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Abstract. Asymptotic equilibrium stresses are defined for countably infinite tensegri-
ties and generalisations of the Roth-Whiteley characterisation of first-order rigidity are
obtained. Generalisations of prestress stability and second order rigidity are given for
countably infinite bar-joint frameworks and are shown to give sufficient conditions for
continuous rigidity relative to certain prescribed motions. The proofs are based on a new
short proof for finite frameworks that prestress stability ensures continuous rigidity.

A finite tensegrity in Rd can be conceived of as a structure consisting of inextensible
cables, incompressible struts and rigid bars, all of which are connected at their endpoints in
the manner of a linearly embedded graph G. It is denoted as G(p), where p = {p1, . . . , pn}
is the embedding (or placement) of the vertices of G and where it is understood that certain
edges of G correspond to cables, struts and bars, the so-called members of G(p). Roth and
Whiteley [20] obtained a useful characterisation of their first-order rigidity, also known as
infinitesimal rigidity (IR). This is given in terms of the existence of a proper equilibrium
stress together with an evident necessary condition, namely that the structure with all
members replaced by bars should be first-order rigid. See Theorem 1.1. We consider here
countably infinite tensegrities and obtain generalisations of the Roth-Whiteley theorem
with respect to first-order rigidity relative to asymptotically decaying motions, such as
first-order c0-rigidity, for velocity fields that tend to zero at infinity, and first-order `2-
rigidity, for finite energy velocity fields. In fact we consider first-order X-rigidity, the
first-order rigidity with regard to velocity fields of X⊗Rd, where X is one of the classical
Banach sequence spaces `q, 1 ≤ q <∞, or c0.

We also consider equilibrium stresses from the point of view of generalising the notion
of prestress stability to countably infinite tensegrities and bar-joint frameworks. Recall
that the continuous rigidity (CR) of a finite bar-joint framework requires that there are no
nontrivial continuous motions t→ p(t), for t ∈ [0, 1], which preserve the length constraints
on members. It is well-known that continuous rigidity is ensured by prestress stability
(PS) and also by second order rigidity (2OR). The main references here are Connelly [4],
[5] and Connelly and Whiteley [8]. See also the more recent articles of Connelly and
Gortler [6] and Holmes-Cerfon, Gortler and Theran [10]. We give new short proofs of
these implications which use only Connelly’s stress energy function. The arguments also
adapt readily to the countably infinite setting and we obtain analogous implications for
our definitions of bounded prestress stability (BPS) and a restricted form of continuous
rigidity, namely directed continuous rigidity (DCR). See Definition 3.11 and Remark 3.20.

MSC2020 Mathematics Subject Classification. 52C25
.

1



2 S. C. POWER

This is of interest since, as shown in Section 3.5, infinitesimal rigidity does not imply
continuous rigidity for infinite frameworks.

In Section 1 we define tensegrities and their infinitesimal (first-order) flexes and give a
proof of the Roth-Whiteley theorem. In Section 2 we consider countably infinite tensegrity
frameworks noting first that the existence of a proper equilibrium stress need not certify
first-order rigidity. On the other hand we show that the existence of a certain proper
asymptotic equilibrium stress (Definition 2.4) does imply first-order X-rigidity. In Section
3, which is essentially independent of the previous sections, we consider prestress stability
for infinite bar-joint frameworks.

The deeper direction of the Roth-Whiteley characterisation is that first-order rigidity
ensures the presence of a proper equilibrium stress. To generalise this, to asymptotic
equlibrium stresses and first-order X-rigidity, we consider closed convex cones C in Banach
sequence spaces and make use of Hahn-Banach separation functionals and a relative second
dual cone equality lemma, namely Lemma 2.10.

Much of the basic theory of first-order rigidity for finite bar-joint frameworks extends
in some manner to countably infinite bar-joint frameworks, particularly in the case of
generic frameworks. See Kitson and Power [13], [14] for example. On the other hand
countably infinite tensegrities have received little attention in this regard. E. B. Ashton
[1] has considered “continuous tensegrities” and certain extensions of the Roth-Whiteley
theorem but the main applications involve tensegrities with a continuum of struts, in a
continuous path, with ends connected by curved cables. As we have remarked, a literal
generalisation of the Roth-Whiteley characterisation to countably infinite tendesgrities
does not hold for general first order rigidity. The adjustments we make are natural from
the perspective of functional analysis and in particular we restrict attention to countable
tensegrities G(p) which have uniform structure in the sense that there is an upper bound
both to the lengths of members and to the degrees of the vertices of G. This ensures that
the rigidity matrix determines a bounded linear transformation from X ⊗ Rd to X ⊗ R
and that its transpose matrix is a bounded linear transformation in the reverse direction.
For other considerations of the rigidity matrix as a bounded linear transformation see also
Owen and Power [17] and Kastis, Kitson and Power [11].

The proofs below are self-contained apart from standard separation results for closed
cones in Hilbert space and Banach spaces. The recent book of Connelly and Guest [7] gives
a useful reference to the rigidity theory of finite bar-joint frameworks and tensegrities.

1. Finite and infinite cable-strut tensegrities

A tensegrity G(p) is a bar-joint framework (G, p) in Rd for which certain bars pipj, for
ij in a subset Ec (resp. Es), have been replaced by cables (resp. struts). This arises from
a partition E = Eb ∪ Ec ∪ Es of the edges of the underlying simple graph G = (V,E).
The infinitesimal constraint equations, associated with a finite tensegrity G(p) and the
indexing V = {v1, . . . , vn}, are the conditions for a velocity field u = {u1, . . . , un} ⊂ Rd

and placement p = (p1, . . . , pn) which are given by

(pi − pj) · (ui − uj) = 0, ij ∈ Eb,

(pi − pj) · (ui − uj) ≤ 0, ij ∈ Ec,

(pi − pj) · (ui − uj) ≥ 0, ij ∈ Es.
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When these conditions hold u is said to be an infinitesimal flex of G(p). If all infinitesimal
flexes G(p) are trivial, that is, are rigid motion flexes in the usual sense for bar-joint
frameworks, then G(p) is said to be first-order rigid. These definitions also apply to
countably infinite tensegrities G(p).

It is convenient to write G(p) for the associated bar-joint framework (G, p) and we note

that if G(p) is first-order rigid then so too is G(p) since any infinitesimal flex of the bar-
joint framework is also an infinitesimal flex for G(p). An equilibrium stress ω : E → R for

the bar-joint framework G(p) is a scalar field (or stress field) ω = (ωe) such that for each
joint pj we have the equilibrium condition

Σi:ij∈E ωij(pi − pj) = 0.

