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Abstract 13 

Bimodal transit systems (e.g., rail-bus system) have the potential to better cater to 14 

passenger demand than conventional unimodal transit systems (e.g., bus-only system). 15 

However, the optimal design of bimodal transit systems considering heterogeneous 16 

demand elasticity has received little attention in the literature. The study attempts to 17 

develop a new optimization model to design a bimodal transit system from a 18 

microeconomic view to maximize the profit of a transit agency considering different fare 19 

structures. Transit network and service characteristics, such as route and stop densities 20 

and headways, can be modified to provide a better service considering the heterogeneous 21 

demand elasticity in real-world situations. An elastic demand function is devised to 22 

include various time components and incorporate flat, distance-based, and hybrid fares. A 23 

nested iterative procedure is developed to find the optimal or near-optimal solution. 24 

Numerical experiments reveal some interesting findings. First, the increase in elasticity 25 

parameters has a knock-on effect on financial performance, consequently leading to a net 26 

profit reduction. Second, a distance-based fare scheme brings in the least actual demand 27 

but makes the most profit compared with the flat and hybrid fare schemes. Third, 28 

passengers prefer using a rail-bus system to a BRT-bus system, especially at a higher 29 

demand level. Meanwhile, bimodal systems can bring the transit agency a higher profit 30 

except in an extremely low latent demand scenario. A rail-bus system is the most 31 

profitable form when the potential demand exceeds 58,009 pass/h. Thus, bimodal transit 32 

systems are generally preferred for cities with a high demand density as opposed to 33 

unimodal transit systems.  34 
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1. Introduction 1 

1.1 Background 2 

Developing an attractive urban public transit system is an efficient way to alleviate 3 

traffic congestion, reduce air pollution, and promote sustainable urban mobility. The 4 

traditional unimodal transit system (e.g., bus) is becoming inadequate to satisfy the 5 

ever-increasing and diversified travel demand. Hence, bimodal transit systems (e.g., 6 

rail-bus system) are being developed in many megacities around the world, such as 7 

Beijing, Paris, San Francisco, and Singapore (Vuchic, 2007; Gao et al., 2018; Li et al., 8 

2020; Jiang et al., 2022). A bimodal system generally consists of two interworking transit 9 

systems, i.e., express and local transit systems. Express transit typically refers to a mode 10 

with high-speed and high-capacity, such as rail or bus rapid transit (BRT), but it is not 11 

cost-effective to be constructed densely due to its high investment. A typical local transit 12 

is the conventional bus transit, which features low investment along with low operation 13 

speed and capacity. Considering that the performance of a bimodal transit system may 14 

vary under different circumstances, this study aims to develop a new optimization model 15 

for the joint design of a bimodal transit system, particularly taking into account the effect 16 

of different fare structures and elastic demand simultaneously.  17 

1.2 Literature review 18 

1.2.1 Joint design of bimodal transit systems 19 

Over the past decades, numerous research works have been conducted to find the 20 

optimal design of public transit systems. Most of them contribute to the unimodal transit 21 

system design. Some studies focused on a bus transit system design (e.g., Ceder and 22 

Wilson, 1986; Chang and Schonfeld, 1991; Guihaire and Hao, 2008; Kepaptsoglou and 23 

Karlaftis, 2009; Medina et al., 2013; Szeto and Jiang, 2014; Jiang and Szeto, 2015; Chen 24 

et al., 2017; Liu et al., 2017; Luo et al., 2020; Dou et al., 2021; Guo and Szeto. 2021), 25 

while some studies put emphasis on a rail transit system (e.g., Schobel, 2005; Repolho et 26 

al., 2013; Saidi et al., 2017; Gkiotsalitis and Cats, 2021; Wu and Schonfeld, 2022). 27 

Mathematical programming and analytic models are usually developed to obtain the 28 

optimal system characteristics (e.g., station/stop location, service frequency, timetable, 29 

and vehicle schedule) under specified assumptions.  30 
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In contrast, the joint design of bimodal transit systems needs to account for various 1 

parameters of two different transit modes as well as their interaction effects, which is 2 

very complex and cumbersome. A pioneering work was conducted by Wirasinghe (1980), 3 

where an approximate analytic model was formulated to optimize the feeder line density, 4 

feeder headway, and trunk station density under a peak-period many-to-one demand 5 

pattern. Chien and Schonfeld (1998) further incorporated the feeder stop density into the 6 

decision variables. Sivakumaran et al. (2012) optimized the service frequencies of both 7 

trunk and feeder lines in an idealized trunk-feeder system, and Sivakumaran et al. (2014) 8 

later modeled feeder lines that intersected trunk lines in a rectangular city. By 9 

maximizing the rail ridership and minimizing total passenger travel time, Sun et al. (2013) 10 

designed an integrated rail-bus transit system. Sun et al. (2017) devoted to designing the 11 

optimal length of a rail line when a single bus service was replaced by a rail-bus system 12 

under a many-to-one travel demand pattern. Fan et al. (2018) developed a bi-level 13 

continuum optimization model to design a bimodal transit system in a symmetrical grid 14 

form. With the objective of minimizing the total system cost, Li et al. (2020) jointly 15 

designed bike-sharing feeders and local-express lines in a bimodal transit system with a 16 

grid street pattern.  17 

1.2.2 Demand elasticity 18 

The above studies on bimodal transit design are usually conducted under the 19 

assumption of fixed travel demand. The assumption can facilitate the model formulation 20 

and solution, which is conducive to exploring the relationship between design parameters 21 

and system performances. However, in practice, passenger demand may be elastic due to 22 

the impacts of the level of service (LOS) and different fares.  23 

Table 1 summarizes and compares the existing studies on transit design considering 24 

demand elasticity. Kocur and Hendrickson (1982) developed a linear elastic demand 25 

function to explore the effects of travel time and fare on passenger demand, which 26 

indicated an effective optimization approach to transit design with demand elasticity. 27 

Later, Chang and Schonfeld (1991) proposed multiple period models to find the closed 28 

form solutions for the optimal route spacing, headway, and fare. With an exponential 29 

elastic demand function, Yang and Kin (2000) adopted a demand-supply equilibrium 30 
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model to identify how a bus route could be profitable. Deng et al. (2014) incorporated an 1 

exponential demand function into a model to address the effect of train formation length 2 

and service frequency on determining train timetables. Considering a linear elastic 3 

demand function, Chien and Tsai (2007) optimized service frequency and zone fare, 4 

while Tsai et al. (2008) optimized service frequency and station-based fare. Li et al. (2012) 5 

designed a rail transit line considering a linear elastic demand, a many-to-one uniform 6 

pattern. Kim and Schonfeld (2015) considered the elasticity demand for a bus system 7 

with fixed and flexible routes. Huang et al. (2016) formulated an optimization model to 8 

determine the bus transit fare and service frequency of an OD-based fare structure with a 9 

linear demand function. Tang et al. (2017) proposed an optimization approach with a 10 

linear elastic demand to design a bus transit system by providing a profitable fare 11 

structure and operational strategy. Sun and Szeto (2019) developed a bilevel 12 

programming model with elastic demand to jointly determine the fare and service 13 

frequency to maximize transit operators’ profit. Yang et al. (2021) formulated both 14 

one-vehicle and two-vehicle models considering elastic demand to design optimal 15 

demand-responsive connector services. Qu et al. (2021) proposed a mathematical model 16 

to optimize the bus service by maximizing ridership under demand elasticity. 17 

To sum up, when considering demand elasticity, the objective functions of optimization 18 

models are typically in the form of maximization. The objective function includes 19 

maximizing social welfare, operator profit, consumer surplus, or ridership. Most studies 20 

consider fare, mainly distance-based, station-based, flat, or zone-based fare schemes. Two 21 

commonly used demand functions are exponential and linear forms. In addition, most of 22 

them are focused on unimodal transit systems (e.g., rail or bus), while little attention was 23 

paid to the joint design of bimodal transit systems with elastic demand.  24 

Table 1. Summary of existing and our studies on transit design considering demand 

elasticity. 

Authors 

(year) 
Objective Decision variable Demand Fare structure Transit mode 

Kocur and 

Hendrickson 

(1982) 

Max operator 

profit and 

user benefit 

Route spacing, 

headway, and 

fare 

Many-to-one 

elastic demand, 

linear 

Flat fare 
Unimodal: 

bus  

Chang and 

Schonfeld 

Max operator 

profit and 

route spacing, 

headway, and 

Many-to-one 

elastic demand, 
Flat fare 

Unimodal: 

bus 
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(1991) social 

welfare 

fare linear 

Yang and 

Kin (2000) 

Max social 

welfare and 

operator 

profit 

Bus fleet size 

and fare 

Elastic OD 

pair, 

exponential 

Distance-based 

fare 

Unimodal: 

bus 

Chien and 

Tsai (2007) 

Max operator 

profit 

Headway and 

fare 

Zone-to-zone 

elastic demand, 

linear 

Zone fare 
Unimodal: 

rail 

Tsai et al. 

(2008) 

Max operator 

profit 

Headway and 

fare 

Station-to-stati

on elastic 

demand, linear 

Station-based 

fare 

Unimodal: 

rail 

Li et al. 

(2012) 

Max operator 

profit 

Station location, 

line length, 

headway, and 

fare 

Many to one 

and uniform 

elastic demand, 

linear 

Flat and 

distance-based 

fares 

Unimodal: 

rail 

Tsai et al. 

(2013) 

Max operator 

profit 
Headway, fare 

Station-to-stati

on elastic 

demand, linear 

Station-based 

fare 

Unimodal: 

rail 

Deng et al. 

(2014) 

Max operator 

benefit and 

Min travel 

cost 

Train formation 

length and 

service 

frequency 

One-to-one 

elastic demand, 

exponential 

Fixed fare 
Unimodal: 

rail 

Kim and 

schonfeld 

(2015) 

Max social 

welfare 

Headway, fleet 

size, fare, zones, 

route spacing 

Time-dependen

t and uniform 

elastic demand, 

linear 

Flat fare  
Unimodal: 

bus 

Huang et al. 

(2016) 

Max social 

welfare 

Frequency, effort 

level, fare 

Elastic OD 

pair, linear  
OD-based fare 

Unimodal: 

bus 

Tang et al. 

