 | 0.192 | 0.078 | 0.101 | 1.000
12 | IPRpro 0.287 | 0.382 | 0.451 | 0.401 | 0.269 | 0.073 | 0.009 | 0.381 | 0.654 | 0.482 | 0.043 | 1.000
13 | OPEN 0.257 | 0.377 | 0.191 | 0.103 | 0.105 | 0.116 | -0.03 | 0.079 | 0.128 | 0.151 | 0.228 | 0.052 | 1.000
14 | GDPtot 0.052 | 0.053 | 0.619 | 0.139 | 0.534 | 0.126 | 0034 | 0.495 | 0.592 | 0.434 | 0.102 | 0.502 | 0.117 | 1.000
15 | GDPcap 0.144 | 0.193 | 0.558 | 0.281 | 0.440 | 0.161 | 0.194 | 0.411 | 0.609 | 0.469 | 0.086 | 0.657 | 0.233 | 0.859 | 1.000
16 | POPUL 0.698 | 0.648 | 0.122 | 0.226 | 0.219 | 0.172 | -0.03 | 0.204 | 0.230 | 0.046 | 0.469 | 0.233 | 0.483 | 0.049 | 0.086 | 1.000
17 | WASTE 0.105 | 0.185 | 0.334 | 0.001 | 0.339 | 0.223 | 0.284 | 0.326 | 0.471 | 0.238 | 0.052 | 0.322 | 0.015 | 0.508 | 0.482 | 0.149 | 1.000
18 | CO2 0.114 | 0.053 | 0.014 | 0.046 | 0.045 | 0.231 | 0.184 | 0.079 | 0.047 | 0.019 | 0.011 | 0.061 | 0.033 | 0.037 | 0.071 | 0.039 | 0.100 | 1.000
19 | WELcos 0.127 | 0.011 | 0.461 | 0.052 | 0.319 | 0.174 | 0.039 | 0.360 | 0.375 | 0.271 | 0.256 | 0.133 | 0.060 | 0.442 | 0.308 | 0.049 | 0.304 | 0.022 | 1.000
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