An equilibrium stress ω : E → R for the tensegrity G(p) is an equilibrium stress ω for

G(p) with the additional property that ωij is nonpositive (resp. nonnegative) if ij indexes
a cable (resp. strut). Also an equilibrium stress ω of G(p) is said to be proper if ωij is
nonzero for all cables and struts.

Since a bar constraint for the pair ui, uj is equivalent to a cable constraint together with
a strut constraint, for the same pair ij, it is convenient to consider cable-strut tensegri-
ties G(p) determined by p and subsets Ec, Es which are not necessarily disjoint subsets
of {1, . . . , n}2 (or of N2 if G is countable). The constraint system for this cable-strut
tensegrity G(p) is then the set of inequalities

(pi − pj) · (ui − uj) ≤ 0, ij ∈ Ec,

(pi − pj) · (ui − uj) ≥ 0, ij ∈ Es.

Note that we retain the fact that G is the associated simple graph, so that a label ij
in both Ec and Es corresponds to one edge of G. Also, G(p) is the associated bar-joint
framework, as before. Henceforth, and without loss of generality, we consider only cable-
strut tensegrities G(p).

The inequality constraint system for G(p) can be expressed in terms of a matrix con-
dition for a certain tensegrity rigidity matrix R(G(p)). If G is finite then the matrix has
m = |Ec|+ |Es| rows and n edges, where the row for a member e is equal to

[ vi vj

e 0 · · · 0 sgn(e)(pi − pj) 0 · · · 0 sgn(e)(pj − pi) 0 · · ·
]
,

where sgn(e) is −1 (resp. +1) if e is a cable (resp. strut). It follows that a velocity field u
is an infinitesimal flex of G(p) if and only if the stress field R(G(p))u lies in the cone Rm

+ .
Here and below we view u as a column matrix and R(G(p))u as the usual matrix product.
Note also that R(G(p)) is obtained from the usual rigidity matrix R(G, p) by repeating
rows corresponding to cable-strut pairs and then by multiplying the rows corresponding to
cables by -1. (The matrix R(G, p) has |E| rows of the form above with all signs positive.)
It follows that R(G(p))u = 0 if and only if R(G, p)u = 0. Also, ω is an equilibrium stress
of G(p) if and only if |ω|R(G(p))u = 0.

Let G be a countably infinite simple graph with infinite cable-strut tensegrity G(p) with
p = (p1, p2, . . . ) a vertex placement in Rd. The infinite rigidity matrix R(G(p)) can be
viewed as a linear transformation from the space of velocity fields u in the direct product
vector space (Rd)∞ to the vector space RE =

∏
e∈E R. We shall assume that each vertex
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of G has finite degree. In this case the map ω → ωR(G(p)) is well-defined as a linear
transformation.

The Roth-Whiteley theorem for finite cable-strut tensegrities takes the following form.

Theorem 1.1. Let G(p) be a finite cable-strut tensegrity. Then G(p) is first-order rigid

if and only if G(p) is first-order rigid and there exists a proper equilibrium stress.

The sufficiency direction of the proof is straightforward. For a stress field ω with non-
negative values for struts and nonpositive values for cables, let µe = |ωe|. Then ω satisfies

the equilibrium equations if and only if µR(G(p)) = 0. Now let G(p) be first-order rigid,
let ω be a proper equilibrium stress for G(p) and let u be an infinitesimal flex of G(p), so
that σ = R(G(p))u lies in the cone Rm

+ . Then

µ · σ = µ(̇R(G(p)u) = (µR(G(p)) · u = 0.

Since µe is strictly positive for every member e it follows that σ = 0. Thus u is an
infinitesimal flex of G(p). By our assumptions, u is a trivial rigid motion flex and it
follows that G(p) is first-order rigid.

The necessity direction depends on some basic properties of convex cones in Rm which
are brought into play for the convex cone generated by the rows of the rigidity matrix
R(G(p)).

A cone C in Rm is a nonempty set closed under multiplication by nonnegative real
numbers. The dual cone of C is the cone C∗ in the dual space (Rm)′ consisting of the set
of linear functionals x∗ such that x∗(x) ≥ 0 for all x in C. A standard fact is that if C is
norm-closed then the second dual cone C∗∗ coincides with C (that is, with the canonical
image of C in the second dual space). This follows readily from the following separation
lemma. A proof via standard Hilbert space geometry also yields a generalisation of the
lemma to closed cones in Hilbert space. See also Lemma 2.9.

Lemma 1.2. Separation lemma. Let C be a closed convex cone in Rm and w /∈ C.
Then there is a continuous linear functional f with f(w) < 0 ≤ f(x) for all x ∈ C.

Lemma 1.3. Dual cone lemma. Let X = {x1, . . . , xm} be a set of vectors in Rm with
convex cone C(X) = {

∑
i λixi : λi ≥ 0}. Then the following statements are equivalent.

(i) C(X)∗ is a subspace.
(ii) C(X)∗ = X⊥.
(iii)

∑
i µixi = 0 for some choice of strictly positive coefficients µ1, . . . , µm.

Proof. The equivalence of (i) and (ii) is immediate. If (i) holds then the cone C(X) =
C(X)∗∗ is also a subspace. Thus for each index j

−xj =
∑
i

λi,jxi with λi,j ≥ 0,

and so

0 =
∑
i

µi,jxi with µi,j ≥ 0, µj,j > 0.

Adding these m equalities gives the desired coefficients for (iii).
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If (iii) holds then for x∗ ∈ C(X)∗ we have 0 = x∗(
∑

j µjxj) =
∑

j µjx∗(xj). Since

x∗(xj) ≥ 0 for each j it follows from the strict positivity of the coefficients that x∗(xj) = 0
for each j. Thus X⊥ ⊆ C(X)∗. Since the reverse inclusion is elementary, (ii) holds. �

Lemma 1.4. Dichotomy lemma. Let A be an m by n real matrix. Then precisely one
of the following is true.

(i) There exists u in Rm with Au 6= 0 and Au ∈ Rm
+ .

(ii) There exists a row vector µ with strictly positive entries such that µA = 0.

Proof. Let X = {x1, . . . , xm} be the set of row vectors of A. Then

{u : Au = 0} = X⊥, {u : Au ∈ Rm
+} = C(X)∗.

