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Abstract   

Green transition is important for the economics of the OECD countries and their transition to 

cleaner production. This paper estimates a knowledge production function consisting of a 

system of innovation inputs, innovation outputs, and productivity with feedback effect from 

productivity on innovation investments. The model accounts for productivity shock, 

endogeneity of inputs, and their simultaneity and interdependence. Productivity shock is a 

latent unobserved component that is specified in terms of observable factors. The model is 

estimated using Bayesian methods organized around Marco Chain Sequential Monte Carlo 

iteration techniques also known as Particle Filtering. For the empirical part, the paper uses 

balanced panel data covering 27 OECD countries’ green innovation and patents activities 

observed during the period 1990-2018. Our empirical results show evidence of significant 

heterogeneity in productivity and its relationship with its identified determinants. The paper 

also discusses the implications of these results for OECD countries’ green growth strategies.  
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1. Introduction 

Climate and environmental conditions have deteriorated, necessitating radical changes in fossil 

fuel-based energy generation, production, transportation, distribution, and consumption. The 

United Nations’ Sustainable Development Goals (The World Bank Group, 2015) and the Paris 

agreement (UNFCC, 2015) provide guidelines on the importance of pressing changes needed 

for managing a transition to clean and renewable energy sources. This transition in the energy 

system involves, among other things, investments in developing new and renewable energy 

forms and using energy saving technologies in combination with incentive programs like taxes, 

subsidies, and regulations and their enforcement for achieving the 17 sustainable development 

goals (SDGs). Increasing consideration for environmental quality and health has contributed 

to an increased share of renewable energy and intensive use of energy-saving methods for 

reducing dependence on carbon-based technologies.  

Literature on renewable energy and knowledge about technologies for achieving the SDGs and 

the realization of the Paris Agreement is rapidly growing. These studies have influenced the 

design of environmental and energy policies and their effects on creating sustainable 

economies. Developed nations that have varying institutional, regulatory, technological, 

financial, and resource capacities for developing clean and renewable technologies are leading 

the transition process in substituting brown technologies and fossil fuel energy with green 

technologies and renewable sources. The progress is uneven due to heterogeneity in countries’ 

technological, financial, and institutional capacities which affect policy design and the overall 

transition process. The war in Ukraine has strongly influenced the gravity of energy security 

and supply, energy use and saving, and a mixed speeding up/down the energy transition and its 

environmentally desired direction around the world. 

Literature on renewable energy investigates the role that environmental policies play in 

inducing technological changes for achieving sustainability goals. In particular, the emphasis 

is on the role of R&D and innovation capacities and outcomes. Through institutional, 

economic, and regulatory forces the national innovation system plays a key role in the process 

of innovation capacity building and innovative activities. Empirical literature, in particular 

studies which do comparative performance analyses of the differences between innovation 

systems, finds that the institutional framework influences innovation performance and 

outcomes (Kline and Rosenberg, 1986; Freeman, 1995; Furman et al., 2002; Gans and Stem, 

2003; Balzat and Hanusch, 2004; Johnstone et al., 2010; Nagaoka et al., 2010; Matei and Aldea, 

2012). Alternative methods of performance evaluation in the innovation field show that 

performance is not necessarily related to leadership in transforming innovation inputs into 

outputs of innovation. Public environmental policies and instruments differ in inducing 

innovation of more costly technologies.   

Industrialized countries cooperate closely for developing a common strategy and efficient and 

shared approaches in coping with emission-related environmental deterioration. The common 

strategy involves diverse policies for incentivizing public and private investments, investments 

in education and R&D, and environmental regulations and their enforcement. Innovations in 

renewable energy and energy-saving technologies are key components in addressing 

environmental challenges. According to this common strategy, technological changes are 
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endogenous and directed toward achieving sustainability goals. Countries differ by their 

innovation systems, investments in renewable energy, and innovation outcomes measured as 

the number of patents. In relation to this, this paper examines the impact of various 

environmental and energy policy interventions on R&D investments, their outcomes, and the 

evolution of renewable energy technologies in OECD countries. Due to limited green data 

availability, this field of research has not been studied in detail till now.  

This paper estimates a knowledge production function that consists of a system of innovation 

inputs, innovation outputs, and productivity equations with feedback effect from higher 

productivity on innovation investments. The model accounts for several aspects neglected in 

single equation models. These include possible productivity shocks, endogeneity of production 

inputs, simultaneity and interdependence relations, and heterogeneity and temporal effects. 

Productivity shock is a latent unobserved component that is specified as a function of 

observable factors. The model is estimated using Bayesian methods with iteration techniques 

known as Particle Filtering. The empirical part is based on balanced panel data covering 27 

OECD countries observed from 1990 to 2018. The results show evidence of an association 

between public environmental interventions and green innovation activities and outcomes. 

Significant heterogeneity in productivity and its relationship with its potential determinants is 

also observed.  

This study is motivated by generalizing the commonly used single equation patent models to a 

knowledge production function including a system of innovation inputs, innovation outputs, 

and productivity, and controlling for incorporating environmental, financial, technological, 

regulatory, and innovation capacity factors as well as latent productivity shocks. The study 

contributes to the literature in several ways. First, it conducts an up-to-date analysis of the 

effects of factors that stimulate innovations, induces stringency of environmental policies, and 

development of directed technologies around renewable energy. Second, it establishes the 

sensitivity of the estimation results of the model in the form of a single and a system of 

interdependent equations accounting for the effects of unobservable shocks, country- and time-

specific effects on innovation investments, and patenting activities within the area of renewable 

energy.  

The rest of this paper is organized as follows. OECD green innovation, panel data, and 

definitions of the variables are given in Section 2. Section 3 discusses the literature on green 

innovation capacity and policy instruments and their effects. Section 4 outlines the model and 

its estimation. An analysis of the results, their sensitivity, and policy implications are presented 

in Section 5. The final section gives the conclusion and policy recommendations.  

 

2. Literature Review 

Most developed nations have unique national innovation systems (NIS). These systems were 

developed in the 1980s and 1990s (Freeman, 1987; Lundvall, 1988; Nelson, 1993). NIS 

systems’ development was a result of increased recognition that knowledge and technology 

development were important driving forces of competitiveness and economic growth. As part 

of NIS’ focus areas, special attention was paid to the relationship between R&D, innovations, 
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and productivity (Griliches, 1986, 1995; Hall and Mairesse, 1995).  

In recent decades, green innovations and adaptation to environmental policies have been 

considered a source of enhancement of firms’ competitiveness (Porter and van der Linde, 1995; 

Chen et al., 2006). This increased attention on innovations and intellectual properties by 

various stakeholders, investments in infrastructure, and environmental concerns encouraged 

investments in education and learning. These led to the development of productive forces that 

played an important role in the development and impact of NIS (Lundvall et al., 2002). Despite 

significant progress in research in the field, empirical analyses of green policies, innovations, 

and green patents in a knowledge production function framework and estimated with advanced 

estimation methods are limited.  

Literature has helped us to identify the important elements of an innovation system. With a 

strong focus on organizations, Samara et al. (2012) break down the system into seven parts –

institutional conditions, knowledge and human resources, research activities, market 

conditions, financial systems, innovation processes, and technological performance. In another 

study, with a different focus on business models and networks, Cowhey and Aronson (2017) 

divided NIS into five components – social networks and dynamic labor markets, shared assets 

among innovating companies, flexible business models, financial models, and government 

policies. Despite increased broadened elements of the innovation system, less attention has 

been on green innovation and patents.   