(2017) 

Max social 

welfare 

Operating 

strategy and fare 

Elastic OD 

pair, linear 

Flat and 

stop-based 

fares 

Unimodal: 

bus 

Sun and 

Szeto (2019) 

Max operator 

profit 

Route frequency, 

OD demand, 

probability of 

approach to be 

adopted, fare 

Elastic OD 

pair, linear 

Flat, sectional, 

and 

distance-based 

fares 

Unimodal: 

bus 

Yang et al. 

(2021) 

Max operator 

profit and 

social 

welfare 

service area, 

operating cycle, 

and fare 

Uniform elastic 

demand, linear 
Flat fare 

Unimodal: 

bus 

Qu et al. 

(2021) 

Max 

ridership 

service patterns 

and frequencies, 

the skipped stops 

Elastic OD 

pair, linear 
Flat fare 

Unimodal: 

bus 

This study 
Max operator 

profit 

Headways, 

station/stop 

density, local 

line density, 

fares 

Many to one 

and 

heterogeneous 

elastic demand, 

linear 

Flat, 

distance-based, 

and hybrid 

fares 

Bimodal: 

rail/BRT-bus 

 1 

1.2.3 Transit fare 2 

It is generally acknowledged that transit fares directly impact passenger travel demand. 3 
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The fare is crucial to the financial situation of a transit agency. Therefore, from the 1 

perspectives of passengers and agencies, fare is a key factor in transit system design and 2 

needs to be taken into account. As discussed in previous works (e.g., Chien and Tsai, 3 

2007; Kim and Schonfeld, 2015; Tang et al., 2017; Yang and Lim, 2017; Palma et al., 4 

2017; Tang et al., 2019; Sun and Szeto, 2019; Tang et al., 2020; Verhoef, 2020; Yang et 5 

al., 2020), transit fares generally have different fare structures, such as flat fare, 6 

distance-based fare, and time differentiated fare. A time differentiated fare structure is 7 

related to the operation time and usually charges a higher fare for peak periods. A flat fare 8 

charges the same price for all trips. For a distance-based fare structure, the charge is 9 

related to trip length. The flat fare is normally regarded as the most convenient fare 10 

scheme, while the distance-based fare is more equitable than the flat one, and thus the 11 

distance-based fare is the most commonly adopted one in practice.  12 

Table 1 summarizes the related transit design studies incorporating transit fare into the 13 

model formulation. Most of them only considered a single fare while losing the 14 

opportunity to compare design parameters and system performances under different fare 15 

structures. Furthermore, most studies considering fare design are mainly for a unimodal 16 

transit system, while bimodal systems are rarely studied. 17 

1.3 Research gap, contributions, and organization  18 

The above literature review indicates some research gaps in the existing studies. First, 19 

limited works that focus on the bimodal transit system design are generally performed to 20 

minimize system costs, including agency, user, and generalized costs. Moreover, it may 21 

be necessary to address the joint design issues from a profit point of view since the profit 22 

may affect operation strategies and policy-making. To the best of our knowledge, no such 23 

studies focused on conducting the joint design of a bimodal system considering profit 24 

maximization. Second, all the joint design studies are conducted with fixed passenger 25 

demand. This may not be true in practice because the demand may be sensitive to 26 

multi-perception factors, such as travel cost, travel time, and the number of transfers. 27 

Third, the pros and cons of flat and distance-based fares are intensively examined in the 28 

unimodal system, but the interrelations between the fare structure and bimodal system 29 

design are yet to be explored.  30 

To bridge these research gaps, this study aims to jointly design a bimodal transit 31 
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system considering heterogeneous demand elasticity. A profit maximization model is 1 

formulated from the perspective of a transit agency, considering that public transit 2 

services may be provided by profit-driven private transit agencies in some cities such as 3 

Hong Kong (Lam and Zhou, 2000; Li et al., 2012; Sun and Szeto, 2019; Guo and Szeto, 4 

2021). Most transit services in Hong Kong are provided by private agencies, including 5 

Citybus, Long Win Bus, New World First Bus, Kowloon Motor Bus, and New Lantau 6 

Bus. 7 

The main contributions of the study are threefold. First, to the best of our knowledge, 8 

the study appears to be the first one devoted exclusively to jointly designing a bimodal 9 

transit system to maximize profit, considering heterogeneous demand elasticity under 10 

different fare structures. Second, a heterogeneous environment is the premise of the study, 11 

which may effectively improve the applicability of the model and results. That is, the 12 

network characteristics (e.g., route and station densities) can vary to better satisfy the 13 

passenger demand. Third, the study evaluates the effects of key factors (e.g., demand 14 

density and elasticity parameters) on the optimal system design.  15 

The remainder of the paper is organized as follows. Section 2 presents the details of the 16 

proposed model, mainly including the demand, fare, investment, revenue, and net profit. 17 

Section 3 describes the solution procedure. Section 4 conducts two numerical scenarios to 18 

examine the effectiveness of the model. Section 5 performs sensitivity analyses to further 19 

demonstrate the performances of the model and solution method. Section 6 concludes the 20 

work and enlightens some promising future research directions.  21 

2. Model formulation 22 

2.1. Problem statement 23 

Inspired by previous studies (e.g., Sivakumaran et al., 2012; Jara-Díaz and 24 

Muñoz-Paulsen, 2021; Luo and Kang, 2022), we consider a bimodal transit system with 25 

one CBD area (Fig. 1). It consists of two parts: an express line, denoted by a thick line 26 

with length 𝐿, which runs in 𝑥-direction to CBD at location (𝐿, 0), and local lines, 27 

represented by the thin lines with length 𝑙𝑖(𝑥), which connects the express transit stations. 28 

i = 1 or 2 represents the upper or lower side of the express line, respectively. 29 

The transit service considered in this study is heterogeneous; that is, the transit system 30 

characteristics such as route/station spacing are distributed arbitrarily and may not 31 
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uniformly appear over the space, which may considerably reflect a real-world situation. 1 

Therefore, stations and lines may be theoretically placed at any location. Meanwhile, local 2 

transit vehicles may operate vertically and then turn parallel upon reaching the express line 3 

to access the station. Let 𝜙(𝑥), 𝜓𝑖(𝑥), and 𝜙𝑖(𝑥, 𝑦) represent the densities of express 4 

stations, local lines, and local stops, respectively.  5 

To facilitate the presentation of the essential ideas, in line with the previous studies (e.g., 6 

Lam and Huang, 1995; Chien and Yang, 2000; Sivakumaran et al., 2012; Li et al., 2012; 7 

Dijoseph and Chien, 2013; Sun et al., 2017; Guo et al., 2018; Tian et al., 2021), the 8 

following assumptions are made in this study. 9 

A1: The passenger demand is assumed to follow a many-to-one demand pattern with all 10 

passengers bound for the CBD, which typically indicates the morning peak hour or 11 

gathering events. Thus, the study focuses on a one-hour peak-period design. 12 

A2: The passenger demand is assumed to be elastic, which is sensitive to the level of 13 

service and different fares. 14 

A3: Passengers are assumed to walk to the nearest local route in terms of access time and 15 

take local buses to transfer to the express line to accomplish their travel.  16 

A4: The average passenger waiting time is assumed to be half the headway when 17 

vehicles are operated regularly (i.e., the variance of vehicle time headways is zero), 18 

passengers randomly arrive at stops, and the arrival process is independent with the vehicle 19 

arrival process (Chien and Tsai, 2007; Daganzo, 2010; Li et al., 2012; Sivakumaran et al., 20 

2014; Kim and Schonfeld, 2015; Gu et al., 2016; Mei et al., 2021). 21 

A5: The operations of express and local transit vehicles are assumed to be regular 22 

without random disturbance. Potential travel demand is heterogeneously distributed over 23 

the service region with density 𝐷𝑖
0(𝑥, 𝑦). With reference to the existing literature (e.g., 24 

Lam and Huang, 1995; Chien and Yang, 2000; Li et al., 2012; Dijoseph and Chien, 2013; 25 

Guo et al., 2018; Tian et al., 2021), passenger trips are distributed in a many-to-one 26 

pattern, with all passengers taking local vehicles to transfer to the express line and 27 

ultimately travel to the CBD. A case like this might appear during peak hours, such as the 28 

morning rush. It is assumed that passengers always go straight to the nearest local line 29 

upon accessing local services. Table 2 lists the main notations used in the model 30 

formulation. 31 
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 1 

Fig. 1. Illustration of a hypothetical bimodal transit system in a linear city. 2 

Table 2. Key notations with definitions and units. 

Notation Definition Unit 

Decision variables 

𝜙(𝑥) Express stop density station/km 

𝜓𝑖(𝑥) Local line density (side 𝑖) line/km 

𝜙𝑖(𝑥, 𝑦) Local stop density stop/km2 

𝐻 Express service headway hour 

ℎ𝑖(𝑥) Local service headway hour 

�̅�𝑖 Flat fare $/pass 

�̃�𝑖 Fixed component of a distance-based fare $/pass 

𝜆𝑖 Variable component of a distance-based fare $/km 

Auxiliary variables and parameters 

𝐷𝑖
0(𝑥, 𝑦) Potential demand density pass/km2-h 

𝐷𝑖(𝑥, 𝑦) Actual demand density pass/km2-h 

𝑒𝑖
𝑈 , 𝑒𝑖

𝑊, 𝑒𝑖
𝑇, 𝑒𝑖

𝐹 Elasticity parameters 1/h 

𝑈𝑖(𝑥, 𝑦) Passengers’ access time h 

𝑊𝑖(𝑥, 𝑦) Passengers’ wait time h 

𝑇𝑖(𝑥, 𝑦) Passengers’ in-vehicle travel time h 

𝐹𝑖(𝑥, 𝑦) Fare for a trip $ 

𝑃 Transit agency’s net profit $ 

𝑅 Transit agency’s operating revenue $ 

𝐼 Transit agency’s infrastructure expenditure $ 

𝑂 Transit agency’s operating expenditure $ 

𝜋𝑠
𝑒𝑥 , 𝜋𝑠

𝑙𝑜 Unit costs per express and local stops $/stop 

𝜋𝑙
𝑒𝑥 , 𝜋𝑙

𝑙𝑜 Unit costs per km of line infrastructure for express and local systems $/km 

𝜋𝑡𝑏
𝑒𝑥 , 𝜋𝑡𝑏

𝑙𝑜  Unit costs per vehicle-hour traveled $/veh-h 

𝜋𝑑𝑏
𝑒𝑥 , 𝜋𝑑𝑏

𝑙𝑜  Unit costs per vehicle-km traveled $/veh-km 

𝑑𝑖(𝑥, 𝑦) Distance of a trip km 

휀 Value of time $/h 

𝑣𝑈 Average walking speed km/h 

𝑣𝑒𝑥 , 𝑣𝑙𝑜 Cruising speeds of express and local transit vehicles, respectively  km/h 