Note that (i) is false if and only if C(X)∗ = X⊥. By the previous lemma this occurs if
and only if

∑
µixi = 0 for some choice of strictly positive coefficients and so (i) is false if

and only if (ii) is true. �

To complete the proof of Theorem 1.1 let G(p) be first-order rigid. If u is an infinitesimal
flex, with R(G(p))u ∈ Rm

+ then u must be a rigid motion flex and so R(G(p))u = 0. This
means condition (i) in Lemma 1.4 does not hold for A = R(G(p)). Therefore (ii) holds

and this strictly positive vector µ determines a proper equilibrium stress ω. Also G(p) is
first-order rigid since this property holds for G(p).

2. First-order rigidity for infinite tensegrities

That the Roth-Whiteley equivalence fails to hold for countable tensegrities is evident
from the following two examples.

Example 2.1. Let G(p) be the infinite periodic tensegrity framework in R2 whose place-
ment is the periodic tiling by equilateral triangles and where all the members are cables.
Then G(p) is first-order rigid and there exist proper equilibrium stresses. Indeed, any stress
field which is constant on any straight line through a cable and takes negative values is
such a stress. However, G(p) is not first-order rigid since, for example, the contractive
affine map (x, y)→ (x/2, y/2) restricts to a velocity field which is an infinitesimal flex of
G(p). On the other hand we shall see that G(p) is first-order c0-rigid.

Example 2.2. A countable cable-strut tensegrity G(p) in R2 is indicated in Figure 1. The
dashed lines represent cables between the vertex placements (the joints of G(p)) while the
solid lines represent cable-strut pairs (equivalent to bars). The nondiagonal members all

have length 1. While the companion bar-joint framework G(p) is first-order rigid, the
tensegrity G(p) has nontrivial infinitesimal flexes in which countably many of the upper
joints have the same leftward translational velocity while all other joints are fixed. This
leads to the observation that the set of infinitesimal flexes of G(p) is a convex cone which
is not finitely generated. The figure also indicates an equilibrium stress field ω for G(p),
where a “0” label on a cable-strut pair indicates that the total stress ωij,c + ωij,s is equal
to 0 for these 2 members. Choosing nonzero values for these pairs leads to ω being a
proper equilibrium stress for G(p). A consequence of this example is that there is no
literal counterpart to the dichotomy lemma for an infinite matrix A, even when A has the
sparse structure of a rigidity matrix.
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Figure 1. A countable cable-strut tensegrity with a proper equilibrium stress.

Let X be one of the Banach spaces c0 or `q, for 1 ≤ q < ∞. Then the tensor product
space X ⊗ Rd may be viewed as a space of velocity fields for any countable cable-strut
tensegrity G(p). More precisely, this is the vector space of velocity fields u = (u1, u2, . . . ),
with uk ∈ Rd, which is a Banach space for a tensor product norm ‖·‖ = ‖·‖X⊗‖·‖′, where
‖ · ‖′ is a norm on Rd. These norms are equivalent norms and in this sense independent of
‖ · ‖′. Let us take ‖ · ‖′ = ‖ · ‖q when X = `q and ‖ · ‖′ = ‖ · ‖∞ when X = c0. Then the
normed vector-valued sequence space X⊗ Rd is naturally isometrically isomorphic to X.

Definition 2.3. Let G(p) be a countable tensegrity in Rd and let X be a classical Ba-
nach sequence space. Then G(p) is first-order X-rigid (or X-infinitesimally rigid) if every
infinitesimal flex of G(p) in X⊗ Rd is trivial.

In particular while the “strip tensegrity” in Example 2.2 is infinitesimally flexible it is
nevertheless c0-infinitesimally rigid. To see this note that the subframework determined
by the lower two rows of joints is an infinitesimally rigid tensegrity. Let u be a general
infinitesimal flex of G(p). By adding a trivial (rigid motion) infinitesimal flex we may
assume that the the velocity u(p) at every joint p of this subframework is zero. If u(p)
is nonzero for some joint p in the upper row of cables then it is necessarily of the form
(−a, 0) with a > 0. It follows that the velocity u(p′) for any joint in the top row to the
right of p has the form (−a′, 0) with a′ ≥ a, and so u is not in c0 ⊗ Rd.

We now define some proper asymptotic equilibrium stresses for a tensegrity G(p) which
are associated with the Banach sequence space X. We write X′ for the dual sequence
space of X. Recall that the rigidity matrix R(G(p)) accommodates the negative signs (for
cables) of an equilibrium stress in the sense that a stress field ω is an equilibrium stress if
and only if |ω|R(G(p)) = 0.

Definition 2.4. Let G(p) be a countable cable-strut tensegrity and let ω(n), for n =
1, 2, . . . , be a sequence of finitely nonzero stress fields for G(p) such that

(i) ω
(n)
e ≤ 0 if e is a cable and ω

(n)
e ≥ 0 if e is a strut,

(ii) for every member e there is δe > 0 such that |ω(n)
e | ≥ δe for sufficiently large n.

Then

(a) ω(n) is a proper X′-asymptotic equilibrium stress for G(p) if |ω(n)|R(G(p)) tends to
0 in X′ ⊗ Rd as n→∞,
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(b) ω(n) is a proper (X′,X)-asymptotic equilibrium stress for G(p) if |ω(n)|R(G(p)) tends
to 0 in the weak topology of X′ ⊗ Rd.

Note that there is no requirement that the sequence ω(n) is subject to any kind of
convergence. The convergence condition in (b) ensures that |ω(n)|R(G(p))u tends to 0
when the velocity field u is in X ⊗ Rd, and so for our contexts below (a) is a stronger
requirement than (b).

We consider tensegrities G(p) with uniform structure by which we mean that there is
an upper bound for the degrees of the vertices of G and an upper bound for the lengths
of the members of G(p). In this case R(G(p)) is a bounded linear transformation from
X⊗Rd to X⊗R (since the bar lengths are uniformly bounded) and the transpose matrix
R(G(p))T is a bounded linear transformation from X⊗R to X⊗Rd (since G(p) has uniform
structure).

In the next lemma we note that a proper equilibrium stress in X′ ⊗ R, for X 6= `1,
provides a proper X-asymptotic equilibrium stress.