Different researchers have emphasized different aspects of NIS. For instance, for Calia et al. 

(2007) innovation networks play a role in technological developments in business models’ 

reconfiguration. North (1990) maintains that institutions constitute the main base for the NIS 

system. Nelson (1993) sees public research infrastructure as the core of the NIS system. 

Furman et al. (2002) acknowledge that government policies play an active and determining 

role in shaping innovation capacity. Danguy et al. (2014) investigate the surge in patenting. A 

number of studies criticize NIS for being too wide (Lundvall, 2007) and for placing less 

emphasis on the sources of innovations (Carlsson, 2007).  

A national innovation system is assessed by its national innovation capacity (NIC). This 

capacity is defined as a nation’s ability to develop and commercialize the flow of new 

technologies to the market. This system was developed for analyzing NIS (Porter and Stern, 

2002). The NIC concept is general and incorporates the endogenous growth theory and the 

theory of international competitiveness. With regard to international competitiveness, NIC is 

determined by common and cluster-specific innovation infrastructure and the quality of the 

linkages between the clusters (Furman et al., 2002). NIC is used in cross-country analyses of 

NIS, among others a panel of 27 OECD countries in this study (see also Maasoumi et al., 2020). 

The variations in patenting are explained by R&D expenditure, the number of researchers, and 

other variables affecting innovation capacity.  

Porter and Stern (2002) computed an innovation capacity index to rank countries by their sub-

indices of scientists and engineers, innovation policies, and the cluster innovations’ 

environment and linkages. A similar capacity index was computed by Gans and Stern (2003) 

using data from OECD countries. Johansson et al. (2015) explain the differences in European 

countries’ innovation activities at the industry level using various determinants. In a number 
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of studies, efficiency in innovations is studied by using a stochastic frontier analysis (Fu and 

Yang, 2009). Fu and Yang found that infrastructure, technological progress, and institutions 

have a strong effect on countries’ innovativeness and performance. 

Recent literature in the field of innovations suggests that changes in relative prices of 

production factors motivate firms to invent new production methods for reducing their 

production costs. The rate and direction of innovations is influenced by production costs and 

the increasing production costs of environmental policies. Thus, researchers have focused on 

analyzing the relationship between policy and technological changes and evaluating the 

efficiency of different policy instruments (Jaffe et al., 2002; Popp et al., 2010). Increased 

availability of environmental data and the development of analysis methods has led to the 

estimation of the influence that prices and environmental policies have on environment-related 

innovations. Access to price data is a limitation that is substituted by different proxies related 

to pollution abatement costs (Jaffe and Palmer, 1997; Brunnermeier and Cohen, 2003; 

Johnstone et al., 2010, 2012). Unlike previous studies, we examine the effects of country-

specific institutional characteristics and policies on induced innovations and its outcomes.  

Deteriorating environmental conditions and issues of sustainability have led to environmental 

policies and regulations being designed for providing firms incentives to engage in directed 

technological changes for developing specific technologies for cleaner production (Acemoglu 

et al., 2012, 2016; Aghion et al., 2016). Research with emphasis on public interventions that 

affect the impact of carbon taxes and research incentives to redirect innovations from brown to 

green technologies has also been growing. Empirical research shows that the desired effects of 

carbon taxes and research subsidies on innovations and technology transitions can be difficult 

to achieve. Persistent efforts and interventions are needed to gradually reduce the cost of the 

transition from brown to green technologies.  

Previous studies elaborate mainly on pollution abatement costs, energy prices, policy 

instruments, and the role of carbon taxes and subsidies (e. g. Popp, 2002; Brunnemeier and 

Cohen, 2003; Faber and Hesen, 2004; Taylor, 2016). In recent decades, the development of 

renewable energy (Heshmati et al., 2015), green innovations (Messeni-Petruzzelli et al., 2011; 

Schiederig et al., 2012), environmental standards (Palmer et al., 1995), environmental 

management (Wagner, 2007), and institutional support (OECD, 1997, 2009, 2019) has been 

expanding. Gallini (2002) studied US patent reforms for exploring the effects of improved 

intellectual property protection on the stimulation of innovations and efficient technology 

transfers. Jaffe (2000) found it premature to judge the patent policies as having to strengthen 

protection effects. Patents stimulate innovation activities, but they also constrain the use of 

innovation output. Johnstone et al. (2010) examined the effect of environmental policies on 

renewable energy technology innovations. They found that public policy incentivized patent 

applications. Boldrin and Levine (2013) suggest various interim measures for mitigating the 

damages caused by patents. Danguy et al. (2014) maintain that patent policy encouraged large 

and stagnant incumbent corporations to block innovations and prevent competition in the 

market. 

The literature on green innovation in emerging Economies at the disaggregated firm and 

regional levels is growing fast. Their main focus is on factors stimulating innovation and green 
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transition. Zhao et al. (2023) compare the impact of cooperative and independent green 

innovation on carbon reduction in Chinese cities. Green cooperation reduces carbon emissions, 

it improves industrial structure and decreases energy intensity, Zhang et al. (2023) explored 

the relationship between green investment and green innovation. They find a positive influence 

but heterogenous by age and information disclosure of Chinese heavy pollution listed 

enterprises. In another study Wang et al. (2022) explores the impact of green bond and 

financing constraints on green innovation and green technologies. The green bonds innovation 

effect differs by the intensity of regulations and regional locations’ financial development. Fan 

et al. (2023) studied the role of organizational and environmental factors in Turkish 

manufacturing firms’ green innovation and achievement of sustainable development goals. The 

finding shows evidence of an insignificant moderating role of knowledge absorptive capacity. 

Tan et al. (2022) investigate the driving effect of regional integration development on green 

innovation in China’s major urban agglomeration. Improving the regional integration level can 

significantly drive green innovation development. Yang and Chi (2023) explore the effects and 

mechanisms in the path selection to green transition by polluters. Green innovation is found 

more conductive to strengthening R&D teams than green mergers and acquisitions. 

Recent literature has also focused on innovation efficiency. One example is a quantitative 

measurement of a firm’s process innovations output using a German community innovation 

survey (Rammer, 2023). The focus is on dimensions of output, and process innovation’s effects 

on cost reduction, quality improvements, and demand function. The drivers of exploitative and 

explorative innovation activities’ efficiency are studied by Nigg-Stock et al. (2023). Different 

motivations and price competition, outside pressure of product, and quality competition have 

positive effects on turnover growth. Collaboration is a key source of new knowledge and open 

innovation (Audretsch, et al., 2023). The innovation performance of SMEs is facilitated by the 

type of collaboration partners based on UK data, knowledge collaboration with suppliers, 

customers, and universities domestically and with competitors internationally. Tekic and Füller 

(2023) conceptualize how artificial intelligence (AI) may impact innovation and their 

management process using the three pillars of data, new tech, and talent. Innovation in the era 

of AI is a data-driven process affecting all dimensions of the innovation process and its 

management. It also affects collaboration in innovation and creates challenges.  

A review of the literature shows that innovation studies is growing in number and coverage. 

However, the models are relatively simple and do not account for endogeneity, simultaneity, 

and interdependence biasing the results. This study fills the gap by focusing on green 

innovation and patents and covering a large sample of developed and innovative countries. 