𝐶𝑒𝑥, 𝐶𝑙𝑜 Vehicle capacities of express and local services, respectively pass/veh 

 3 

2.2. Demand characteristics 4 

Under demand elasticity, the demand density is generally sensitive to the level of 5 

service (LOS) and fare structure. LOS is the service quality perceived by passengers, 6 
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which can be reflected by some service factors, such as travel time. Multi-form linear 1 

demand functions are applied in bus transit system design (Kim and Schonfeld, 2015; 2 

Sun and Szeto, 2019) and rail transit system design (Chien and Tsai, 2007; Li et al., 3 

2012). A typical form is: 4 

𝐷𝑖(𝑥, 𝑦) = 𝛿𝐷𝑖
0(𝑥, 𝑦)  (1) 

where 𝐷𝑖
0(𝑥, 𝑦) represents the potential demand density at location (𝑥, 𝑦) in the service 5 

region, while the actual demand is denoted by 𝐷𝑖(𝑥, 𝑦). 𝛿 is an elasticity coefficient 6 

measuring how demand is sensitive to the travel impedance. 7 

To better reflect the impact of LOS on demand, various time components are 8 

considered in the bimodal system, and a linear demand function is formulated as: 9 

𝐷𝑖(𝑥, 𝑦) = (1 − 𝑒𝑖
𝑈𝑈𝑖(𝑥, 𝑦) − 𝑒𝑖

𝑊𝑊𝑖(𝑥, 𝑦) − 𝑒𝑖
𝑇𝑇𝑖(𝑥, 𝑦) − 𝑒𝑖

𝐹𝐹𝑖(𝑥, 𝑦))𝐷𝑖
0(𝑥, 𝑦)  (2) 

where the content in the bracket denotes the elasticity coefficient 𝛿 in Eq. (1). 𝐹𝑖(𝑥, 𝑦) 10 

is the fare that a passenger pays to complete a trip. 𝑈𝑖(𝑥, 𝑦) represents the passenger 11 

access time from location (𝑥, 𝑦) to the nearest transit; 𝑊𝑖(𝑥) is the wait time at 12 

location (𝑥, 𝑦); 𝑇𝑖(𝑥, 𝑦) is the in-vehicle time experienced by an on-board passenger. 13 

Coefficients 𝑒𝑖
𝑈, 𝑒𝑖

𝑊, 𝑒𝑖
𝑇, and 𝑒𝑖

𝐹, are the elasticity parameters for the corresponding 14 

time components. The time components can be specified as: 15 

𝑈𝑖(𝑥, 𝑦) =
𝑑𝑖
𝑈(𝑥,𝑦)

𝑣𝑈
  (3) 

𝑊𝑖(𝑥, 𝑦) = 𝜇(𝐻 + ℎ𝑖(𝑥, 𝑦))  (4) 

𝑇𝑖(𝑥, 𝑦) =
𝐿−𝑥

𝑣𝑒𝑥
+ 𝜏𝑒𝑥𝑁𝑒𝑥 +

1

4𝜙(𝑥)𝑣𝑙𝑜
+

𝑦

𝑣𝑙𝑜
+ 𝜏𝑙𝑜𝑁𝑙𝑜  (5) 

where 𝑈𝑖(𝑥, 𝑦)  is determined by the walking distance 𝑑𝑖
𝑈(𝑥, 𝑦)  between location 16 

(𝑥, 𝑦) and the nearest stop with walking speed 𝑣𝑈. Following previous studies (e.g., 17 

Chien and Tsai, 2007; Daganzo, 2010; Sivakumaran et al., 2014; Gu et al., 2016; Mei et 18 

al., 2021), 𝑑𝑖
𝑈(𝑥, 𝑦) can be estimated as 𝑑𝑖

𝑈(𝑥, 𝑦) = 1 4𝜓𝑖(𝑥)⁄ + 1 4𝜙𝑖(𝑥, 𝑦)⁄ . In Eq. 19 

(4), 𝐻 and ℎ𝑖(𝑥) represent the headways of express and local services, respectively. 𝜇 20 

is a calibration parameter specified as 0.5 when vehicles operated regularly according to 21 

previous studies (Chien and Tsai, 2007; Daganzo, 2010; Li et al., 2012; Sivakumaran et 22 
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al., 2014; Kim and Schonfeld, 2015; Gu et al., 2016; Mei et al., 2021). In Eq. (5), the 1 

in-vehicle time includes the travel time between stops and the delay at stops, where the 2 

travel time is determined by the distance and average vehicle speed, and the delay is 3 

related to the number of stops, which is adapted from the previous works (e.g., Daganzo, 4 

2010; Sivakumaran et al., 2014; Gu et al., 2016; Mei et al., 2021). 𝑣𝑒𝑥 and 𝑣𝑙𝑜 are the 5 

cruising speeds of express and local transit vehicles, respectively. 𝑁𝑒𝑥  and 𝑁𝑙𝑜 6 

represent the number of express and feeder stops to ride, which are given by ∫ 𝜙(𝑥)𝑑𝑥
𝐿

𝑥
 7 

and ∫ 𝜙𝑖(𝑥, 𝑦)𝑑𝑦
𝑦

0
, respectively. The third item in Eq. (5) is the in-vehicle time spent on 8 

the local line in 𝑥 direction. 1 4𝜙(𝑥)⁄  denotes the average length of the local line in the 9 

𝑥 direction. 𝜏𝑒𝑥 and 𝜏𝑙𝑜 are the average delays per stop along express and local routes, 10 

respectively.  11 

2.3. Financial characteristics 12 

The net profit 𝑃 is the result of the total operating revenue minus the total investment, 13 

which can be formulated as: 14 

𝑃 = 𝑅 − 𝐴  (6) 

where 𝑅  and 𝐴  are the operating revenue and investment of a transit agency, 15 

respectively. In the following context, we present the formulation of the operating 16 

revenue for the transit agency. 17 

As a key factor in the financial elements of the transit system, revenue 𝑅 is the sum of 18 

the passenger demand multiplied by the related fare. 19 

𝑅 = ∑ ∫ ∫ 𝐷𝑖(𝑥, 𝑦)𝐹𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

0

𝐿

0
2
𝑖=1   (7) 

where the actual passenger demand 𝐷𝑖(𝑥, 𝑦) is derived from the demand function Eq. 20 

(2). Transit fare, 𝐹𝑖(𝑥, 𝑦), is a crucial factor in urban transit planning, which affects 21 

passenger demand and acts on the financial situation of the operator. Generally, it 22 

consists of flat and differentiated fares. A flat fare is a single ticket price for all trips, 23 

which is the simplest and most convenient fare scheme for passengers and operators but 24 

ignores equity. Let �̅�𝑖
𝑚 denote the flat fare (FF) for transit mode 𝑚, including both 25 
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express and local transit modes in this study. There are different forms of differentiated 1 

fares. The distance-based fare is one of the most common ones, which is expressed by: 2 

𝐹𝑖(𝑥, 𝑦) = ∑ �̃�𝑖
𝑚 + 𝜆𝑖

𝑚𝑑𝑖
𝑚(𝑥, 𝑦)𝑚   (8) 

where �̃�𝑖
𝑚 , 𝜆𝑖

𝑚 , 𝑑𝑖
𝑚(𝑥, 𝑦) are the fixed component, variable component, and travel 3 

distance, respectively. Obviously, 𝐹𝑖(𝑥, 𝑦) will be a FF when 𝜆𝑖
𝑚 = 0. This study further 4 

considers a hybrid fare scheme for a bimodal transit system; that is, a FF is used for a 5 

local transit and a DBF is used for an express transit.  6 

As for the cost of a transit agency 𝐴, it mainly includes infrastructure and operating 7 

expenditures and can be calculated by: 8 

𝐴 = 𝐼 + 𝑂  (9) 

where the infrastructure expenditure 𝐼 specifically refers to the station/stop and line 9 

infrastructure costs. It can be determined by: 10 

𝐼 = 𝐼𝑠 + 𝐼𝑙  (10) 

𝐼𝑠 = 𝜋𝑠
𝑒𝑥 ∫ 𝜙(𝑥)𝑑𝑥

𝐿

𝑥=0
+ 𝜋𝑠

𝑙𝑜 ∑ ∫ ∫ 𝜓𝑖(𝑥)𝜙𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

𝑦=0

𝐿

𝑥=0
2
𝑖=1   (11) 

𝐼𝑙 = 𝜋𝑙
𝑒𝑥𝐿 + 𝜋𝑙

𝑙𝑜 ∑ ∫ 𝜓𝑖(𝑥) 2𝜙(𝑥)⁄
𝐿

𝑥=0
𝑑𝑥 + 𝜋𝑙

𝑙𝑜2∑ ∫ 𝜓𝑖(𝑥)𝑙𝑖(𝑥)𝑑𝑥
𝐿

𝑥=0
2
𝑖=1

2
𝑖=1   (12) 

where 𝐼𝑠 and 𝐼𝑙 represent the station/stop cost and line cost, respectively. 𝜋𝑠
𝑒𝑥 and 𝜋𝑠

𝑙𝑜 11 

are the hourly infrastructure costs per express and local stops, respectively. 𝜋𝑙
𝑒𝑥 and 𝜋𝑙

𝑙𝑜 12 

are the hourly infrastructure costs per kilometer of express and local lines, respectively. 13 

In Eq. (12), the second and the last items are the local line construction costs in 𝑥 and 𝑦 14 

directions, respectively. 1 2𝜙(𝑥)⁄  is the average length of the back-and-forth local line 15 

in 𝑥 direction. 16 

The operation expenditure 𝑂 consists of the time-based vehicle operating cost (e.g., 17 

staff wage) and the distance-based vehicle operating cost (e.g., fuel cost). They can be 18 

calculated by: 19 

𝑂 = 𝑂𝑡𝑏 + 𝑂𝑑𝑏  (13) 