Lemma 2.5. Let G(p) be a cable-strut tensegrity with uniform structure and let X be c0 or
`q, for 1 < q <∞, with dual space X′. Let ω = (ω1, ω2, . . . ) be a proper equilibrium stress
field for G(p) with ω ∈ X′⊗R. For each n let ω(n) be the stress field (ω1, . . . , ωn, 0, 0, . . . ).
Then the sequence (ω(n)) is a proper X′-asymptotic equilibrium stress for G(p).

Proof. In view of the hypotheses for X the sequence ω(n) tends to ω in X⊗Rd as n→∞.
Since G(p) has uniform structure, |ω(n)|R(G(p))→ |ω|R(G(p)) = 0. �

Any proper equilibrium stress for the strip framework of Example 2.2 must have the
same negative value ωe for all the cable members e and so there is no proper equilibrium
stress in X′ ⊗ R when X is c0 or `q, 1 < q < ∞. However, there do exist proper (X′,X)-
asymptotic equilibrium stresses which are obtained by truncating, in the manner of the
previous lemma, the `∞ ⊗ R equilibrium stress given in Example 2.2.

The next lemma generalises the sufficiency direction of the Roth-Whiteley theorem.

Lemma 2.6. Let G(p) be a countable cable-strut tensegrity with uniform structure, let X

be one of the Banach sequence spaces c0, `
q, for 1 ≤ q < ∞, and suppose that G(p) is

first-order X-rigid and there exists a proper (X′,X)-asymptotic equilibrium stress. Then
G(p) is first-order X-rigid.

Proof. Let G(p) be first-order X-rigid and let ω(n) be a proper (X′,X)-asymptotic equilib-

rium stress for G(p). For each n let µ(n) be the nonnegative stress field with µ
(n)
e = |ω(n)

e |.
Let u ∈ X⊗Rd be an infinitesimal flex so that the stress field σ = R(G(p))u is nonnegative,
with σe ≥ 0 for all e. We have

µ(n)R(G(p))u = µ(n) · σ =
∑
e

µ(n)
e σe,

where the sum is finite for each n and the terms µ
(n)
e σe are nonnegative. On the other

hand since µ(n)R(G(p)) tends to zero, these finite sums also tend to zero, as n tends to
infinity, and so µn

e ≥ δe for some δe and all n ≥ ne. It follows that σe = 0 for each e.

Thus u is an infinitesimal flex for G(p) and so u is a rigid motion infinitesimal flex, as
required. �
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2.1. Closed convex cones and first-order X-rigidity. We now obtain the following
generalisation of the Roth-Whiteley theorem. Note that the sufficiency direction follows
from Lemma 2.6.

Theorem 2.7. Let G(p) be a countable cable-strut tensegrity with uniform structure and
let X be one of the Banach sequence spaces c0, `

q, for 1 ≤ q <∞. Then G(p) is first-order

X-rigid if and only if G(p) is first-order X-rigid and there exists a proper X′-asymptotic
equilibrium stress.

A consequence of the Hahn-Banach theorem for locally convex topological vector spaces
is the following general separation theorem. For a proof see Theorem 3.9 in Conway [9].

Theorem 2.8. Let X be a real locally convex topological vector space and let A and B
be two disjoint closed convex subsets of X. If B is compact, then A and B are strictly
separated.

Strict separation means that there exists a real value α and a continuous linear functional
f such that f(b) < α < f(a) for all b ∈ B, a ∈ A. Applying this to a singleton set B = {w}
and a closed convex cone A, with w /∈ A, we have α < 0 = f(0). Also, since A is a cone
we cannot have f(a) < 0 for any a ∈ A for otherwise f(βa) < α for some β > 0. Thus we
have the following separation lemma generalising Lemma 1.2.

Lemma 2.9. Let C be a closed convex cone in a real locally convex topological vector
space X and let w ∈ X\C. Then there is a continuous linear functional f on X with
f(w) < 0 ≤ f(x) for all x ∈ C.

Henceforth we assume that X is one of the Banach sequence spaces `q, 1 ≤ q <∞, or c0,
and we write x̂ for the image of x ∈ X under the canonical injection from X to its second
dual space X′′.

As a substitute for the double dual cone identity Ĉ = C∗∗ in finite dimensions we have
the following lemma.

Lemma 2.10. Let C be a closed convex cone in a Banach space Y and let Ŷ be the natural
embedding of Y in the second dual Y′′. Then Ĉ = C∗∗ ∩ Ŷ.

Proof. The inclusion of Ĉ in the intersection is clear. Let w ∈ X\C. By Lemma 2.9 there
exists f in C∗ with f(w) < 0. In particular ŵ /∈ C∗∗. �

Example 2.1 shows that the dichotomy lemma does not extend in a literal way to infinite
matrices. However we have the following extension to tensegrities with uniform structure
and this completes the proof of Theorem 2.7. We write RE

+ to denote the nonnegative cone
in the direct product space RE =

∏
e∈E R.

Lemma 2.11. Let G(p) be a countable tensegrity in Rd with uniform structure which is
first-order X-rigid. Then precisely one of the following is true.

(i) There exists u in X⊗ Rd with R(G(p))u a nonzero element of the cone RE
+.

(ii) There exists a proper X′-asymptotic equilibrium stress ω(n) for G(p).

Proof. If (i) holds then (ii) is false by the sufficiency direction of Theorem 2.7.
Assume then that (i) does not hold. Since G(p) has uniform structure R(G(p))u lies in

X ⊗ R for any velocity field u in X ⊗ Rd. Let X = {x1, x2, . . . } be the rows of R(G(p))
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and let C(X) be the closed convex cone in X′ ⊗ Rd generated by X. As in the earlier
dichotomy lemma, any velocity field u may be viewed as a continuous linear functional on
the cone C(X). The failure of (i) is the assertion that C(X)∗ = X⊥ where X⊥ denotes
the annihilator of X in (X′ ⊗Rd)′. In particular the dual cone C(X)∗ is a linear subspace
of (X′ ⊗ Rd)′ and so by, Lemma 2.10, C(X) is also a subspace. In particular if y is the
element x1 + 1

2
x2 + 1

4
x2 + . . . in C(X) then −y lies in C(X) and so −y is a limit in X′⊗Rd

of a sequence of finite sums σ(n) =
∑

i λ
n
i xi, for n = 1, 2, . . . , where the coefficients are

nonnegative. It follows that the sequence

x1 +
1

2
x2 + · · ·+ 1

2n
xn + σ(n), n = 1, 2, . . . ,

tends to 0 in X′ ⊗ Rd. Also, this sequence has the form

µ(n)R(G(p)), n = 1, 2, . . . ,

where for each k we have µ
(n)
k ≥ 1

2k
for n ≥ k. Let ω

(n)
k = µ

(n)
k (resp. −µ(n)

k ) if xk is the

row for a strut (resp. cable). Then ω(n) is the desired proper X′-asymptotic equilibrium
stress. �

We remark that the relationship between X-infinitesimal rigidity and appropriate forms
of continuous rigidity has not been greatly explored. For example, while the kagome
periodic framework in R2 has bounded infinitesimal flexes it seems to be an open problem
whether it has a smooth motion (or even a continuous motion) p(t) for which the maximum
deviations of the joints, that is, the quantities δk(p) = supt |pk(t) − p(0)|, are uniformly
bounded. See also Section 2 of Owen and Power [17]. We note also that our remarks in
Section 3.5 suggest that X-infinitesimal rigidity is at best a sufficient condition (for trivial
reasons) for a directed form of continuous rigidity with respect to X.