Given the shortcoming, the research area is expanded. The countries share similar green growth 

and energy transition strategies observed over several decades of environmental deterioration 

and technology and policy development. It also uses an advanced knowledge production model 

consisting of a system of innovation inputs, innovation outputs, and productivity with feedback 

effect from productivity on innovation investments. In addition, the model accounts for 

productivity shock, endogeneity of inputs and their simultaneity and interdependence, as well 

as heterogeneity in productivity and its relationship with its identified determinants.  
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3. Data  

Research and development (R&D) expenditure and number of scientific personnel are among 

the proxies used in measuring innovation capacity. However, these represent innovation inputs 

rather than innovation outputs. Griliches (1990) and Crepon et al. (1998) modelled the 

knowledge production function relationship such that innovation inputs and innovation outputs 

were separated. They defined innovation inputs as innovation investments, while innovation 

outputs were a result of innovation activities defined as new products and processes (Lööf and 

Heshmati, 2002, 2006).    

Patent registration systems follow a standardized procedure that is comparable across countries 

issuing patent rights. To obtain a patent for a new product or process, an innovator must choose 

to apply for a patent and disclose all related information to the innovation. If accepted, the 

patent office grants exclusive rights to an innovator for a limited period for which the patent 

lasts. To qualify as a patent, the innovation must be novel, non-obvious, and commercially 

viable (Dernis and Guellec, 2002; Hascic and Migotto, 2015). If the application is rejected, the 

disclosed information is lost. Thus, no submission of an application for a patent or no disclosure 

of information is a way of protecting information without a patent, but the inventor runs the 

risk that the innovation can be exploited by any person/firm at any time and register a patent. 

Patents provide protection for intellectual properties and incentives to engage in rewarding 

innovation activities. The state awarding monopoly of knowledge to inventors has been 

criticized by societies.  

In empirical studies, innovation outputs are measured as the number of patents or new products 

and processes’ share of the sales. The use of the number of patents has the disadvantage that 

only a limited number of innovations are registered, not all innovations are patented, and 

patents do not account for the value generation of the innovations. In measuring the sales share 

it is difficult to separate old and new products and processes. If the share is easily separated, it 

is a better measure than the number of patents. This share accounts for the value intensity of 

patents and their value generation dynamics. Thus, both patents and share of sales measures of 

innovation can be subject to measurement errors and double counting due to overlapping 

between patent families versus individual patents. Despite measurement difficulties, patents 

are the best available and comparable source of data on innovation outcomes across countries 

(also see, Johnstone et al., 2010). Since green innovation is incremental innovation with strong 

public knowledge property, the patent application is a more relevant measure of innovation 

outcome.  

To account for simultaneity, endogeneity, interdependence, and feedback effects, we use a 

system of equations that includes investments in R&D, innovation outputs, and productivity, 

equations. The system of equations captures the effects of R&D investments on innovation 

outputs and the latter’s effect on productivity as well as feedback effects of higher productivity 

on increased investments in R&D. Lööf and Heshmati (2002, 2006) illustrate this modelling 

approach empirically by using firm-level innovation panel data. 

Innovations in the area of renewable energy are a key component of the OECD’s strategy for 

combating the global environmental threat. The data used in this study allows us to examine 

the impact of various public policies on the evolution of renewable energy technologies in 
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OECD countries. The strategy involves policies related to public and private investments in 

energy-saving technologies, investments in education and R&D, and the development of 

environmental standards and regulations. The aim is to assess the impact of various public 

environmental policies such as environmental stringency and environmental taxes and 

regulations on renewable energy innovations and patents. The data is balanced panel data 

covering 27 OECD countries observed from 1990 to 2018. The source of the data is OECD’s 

statistics on energy, environment, and development.  

The variables used in the model’s specification are classified into dependent, independent, 

environmental, and control variables. The key dependent variable, innovation output, is defined 

as the total number of green patents per capita (PATENT) registered at the country level. The 

different number of patents at the national level which is an aggregate of the outcomes of 

innovation activities is a relatively large number and as such is continuous. Apart from a few 

observations (related to Iceland) none of the other OECD countries had a zero-patent level 

during the study period. Some countries such as Iceland, Slovenia, Slovak, Portugal, Greece, 

New Zealand, and Ireland were less active in green R&D and patenting. The major countries 

which were active in green R&D were Korea, Japan, Germany, France, and the UK. A second 

dependent variable is innovation input defined as R&D investment per capita (R&Dinv). It is 

measured as the government’s budget allocations for R&D which are decomposed into green 

and non-green components. R&D here consists of only the green component. The third 

dependent variable is productivity or GDP per capita (GDPcap). The dependent variables are 

measured per capita to neutralize the differences in population size in the sample countries.   

The independent variables are classified into three groups: investment, production, and 

environment-related. Investment-related variables include investments in education and 

cooperative private R&D. Production-related variables include gross domestic production, 

openness, capital stock, market capitalization, financial development, R&D personnel, 

workforce, and population. Environment-related variables consist of green policies or 

environmental stringency, green taxes, protection of intellectual property rights, and waste 

generated and emissions. These variables influence innovation investments and outcomes. 

The total capital stock (CAPsto) measured in billion US dollars represents the countries’ R&D 

infrastructure and the productivity of the labor force (Labor). Market capitalization (MKTcap) 

of listed domestic companies measured as a percentage of GDP is another capital variable. 

Gross domestic product (GDP) is measured in million US dollars and expressed in per capita 

(GDPtot). A third capital variable is the IMF financial development index (FINdev). This index 

summarizes how developed the financial institutions and financial markets are in terms of 

depth and access. Welfare cost (WELcos) is defined as the sum of the costs of premature 

mortalities caused by exposure to ambient PM2.5, ambient ozone, and lead. All three welfare 

costs are measured in GDP share equivalent. The variable welfare cost measures the welfare 

cost of production by neglecting environmental quality and regulations.  

Population (POPUL) and GDP are two aggregate measures of the size of the economy. 

Openness (OPEN) is measured as exports and imports’ share of GDP. It reflects access to green 

technologies, finances, knowledge, and management. R&D personnel (R&Dper) is measured 

as the aggregate number of persons involved in R&D activities per 1,000 employees. Share of 
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co-inventions in green inventions (INVcoop) is used for capturing public-private and 

university-private cooperation in innovation activities. Government expenditure on tertiary 

education (EDUter) measured as a percentage of GDP is a crucial determinant of 

innovativeness.  

The variable environmental policy stringency (ENVpol) indicates stringency in environmental 

standards and regulations which aim at incentivizing R&D investments and innovations in 

renewable energy. Environmental tax (ENVtax) is another variable that measures the tidiness 

of environmental policies. It is measured as a percentage of GDP. Innovation investments and 

their outcomes are protected by intellectual property rights (IPRpro) measured as an index. 

Other than these regulatory measures, a few variables incentivize society to self-regulate its 

behaviour. These include the production-based carbon dioxide emissions index (CO2) and 

municipal waste (WASTE) generated in kg per capita and per annum. Finally, a time trend 

(TREND) is included for capturing the unobservable effects of both positive and negative 

technological changes. 

All monetary variables including GDP, R&D investments, and capital stock are expressed in 

USD and are in constant 2010 prices. To ease the interpretation of the estimated effects 

(elasticities) the continuous variables are in logarithmic form and several variables are 

measured as a percentage share of GDP. The logarithmic variables are green patents, green 

R&D, capital stock, total GDP, GDP per capita, population, and municipal waste quantity. 

Descriptive statistics and correlation coefficients of the data and the variables in non-

logarithmic form are presented in Tables 1 and 2.  