𝑂𝑡𝑏 = 𝜋𝑡𝑏
𝑒𝑥 ∫ (2 𝑣𝑒𝑥⁄ + 𝜏𝑒𝑥𝜙(𝑥))𝑑𝑥 𝐻⁄

𝐿

𝑥=0
+ 𝑂𝑡𝑏

𝑙𝑜  (14) 
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𝑂𝑑𝑏 = 𝜋𝑑𝑏
𝑒𝑥 2𝐿 𝐻⁄ + 𝑂𝑑𝑏

𝑙𝑜   (15) 

where 𝑂𝑡𝑏 and 𝑂𝑑𝑏 denote the time-based and distance-based vehicle operating costs, 1 

respectively. 𝜋𝑡𝑏
𝑒𝑥 and 𝜋𝑑𝑏

𝑒𝑥  are the unit costs related to the vehicle hours traveled and 2 

vehicle kilometers traveled for the express transit, respectively. In Eq. (14), 1 𝑣𝑒𝑥⁄  is the 3 

time taken by the express vehicle to travel per kilometer. It is doubled in the expression 4 

to calculate the cycle time. Parameter 𝜏𝑒𝑥 is the estimated average delay per express 5 

transit stop. 𝑂𝑡𝑏
𝑙𝑜 and 𝑂𝑑𝑏

𝑙𝑜  indicate the time-based operating cost and distance-based 6 

operating cost for local transit, respectively, which are derived by: 7 

𝑂𝑡𝑏
𝑙𝑜 = 𝑂𝑡𝑏

𝑙𝑜𝑥 + 𝑂𝑡𝑏
𝑙𝑜𝑦

  (16) 

𝑂𝑡𝑏
𝑙𝑜𝑥 = 𝜋𝑡𝑏

𝑙𝑜 ∑ ∫
𝜓𝑖(𝑥)

2𝜙(𝑥)𝑣𝑙𝑜

1

ℎ𝑖(𝑥)
𝑑𝑥

𝐿

𝑥=0
2
𝑖=1   (17) 

𝑂𝑡𝑏
𝑙𝑜𝑦

= 𝜋𝑡𝑏
𝑙𝑜 ∑ ∫ ∫

𝜓𝑖(𝑥)

ℎ𝑖(𝑥)
(2 𝑣𝑙𝑜⁄ + 𝜏𝑙𝑜𝜙𝑖(𝑥, 𝑦))𝑑𝑥𝑑𝑦

𝑙𝑖(𝑥)

𝑦=0

𝐿

𝑥=0
2
𝑖=1   (18) 

𝑂𝑑𝑏
𝑙𝑜 = 𝑂𝑑𝑏

𝑙𝑜𝑥 + 𝑂𝑑𝑏
𝑙𝑜𝑦

  (19) 

𝑂𝑑𝑏
𝑙𝑜𝑥 = 𝜋𝑑𝑏

𝑙𝑜 ∑ ∫
𝜓𝑖(𝑥)

2𝜙(𝑥)ℎ𝑖(𝑥)
𝑑𝑥

𝐿

𝑥=0
2
𝑖=1   (20) 

𝑂𝑑𝑏
𝑙𝑜𝑦

= 𝜋𝑑𝑏
𝑙𝑜 2∑ ∫

𝑙𝑖(𝑥)𝜓𝑖(𝑥)

ℎ𝑖(𝑥)
𝑑𝑥

𝐿

𝑥=0
2
𝑖=1   (21) 

where 𝑂𝑡𝑏
𝑙𝑜𝑥 and 𝑂𝑡𝑏

𝑙𝑜𝑦
 are the time-based operating costs incurred by local vehicles in 𝑥 8 

and 𝑦 directions, respectively. Parameter 𝜋𝑡𝑏
𝑙𝑜  is the operating cost per vehicle-hour of 9 

the local service. 𝑂𝑑𝑏
𝑙𝑜𝑥 and 𝑂𝑑𝑏

𝑙𝑜𝑦
 are the distance-based operating costs of local vehicles 10 

in 𝑥 and 𝑦 directions, respectively. 𝜋𝑑𝑏
𝑙𝑜  is the operating cost per vehicle-kilometer of 11 

the local service. 𝜏𝑙𝑜 is the estimated delay per stop for the local transit. 12 

2.4. Optimization model  13 

The profit maximization optimization problem can be formulated as a multivariate 14 

nonlinear mathematical programming model.  15 

𝑚𝑎𝑥
𝐻,ℎ𝑖(𝑥),𝜙(𝑥),𝜓𝑖(𝑥),𝜙𝑖(𝑥,𝑦),�̅�𝑖

𝑚,�̃�𝑖
𝑚,𝜆𝑖

𝑚
𝑃 = 𝑅 − 𝐴 (22) 

subject to： 16 
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𝐻 𝑚𝑎𝑥
0≤𝑥≤𝐿

∑ ∫ ∫ 𝐷𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

𝑦=0

𝑥

0

2

𝑖=1
≤ 𝐶𝑒𝑥 (23) 

ℎ𝑖(𝑥)∫ 𝐷𝑖(𝑥, 𝑦)𝑑𝑦
𝑙𝑖(𝑥)

𝑦=0

𝜓𝑖(𝑥)⁄ ≤ 𝐶𝑙𝑜 (24) 

0 ≤ 𝑒𝑖
𝑈𝑈𝑖(𝑥, 𝑦) + 𝑒𝑖

𝑊𝑊𝑖(𝑥, 𝑦) + 𝑒𝑖
𝑇𝑇𝑖(𝑥, 𝑦) + 𝑒𝑖

𝐹𝐹𝑖(𝑥, 𝑦) ≤ 1  (25) 

𝐻, ℎ𝑖(𝑥), 𝜙(𝑥),𝜓𝑖(𝑥), 𝜙𝑖(𝑥, 𝑦), �̅�𝑖
𝑚, �̃�𝑖

𝑚, 𝜆𝑖
𝑚 > 0 (26) 

where the decision variables include express service headway 𝐻, local service headway 1 

ℎ𝑖(𝑥), express transit stop density 𝜙(𝑥), local transit line density 𝜓𝑖(𝑥), local transit 2 

stop density 𝜙𝑖(𝑥, 𝑦), flat fare �̅�𝑖
𝑚, and distance-based fare components �̃�𝑖

𝑚 and 𝜆𝑖
𝑚. 3 

Eqs. (23) and (24) ensure that the on-board passengers do not exceed the vehicle 4 

capacities of express and local transit systems, 𝐶𝑒𝑥  and 𝐶𝑙𝑜 , respectively. The 5 

expression ∑ ∫ ∫ 𝐷𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

𝑦=0

𝑥

0
2
𝑖=1  is used to calculate the hourly maximum 6 

on-board passenger flow for the express transit, while the hourly maximum on-board 7 

passenger flow for a local line at location 𝑥 is determined by ∫ 𝐷𝑖(𝑥, 𝑦)𝑑𝑦
𝑙𝑖(𝑥)

𝑦=0
𝜓𝑖(𝑥)⁄ . 8 

A financial budget constraint can be measured by, for example, the required fleet size. 9 

Constraint Eq. (25) is derived from the demand function Eq. (1), which is assigned to 10 

ensure the actual passenger demand is non-negative and less than the potential demand. 11 

Eq. (26) guarantees the non-negativity of the decision variables. The solution space and 12 

decision variables of the model are continuous. The solution space S is a two-dimensional 13 

Euclidean space ℝ2. The normal on S is a function from the two-dimensional Euclidean 14 

space to a non-negative real number: S→ ℝ2, and captured by the formula ‖𝒙‖2 ≔15 

√𝑥2 + 𝑦2, which indicates the ordinary distance from the coordinate origin to the point 16 

(x, y).  17 

3. Solution method 18 

Motivated by previous studies (e.g., Chien and Tsai, 2007; Li et al., 2012; Medina et 19 

al., 2013; Ouyang et al., 2014; Sivakumaran et al., 2014; Gu et al., 2016; Chen et al., 20 

2018; Sun and Szeto, 2019; Li et al., 2020; Wu et al., 2020; Guo and Szeto, 2021; Fan 21 

and Ran, 2021; Luo et al., 2021; Mei et al., 2021), this study develops a multi-step nested 22 

iterative procedure to solve the multi-variables nonlinear math-programming model.  23 
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We derive the analytical expressions of the optimal decision variables with different 1 

transit fare structures. It is easy to derive that the objective function (Eq. (22)) is concave 2 

with respect to one decision variable while keeping the others fixed. The detailed proof is 3 

provided in Appendix A, which follows the proof method used in previous studies (e.g., 4 

Ouyang et al., 2014; Gu et al., 2016; Luo et al., 2021; Fan and Ran, 2021; Mei et al., 5 

2021). We can update one variable with its analytical expression by using other given 6 

variables in each iteration. The analytical expression for the optimal variable is derived 7 

by setting the first-order partial derivative of the net profit function to zero. By doing so, 8 

the values of the decision variables can be updated iteratively. The derived results for all 9 

decision variables are shown in Table 3. Taking into account the model constraints, the 10 

general solution procedure is furnished with the DBF as an example and outlined as 11 

follows: 12 

Step 1: Randomly generate a set of non-negative feasible initial values for variables 

𝐻, ℎ𝑖(𝑥), 𝜙(𝑥),𝜓𝑖(𝑥), 𝜙𝑖(𝑥, 𝑦), �̃�𝑖
𝑒𝑥, 𝜆𝑖

𝑒𝑥, �̃�𝑖
𝑙𝑜 , 𝜆𝑖

𝑙𝑜 considering constraints Eqs. (23) 

- (26). 

Step 2: Calculate the net profit 𝑃  by Eq. (22) using the variables 

𝐻, ℎ𝑖(𝑥), 𝜙(𝑥),𝜓𝑖(𝑥), 𝜙𝑖(𝑥, 𝑦), �̃�𝑖
𝑒𝑥, 𝜆𝑖

𝑒𝑥, �̃�𝑖
𝑙𝑜 , 𝜆𝑖

𝑙𝑜 and go to Step 3.  

Step 3: Sequentially update the decision variables for the profit maximization model 

𝐻, ℎ𝑖(𝑥), 𝜙(𝑥),𝜓𝑖(𝑥), 𝜙𝑖(𝑥, 𝑦), �̃�𝑖
𝑒𝑥, 𝜆𝑖

𝑒𝑥, �̃�𝑖
𝑙𝑜 , 𝜆𝑖

𝑙𝑜  based on the first-order 

derivatives that are presented in Table 3.  