3. Prestress stability, second order rigidity and continuous rigidity

We first consider finite bar-joint frameworks and give direct proofs that prestress stabil-
ity implies continuous rigidity and that second order rigidity is an intermediate property.

3.1. PS, 2OR and CR for finite frameworks. A classical result of Asimow and Roth
[2], [3] in the rigidity theory of finite bar-joint frameworks (G, p) is that if (G, p) is infinites-
imally rigid (IR) then it is continuously rigid (CR). The proof uses the implicit function
theorem to establish this implication under the assumption that p is a regular point in
Rd|V | for the distance function fG from Rd|V | to R|E|. See Asimow and Roth [2] or Roth
[19]. On the other hand with the maximal rank characterisation of infinitesimal rigidity
in [2] it is shown, in [3], that if (G, p) is infinitesimally rigid then p is necessarily a regular
point.

It is also true that infinitesimal rigidity implies continuous rigidity for finite tensegrities,
a fact due to Connelly - see Roth-Whiteley [20], Theorem 5.7.

For a finite generic framework, being continuously rigid is equivalent to being first-order
rigid [2]. The nongeneric bar-joint frameworks of Figure 2 show that this equivalence fails
in general. That the first framework is CR and not IR is clear, since the 3 lower joints
are colinear. It is less evident that the second framework is continuously rigid. One can
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give a direct ad hoc proof but better insights come from the consideration of equilibrium
stresses and prestress stability.
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Figure 2. CR but not IR.

A general stress of a bar-joint framework (G, p) is any real field ω : E → R on the
edges and an equilibrium stress is a stress with ωR(G, p) = 0. This is equivalent to an
equilibrium condition at each vertex, namely

∑
j ωij(pi − pj) = 0, for each vertex vi.

In the next definition we adopt the convention that ωij = 0 if i = j or if ij is not
an edge. Also we have ωij = ωji and a summation over pairs i, j with i < j indicates a
summation over all the edges of G. We say that an infinitesimal flex is trivial if it is a
rigid motion infinitesimal flex.

Definition 3.1. A finite bar-joint framework (G, p) is prestress stable (PS) if there is an
equilibrium stress ω such that for each nontrivial infinitesimal flex u,∑

i<j

ωij|ui − uj|2 > 0.

It follows immediately from the definitions that first-order rigidity implies prestress
stability. To see that prestress stability implies continuous rigidity we make use of the
stress energy functions introduced by Connelly [5].

For a general stress ω for (G, p) the stress energy function Eω : Rnd → R is given by

Eω(q) =
∑
i<j

ωij|qi − qj|2.

In the presence of prestress stability, for an equilibrium stress ω, the next lemma shows
that the second derivative at t = 0 of Eω(p + tu) is positive for a nontrivial infinitesimal
flex u. The usefulness of the lemma in the proof of Theorem 3.3 comes from the stability
fact that if u′ is close enough to u then the second derivative at t = 0 of Eω(p + tu′) is
also positive.

Lemma 3.2. If ω is any stress for (G, p) and q, u are vectors in Rdn then

d2

dt2
Eω(q + tu)|t=0 = 2

∑
i<j

ωij|ui − uj|2.

Proof. Expanding the terms

ωij|(qi + tui − (qj + tuj)|2 = ωij〈qi + tui − (qj + tuj), qi + tui − (qj + tuj)〉
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we have

Eω(q + tu) =
∑
i<j

ωij

(
|qi − qj|2 + 2t〈qi − qj, ui − uj〉+ t2|ui − uj|2

)
and the desired identity follows. �

Let us also note that the derivative of Eω(p+ tu) at t = 0 is given by

1

2

d

dt
Eω(p+ tu)|t=0 =

∑
i<j

ωij〈pi − pj, ui − uj〉 =
∑
i<j

ωij〈pi − pj, ui〉+
∑
i<j

ωij〈pj − pi, uj〉

=
∑
i<j

ωij〈pi − pj, ui〉+
∑
i<j

ωij〈pj − pi, uj〉 =
∑
i<j

ωij〈pi − pj, ui〉+
∑
j<i

ωji〈pi − pj, ui〉,

which is zero when ω is an equilibrium stress.

Theorem 3.3. Prestress stability implies continuous rigidity for finite bar-joint frame-
works.

Proof. Let (G, p) be prestress stable with equilibrium stress ω as in Definition 3.1. Assume
that (G, p) is not continuously rigid. Then there is a continuously differentiable motion p(t)
of (G, p) with p′(0) a nontrivial infinitesimal flex u. The real-valued function t→ Eω(p+tu)
has vanishing derivative at t = 0, since ω is an equilibrium stress, and so by Lemma 3.2 it
has the form A(u)t2+C where C is constant and A(u) = 2Eω(u) = 2

∑
i<j ωij|ui−uj|2 > 0.

In particular Eω(p+ tu) is strictly increasing on R+.
Consider the finite cone C(u, δ) of velocity fields in Rnd given by

C(u, δ) = {su′ : s ∈ [0, 1], |u′ − u| ≤ δ}

where δ > 0 is such that A(u′) > 0 when |u′ − u| ≤ δ. As in the previous paragraph
Eω(p + tu′) is strictly increasing on R+ from which it follows that Eω(q) > Eω(p) for all
q 6= p in p+ C(u, δ).