Insert Tables 1 and 2 about here 

 

4. Model 

The basic model is as: Let 𝑞𝑖𝑡  denote the production function where it is used to estimate 

productivity, 𝑥𝑖𝑡,(𝑗) ∈ ℝ𝑘𝑗  ( 𝑗 ∈ {1,2,3,4} ) are various vectors of inputs with conformable 

coefficients 𝛽(𝑗) ∈ ℝ𝑘𝑗, and 𝜀𝑖𝑡,(𝑗) are random error terms. 𝜏𝑖𝑡 is innovation output (patents or 

other measures of knowledge capital) and 𝑅𝑖𝑡  is R&D investment or innovation input. The 

model is written as:  

𝑞𝑖𝑡 = 𝑥𝑖𝑡,(1)
′𝛽(1) + 𝛾1𝜏𝑖𝑡 + 𝜀𝑖𝑡,(1), (1) 

𝜏𝑖𝑡 = 𝑥𝑖𝑡,(2)
′𝛽(2) + 𝛾2𝑅𝑖𝑡 + 𝜀𝑖𝑡,(2), (2) 

𝑅𝑖𝑡 = 𝑥𝑖𝑡,(3)
′𝛽(3) + 𝛾3𝜔𝑖𝑡 + 𝜀𝑖𝑡,(3), (3) 

where 𝛾s corresponds to the coefficients of the endogenous variables.  

Here 𝑥𝑖𝑡,(1) includes a vector of production inputs of CAPsto, Labor, MKTcap, and OPEN; 

𝑥𝑖𝑡,(2) includes a vector of factors determining innovation output such as INVcoop, R&Dper, 

EDUter, and IPRpro, WASTE, CO2, FINdev, and WELcos; and 𝑥𝑖𝑡,(3) includes a vector of 

determinants of innovation inputs such as IPRpro, WASTE, CO2, FINdev, ENVpol, WELcos, 

and ENVtax. Of course, the endogeneity of inputs in (1) is standard and should be treated with 
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care (see Marschak and Andrews, 1944).  

According to more recent literature (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; 

Ackerberg et al., 2007, 2015; Kasahara and Rodrigue, 2008; Wooldridge, 2009; Doraszelski 

and Jaumandreu, 2013; Petrin and Sivadasan, 2013; Lee at al., 2019; Gandhi et al., 2020; and 

Hu et al., 2020) the production function (1) can be modified as:  

𝑞𝑖𝑡 = 𝑥𝑖𝑡,(1)
′𝛽(1) + 𝜀𝑖𝑡,(1) + 𝜔𝑖𝑡, (4) 

where 𝜔𝑖𝑡 is a productivity shock known to the producers but not the researchers. To be more 

specific, consider the value-added formulation of the production function as:  

𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝜔𝑖𝑡 + 𝜀𝑖𝑡. (5) 

Ackerberg et al. (2007) use materials 𝑚𝑖𝑡  to express the demand function as a function of 

capital, labor, and productivity shock, 𝑚𝑖𝑡 = 𝑓(𝑘𝑖𝑡, 𝑙𝑖𝑡, 𝜔𝑖𝑡). If this materials demand function 

is invertible in the productivity shock, we obtain 𝜔𝑖𝑡 = 𝑓(−1)(𝑘𝑖𝑡, 𝑙𝑖𝑡, 𝑚𝑖𝑡). So, we can write 

the production function as:  

𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝑓(−1)(𝑘𝑖𝑡, 𝑙𝑖𝑡, 𝑚𝑖𝑡) + 𝜀𝑖𝑡 = Φ𝑡(𝑘𝑖𝑡, 𝑙𝑖𝑡, 𝑚𝑖𝑡) + 𝜀𝑖𝑡. (6) 

Under the assumption that:  

𝜔𝑖𝑡 = 𝜌𝜔𝑖,𝑡−1 + 𝜉𝑖𝑡, (7) 

we can write the production function as:  

𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝜌{Φ𝑡−1(𝑘𝑖,𝑡−1, 𝑙𝑖,𝑡−1, 𝑚𝑖,𝑡−1) − 𝛽0 − 𝛽𝑘𝑘𝑖𝑡 − 𝛽𝑙𝑙𝑖𝑡} + 𝜁𝑖𝑡

= 𝛽0(1 − 𝜌) + 𝛽𝑘(𝑘𝑖𝑡 − 𝜌𝑘𝑖,𝑡−1) + 𝛽𝑙(𝑙𝑖𝑡 − 𝜌𝑙𝑖,𝑡−1) + 𝜌Φ𝑡−1(𝑘𝑖,𝑡−1, 𝑙𝑖,𝑡−1, 𝑚𝑖,𝑡−1) + 𝜁𝑖𝑡 .
 (8) 

Identifying all parameters is possible and for the functional form Φ(𝑘, 𝑙, 𝑚) we can use a third-

degree polynomial approximation as in Olley and Pakes (1996). Moreover, country-specific 

effects are included in all equations although in the production function (4) they are more 

critical.  

We have many variables that we can relate to productivity shock 𝜔𝑖𝑡. We assume that these are 

flexible functions of quasi-fixed inputs and productivity:  

𝜔𝑖𝑡 = 𝜌𝜔𝑖,𝑡−1 + 𝑥𝑖𝑡,(4)
′𝛽(4) + 𝛾3𝜏𝑖𝑡 + 𝛾4𝑅𝑖𝑡 + 𝜀𝑖𝑡,(4), (9) 

where 𝜀𝑖𝑡,(4) is an error term. Therefore, in this case, we do not use only one input like materials 

to invert their demand function to obtain productivity 𝜔𝑖𝑡  as a function of quasi-fixed and 

variable inputs. Instead, we have many such candidate variables, 𝑥𝑖𝑡,(4)  including EDUter, 

FINdev, GDPgrow, ENVpol, ENVtax, and WELcos. The Jacobian of this system is equal to 

𝐽 = |1 + 𝛾1(𝛾2𝛾3 + 𝛾4)|. Our final system of equations is (4), (2), (3), and (9).  

The endogenous variables 𝑦𝑖𝑡  include 𝑞𝑖𝑡, 𝜏𝑖𝑡,𝑅𝑖𝑡 . Denote exogenous variables 𝑥𝑖𝑡 =

[𝑥𝑖𝑡,(1)
′, 𝑥𝑖𝑡,(2)

′, 𝑥𝑖𝑡,(3)
′]′ , residuals 𝜀𝑖𝑡 = [𝜀𝑖𝑡,(1), 𝜀𝑖𝑡,(2), 𝜀𝑖𝑡,(3)]′ , and suppose vector 𝜃 =

[𝛽(1)
′, 𝛽(2)

′, 𝛽(3)
′, 𝛽(4)

′, 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝜌]′ contains all unknown structural parameters. Then, we 

can write our system of equations as:  

𝐹(𝑦𝑖𝑡, 𝑥𝑖𝑡 , 𝜔𝑖𝑡; 𝜃) = 𝜀𝑖𝑡, (10) 
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along with productivity shock (9).  

As we have a latent unobserved productivity shock component 𝜔𝑖𝑡 we use Bayesian methods 

organized around Sequential Monte Carlo (SMC) techniques also known as Particle Filtering 

(PF). Our particular implementation is based on Creal and Tsay (2015) and is described in 

Appendix A. We use Creal and Tsay (2015) for 1,000 particles per Markov Chain Monte Carlo 

(MCMC) iteration which is based on Girolami and Calderhad’s (2012) study involving 150,000 

iterations omitting the first 50,000 in the interest of mitigating possible start-up effects. The 

Girolami and Calderhad (2011) MCMC scheme is presented in Appendix B. 

