
Published as a conference paper at ICLR 2023

CONTRASTIVE TRAINING WITH MORE DATA

Stephen Mander, Scott Piao and Hossein Rahmani
School of Computing and Communications, Lancaster University, UK
{smander3,s.piao,h.rahmani}@lancaster.ac.uk

ABSTRACT

This paper proposes a new method of contrastive training over multiple data
points, focusing on the scaling issue present when using in-batch negatives. Our
approach compares transformer training with dual encoders versus training with
multiple encoders. Our method can provide a feasible approach to improve loss
modelling as encoders scale.

1 MOTIVATION

We hypothesise that the efficacy of contrastive training correlates to the ratio between positive sam-
ples and in-batch negatives. This paper explores a way of increasing the logits by altering the
approach used with additional input sources.

2 LINEAR APPROACHES FOR ADDITIONAL ENCODER STREAMS

Typical contrastive training uses two auto-encoders, but we explore instances of n auto-encoders
where n > 2. Consider the case, n = 3, where auto-encoder outputs are X , Y and Z respec-
tively. We maintain the linear relation present in CLIP Radford et al. (2021) by iterating over pairs;
CosineSimilarity(XY), CosineSimilarity(XZ), CosineSimilarity(Y Z). While some mi-
nor optimisations are available for this case, the ratio of in-batch negatives is not improved, and
training time and performance is affected in a non-linear fashion. Additional modalities also present
implementation issues around balancing learning rates between intra-modal parts of the network.

3 A CONSIDERATION OF COSINE SIMILARITY WITH ADDITIONAL
DIMENSIONS

With two encoders (and their respective data inputs) the loss generated with the cosine similarity is
modified for faster execution, to be the matrix multiplication of 2 fractions.

CosineSimilarity(a, b) = (
a√∑

a
).(

b√∑
b
) (1)

In this matrix multiplication, a transpose is used, and the operation is limited to just two dimensions.
Two dimensions are fine with just two operands. With two encoders, the ratio of positive to negative
samples within a batch, B, is simply 1 : B − 1. For every additional encoder, the exponent of B
in the ratio of 1 : B − 1 will increase by 1. For n = 2 vectors, y1.y2 is a good similarity metric;
2 negative samples return a positive similarity. Now consider the case of n > 2, the dot-product of
y1.y2.y3....yn ,and consider the vectors a, b and c. a.b.c is positive if a, b and c are positive, and it
is negative if all are negative. This means that naturally maximizing a.b.c can promote some values
within [a, b, c] to become negative.

4 CORRECTING LOSS

Cosine similarity allows a reduction in size as it is performed, matrix multiplications being relatively
quick operations. By contrast, calculating a similarity S as S = 1−variance requires more complex
steps of computation. An initial observation may require extra arrays created for computation, such
as size Bn×F ×n, where F is the feature space. Even with extensive work to reduce this footprint,
it drastically reduces the achievable batch size for a finite amount of hardware.

1

Published as a conference paper at ICLR 2023

5 EUCLIDEAN DISTANCE-BASED ERROR

An alternative to cosine similarity can be to define variance as the L2Norm of the distance (D) to the
mean in each dimension. We denote the mean across an array, x as x̄. (Note, that for the following
equations x represents n vectors). Thus,

S = 1− L2Norm(D) where D = xi − x̄ (2)

with L2Norm(D) as
√∑n

i=0(D
2). However, the mean across all features is of shape Bn×F . The

following holds for when xi is a single feature in each encoder output, and when xi is the whole
output of shape B × F . We use formula (4) for calculating 1 − L2Norm(D), which is derived as
follows:

S = 1 −

√√√√ n∑
i=0

(xi
2 + x̄2 − 2xix̄) = 1 −

√√√√ n∑
i=0

(xi
2) +

n∑
i=0

(x̄2) −
n∑

i=0

(2xix̄) = 1 −

√√√√ n∑
i=0

(xi
2) +

(
∑n

i=0 xi)2

n
−

n∑
i=0

(2xix̄) (3)

We can further convert the maths expression −
∑n

i=0(2xix̄) into −2x̄
∑n

i=0 xi, which can also be

expressed as −2
(
∑n

i=0 xi)
2

n . Giving:

S = 1−

√√√√ n∑
i=0

(x2
i)−

(
∑n

i=0 xi)2

n
(4)

Naturally, this means that much less computation is needed with n-dimensional arrays, substantially
reducing the computational load.

Figure 1: A plot of logits where n = 3 and B = 10.

As explained previously, the proposed approach is moving from logits of shape B × B to logits in
the form Bn, as illustrated by Figure 1, where each value corresponds to items in each batch, xi.
The location (i, j, k) in the cube is the variance of the set of features between inputs [x0,i, x1,j , x2,k].
All logits are combined in the cube space, with maximum values on the highlighted diagonals being
the target indexes for cross-entropy loss. (Code and results for comparison in n-dimensions can be
found at https://github.com/st7ma784/ContrastiveTraining.)

REFERENCES

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

2

https://arxiv.org/abs/2103.00020

	Motivation
	Linear approaches for additional encoder streams
	A consideration of Cosine similarity with additional dimensions
	Correcting Loss
	Euclidean Distance-based Error