For any continuously differentiable path s → q(s) in Rnd with q(0) = p and q′(0) = u
the point q(s) is equal to to p + su to first order, and so q(s) lies in p + C(u, δ) for
some sufficiently small s > 0. Considering this for the motion p(s) gives the desired
contradiction since in this case the bar lengths are preserved and the function s→ Eω(p(s))
is constant. �

3.2. Second order rigidity. In view of the entries of the rigidity matrix R(G, u) we see
that ∑

i<j

ωij|ui − uj|2 =
∑
i<j

ωij〈ui − uj, ui − uj〉 = ωR(G, u)u.

Thus, prestress stability may be reworded as the following property.

There exists ω with ωR(G, p) = 0 and ωR(G, u)u > 0 for all nontrivial flexes u.

This compact reformulation is helpful when making comparisons with another form of
rigidity, namely second order rigidity (2OR). The idea of second order rigidity is that a
nontrivial infinitesimal flex u of (G, p) may exist but for each such u there is no differen-
tiable continuous motion p(t) starting in the direction u, that is, with p′(0) = u. One way
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to effect this obstruction, in view of the proof of Theorem 3.3, is the presence an equilib-
rium stress ω specifically for u in the sense that

∑
i<j ωij|ui − uj|2 > 0. This suggests the

following additional definition which is evidently a weakening of prestress stability.

Definition 3.4. A finite bar-joint framework (G, p) is weakly prestress stable (WPS) if for
each nontrivial infinitesimal flex u there is an equilibrium stress ω with

∑
i<j ωij|ui−uj|2 >

0.

In fact Connelly and Whiteley [8] have shown that this property is equivalent to second
order rigidity as defined in terms of (the nonexistence of) nontrivial second order flexes.
Such a flex for (G, p) is a pair (u, a) where u, a are vectors in Rnd, representing a nontrivial
velocity flex u and an acceleration vector a. This pair should satisfy the equations arising
from the second derivative of the constraint equations for a smooth motion p(t), and they
have the form

R(G, p)u = 0, R(G, p)a+R(G, u)u = 0.

Since the image space R(G, p)Rnd is orthogonal to kerR(G, p)T , the nullspace of the
transpose, it follows, from the Fredholm alternative, that either there is a solution a to the
equation R(G, p)a = −R(G, u)u or there exists ω in kerR(G, p)T with ω · (R(G, u)u) 6= 0.
This shows that second order rigidity implies weakly prestress stable. In view of our
comments preceding Definition 3.4 the reverse implication holds and the properties are
equivalent. In particular this gives an alternative to Connelly’s original proof [4] (see also
[7]) that second order rigidity implies continuous rigidity.

To summarise, for finite bar-joint frameworks we have

IR =⇒ PS =⇒ 2OR(= WPS) =⇒ CR

Example 3.5. Let us revisit the square within square framework of Figure 4. The outer
joints are p1 = (−1, 1), p2 = (1, 1), p3 = (1,−1), p4 = (−1,−1), the inner joints are p5 =
(−1/2, 1/2), p6 = (1/2, 1/2), p7 = (1/2,−1/2), p8 = (−1/2,−1/2), and an equilibrium
stress is indicated in Figure 3.
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Figure 3. An equilibrium stress.

The nontrivial “parallel motion” infinitesimal flex z is defined by z1 = z2 = z5 = z6 =
(1, 0), with zk = (0, 0) for other values of k, and the infinitesimal flex w is infinitesimal
rotation of the inner square, with w5 = (1, 1), w6 = (1,−1), w7 = (−1,−1), w8 = (−1, 1)
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and wk = (0, 0) for other values of k. Up to a scalar factor, and a trivial infinitesimal flex,
a typical nontrivial infinitesimal flex has the form αz + βw with 0 ≤ α, β ≤ 1 not both
zero. We have

Eω(αz + βw) =
∑
ij

ωij

[
α2|zi − zj|2 + β2|wi − wj|2 − 2αβ〈(zi − zj), (wi − wj)〉

]
.

We note that with the exception of i, j = 5, 8 or 6, 7 at least one of the pairs of vectors
zi − zj, wi − wj is zero. Moreover, for these exceptional values the pair of vectors is an
orthogonal pair, and so there is no contribution to the sum from the inner product terms.
It remains to note that despite the presence of negative stresses ωij (of value -1) on the
outer edges we have

∑
ij ωijα

2|zi − zj|2 > 0 if α > 0. It follows that Eω(αz + βw) is
positive and so the framework is prestress stable and hence continuously rigid.

3.3. Prestress stability and stress matrices. Prestress stability can also be defined
in terms the stress matrix of an equilibrium stress, as we now demonstrate.

For any velocity vector u and stress field ω associated with the edges ij of a finite
bar-joint framework G (and with ωij = 0 for a nonedge) we have

ωR(G, u)u =
∑
i<j

ωij|ui − uj|2 =
∑
i<j

ωij〈ui − uj, ui − uj〉,

which in turn is equal to∑
i<j

ωij(〈ui, ui〉 − 2〈ui, uj〉+ 〈uj, uj〉) =
∑
j:j 6=i

ωij|u2i | −
∑
i<j

2ωij〈ui, uj〉.

On the other hand a general square symmetric n × n matrix Ωij, with entries aij, has a
quadratic form

xTΩx =
∑
i

xi(Ωx)i =
∑
i,j

aijxixj =
∑
i

aiix
2
i + 2

∑
i<j

aijxixj,

and Ω⊗ Id similarly has the quadratic form

uT (Ω⊗ Id)u =
∑
i,j

aij〈ui, uj〉 =
∑
i

aii|ui|2 + 2
∑
i<j

aij〈ui, uj〉.

So we see that

ωR(G, u)u = uT (Ω⊗ Id)u, where Ωij = −ωij, for i 6= j, and Ωii =
∑
j:j 6=i

ωij.

In particular the row sums and the column sums of Ω are zero. The matrix Ω is defined to
be the stress matrix for ω and it follows that we have the following alternative definition
of prestress stability.

Proposition 3.6. A finite bar-joint framework (G, p) in Rd is prestress stable if and only
if there exists an equilibrium stress matrix Ω for p with uT (Ω⊗Id)u > 0 for each nontrivial
infinitesimal flex u.

Prestress stability can also be defined for finite tensegrities in the same way to that of
Definition 3.1, but in terms of the stress energy function associated with a proper equi-
librium flex. See Connelly [4], Connelly and Whiteley [8] and Connelly and Guest [7], for
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example. Here one can also find examples of tensegrities, such as various Cauchy poly-
gons, which are continuously rigid by virtue of having stress matrices which are positive
semidefinite on a complementary subspace to the space of rigid motion infinitesimal flexes.