The SMC methods are capable of modelling non-linear systems and high-dimensional 

distributions that cannot be satisfactorily handled by classical techniques (Cape et al., 2007). 

Kantas et al. (2009) in overview of SMC filtering and smoothing methods discuss the 

advantages and disadvantages and computational costs of various SMC algorithms developed 

to estimate the static parameters of a general state-space model. 

 

5. Analysis of the Results 

5.1 Estimation results 

In this section, we estimate the system of equations. Country-specific and time-specific effects 

are also included in innovation inputs (2) and innovation outputs (3). Country-specific effects 

are included in the production function (4) and productivity shock function (9). The estimated 

results investigating the factors that influence green innovation reported in Table 3 are posterior 

moments. The method quantifies the uncertainty. The posterior summarizes all we know 

factoring in the new evidence.  

The results of the production function (𝑞𝑖𝑡 ) show that all the coefficients are statistically 

significant at less than 1 percent level of significance. The sum of capital and labor coefficients 

is less than 1 suggesting decreasing returns to scale. Both market capitalization and openness 

contribute positively to the production level. Innovation output measured as patents contributes 

strongly to production.  

The results for the innovation outputs (𝜏𝑖𝑡) show that all the determinants except for waste are 

statistically significant and positively contribute to the generation of patents. The strongest 

effect is attributed to key innovation inputs namely R&D investments and R&D personnel. 

Investment cooperation, financial development, investments in higher education, and 

intellectual property protection also promote innovations and patent registrations. Increased 

CO2 emission also positively affects innovation outputs.  

Table 3. Posterior moments (OECD 1990-2018, NT=27x29=783 observations) 

Variables  Production 

function, 𝑞𝑖𝑡  

 Innovation 

output, 𝜏𝑖𝑡  

 Innovation 

input, 𝑅𝑖𝑡  

 Productivity 

shock, 𝜔𝑖𝑡  

CAPsto   0.225 (0.045)   —   —   —  

Labor   0.682 (0.019)   —   —   —  

MKTcap   0.081 (0.014)   —   —   —  
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OPEN   0.145 (0.022)   —   —   —  

𝜏𝑖𝑡   0.360 (0.071)   —   —   0.116 (0.043)  

𝑅𝑖𝑡   —   0.655 (0.172)     0.357 (0.044)  

INVcoop   —   0.171 (0.032)   —   —  

R&Dper  —   0.331 (0.019)  —  — 

EDUter   —   0.082 (0.021)   —   0.030 (0.013)  

IPRpro   —   0.043 (0.012)   0.225 (0.019)   —  

WASTE   —   –0.013 (0.012)   –0.044 (0.016)   —  

CO2   —   0.074 (0.015)   0.085 (0.024)   —  

FINdev   —   0.055 (0.017)   0.215 (0.065)   0.078 (0.017)  

GDPgrow   —   —   —   0.021 (0.007)  

𝜔𝑖𝑡   —   0.455 (0.177)   0.422 (0.035)   —  

𝜔𝑖,𝑡−1   —   —   —   0.912 (0.015)  

ENVpol   —   —   0.188 (0.033)   –0.015 (0.0013)  

WELcos   —   0.045 (0.010)   0.071 (0.039)   –0.033 (0.015)  

ENVtax   —   —   0.091 (0.018)   –0.128 (0.025)  

Note: Posterior standard deviations in parenthesis. 

Our estimation results of the innovation inputs ( 𝑅𝑖𝑡 ) equation show that protection of 

intellectual properties, increased emissions, and higher financial development increase 

innovation inputs. Farooq et al. (2022) find positive and significant effects of market 

capitalization on investment decisions. Liang et al. (2023) also studied the environmental 

impacts of market capitalization energy transition and natural resources on the reduction in 

Co2 emissions. Waste unexpectedly has a negative effect on innovation inputs. Strict 

environmental regulations increased environmental taxes, and higher welfare costs of 

environment-related mortalities all contribute to increasing investments in innovation 

activities. Productivity shock also strangely raises innovation activities.  

An estimation of the productivity shock (𝜔𝑖𝑡) shows that the lagged value of the productivity 

shock explains a large share (0.912) of variations in the productivity shock. Innovation inputs 

and innovation outputs both have positive effects on productivity. Investments in higher 

education and a higher level of financial development positively affect productivity. 

Productivity is also positively associated with countries’ GDP growth rates. The stringency of 

the environmental policies, environmental taxes, and mortality welfare costs which are sources 

of increased environmental production costs are all negatively associated with productivity.   

 

5.2 Aspects of Productivity  

Productivity estimates (𝜔𝑖𝑡) are reported in Table 4. It shows the sample statistics for 𝜔𝑖𝑡s 

across all observations at the given parameter estimates (posterior means). An analysis of the 

distribution of productivity which is both time- and country-variant shows that the distribution 

is skewed to the left with a relatively small dispersion. The growth rate is concentrated in the 

positive region in the interval -0.0085 and +0.0395.  

Table 4. Productivity estimates, 𝝎𝒊𝒕, based on the parameter estimates (posterior 
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means)  

Mean   0.0233  

Median   0.0225  

Std. Dev.   0.0173  

95%   [–0.0085, 0.0395]  

 

The density of estimates of productivity growth is presented in Figure 1. It compares the 

distribution of the sample mean with parameter uncertainty and the given parameter estimates. 

The straight line is the density of sample-mean 𝜔𝑖𝑡 induced by Markov Chain Monte Carlo 

(MCMC) so it takes the parameter’s uncertainty into account. The dashed line represents the 

density of the sample distribution of 𝜔𝑖𝑡 s across all observations at the given parameter 

estimates (posterior means) related to Table 3. The straight line is the density of average 

productivity growth which takes parameter uncertainty into account. 

Figure 1. Aspects of productivity growth 

 

 

 

To show the importance of parameter uncertainty we report 100 representative sample densities 

of 𝜔𝑖𝑡s corresponding to 100 different MCMC parameter draws in Figure 2. The distribution 

has clearly shifted to the right and has a larger variance because of the parameter’s uncertainty.  

Figure 2. Sample densities of productivity growth (𝝎𝒊𝒕) using 100 representative 

MCMC parameter draws 
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In Figures 3 to 7 we plot the bivariate marginal posterior distributions of productivity 𝜔𝑖𝑡 and 

various other determinant variables. The determinant factors of concern are welfare costs, the 

environmental policy’s stringency, green patents, green R&D, and financial development.  