Step 3.1: Update the express transit headway 𝐻′  by its corresponding first-order 

derivative shown in Table 3 using 𝜙(𝑥), �̃�𝑖
𝑒𝑥, 𝜆𝑖

𝑒𝑥, �̃�𝑖
𝑙𝑜 , 𝜆𝑖

𝑙𝑜. Check the constraints 

Eqs. (23) - (26). Following previous studies (e.g., Li et al., 2012; Sun and Szeto, 

2019; Guo and Szeto, 2021; Fan and Ran, 2021; Luo et al., 2021; Mei et al., 

2021), if some constraints are not satisfied, the bounds of these constraints are 

employed to update the values of the decision variables and then go to Step 3.2.  

Step 3.2: Update the local transit headway ℎ𝑖(𝑥)
′  by 

substituting 𝜙(𝑥), 𝜓𝑖(𝑥), 𝜙𝑖(𝑥, 𝑦), �̃�𝑖
𝑒𝑥, 𝜆𝑖

𝑒𝑥, �̃�𝑖
𝑙𝑜 , 𝜆𝑖

𝑙𝑜 into the first-order derivative 

shown in Table 3. Check the constraints Eqs. (23) - (26). If some constraints are 

not satisfied, the bounds of these constraints are employed to update the values of 
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the decision variables and then go to Step 3.3. 

Step 3.3: Update the express station density 𝜙(𝑥)′ by the corresponding first-order 

derivative in Table 3 using the updated 𝐻′ and ℎ𝑖(𝑥)
′ (steps 3.1 and 3.2) and  

𝜓𝑖(𝑥), �̃�𝑖
𝑒𝑥, 𝜆𝑖

𝑒𝑥 , �̃�𝑖
𝑙𝑜 , 𝜆𝑖

𝑙𝑜 . Check the constraints Eqs. (23) - (26). If some 

constraints are not satisfied, the bounds of these constraints are employed to 

update the values of the decision variables and then go to Step 3.4. 

Step 3.4: Use the same principle as the above steps to update other variables 

𝜓𝑖(𝑥)
′, 𝜙𝑖(𝑥, 𝑦)

′, �̃�𝑖
𝑒𝑥′, 𝜆𝑖

𝑒𝑥′, �̃�𝑖
𝑙𝑜′, 𝜆𝑖

𝑙𝑜′ in sequence. By doing so, we can update all 

the decision variables and go to Step 4. 

Step 4: Update the net profit 𝑃′ by objective function Eq. (22) with the new values of 

variables 𝐻′, ℎ𝑖(𝑥)
′, 𝜙(𝑥)′, 𝜓𝑖(𝑥)

′, 𝜙𝑖(𝑥, 𝑦)
′, �̃�𝑖

𝑒𝑥′, 𝜆𝑖
𝑒𝑥′, �̃�𝑖

𝑙𝑜′, 𝜆𝑖
𝑙𝑜′  derived from 

Step 3. 

Step 5: Check the convergence. If the objective function values of two successive 

iterations are very close, i.e., |𝑃′ − 𝑃| < 𝜉, where 𝜉 is a pre-specified threshold, 

then terminate the iteration and output the objective function value 𝑃′ and the 

solutions 𝐻′, ℎ𝑖(𝑥)
′, 𝜙(𝑥)′, 𝜓𝑖(𝑥)′, 𝜙𝑖(𝑥, 𝑦)′, �̃�𝑖

𝑒𝑥′, 𝜆𝑖
𝑒𝑥′, �̃�𝑖

𝑙𝑜′, 𝜆𝑖
𝑙𝑜′ . Otherwise, 

update the decision variables 𝜙(𝑥) = 𝜙(𝑥)′, 𝜓𝑖(𝑥) = 𝜓𝑖(𝑥)
′, 𝜙𝑖(𝑥, 𝑦) =

𝜙𝑖(𝑥, 𝑦)
′, �̃�𝑖

𝑒𝑥 = �̃�𝑖
𝑒𝑥′, 𝜆𝑖

𝑒𝑥 = 𝜆𝑖
𝑒𝑥′, �̃�𝑖

𝑙𝑜 = �̃�𝑖
𝑙𝑜′, 𝜆𝑖

𝑙𝑜 = 𝜆𝑖
𝑙𝑜′ , and go to Step 3. 

Ultimately, the solution can be obtained when the convergence of the nested 

iterative procedure is satisfied. Following previous studies (e.g., Gu et al., 2016; 

Fan et al., 2018; Li et al., 2020; Wu et al., 2020; Luo et al., 2021), the solution 

procedure is repeated several times with different initial solutions. If the same 

final solution can be obtained, it is regarded as the final near-optimal solution.  

Table 3. Analytical expressions of the decision variables under different fare schemes. 

FF scheme 

Transit service 

headways: 𝐻∗ = √
𝜋𝑡𝑏
𝑒𝑥 ∫ (2 𝑣𝑒𝑥⁄ + 𝜏𝑒𝑥𝜙(𝑥))𝑑𝑥

𝐿

0
+ 𝜋𝑑𝑏

𝑒𝑥2𝐿

∑ ∫ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑊 ∑ �̅�𝑖
𝑚

𝑚 𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

0

𝐿

0
2
𝑖=1 2⁄

 

ℎ𝑖(𝑥)
∗ =

√
𝜋𝐻
𝑓 ∑ 𝜓𝑖(𝑥)(

1
2𝜙(𝑥)𝑣𝑙𝑜

+ ∫ (
2
𝑣𝑙𝑜

+ 𝜏𝑙𝑜𝜙𝑖(𝑥, 𝑦)) 𝑑𝑦
𝑙𝑖(𝑥)

𝑦=0
)2

𝑖=1 + 𝜋𝑑𝑏
𝑙𝑜 ∑ 𝜓𝑖(𝑥)(

1
2𝜙(𝑥)

+ 2𝑙𝑖(𝑥))
2
𝑖=1

∑ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑊 ∑ �̅�𝑖
𝑚

𝑚 𝑑𝑦
𝑙𝑖(𝑥)

0
2
𝑖=1 2⁄
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Route and stop 

densities: 𝜙(𝑥)∗ = √
∑ ∫

𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑇 ∑ �̅�𝑖
𝑚

𝑚

4𝑣𝑙𝑜
𝑑𝑦

𝑙𝑖(𝑥)

0
2
𝑖=1 + ∑ (

𝜋𝑙
𝑙𝑜𝜓𝑖(𝑥)
2

+
𝜋𝑡𝑏
𝑙𝑜𝜓𝑖(𝑥)

2ℎ𝑖(𝑥)𝑣𝑙𝑜
+
𝜋𝑑𝑏
𝑙𝑜𝜓𝑖(𝑥)

2ℎ𝑖(𝑥)
)2

𝑖=1

∑ ∫ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑇𝜏𝑒𝑥∑ �̅�𝑖
𝑚

𝑚 𝑑𝑥𝑑𝑦
𝑥

0

𝑙𝑖(𝑥)

0
2
𝑖=1 + 𝜋𝑠

𝑒𝑥 + 𝜋𝑡𝑏
𝑒𝑥𝜏𝑒𝑥 𝐻⁄

 

𝜙𝑖(𝑥, 𝑦)
∗ = √

∑ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑈 ∑ �̅�𝑖
𝑚

𝑚 4𝑣𝑈⁄2
𝑖=1

∑ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑇𝜏𝑙𝑜∑ �̅�𝑖
𝑚

𝑚 𝑑𝑦
𝑙𝑖(𝑥)

𝑦
2
𝑖=1 + 𝜋𝑠

𝑙𝑜 ∑ 𝜓𝑖(𝑥)
2
𝑖=1 + 𝜋𝑡𝑏

𝑙𝑜 ∑ 𝜓𝑖(𝑥)
2
𝑖=1 𝜏𝑙𝑜 ℎ𝑖(𝑥)⁄

 

𝜓𝑖(𝑥)
∗ =

√
  
  
  
  
  
  ∑ ∫ 𝐷𝑖

0(𝑥, 𝑦)𝑒𝑖
𝑈 ∑ �̅�𝑖

𝑚
𝑚 𝑑𝑦

𝑙𝑖(𝑥)

0
2
𝑖=1 4𝑣𝑈⁄

𝜋𝑠
𝑙𝑜 ∫ 𝜙𝑖(𝑥, 𝑦)𝑑𝑦

𝑙𝑖(𝑥)

0
+ 𝜋𝑙

𝑙𝑜 (
1

2𝜙(𝑥)
+ 2𝑙𝑖(𝑥))+ 𝜋𝐾

𝑙𝑜 (
1

2𝜙(𝑥)ℎ𝑖(𝑥)
+
2𝑙𝑖(𝑥)
ℎ𝑖(𝑥)

)

+𝜋𝑡𝑏
𝑙𝑜 ∑ (

1
2𝜙(𝑥)ℎ𝑖(𝑥)𝑣𝑙𝑜

+ ∫
1

ℎ𝑖(𝑥)
(
2
𝑣𝑙𝑜

+ 𝜏𝑙𝑜𝜙𝑖(𝑥, 𝑦)) 𝑑𝑦
𝑙𝑖(𝑥)

𝑦=0
)2

𝑖=1

 

Fare 

components: �̅�𝑖
𝑒𝑥(𝑙𝑜)∗

= √
∑ ∫ ∫ 𝐷𝑖

0(𝑥, 𝑦)(1 − 𝑒𝑖
𝑈𝑈𝑖(𝑥, 𝑦) − 𝑒𝑖

𝑊𝑊𝑖(𝑥, 𝑦) − 𝑒𝑖
𝑇𝑇𝑖(𝑥, 𝑦) − 𝑒𝑖

𝐹2�̅�
𝑖

𝑙𝑜(𝑒𝑥)
)𝑑𝑥𝑑𝑦

𝑙𝑖(𝑥)

0

𝐿

0
2
𝑖=1

∑ ∫ ∫ 2𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝐹𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

0

𝐿

0
2
𝑖=1

 

