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Abstract— The recent global urbanisation problem has set 

the industry and researchers sights to the importance of safe, 

effective water distribution due to the unprecedent demand 

placed on our aging water networks. Our current water 

practices often increase the degradation of assets through 

heightened pressures causing more failures and leakage. Whilst 

the higher network pressures assure customer demands are 

met; they cause detrimental failures to the system, long-term 

expenses, higher carbon emissions and energy consumption. 

This paper uses a baseline reinforcement learning algorithm to 

optimise valve set point for active pressure control. Using 

optimised Q-learning in an EPANET-Python environment, the 

agent learns to modify valve set points to decrease the average 

pressures whilst remaining within the OFWAT mandated 

pressure limits of 10m. This code is tested on the d-town test 

network. The agent shows continuous improvement finding an 

optimised set point of 26m and dropping the average system 

pressure by 2% by making simple changes to two pressure 

reducing valves. The agent learns the optimal actions to take for 

different states however further improvements can be made 

through the use of deep neural networks. 
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I. INTRODUCTION (HEADING 1) 

Pressure management is quickly becoming a necessity for 
the operation of urban water network as the demand increases 
and leakage infecting most water distribution systems (WDS). 
In earlier reports, the loss of water was estimated to be 30% 
which is assumed to increase [1]. Leakage in potable water 
distribution systems is costly in both economic and 
environmental terms. Any process that can minimise this 
wastage is seen as a positive practice to employ by both water 
companies and regulatory bodies alike. Additionally, leakage 
leaves WDSs vulnerable to contaminants and a degrading 
water quality. Several factors heighten the leakage level 
including inherent factors such as pipe infrastructure, age-
induced corrosion, pipe fittings or operational factors such as 
high pressures, cyclic loading, and transient surges [2]. 

Several pressure management algorithms draw on the use 
of genetic algorithms (GA) [1], [3] or genetic algorithm 
hybrids [4] in order to optimise the pressure reducing valve 
(PRV) settings and therefore control the system pressure. 
These articles have highlighted the effects of pressure 
regulation on leakage prevention and carbon emissions. In this 
case study, we use a Q-learning algorithm to train an agent to 
choose the best PRV settings for the ‘D-town’ test network 
[5]. 

II. METHODOLOGY 

Reinforcement learning is a fast-growing emerging field 
of machine learning that imitates the natural human perception 

method by implementing a trial-and-error strategy that 
explores the optimisation space and learns the optimal policy. 
This AI strategy is founded in Markov Decision Processes 
(MDP) and is widely applicable in fields such as robotics, 
games, stocks trading and more [6].  

In this study, we create a virtual environment consisting of 
the network model on EPANET [7] and a complementary 
python class that extracts, processes and changes network 
data. This environment defines the states of the model and 
outputs the current observation, state and reward to trigger the 
agent’s upcoming action. The schematic can be shown below 
in Figure 1. The EPANET software and python terminal 
communicate using the epynet library by Vitens [8].  

 

Fig. 1.  Q-learning schematic for water distribution networks 

The agent learns the optimal policy using a Q learning 

algorithm that can be summarised in the equation below. 

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) =  𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 ∙ (𝑟𝑡 + 𝛾 ∙ 𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎𝑡)
− 𝑄(𝑠𝑡+1, 𝑎𝑡))                                     (1) 

The equation reads the new Q value for a given action and 

state in the Q table will equal to the old Q value plus the 

learning factor ( 𝛼)  multiplied by the current reward 

(𝑟𝑡)added to the discount factor (𝛾) multiplied by max future 

Q factor and subtracting the current Q value. This algorithm 

is executed iteratively after every step the agent takes to 

populate the Q table for every state (rows) and action 

(column). This trial and error behaviour expose the agent to 

global minima errors which is a common problem in RL 

called the ‘Exploration/Exploitation” dilemma. In order to 

bypass this a random action is taking through the epsilon 

parameter that ranges between 0-1. The closer the value is to 

one the more likely the agent will perform a random action. 

As the agent learns the model, this epsilon value decays to 

allow the agent to behave based on the learned policy and 

decrease the amount of random actions. Another important 

parameter is the discount factor, 𝛾 , which decrees how 

important future rewards are over current actions to the agent. 

The learning rate dictates how aggressive the optimisation 

search is. 

In our experiment we use the average network pressure and 

pressure violations less than 10m as our observations. 

Rewards were calculated based on whether the step lowers 

the average pressure (negative) or increases the pressure 



(positive) and whether more node are in violations (negative) 

or less (positive). The optimisation parameters are dictated in 

the table below. 

TABLE I.  Q-LEARNING OPTIMISATION HYPERPARAMETERS 

 

III. DISCUSSION AND RESULTS 

The RL algorithm has shown to improve the agent’s 
understanding of the network over time as it begins with 
random actions and slowly optimises its actions to receive less 
negative rewards. This result has been optimised by 
modifying the hyperparameters which showed us that a higher 
epsilon was needed to overcome local minima. Figure 2 shows 
the rewards with a moving average of 500 episodes whilst 
Figure 3 shows a comparison between the best (max), average 
and worst (min) performances. 

 

Fig. 2. Rewards over episode number using a moving average of 500 

episodes 

 

Fig. 3. A comparison between the minimum average and maximum 

rewards 

Figure 3 shows that the maximum reward levels off at -18 and this is due to 

the negative rewards collected as the agent approaches the optimum but it 

now learns how to reach the optimal valve set point as fast as possible of the 

algorithms. 

IV. CONCLUSIONS 

Our results prove the usefulness of Reinforcement 
Learning as an optimisation tool for pressure management. 
However, this tool requires hyperparameter optimisation to be 
useful and can be computationally demanding. Other 
optimisation techniques would outperform Q-learning unless 
we introduce deep neural network to the technique. The use of 
‘Deep Reinforcement Learning’ for pressure optimisation 
should be a promising field full of novelties. 
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