Figure 3. Bivariate densities of productivity growth (𝝎𝒊𝒕) and welfare costs (WELcos)  

 

 

Figure 4. Bivariate densities of productivity growth (𝝎𝒊𝒕) and the environmental 

policy’s stringency (ENVpol)  

 

 

Figure 5. Bivariate densities of productivity growth (𝝎𝒊𝒕) and log green patents 

(PATENT)  
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Figure 6. Bivariate densities of productivity growth (𝝎𝒊𝒕) and log of green R&D 

(R&Dinv) 

 

 

Figure 7. Bivariate densities of productivity growth (𝝎𝒊𝒕) and financial development 

(FINdev)  

 

Table 2 provides a simple pairwise correlation relationship between the variables. The striking 

feature of the bivariate posterior densities is the multimodality of the distribution of 

productivity shock 𝜔𝑖𝑡  and various other variables which is probably due to country 

heterogeneity in innovations and patenting. What is also striking is the tight positive 

relationship between log green patents and log green R&D investments in Figures 5 and 6, as 

well as the tight negative overall relationship (despite the multimodality) between 𝜔𝑖𝑡 and the 

welfare costs of environment-related mortality in Figure 3. The relation between productivity 

growth and the financial development index is also positive in Figure 7. The relationship 

between productivity growth and the stringency of the environmental policy is more complex 

(as evidenced in Figure 4) as there are many local modes corresponding to different clusters of 

this relationship in the data. The same evidence from Figure 7 suggests that the relationship 

between productivity growth and the financial development index is possibly non-linear and, 

additionally, multimodality suggests the presence of several clusters distinguished by the 

countries’ level of technological and innovation capacity. A positive effect of financial 

development on innovation and productivity is supported by Tao, et al. (2023) who investigate 

how financial development affects carbon emission intensity under different types of 

information and communication technology. The relationship is found to be non-linear and 

heterogeneous. In another study, Ren et al. (2023) finds that financial development 

significantly reduces carbon emissions in the long term but not in the short term. 
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5.3 Variations in productivity growth 

Next, we present the development of the posterior means of productivity growth (𝜔𝑖𝑡) for each 

sample OECD country over time (Figure 8). The list of countries appears in a footnote in Figure 

8. The countries are grouped into five groups alphabetically. Figure 8.a shows that Canada 

followed by Australia performed better in productivity growth than Austria, Belgium, and 

Denmark. Figure 8.b shows that Germany followed by France dominated Finland, Greece, and 

Iceland in productivity growth. The third group of countries reported in Figure 8.c shows that 

Japan and South Korea were more productive than Ireland, Italy, and Mexico. In the fourth 

group reported in Figure 8.d Poland surprisingly dominates over the Netherlands, New 

Zealand, Norway, and Portugal most of the time. Finally, in the last group of countries reported 

in Figure 8.e, the USA clearly dominates Slovakia, Slovenia, Spain, Sweden, Switzerland, and 

UK. The countries with continuous positive trends in productivity growth are Belgium, Iceland, 

Ireland, New Zealand, Portugal, and the UK. In terms of the level of productivity growth, the 

USA, Japan, and Germany are the most innovative countries.  

The reporting of heterogenous results suggests that future research should deepen the analysis 

of the estimated model by addressing the indicators of clusters of countries regarding their 

technological, management, and innovation capacity. The focus should be on whether green 

transition contributes to increased economic growth and the characteristics explaining the 

growth effect. Another area of extension is an analysis of the role that market forces and 

different policy factors play. These and many similar issues should be analysed and tested with 

a focus on sensitivity analysis of the result.  

Figure 8. Development of productivity growth (𝝎𝒊𝒕) over time2 

  

 

 

 
2 List of countries: 1. Australia, 2. Austria, 3. Belgium, 4. Canada, 5. Denmark, 6. Finland, 7. France, 8. Germany, 

9. Greece, 10. Iceland, 11. Ireland, 12. Italy, 13. Japan, 14. South Korea, 15. Mexico, 16. The Netherlands, 17. 

New Zealand, 18. Norway, 19. Poland, 20. Portugal, 21. Slovakia, 22. Slovenia, 23. Spain, 24. Sweden, 25. 

Switzerland, 26. United Kingdom, 27. Unites States of America. 
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6. Summary and Conclusion 

Despite their relative similarities in the level of development and possibilities of access to and 

sharing of knowledge, OECD countries are endowed differently with primary energy sources, 

and they use different energy mixes. Therefore, differences in technological capacity, energy 

endowments, energy mix, and environmental policies induce heterogeneity in innovation 

activities and outcomes. As green innovation policies are important, we examine them here in 

the context of OECD countries, considering the endogeneity of innovation inputs and 

innovation outputs at the ‘heart of the model’ which is a knowledge production function 

accounting for latent productivity shocks’ effects.  

We also examined the role of several determinants on countries’ productivity performance. The 

bivariate posterior densities indicate the multimodality of the distribution of productivity and 

various other variables which might be due to country heterogeneity in green innovations and 

patenting. Our results provide evidence of a positive relationship between green patents and 

green R&D investments and the financial development index, as well as a negative relationship 

between productivity and welfare costs of environment-related mortalities. The relationship 

between productivity growth and the stringency of the environmental policy is more complex 

and multimodal which is attributed to different clusters of the relationship in the data. The 

relationship between productivity growth and the financial development index is possibly non-

linear and multimodal suggesting the presence of multiple clusters. The clusters are 

distinguished by the level of technological and innovation capacity of the countries studied. 

The development of the posterior means of productivity growth for each sample OECD country 

over time showed that Canada, Australia, Germany, France, Japan, South Korea, Poland, and 

the USA performed better in green innovations within the sub-groups of countries. This list 
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may deviate from the list of countries traditionally leading innovations and patents. This 

difference is due to green innovations as a result of environmental considerations which are 

not necessarily prioritized in the same way by all the countries and are certainly not directly 

related to their level of technological development. Countries with a continuous positive trend 

in productivity growth during the era of green innovations are Belgium, Iceland, Ireland, New 

Zealand, Portugal, and the UK. In terms of level of productivity growth, the USA, Japan, and 

Germany with strong innovation infrastructures are the most innovative countries. These three 

countries are heterogeneous in their focus and allocation of resources to green policies and the 

environment. Better coordination of environmental policy and energy transition directed at 

convergence in technology level, innovation cooperation, technology sharing, and transfer will 

enhance the greening of the economy and contribute to achieving sustainable development 

goals globally.  

This study has a number of policy implications for green innovations. The heterogeneity in 

technological capacity, initial energy endowments, energy mix, and practiced progressive 

environmental policies can be actively used for enhancing OECD countries’ efficiency and 

productivity in innovation activities and outcomes. This effort can be extended to facilitate 

innovation cooperation within OECD and spillover of technology and management to 

developing countries. Evidence of a positive relationship between green patents and green 

R&D investments and financial development can be promoted while the negative relationship 

between productivity and welfare costs of environment-related mortalities can be limited. The 

multimodality of the distribution of productivity and various other factors and multiple clusters 

of relationships between productivity growth and the stringency of environmental policy can 

be used as a toolkit for selecting policy options for supporting inclusive green growth at the 

global level. OECD countries performing better, and traditionally leading green innovations 

and patents are a result of their environmental considerations and not necessarily directly 

related to their level of technological development and strong innovation infrastructure. Better 

coordination of environmental policy among countries and energy transition directed at 

convergence with green resources and green technology sharing and transfer will enhance the 

greening of the global economy and the speed of transition. A faster greening at a global scale 

will promote achieving the sustainable development goals at a lower cost in these countries 

and also to the benefit of resource-poor developing countries. Ideally, it would be ideal to 

analyse the reality of different countries and based on the conditions give suggestions for 

country-specific green innovation and economic growth, respectively. However, this is beyond 

the scope of this paper, but upon the availability of data will be considered in future research. 
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Appendix A 

We use a recent advance in sequential Monte Carlo methods known as the Particle Gibbs (PG) 

sampler (see Andrieu et al., 2010). The algorithm allows us to draw paths of the state variables 

in large blocks. Particle Filtering is a simulation-based algorithm that sequentially 

approximates continuous, marginal distributions using discrete distributions. This is performed 

by using a set of support points called ‘particles’ and probability masses (see Creal, 2012 for a 

review).  