DBF scheme 

Transit service 

headways: 𝐻∗ = √
𝜋𝑡𝑏
𝑒𝑥 ∫ (2 𝑣𝑒𝑥⁄ + 𝜏𝑒𝑥𝜙(𝑥))𝑑𝑥

𝐿

0
+ 𝜋𝑑𝑏

𝑒𝑥2𝐿

∑ ∫ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑊(∑ �̃�𝑖
𝑚 + 𝜆𝑖

𝑚𝑑𝑖
𝑚(𝑥, 𝑦)𝑚 )𝑑𝑥𝑑𝑦

𝑙𝑖(𝑥)

0

𝐿

0
2
𝑖=1 2⁄

 

ℎ𝑖(𝑥)
∗ =

√
𝜋𝐻
𝑓 ∑ 𝜓𝑖(𝑥)(

1
2𝜙(𝑥)𝑣𝑙𝑜

+ ∫ (
2
𝑣𝑙𝑜

+ 𝜏𝑙𝑜𝜙𝑖(𝑥, 𝑦)) 𝑑𝑦
𝑙𝑖(𝑥)

𝑦=0
)2

𝑖=1 + 𝜋𝑑𝑏
𝑙𝑜 ∑ 𝜓𝑖(𝑥)(

1
2𝜙(𝑥)

+ 2𝑙𝑖(𝑥))
2
𝑖=1

∑ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑊(∑ �̃�𝑖
𝑚 + 𝜆𝑖

𝑚𝑑𝑖
𝑚(𝑥, 𝑦)𝑚 )𝑑𝑦

𝑙𝑖(𝑥)

0
2
𝑖=1 2⁄

 

Route and stop 

densities: 𝜙(𝑥)∗ = √
∑ ∫

𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑇(∑ �̃�𝑖
𝑚 + 𝜆𝑖

𝑚𝑑𝑖
𝑚(𝑥, 𝑦)𝑚 )

4𝑣𝑙𝑜
𝑑𝑦

𝑙𝑖(𝑥)

0
2
𝑖=1 +∑ (

𝜋𝑙
𝑙𝑜𝜓𝑖(𝑥)
2

+
𝜋𝑡𝑏
𝑙𝑜𝜓𝑖(𝑥)

2ℎ𝑖(𝑥)𝑣𝑙𝑜
+
𝜋𝑑𝑏
𝑙𝑜𝜓𝑖(𝑥)

2ℎ𝑖(𝑥)
)2

𝑖=1

∑ ∫ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑇𝜏𝑒𝑥(∑ �̃�𝑖
𝑚 + 𝜆𝑖

𝑚𝑑𝑖
𝑚(𝑥, 𝑦)𝑚 )𝑑𝑥𝑑𝑦

𝑥

0

𝑙𝑖(𝑥)

0
2
𝑖=1 + 𝜋𝑠

𝑒𝑥 + 𝜋𝑡𝑏
𝑒𝑥𝜏𝑒𝑥 𝐻⁄

 

𝜙𝑖(𝑥, 𝑦)
∗ = √

∑ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑈(∑ �̃�𝑖
𝑚 + 𝜆𝑖

𝑚𝑑𝑖
𝑚(𝑥, 𝑦)𝑚 ) 4𝑣𝑈⁄2

𝑖=1

∑ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝑇𝜏𝑙𝑜(∑ �̃�𝑖
𝑚 + 𝜆𝑖

𝑚𝑑𝑖
𝑚(𝑥, 𝑦)𝑚 )𝑑𝑦

𝑙𝑖(𝑥)

𝑦
2
𝑖=1 + 𝜋𝑠

𝑙𝑜 ∑ 𝜓𝑖(𝑥)
2
𝑖=1 + 𝜋𝑡𝑏

𝑙𝑜 ∑ 𝜓𝑖(𝑥)
2
𝑖=1 𝜏𝑙𝑜 ℎ𝑖(𝑥)⁄

 

𝜓𝑖(𝑥)
∗ =

√
  
  
  
  
  
  ∑ ∫ 𝐷𝑖

0(𝑥, 𝑦)𝑒𝑖
𝑈(∑ �̃�𝑖

𝑚 + 𝜆𝑖
𝑚𝑑𝑖

𝑚(𝑥, 𝑦)𝑚 )𝑑𝑦
𝑙𝑖(𝑥)

0
2
𝑖=1 4𝑣𝑈⁄

𝜋𝑠
𝑙𝑜 ∫ 𝜙𝑖(𝑥, 𝑦)𝑑𝑦

𝑙𝑖(𝑥)

0
+ 𝜋𝑙

𝑙𝑜 (
1

2𝜙(𝑥)
+ 2𝑙𝑖(𝑥))+ 𝜋𝐾

𝑙𝑜 (
1

2𝜙(𝑥)ℎ𝑖(𝑥)
+
2𝑙𝑖(𝑥)
ℎ𝑖(𝑥)

)

+𝜋𝑡𝑏
𝑙𝑜 ∑ (

1
2𝜙(𝑥)ℎ𝑖(𝑥)𝑣𝑙𝑜

+ ∫
1

ℎ𝑖(𝑥)
(
2
𝑣𝑙𝑜

+ 𝜏𝑙𝑜𝜙𝑖(𝑥, 𝑦)) 𝑑𝑦
𝑙𝑖(𝑥)

𝑦=0
)2

𝑖=1

 

Fare 

components: 

�̃�𝑖
𝑒𝑥(𝑙𝑜)∗

=

√
  
  
  
  
 

∑
∫ ∫ 𝐷𝑖

0(𝑥, 𝑦)(1 − 𝑒𝑖
𝑈𝑈𝑖(𝑥, 𝑦) − 𝑒𝑖

𝑊𝑊𝑖(𝑥, 𝑦) − 𝑒𝑖
𝑇𝑇𝑖(𝑥, 𝑦))𝑑𝑥𝑑𝑦

𝑙𝑖(𝑥)

0

𝐿

0

−∫ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝐹2 (𝜆𝑖
𝑒𝑥(𝑙𝑜)

𝑑𝑖
𝑒𝑥(𝑙𝑜)(𝑥, 𝑦) + 𝐹𝑖

𝑙𝑜(𝑒𝑥)(𝑥, 𝑦)) 𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

0

𝐿

0

2
𝑖=1

∑ ∫ ∫ 2𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝐹𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

0

𝐿

0
2
𝑖=1

 

𝜆𝑖
𝑒𝑥(𝑙𝑜)∗

=

√
  
  
  
  
 

∑
∫ ∫ 𝐷𝑖

0(𝑥, 𝑦)(1 − 𝑒𝑖
𝑈𝑈𝑖(𝑥, 𝑦) − 𝑒𝑖

𝑊𝑊𝑖(𝑥, 𝑦) − 𝑒𝑖
𝑇𝑇𝑖(𝑥, 𝑦))𝑑𝑖

𝑒𝑥(𝑙𝑜)(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

0

𝐿

0

−∫ ∫ 𝐷𝑖
0(𝑥, 𝑦)𝑒𝑖

𝐹2 (�̃�𝑖
𝑒𝑥(𝑙𝑜)

+ �̃�𝑖
𝑙𝑜(𝑒𝑥)

+ 𝜆𝑖
𝑙𝑜(𝑒𝑥)

𝑑𝑖
𝑙𝑜(𝑒𝑥)(𝑥, 𝑦)) 𝑑𝑖

𝑒𝑥(𝑙𝑜)(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

0

𝐿

0

2
𝑖=1

∑ ∫ ∫ 𝑑𝑖
𝑒𝑥(𝑙𝑜)(𝑥, 𝑦)2𝐷𝑖

0(𝑥, 𝑦)𝑒𝑖
𝐹2𝑑𝑥𝑑𝑦

𝑙𝑖(𝑥)

0

𝐿

0
2
𝑖=1

 

4. Numerical studies 1 

Two test scenarios are schemed to validate the performances of the optimization model 2 

and solution algorithm. The first scenario is a special case with a homogeneous potential 3 

demand density, i.e., 𝐷𝑖
0(𝑥, 𝑦) = 𝐷𝑖

0. The second scenario is a general case with a 4 

heterogeneous potential demand density; that is, the service requests in the service region 5 

follow a non-uniform distribution. Based on the actual demand density 𝐷𝑖(𝑥, 𝑦), the total 6 

number of passengers in the whole service region is denoted by 𝑍, which can be 7 

calculated by 𝑍 = ∫ ∫ 𝐷𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

0

𝐿

0
. With reference to the previous studies (e.g., 8 
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Sivakumaran et al., 2012; Sivakumaran et al., 2014; Kim and Schonfeld, 2015; Yang et 1 

al., 2021; Luo and Kang, 2022), we consider a rectangular service area with 𝐿= 20km 2 

and 𝑙𝑖(𝑥) = 5km, ∀𝑥 ∈ [0, 𝐿]. For the sake of brevity, the study investigates the upper 3 

side of the service area, i.e., 𝑖=1, while the same principle can be applied to the 4 

lower-side area.  5 

Typical transit modes, including rail, bus rapid transit (BRT), and ordinary bus, are 6 

considered. According to the features of bimodal transit systems, rail and BRT are 7 

regarded as high-speed and low-speed express transit modes, respectively. The ordinary 8 

bus is considered as a local transit mode. Three representative fare schemes are 9 

considered in the study, i.e., FF, DBF, and HF. Please note that in this study, under a HF 10 

scheme, a FF is used for local transit and a DBF is used for express transit in the 11 

numerical studies.  12 

4.1. Parameter settings 13 

The estimated average walking speed 𝑣𝑈 is set as 2km/h with respect to the natural 14 

delays at street junctions (Daganzo, 2010; Li et al., 2020). Following the previous works 15 

(e.g., Vuchic, 2007; Daganzo, 2010; Sivakumaran et al., 2014; Gu et al., 2016; Fan et al., 16 

2018; Li et al., 2020), the value of time 휀 is set to be 20 ($/h). Table 4 lists the values of 17 

the operating and cost parameters used for the three transit modes (i.e., rail, BRT, and bus 18 

transit) considered in the study. These parameter settings are referred from previous 19 

studies (e.g., Vuchic, 2007; Daganzo, 2010; Sivakumaran et al., 2014; Gu et al., 2016; 20 

Fan et al., 2018; Li et al., 2020; Wu et al., 2020; Fan and Ran, 2021; Luo et al., 2021; 21 

Mei et al., 2021). For practical implementation, these parameter values can be calibrated 22 

by conducting field surveys on the economic and technical characteristics of the local 23 

public transit systems. 24 

Table 4. Operating and cost parameters of three transit modes. 