3.4. Prestress stability and rigidity for infinite frameworks. We first note an ele-
mentary extension of Theorem 3.3 to countable bar-joint frameworks.

Definition 3.7. A countable framework (G, p) is sequentially prestress stable if there is
an increasing sequence of prestress stable subframeworks (Gn, p), determined by a chain
G1 ⊂ G2 ⊂ ... of finite subgraphs whose union is G.

Definition 3.8. A countable framework (G, p) is sequentially continuously rigid if there
is an increasing sequence of continuously rigid subframeworks (Gn, p), determined by a
chain G1 ⊂ G2 ⊂ ... of finite subgraphs whose union is G.

Theorem 3.9. If (G, p) is sequentially prestress stable then it is sequentially continuously
rigid and hence continuously rigid.

This theorem follows readily from Theorem 3.3.

Example 3.10. Figure 4 indicates an infinite bar-joint framework (G, p). The joint po-
sitions are located dyadically; the outer joints are p1 = (−1,−1), p2 = (−1, 1), p3 =
(1, 1), p4 = (1,−1) and the other joints have the form 1

2k
vj, j = 1, 2, 3, 4, k = 1, 2, . . . . The

framework (G, p) has an infinite dimensional flex space, since the quadruple of joints of the
square subframeworks with bar lengths (1/2)k, for k = 1, 2, . . . , is the support of an infini-
tesimal rotation flex, say w(k), for k = 1, 2, . . . . We assume, as before, that |w(k)| =

√
2 for

each k. It follows from the continuous rigidity of the double square framework of Example
2 and a simple induction argument that the framework is sequentially continuously rigid.
Also it can be shown that it is sequentially prestress stable.

a

a

a

A

B

a

a

a

a

a

C

-1/4

-1/4 -1/4

-1/4

1 1

11

Figure 4. A partially defined equilibrium stress.

We also observe that it is possible to define an equilibrium flex ω for (G, p) which is
summable in the sense that the sequence of weights ωe gives an absolutely convergent
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series. The equilibrium condition is satisfied for the vertex v1 at A. Also the equilibrium
condition is satisfied at B if a1

8
+ a1

2
= 1/4, that is if a = 4

5
. It follows that there

is a rotationally symmetric summable equilibrium stress ω with stress values (4
5
)k for

k = 2, 3, . . . .

For countable frameworks infinitesimal rigidity does not ensure continuous rigidity, as
we observe below in Section 3.5 and in Remark ??. In view of this and the lack of algebraic
geometry methods, it is natural to consider some variants of continuous rigidity in this
setting.

Define the space of bounded displacement vectors (or bounded velocity vectors) u =
(uk)k∈N as the normed space `∞ ⊗ Rd with norm given by the supremum, so that ‖u‖ =
supk |uk|, with | · | the usual Euclidean norm on Rd. We say that a (continuous) motion
p(t), 0 ≤ t ≤ 1, of (G, p) is bounded motion if p(t)− p(0) belongs to `∞ ⊗ Rd for all t.

Definition 3.11. A directed bounded motion of (G, p) is a continuous motion p(t), t ∈
[0, 1], such that the limit

lim
t→0+

(p(t)− p(0))/t = (p′k(0))k∈N

exists with respect to convergence in the displacement space `∞ ⊗ Rd. Moreover, the
directed bounded motion p(t) is proper if the infinitesimal flex p′(0) is nonzero, and is
nontrivial if p′(0) is nontrivial.

Definition 3.12. A countable bar-joint framework in Rd is said to be directedly bound-
edly continuously rigid, or, for brevity, directedly continuously rigid (DCR) if it has no
nontrivial directed bounded motions.

For finite bar-joint frameworks we may similarly define directed motions and directed
continuous rigidity. That IR implies DCR is evident from the definitions. On the other
hand the equivalence of CR and DCR for finite frameworks depends on algebraic geometry
arguments, as indicated in Remark 3.20.

Let us say that a countable framework (G, p) is boundedly infinitesimally rigid (BIR) if
there exists no infinitesimal flexes which are nontrivial and bounded. From the definitions
we have that that IR implies BIR, and BIR implies DCR.

We next turn to a generalisation of the finite framework result that PS (a weakening of
IR) implies DCR. This is done in Theorem 3.17 for frameworks with bounded bar lengths.

Definition 3.13. A bar-joint framework (G, p) with bounded bar lengths is boundedly pre-
stress stable (BPS) if there is a summable equilibium stress ω, in the sense that

∑
i<j |ωij|

is finite, and for all bounded nontrivial infinitesimal flexes u of (G, p),∑
i<j

ωij|ui − uj|2 > 0.

We note that when the bar lengths are bounded (G, p) has finite stress energy for ω in
the sense that

Eω(p) =
∑
i<j

ωij|pi − pj|2 <∞.

Once again we refer to the function q → Eω(q) as the stress energy function for ω and G.
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Example 3.14. The framework (G, p) of Example 4 is boundedly prestress stable for
the summable equilibrium stress ω given there. To see this let u be a nontrivial, bounded
infinitesimal flex. We may assume that u has zero velocities at p3, p4. In this case u admits
an infinite sum representation

u = αz +
∑
k

βkw
(k),

where (βk) is a bounded sequence and where z is the “parallel motion” infinitesimal flex
whose velocities are zero on the lower joints of the square subframeworks and equal to
(1, 0) on the upper joints. The positivity and finiteness of Eω(u) follow as in Example 3.5
since the resulting series are absolutely convergent.

Example 3.15. Let (G, p) be the lacunary linear framework in R2 with bars corresponding
to the intervals . . . , [−7,−3], [−3,−1], [−1, 0], [0, 1], [1, 3], [3, 7], . . . .

Figure 5. A lacunary linear framework.

Evidently (G, p) is not BSR. Let ω be the summable equilibrium stress with ωe = 1
2k

if

the bar for edge e has length 2k. Every equilibrium stress is in fact a scalar multiple of ω.
Note that for any uniformly bounded infinitesimal flex u (or indeed any bounded velocity
field) the quantity Eω(u) is finite. On the other hand Eω(p) is not finite and (G, p) has
unbounded bar lengths.

Lemma 3.16. Let ω be a summable equilibrium stress for a bar-joint framework (G, q)
with bounded bar lengths, and let u be a bounded velocity vector. Then

d2

dt2
Eω(q + tu)|t=0 = 2

∑
i<j

ωij|ui − uj|2.