The PG sampler draws a single path of the latent or state variables from this discrete 

approximation. As the number of particles M goes to infinity, the PG sampler draws from the 

full conditional distribution. As mentioned in Creal and Tsay (2015, p. 339): ‘The PG sampler 

is a standard Gibbs sampler but defined on an extended probability space that includes all the 

random variables that are generated by a particle filter. Implementation of the PG sampler is 

different than a standard particle filter due to the “conditional” resampling algorithm used in 

the last step of resampling. Specifically, for draws from the particle filter to be a valid Markov 

transition kernel on the extended probability space, Andrieu et al. (2010) note that there must 

be a positive probability of sampling the existing path of the state variables that were drawn at 

the previous iteration. The pre-existing path must survive the resampling steps of the particle 

filter. The conditional resampling step within the algorithm forces this path to be resampled at 

least once. We use the conditional multinomial resampling algorithm from Andrieu et al. 

(2010), although other resampling algorithms exist, see Chopin and Singh (2013). 

We follow Creal and Tsay (2015). Suppose the posterior is 𝑝(𝜃, Λ1:𝑇|𝒚1:𝑇) where Λ1:𝑇 denotes 

the latent variables who’s prior can be described by 𝑝(Λ𝑡|Λ𝑡−1, 𝜃). In the PG sampler, we can 

draw the structural parameters 𝜃|Λ1:𝑇 , 𝒚1:𝑇  as usual from their posterior conditional 

distributions. This is important because, in this way, we can avoid mixture approximations or 

other Monte Carlo procedures that need considerable tuning and may not have good 

convergence properties. As such posterior conditional distributions are standard, we omit the 

details and focus on drawing the latent variables.  

Suppose we have Λ1:𝑇
(1)

 from the previous iteration. The Particle Filtering procedure consists of 

two phases:  

Phase I: Forward filtering (Andrieu et al., 2010).  

• Draw a proposal Λ𝑖,𝑡
(𝑚)

 from an importance density 𝑞(Λ𝑖,𝑡|Λ𝑖,𝑡−1
(𝑚)

, 𝜃), 𝑚 = 2, … , 𝑀.  

• Compute the importance weights as:  

𝑤𝑖,𝑡
(𝑚)

=
𝑝(𝑦𝑖,𝑡; 𝛬𝑖,𝑡

(𝑚)
, 𝜃)𝑝(𝛬𝑖,𝑡

(𝑚)
|𝛬𝑖,𝑡−1

(𝑚)
, 𝜃)

𝑞(𝛬𝑖,𝑡|𝛬𝑖,𝑡−1
(𝑚)

, 𝜃)
, 𝑚 = 1, … , 𝑀. (A.1) 

• Normalize the weights: �̃�𝑖,𝑡
(𝑚)

=
𝑤𝑖𝑡

(𝑚)

∑ 𝑤
𝑖𝑡
(𝑚′)𝑀

𝑚′=1

, 𝑚 = 1, … , 𝑀.  

• Resample the particles {Λ𝑖,𝑡
(𝑚)

, 𝑚 = 1, … , 𝑀} with probabilities {�̃�𝑖,𝑡
(𝑚)

, 𝑚 = 1, … , 𝑀}.  

In the original PG sampler, the particles are stored for 𝑡 = 1, … , 𝑇, and a single trajectory is 

sampled using the probabilities from the last iteration. An improvement of the original PG 
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sampler was proposed by Whiteley et al. (2010), who suggested drawing the path of the latent 

variables from the particle approximation using Godsill et al.’s (2004) backward sampling 

algorithm. In the forward pass, we store the normalized weights and particles and we draw a 

path of the latent variables as detailed below (the draws are from a discrete distribution):  

Phase II: Backward filtering (Godsill et al., 2004; Chopin and Singh, 2013).  

• At time 𝑡 = 𝑇 draw a particle Λ𝑖,𝑇
∗ = Λ𝑖,𝑇

(𝑚)
.  

• Compute the backward weights: 𝑤𝑡|𝑇
(𝑚)

∝ �̃�𝑡
(𝑚)

𝑝(Λ𝑖,𝑡+1
∗ |Λ𝑖,𝑡

(𝑚)
, 𝜃).  

• Normalize the weights: �̃�𝑡|𝑇
(𝑚)

=
𝑤𝑡|𝑇

(𝑚)

∑ 𝑤𝑡|𝑇
(𝑚′)𝑀

𝑚′=1

, 𝑚 = 1, … , 𝑀.  

• Draw a particle Λ𝑖,𝑡
∗ = Λ𝑖,𝑡

(𝑚)
 with probability �̃�𝑡|𝑇

(𝑚)
.  

Therefore, Λ𝑖,1:𝑇
∗ = {Λ𝑖1

∗ , … , Λ𝑖𝑇
∗ } is a draw from the full conditional distribution. The backward 

step often results in dramatic improvements in computational efficiency. For example, Creal 

and Tsay (2015) find that 𝑀 = 100 particles is enough. There remains the problem of selecting 

an importance density 𝑞(Λ𝑖,𝑡|Λ𝑖,𝑡−1, 𝜃). We use an importance density implicitly defined by 

Λ𝑖,𝑡 = 𝑎𝑖,𝑡 + ∑ 𝑏𝑖,𝑡
𝑃
𝑝=1 Λ𝑖,𝑡−1

𝑝 + ℎ𝑖,𝑡𝜉𝑖,𝑡  where 𝜉𝑖,𝑡  follows a standard (zero location and unit 

scale) student-t distribution with 𝜈 = 5 degrees of freedom, that is, we use polynomials in 

Λ𝑖,𝑡−1 of order 𝑃. We select the parameters 𝑎𝑖,𝑡, 𝑏𝑖,𝑡, and ℎ𝑖,𝑡 during the burn-in phase (using 

𝑃 = 1  and 𝑃 = 2 ) so that the weights {�̃�𝑖,𝑡
(𝑚)

, 𝑚 = 1, … , 𝑀}  and {�̃�𝑡|𝑇
(𝑚)

, 𝑚 = 1, … , 𝑀}  are 

approximately not too far from a uniform distribution.  

Chopin and Singh (2013) analyzed the theoretical properties of the PG sampler and proved that 

the sampler was uniformly ergodic. They also proved that the PG sampler with backward 

sampling strictly dominated the original PG sampler in terms of asymptotic efficiency.  

Alternatively, when the dimension of the state vector is large, we can draw Λ𝑖,1:𝑇 , conditional 

on all other paths Λ−𝑖,1:𝑇 that are not path 𝑖. Therefore, we can draw from the full conditional 

distribution 𝑝(Λ𝑖,1:𝑇|Λ−𝑖,1:𝑇 , 𝒚1:𝑇 , 𝜃).  

 

Appendix B 

The algorithm uses local information about both the gradient and the Hessian of the log-

posterior conditional of 𝜽 at the existing draw. A Metropolis test is used for accepting the 

candidate generated but the Girolami and Calderhead (2011, GC) algorithm moves 

considerably faster relative to our scheme described previously. It has been found that the GC 

algorithm’s performance is vastly superior relative to the standard Metropolis-Hastings 

algorithm and the autocorrelations are much smaller.  