Modes Operating parameters Cost parameters 

Express 
𝑣𝑒𝑥 

(km/h) 

𝜏𝑒𝑥 

(s/station) 

𝐶𝑒𝑥 

(pass/veh) 

𝜋𝑠
𝑒𝑥 

($/station) 

𝜋𝑙
𝑒𝑥 

($/km) 

𝜋𝑡𝑏
𝑒𝑥 

($/veh-h) 

𝜋𝑑𝑏
𝑒𝑥  

($/veh-km) 

Rail 60 45 2400 294+9.8휀 594+19.8휀 101+5휀 2.20 

BRT 40 30 160 4.2+0.14휀 162+5.4휀 3.81+4휀 0.66 

 
𝑣𝑙𝑜 

(km/h) 
𝜏𝑙𝑜 

(s/station) 

𝐶𝑙𝑜 

(pass/veh) 

𝜋𝑠
𝑙𝑜 

($/station) 

𝜋𝑙
𝑙𝑜 

($/km) 

𝜋𝑡𝑏
𝑙𝑜 

($/veh-h) 

𝜋𝑑𝑏
𝑙𝑜  

($/veh-km) 

Local 

Bus 
25 30 80 0.42+0.014휀 6+0.2휀 2.66+3휀 0.59 
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4.2. Scenario 1 1 

For Scenario 1, a rail-bus bimodal system is considered to test the validity of the model 2 

and solution algorithm. Adapted from the previous works (e.g., Sivakumaran et al., 2012; 3 

Li et al., 2012; Kim and Schonfeld, 2015; Huang et al., 2016; Li et al., 2020; Yang et al., 4 

2021), a homogeneous potential demand density with 𝐷𝑖
0(𝑥, 𝑦)=300 (pass/km2-h) is 5 

considered. Thus, the total demand in the study area is 30,000 (pass/h). Fig. 2(a) 6 

illustrates the potential demand distribution. Since different colors reflect different levels 7 

of demand, the service requests are consistent over the whole service region.  8 

The rest three demand distributions depicted in Fig. 2(b), Fig. 2(c), and Fig. 2(d) show 9 

the actual demand status of the optimized bimodal transit system under the FF, DBF, and 10 

HF schemes, respectively. For the first two actual demand scenarios, shown in Fig. 2(b) 11 

and Figure 2(c), the FF and DBF schemes are adopted in the whole service region. The 12 

actual demand distribution with the FF scheme is more concentrated than those with the 13 

DBF and HF schemes, while the distance-based fare scheme demonstrates the most 14 

dispersed demand distribution. This phenomenon is incurred by the fare structure, i.e., the 15 

further from the CBD, the higher the ticket price under the distance-based fare scheme, 16 

which directly reduces passengers’ willingness to use transit service.  17 

  

(a) Potential demand (b) Actual demand (FF scheme) 

  

(c) Actual demand (DBF scheme) (d) Actual demand (HF scheme) 
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Fig. 2. Demand distributions under different fare schemes (Scenario 1). 1 

Table 5 shows the primary model results under three different fare schemes. The total 2 

number of passengers in the whole service region under the DBF, HF, and FF schemes 3 

are 12,666, 13,501, and 18,592 (pass), respectively. It can be seen that the FF scheme 4 

attracts the maximum number of passengers, but it has the worst financial performance 5 

with a minimum net profit, while the best financial performance is achieved by the DBF 6 

scheme. Although the operating cost for DBF is slightly higher than those of other fare 7 

schemes, it brings more revenue to the agency. Thus, the DBF scheme is preferable for 8 

the transit agency. This finding is consistent with the previous related studies (e.g., Chien 9 

and Tsai, 2007; Huang et al., 2016; Sun and Szeto, 2019).  10 

Table 5. Model results under different transit fare schemes (Scenario 1) 

Results Fare schemes  

 Case 1: DBF Case 2: HF Case 3: FF 

𝑍 (pass) 12666 13501 18592 

𝑃 ($/h) 91640.89 86108.58 72453.35 

𝑅 ($/h) 134603.30 128514.07 110640.44 

𝐴 ($/h) 42962.41 42405.49 38187.09 

𝐼𝑠 ($/h) 2792.74 2721.15 2435.29 

𝐼𝑙 ($/h) 22346.58 22158.40 21383.77 

𝑂𝑡𝑏 ($/h) 13727.98 13521.23 11160.04 

𝑂𝑑𝑏 ($/h) 4095.11 4004.72 3207.99 

𝐹(𝑥, 𝑦) ($) 
0.89+0.74𝑑(𝑥, 𝑦)𝑒𝑥; 

0.89+0.88𝑑(𝑥, 𝑦)𝑙𝑜 

1.52+0.82𝑑(𝑥, 𝑦)𝑒𝑥; 

1.52 

2.98; 

2.98 

𝛿 0.42 0.45 0.62 

𝐻 (min) 2.40 2.50 3.42 

ℎ𝑚𝑒𝑎𝑛 (min) 4.79 4.45 3.38 

𝜙(𝑥) (station/km) 0.26 0.26 0.24 

𝜓(𝑥) (line/km) 1.07 0.99 0.65 

𝜙(𝑥, 𝑦) (stop/km2) 2.85 2.80 2.53 

 11 

4.3. Scenario 2 12 

In this scenario, following previous studies (e.g., Li et al., 2012; Dijoseph and Chien, 13 

2013; Saidi et al., 2017; Luo and Nie, 2019; Qu et al., 2021; Xu et al., 2022), a 14 

heterogeneous potential demand density is considered. It is specified as an exponential 15 

function, 𝐷𝑖
0(𝑥, 𝑦)=𝛼𝑒𝛽√𝑥

2+𝑦2(pass/km2/h), where √𝑥2 + 𝑦2 denotes the distance from 16 

location (𝑥, 𝑦) to the left-most point (origin) of the express line. The CBD station is the 17 

right-most point on the express line. To match the total number of passengers in Scenario 18 

1, the coefficients in the function are set as 𝛼=215 and 𝛽=0.03. By doing so, the demand 19 
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increases as the distance increases and the highest demand occurs at the CBD station. 1 

Fig. 3 depicts the demand distributions of the heterogeneous demand scenario. Fig. 3(a) 2 

shows the potential demand distribution, where the color deepens with the decreasing 3 

distance from CBD, meaning that demand increases when approaching CBD. The actual 4 

demands under the FF, DBF, and HF schemes are shown in Fig. 3(b), Fig. 3(c), and Fig. 5 

3(d), respectively. It can be seen that the actual demand distribution under the FF scheme 6 

is closer to the potential demand compared to the other two schemes. The reason is that 7 

the ticket price directly affects the willingness to travel with respect to the demand 8 

elasticity.  9 

  
(a) Potential demand (b) Actual demand (DBF scheme) 

  
(c) Actual demand (HF scheme) (d) Actual demand (FF scheme) 

Fig. 3. Demand distributions under different fare schemes (Scenario 2). 10 

Table 6 summarizes the primary model results under three different fare schemes. 11 

Similar to the results of Scenario 1, the FF scheme brings the largest actual demand. The 12 

net profit of the DBF scheme is the greatest among all the fare schemes. Thus, similar to 13 

Scenario 1, a DBF is advisable for the transit agency. The HF scheme, where a DBF is 14 

applied to the rail system and an FF is adopted by ordinary buses, shows balanced results 15 

in terms of financial performances and the values of design variables.  16 
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Table 6. Model results with different transit fare schemes (Scenario 2) 

Results Fare schemes 

 Case 1: DBF Case 2: HF Case 3: FF 

𝑍 (pass) 12988 13972 18674 

𝑃 ($/h) 92646.83 85635.12 73146.70 

𝑅 ($/h) 135680.77 128089.00 111371.93 

𝐴 ($/h) 43033.94 42453.88 38225.23 

𝐼𝑠 ($/h) 2832.34 2755.82 2441.97 

𝐼𝑙 ($/h) 22344.32 22143.17 21382.03 

𝑂𝑡𝑏 ($/h) 13769.12 13565.64 11187.72 

𝑂𝑑𝑏 ($/h) 4088.16 3989.25 3213.51 

𝐹(𝑥, 𝑦) ($) 
1.14+0.73𝑑(𝑥, 𝑦)𝑒𝑥 

1.14+0.92𝑑(𝑥, 𝑦)𝑙𝑜 

1.71+0.83𝑑(𝑥, 𝑦)𝑒𝑥 

1.71 

2.98 

2.98 

𝛿 0.41 0.44 0.62 

𝐻 (min) 2.42 2.54 3.41 

ℎ𝑚𝑒𝑎𝑛 (min) 4.79 4.48 3.49 

𝜙(𝑥) (station/km) 0.27 0.26 0.24 

𝜓(𝑥) (line/km) 1.07 0.98 0.65 

𝜙(𝑥, 𝑦) (stop/km2) 2.86 2.81 2.53 

 1 

5. Sensitivity analysis 2 

To understand the robustness of the proposed model and make further in-depth 3 

explorations on the system, sensitivity analyses on some key parameters and demand 4 

levels are conducted. To simplify the analyses, only the HF scheme is investigated.  5 

By varying the values of the related elasticity parameters, we can obtain different 6 

results (Figs. 4-7). Fig. 4 shows the sensitivity analysis results on the elasticity parameter 7 

of the access time. Fig. 4(a) shows the results of financial performances, including 8 

revenue, cost, and net profit. It can be seen that with the increase of the elasticity 9 

parameter of the access time, the agency cost slightly increases while the revenue 10 

significantly decreases, which leads to a reduction of the net profit. This is attributed to 11 

the reduction of the fixed and variable components of the fare; that is, with the increase 12 

of the elasticity parameter of the access time, according to the related derivatives shown 13 

in Table 3, both the fixed and variable components of the fare decrease, as shown in Fig. 14 

4(b). The reduction of the fare leads to reduced revenue. Moreover, as we can see from 15 

Fig. 4(b) that with the increase of the elasticity parameter of the access time, both the 16 

average line density and stop density increase, which increases the operating cost.  17 
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(a) Financial performances (b) Fare components, line and stop densities 

Fig. 4. Sensitivity analyses on the elasticity parameter of the access time 1 

The sensitivity analyses results on the elasticity parameter of the wait time are shown 2 

in Fig. 5. It shows that with the increase of the elasticity parameter of the wait time, both 3 

the fixed and variable components of the fare decrease, which leads to a reduction of the 4 

net profit, as shown in Fig. 5(a). In addition, the increase of the elasticity parameter of the 5 

wait time leads to significant reductions in both the trunk and feeder headways. A shorter 6 

headway will increase the total fleet size, increasing the total operating cost, as shown in 7 