Proof. We have

ωij|(qi + tui − (qj + tuj)|2 = ωij〈qi + tui − (qj + tuj), qi + tui − (qj + tuj)〉,

and so

Eω(q + tu) =
∑
i<j

ωij|qi − qj|2 +
∑
i<j

ωij2t〈qi − qj, ui − uj〉+
∑
i<j

ωijt
2|ui − uj|2.

Each of these series is absolutely convergent and so the desired identity follows. �

From the expansion of Eω(q + tu) above it follows that when ω is summable and (G, p)
has bounded bar lengths then for a bounded infinitesimal flex u we have

d

dt
Eω(p+ tu)|t=0 = 2

∑
i<j

ωij〈pi − pj, ui − uj〉,

where the series is absolutely convergent. In particular, when ω is a summable equilibrium
stress for (G, p) then, as with finite frameworks, this derivative is zero.
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Theorem 3.17. Let G be a countably infinite bar-joint framework with bounded bar
lengths. If (G, p) is boundedly prestress stable then it is directedly continuously rigid.

Proof. Assume that (G, p) is BPS, with associated summable equilibrium stress ω, and
that (G, p) is not DCR. Then there is a boundedly smooth motion p(t) of (G, p) with p′(0)
equal to a nontrivial bounded infinitesimal flex u = (uk). As in the proof of Theorem 3.3
we write A(u) for 2

∑
i<j ωij|ui − uj|2. Note that the function u′ → A(u′) is continuous in

the sense that for all ε > 0 there exists δ > 0 such that |A(u′)−A(u)| < δ for ‖u′−u‖ < δ.
To see this note that

A(u)− A(u′) =
∑
i<j

ωij

(
|ui − uj|2 − |u′i − u′j|2

)
≤
∑
i<j

ωij

(
(|u′i − u′j|+ 2δ)2 − |u′i − u′j|2

)
=
∑
i<j

ωij

(
4δ|u′i − u′j|+ 4δ2

)
Since u′ is bounded and ω is summable this is less than ε for suitably small δ. The same
can be said for A(u′)− A(u).

As in the proof of Theorem 3.3 it now follows from this continuity that for some δ > 0
the function q → Eω(q) is increasing on each ray of the cone p+C(u, δ). However, for the
motion p(t) the strong differentiability condition for t = 0 shows that ‖p(s)−(p+su)‖ < δs,
for some small s > 0. Thus p(s) lies in the cone p + C(u, δ) and so Eω(p(0)) < Eω(p(s)),
which is the desired contradiction. �

It is also straightforward to formulate an associated form of weak prestress stability.

Definition 3.18. A countable bar-joint framework is weakly boundedly prestress stable
(WBPS) if for each nontrivial bounded infinitesimal flex u there is a summable equilibrium
stress ω with

∑
i<j ωij|ui − uj|2 > 0.

In parallel with finite frameworks the proof of Theorem 3.17 shows that WBPS implies
DCR and so we have the following hierarchy.

Theorem 3.19. The following implications hold for countable bar-joint frameworks with
bounded bar lengths.

IR =⇒ BIR =⇒ BPS =⇒ WBPS =⇒ DCR

3.5. Examples and remarks. Figure 6 represents an infinite strip bar-joint framework
(G, p) in R2 where the bold semiinfinite line substitutes for a rigid base and where the
joints nearest the base each have two incident bars that are colinear. The framework
is infinitesimally rigid due to this colinearity. On the other hand the finite framework
shown in Figure 6 has a nontrivial infinitesimal flex which is nonzero at a single joint. For
similar reasons (G, p) is not sequentially infinitesimally rigid. The infinite framework has a
nontrivial continuous bounded motion p(t) parametrised by the t = sinA, for 0 ≤ t ≤ 1/2,
that fixes the joints of the base (not shown). See Kastis and Power [12] for further details.
Also p(t) is differentiable for t > 0, when the angle A is acute, and nondifferentable for

t = 0. In contrast the reparametrised continuous motion with q(t) = p(e−
1
t2 ), for t > 0, is
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a nonanalytic differentiable motion of the framework with q′(0) = 0. On the other hand
since the framework is BIR it is DCR.

The frameworks of Figure 7 and 8 no longer have the colinear property. The first has a
bounded differentiable motion p(t) with p′(0) a nontrivial bounded infinitesimal flex and
so fails to be BIR. The second is BIR as it has no nontrivial bounded infinitesimal flex.
For further examples of this kind see Owen and Power [17].

A

Figure 6. Infinitesimally rigid but not continuously rigid.

Figure 7. A nontrivial directed bounded motion p(t) exists.

Figure 8. There is no nontrivial infinitesimal flex that is bounded.

Remark 3.20. For finite frameworks continuous rigidity is in fact implied by directed
continuous rigidity (DCR). We sketch the argument for this for frameworks in R2. The
framework (G, p) has a real variety of placements q in R2|V | for which (G, q) is equivalent
to (G, p). This is the configuration space of the framework. Consider however the real
algebraic variety of equivalent placements q with the property that q1 = p1 and q2 = p2
where p1p2 is a bar of (G, p). If (G, p) is not continuously rigid then this variety has a
connected component containing p which is not a singleton set. Moreover the coordinate
constraint condition implies that any nonconstant continuous curve q(t) in this component
with q(0) = p provides a nontrivial motion of (G, p). By the Curve Selection Lemma in real
algebraic geometry (see the useful discussion [15] for example) there exists a real analytic
curve q(t) of this type. Such a curve may be reparametrised to provide an analytic curve
q(s) with q′(0) nonzero, and q′(0) is therefore a nontrivial infinitesimal flex of (G, p). Thus
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(G, p) is not DCR, and so DCR implies CR. Since IR implies DCR we note that this gives
another proof of the Asimow Roth theorem.

For countably infinite frameworks the notion of directed (bounded) continuous rigidity
is admittedly a rather weak notion of continuous rigidity in its association with the strong
requirement of a directed motion. It would be interesting to relax this requirement in some
way to see wider consequences of bounded prestress stability or some variant thereof. A
potential obstacle here is the fact that there exist exotic countable bar-joint frameworks in
R2 that have a unique motion for a fixed base, up to reparametrisation, and with a joint
tracing an arbitrary continuous path. The underlying reason for this, roughly speaking, is
that it is possible to simulate convergent series of traced algebraic curves within a single
infinite framework [16], [18].
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