Suppose 𝐿(𝜽) = log 𝑝 (𝜽|𝑿) is used to denote for simplicity the log posterior of 𝜽, 𝑿 denotes 

the data, and {𝒰𝑖𝑡, 𝑖 = 1, … , 𝑛, 𝑡 = 1, … , 𝑇}. The dimensionality of 𝜽 is 𝑑𝜃. Moreover, define 

the estimated covariance matrix:  
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𝑮(𝜽) = est. cov
𝜕

𝜕𝜽
log 𝑝 (𝑿|𝜽), (B.1) 

which is the empirical counterpart of:  

𝑮𝑜(𝜽) = −𝔼𝑌|𝜽

𝜕2

𝜕𝜽𝜕𝜽′
log 𝑝 (𝑿|𝜽) (B.2) 

The Langevin diffusion is given by the stochastic differential equation:  

𝑑𝜽(𝑡) =
1

2
�̃�𝜽𝐿{𝜽(𝑡)}𝑑𝑡 + 𝑑𝑩(𝑡) (B.3) 

where  

�̃�𝜽𝐿{𝜽(𝑡)} = −𝑮−1{𝜽(𝑡)} ⋅▽𝜽 𝐿{𝜽(𝑡)} (B.4) 

is the so-called ‘natural gradient’ of the Riemann manifold generated by the log posterior. The 

elements of the Brownian motion are:  

𝑮−1{𝜽(𝑡)}𝑑𝑩𝑖(𝑡)

= |𝑮{𝜽(𝑡)}|−1/2 ∑

𝑑𝜃

𝑗=1

𝜕

𝜕𝜽
[𝑦𝑚𝑏𝑜𝑙𝐺−1{𝜽(𝑡)}𝑖𝑗|𝑮{𝜽(𝑡)}|1/2]𝑑𝑡 

(B.5) 

+ [√𝑮{𝜽(𝑡)}𝑑𝑩(𝑡)]
𝑖
 

The discrete form of the stochastic differential equation provides a proposal as:  

�̃�𝑖

= 𝜽𝑖
𝑜 +

𝜀2

2
{𝑮−1(𝜽𝑜)𝛻𝜽𝐿(𝜽𝑜)}𝑖

− 𝜀2 ∑ {𝑮−1(𝜽𝑜)
𝜕𝑮(𝜽𝑜)

𝜕𝜽𝑗
𝑮−1(𝜽𝑜)}

𝑖𝑗

𝑑𝜃

𝑗=1
  

+
𝜀2

2
∑ {𝑮−1(𝜽𝑜)}𝑖𝑗

𝑑𝜃

𝑗=1
tr {𝑮−1(𝜽𝑜)

𝜕𝑮(𝒂𝑜)

𝜕𝜽𝑗
}

+ {𝜀√𝑮−1(𝜽𝑜)𝝃𝑜}
𝑖
 

= 𝝁(𝜽𝑜 , 𝜀)𝑖 + {𝜀√𝑮−1(𝜽𝑜)𝝃𝑜}
𝑖
 

where 𝜽𝑜 is the current draw and 𝜀 is selected during the burn-in phase so that 20-30 percent 

of all candidates are eventually accepted. The proposal density is:  

𝑞(�̃�|𝜽𝑜) = 𝒩𝐾𝜃
(�̃�,  𝜀2𝑮−1(𝜽𝑜)) (B.6) 

and convergence to the invariant distribution is ensured by using the standard form Metropolis-

Hastings probability:  

min {1,
𝑝(�̃�| ⋅, 𝑿)𝑞(𝜽𝑜|�̃�)

𝑝(𝜽𝑜| ⋅, 𝑿)𝑞(�̃�|𝜽𝑜)
}. (B.7) 
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Table 1. Descriptive statistics of the variables, NT=27x29=783 observations.   
Variable Definition Mean Std. Dev Minimum Maximum 

Id Country ID 14.000 7.794 1.000 27.000 

Year Year of observation 2004  8.372 1990  2018  

A. Dependent variables:     
Patents Green patents 1143.296 2531.171 0.000 14434.150 
R&Dinv Green R&D investments 161.141 217.656 0.100 1381.122 

B. Investment variables:     
EDUter Gov. exp. on tertiary educ. 1.240 0.468 0.155 2.695 

INVcoop Co-invest. in green 

innovation 
54.979 17.854 0.000 100.820 

FINdev Financial development index 0.638 0.180 0.000 1.000 

C. Infrastructure variables:     

R&Dpers R&D personnel 11.309 4.460 0.382 24.554 

CAPsto Capital stock 198738.473 764017.695 55.383 5774143.097 
Labor Labor 57.338 7.897 37.738 81.333 

MKTcap Market capitalization, listed 

companies 
62.732 45.962 1.191 291.233 

GDPtot GDP total per capita 37645.104 17436.867 5510.660 92121.420 
GDPcap GDP per capita employed 72356.134 19044.720 21575.480 149918.190 
OPEN Openness (IMP+EXP)/GDP 76.512 37.670 16.014 224.755 
POPUL Population 39746.572 59726.619 254.790 328012.000 

D. Environmental variables:     
ENVpol Env. policy stringency 1.932 0.933 0.167 4.133 

ENVtax Env. related taxes 2.355 0.859 0.100 5.372 

IPRpro Index of IPR strength 4.052 0.764 1.024 4.875 

WASTE Municipal waste per capita 509.184 137.042 198.270 979.940 

CO2 Prod. based CO2 emissions 97.915 13.142 53.670 148.510 

WELcos Cost of mortalities, ozone, 

lead 
4.983 1.759 1.888 9.318 

 

  



29 

 

Table 2. Pearson correlation coefficients, NT=783 observations.  

 

 

  Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 Patents 1.000                                   

2 R&Dinv 0.668 1.000                                 

3 R&Dper 0.158 0.087 1.000                               

4 INVcoop 0.216 0.232 0.120 1.000                             

5 EDUter 0.148 0.151 0.503 0.011 1.000                           

6 CAPsto 0.623 0.243 0.085 0.049 0.303 1.000                         

7 Labor  -0.12 0.097 0.569 0.235 0.370 0.069 1.000             

8 MKTcap 0.218 0.177 0.376 0.114 0.169 0.068 0.069 1.000                      

9 FINdev 0.374 0.422 0.439 0.226 0.143 0.198 0.183 0.648 1.000                    

10 ENVpol 0.238 0.228 0.537 0.287 0.324 0.101 0.141 0.183 0.515 1.000                  

11 ENVtax 0.277 0.256 0.191 0.146 0.237 0.073 -0.07 0.192 0.078 0.101 1.000                

12 IPRpro 0.287 0.382 0.451 0.401 0.269 0.073 0.009 0.381 0.654 0.482 0.043 1.000              

13 OPEN 0.257 0.377 0.191 0.103 0.105 0.116 -0.03 0.079 0.128 0.151 0.228 0.052 1.000            

14 GDPtot 0.052 0.053 0.619 0.139 0.534 0.126 0034 0.495 0.592 0.434 0.102 0.502 0.117 1.000      

15 GDPcap 0.144 0.193 0.558 0.281 0.440 0.161 0.194 0.411 0.609 0.469 0.086 0.657 0.233 0.859 1.000         

16 POPUL 0.698 0.648 0.122 0.226 0.219 0.172 -0.03 0.204 0.230 0.046 0.469 0.233 0.483 0.049 0.086 1.000       

17 WASTE 0.105 0.185 0.334 0.001 0.339 0.223 0.284 0.326 0.471 0.238 0.052 0.322 0.015 0.508 0.482 0.149 1.000     

18 CO2 0.114 0.053 0.014 0.046 0.045 0.231 0.184 0.079 0.047 0.019 0.011 0.061 0.033 0.037 0.071 0.039 0.100 1.000   

19 WELcos 0.127 0.011 0.461 0.052 0.319 0.174 0.039 0.360 0.375 0.271 0.256 0.133 0.060 0.442 0.308 0.049 0.304 0.022 1.000 