Eqs. (14)-(21).  8 

  

(a) Financial performances (b) Fare components and headway 

Fig. 5. Sensitivity analyses on the elasticity parameter of the wait time 

Fig. 6 shows the sensitivity analyses results on the elasticity parameter of the 9 

in-vehicle time. It shows that with the increase of the elasticity parameter of the 10 

in-vehicle time, both the fixed and variable components of the fare decrease, which 11 

reduces the net profit. The local transit stop density demonstrates a remarkable decrease, 12 
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while the express transit station density shows a slight increase. The total operating cost 1 

slightly increases.  2 

  

(a) Financial performances (b) Fare components and station/stop density 

Fig. 6. Sensitivity analyses on the elasticity parameter of the in-vehicle time 

The sensitivity analyses results on the elasticity parameter of the fare are shown in Fig. 3 

7. It shows that with the increase of this parameter, both the fixed and variable 4 

components of the fare significantly decrease, which reduces the revenue and net profit. 5 

The total operating cost does hardly change. In general, the elasticity parameter of the 6 

fare has a knock-on effect on the net profit of the transit agency.  7 

  

(a) Financial performances (b) Fare components 

Fig. 7. Sensitivity analyses on the elasticity parameter values of the fare 

In practice, rail and BRT are two common express transit modes considered by transit 8 

agencies. Rail-bus and BRT-bus systems are two common forms of bimodal transit 9 

systems where the bus serves as the local transit. We hereby further explore the 10 



 

-25- 
 

performances of the two different bimodal transit systems under different demand levels. 1 

Following previous studies (e.g., Sivakumaran et al., 2012; Li et al., 2012; Yang et al., 2 

2021), a set of potential demands is generated by adjusting the coefficient 𝛼 in scenario 3 

2. Fig. 8 shows the comparisons of the two bimodal transit systems in terms of net profit, 4 

revenue, operating cost, and passengers’ willingness-of-use under different potential 5 

demand levels. It can be seen from Fig. 8(a) that both the net profits of the two systems 6 

increase with the increase of the potential demand. When the demand reaches 58,009 7 

pass/h, the two systems has the same net profit of 201,661 $/h. With the further increase 8 

of the demand, the rail-bus bimodal system has a higher net profit than that of the 9 

BRT-bus bimodal system. Thus, a rail-bus system is preferable to a BRT-bus system for a 10 

demand exceeding 58,009 pass/h.  11 

  

(a) Net profit comparison (b) Revenue comparison 

  

(c) Cost comparison (d) Willingness-of-use comparison 

Fig. 8. Comparisons of two bimodal transit systems (rail-bus and BRT-bus) under different demand 12 
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levels.  1 

Fig. 8(b) shows the revenue comparisons of the two bimodal transit systems. It can be 2 

found that with the increase in passenger demand, the rail-bus system can result in 3 

slightly more revenue for a transit agency than a BRT-bus system. Fig. 8(c) unfolds that a 4 

rail-bus system ultimately costs less than a BRT-bus system with an increased demand 5 

level. According to Eq. (1), the elasticity coefficient 𝛿 indicates the ratio of the actual 6 

demand to the latent demand, which can reflect the willingness-of-use of passengers. Fig. 7 

8(d) indicates that passengers prefer using a rail-bus system, especially at a higher 8 

demand level. This may be attributed to a lower travel time of the rail-bus system 9 

compared to that of the BRT-bus system.  10 

6. Conclusions 11 

This study addresses the bimodal transit design problem considering heterogeneous 12 

demand elasticity under different fare structures. The study considers the heterogeneous 13 

environment, where station/stop spacing, line spacing and length, and service frequencies 14 

may vary in space or time to better cater to the heterogeneous demand. The demand 15 

elasticity is incorporated to capture the passengers’ expectations and perceptions of a 16 

certain quality-of-service level, where the impact of fare structures (e.g., DBF, FF, and 17 

HF) and times (e.g., access time, wait time, and in-vehicle time) are explicitly considered. 18 

Numerical studies and sensitivity analyses are conducted to explore the cause-and-effect 19 

relationship between design parameters and optimal design schemes and assess the 20 

performances of the proposed model and solution method. 21 

Numerical results show that: (i) the proposed model is suitable for designing bimodal 22 

transit systems considering heterogeneous demand elasticity; (ii) among flat fare, hybrid 23 

fare, and distance-based fare, the distance-based fare scheme has a better financial 24 

performance and, thus, is preferable for the transit agency; (iii) the increase in elasticity 25 

parameters has a knock-on effect on financial performances, consequently leading to a 26 

net profit reduction; (iv) except in an extremely low potential demand case, bimodal 27 

transit systems are preferable to unimodal systems in terms of agency’s profit, where a 28 

rail-bus system is recommended for a service area of 100(km2) with a potential demand 29 

exceeding 58,009(pass/h); otherwise, the BRT-bus system should be used instead; and (v)  30 
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passengers prefer using a rail-bus system to a BRT-bus system, especially at a higher 1 

demand level.  2 

This study has some limitations. First, the proposed model considers a many-to-one 3 

demand pattern with one CBD as the destination in the service region, which represents 4 

the commute demand in peak hours, while there are diversified and differentiated 5 

demands that need to be considered. Second, the study focuses on bimodal transit design 6 

under the FF, DBF, and HF schemes, while there are multi-form fare structures that 7 

deserve further exploration. Third, the research emphasises rail, BRT, and ordinary bus 8 

transit modes, while there are other different ones. In the future study, some potential 9 

extensions could be explored, including (i) inclusion of personalized and customized 10 

transit mode in the joint design (Nuzzolo and Lam, 2017; Daganzo and Ouyang, 2019; 11 

Guo et al., 2019; Jiang and Ceder, 2021; Dou et al., 2021); (ii) investigation of the 12 

interrelations between bimodal transit design and other fare structures, e.g., time 13 

differentiated fares, discount fares, and special fares for particular passenger groups 14 

(Tang et al., 2020; Fu et al., 2020; Guo and Szeto, 2020); (iii) consideration of a 15 

polycentric network topology (Park et al., 2020; Cats and Birch, 2021; Huai et al., 2021); 16 

(iv) consideration of other forms of nonlinear demand functions, and the inclusion of 17 

transfer penalty in the demand function; (v) inclusion of diversified travel modes, e.g., 18 

shared bikes, on-demand transit, and automated transit, to conduct a multi-modal transit 19 

system design (Wu et al., 2020; Li et al., 2020; Liu et al., 2021; Luo et al., 2021; Tian et 20 

al., 2021; Liu and Ouyang, 2022; Li et al., 2022); and (vi) consideration of other forms of 21 

objective functions, such as social welfare.  22 
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Appendix A. Proof of the concavity of the objective function with respect to each 1 

individual variable  2 

The proof follows a similar approach used in previous studies (e.g., Ouyang et al., 3 

2014; Gu et al., 2016; Fan and Ran, 2021; Luo et al., 2021; Mei et al., 2021). By 4 

reorganizing the items that include the local transit stop density 𝜙𝑖(𝑥, 𝑦), the objective 5 

function, Eq. (22), can be reformulated as:  6 

𝑃 = −∫ ∫ (𝛶1𝜙𝑖(𝑥, 𝑦) + 𝛶2𝜙𝑖
−1(𝑥, 𝑦))𝑑𝑥𝑑𝑦

𝑙𝑖(𝑥)

0

𝐿

0
+ 𝛶3  (A1) 

where 𝛶1, 𝛶2, and 𝛶3 are the terms that are irrelevant to 𝜙𝑖(𝑥, 𝑦), and 𝛶1, 𝛶2 > 0, where 7 

𝛶1 = 𝜋𝑠
𝑙𝑜𝜓𝑖(𝑥) + 𝜋𝑡𝑏

𝑙𝑜𝜏𝑙𝑜
𝜓𝑖(𝑥)

ℎ𝑖(𝑥)
 and 𝛶2 = 𝐷𝑖

0(𝑥, 𝑦)𝐹𝑖(𝑥, 𝑦) (
𝑒𝑖
𝑈

4𝑣𝑈
+ ∫ 𝑒𝑖

𝑇𝜏𝑙𝑜𝑑𝑦
𝑦

0
) . Thus, 𝑃 8 

is a concave function of 𝜙𝑖(𝑥, 𝑦) when 𝜙𝑖(𝑥, 𝑦) > 0.  9 

Similarly, in terms of the local transit headway ℎ𝑖(𝑥), we can reformulate the 10 

objective function as: 11 

𝑃 = −∫ ∫ 𝛺1ℎ𝑖(𝑥)𝑑𝑥𝑑𝑦
𝑙𝑖(𝑥)

0

𝐿

0
− ∫ 𝛺2ℎ𝑖

−1(𝑥)𝑑𝑥
𝐿

0
+ 𝛺3  (A2) 

where 𝛺1 , 𝛺2 , and 𝛺3  are independent with ℎ𝑖(𝑥), and 𝛺1, 𝛺2 > 0 , where 𝛺1 =12 

𝑒𝑖
𝑊𝜇𝐷𝑖

0(𝑥, 𝑦)𝐹𝑖(𝑥, 𝑦)  and 𝛺2 =
𝜋𝑡𝑏
𝑙𝑜𝜓𝑖(𝑥)

2𝜙(𝑥)𝑣𝑙𝑜
+ ∫ 𝜋𝑡𝑏

𝑙𝑜𝜓𝑖(𝑥)(2 𝑣𝑙𝑜⁄ + 𝜏𝑙𝑜𝜙𝑖(𝑥, 𝑦))𝑑𝑦 +
𝑙𝑖(𝑥)

𝑦=0
13 

𝜋𝑑𝑏
𝑙𝑜 2𝑙𝑖(𝑥)𝜓𝑖(𝑥). Hence, the objective function 𝑃 is concave with respect to ℎ𝑖(𝑥) 14 

when ℎ𝑖(𝑥) > 0. For other decision variables, the concavity of the objective function can 15 

be proved in the same way. By doing so, we can prove that the objective function is 16 

concave with respect to each decision variable. This completes the proof.□  17 
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