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Abstract
The symmetry adapted counting rule for mechanisms and states of self-stress in symmetric frameworks is presented
in an accessible and intuitive manner with the aim of empowering engineers who design such structures. By simply
counting nodes and bars, it is possible to detect states of self-stress and mechanisms beyond the standard Maxwell-
Calladine count. This methodology is first introduced without the need to understand the underlying group theory before
being applied to a range of example frameworks. Design problems focusing on gridshells are discussed - it is noted
that placing bars on lines of mirror symmetry tend to increase the number of states of self-stress in a framework, which
can be desirable. This paper reformulates common symmetric frameworks and introduces simple rules regarding how
to obtain a greater number of states of self-stress. By allowing for the design of states of self-stress, the forces in the
structure can be designed with greater control.
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Introduction
Symmetry and antisymmetry are powerful concepts that can
be used in the design of many structures. One application
of symmetry is how it can be used to create or avoid
states of self-stress and mechanisms (flexes) in pin-jointed
frameworks. This paper adapts research from rigidity theory,
graph theory and group theory for use by structural designers
in detecting and designing mechanisms and states of self-
stress that are related to structural symmetry. Although the
underlying mathematics relies on group theory and is rather
technical, the application to the design of 2D structures is
quite simple. Some terminology in this paper refers to these
mathematical fields, but jargon that is generally unfamiliar to
structural engineers is avoided where possible.

Structural “Counts”
In his seminal paper of 1864, Maxwell [11] introduced
a counting rule for pin-jointed trusses. For a 2D pin-
jointed truss, Maxwell developed a “count” as 2v − b−
r where v is the number of nodes, b is the number
of bars and r is the number of nodal restraints (often
r = 3 as the minimum number of restraints to prevent
rigid body motions). This count is a standard element of
engineering education for use as an initial evaluation of static
determinacy (or indeterminacy) and kinematic determinacy
(mechanisms). This counting rule was refined by Calladine
[5] who established the count 2v − b− r = m− s where m
is the number (count) of mechanisms and s is the number
(count) of states of self-stress (a state of self-stress is where
truss members contain forces in the absence of external
loading). Prior to Calladine, it was known that certain
structural geometries could cause a structure, even if it had
a nominally statically determinate or indeterminate count
(2v − b− r ≤ 0), to have additional mechanisms and states

Figure 1. A gridshell structure. Note the 2D projection (form
diagram), inset, possesses symmetry. From [15].

of self-stress. Calladine’s refinement recognises that when
“special” geometric positions cause additional mechanisms,
m, they also cause additional states of self-stress, s, and
that m and s are added in equal measure (see Figure 6
for example). The Maxwell-Calladine count, 2v − b− r =
m− s applies for any value of 2v − b− r and will be further
explained on Page 3 of this paper. In this paper, r is taken
as 3 and the Maxwell-Calladine count is defined as k where
k = 2v − b− 3. The term k is called the freedom number,
but it is also the Maxwell count.

What are these “special” geometries that cause these
additional mechanisms and states of self-stress? This is a
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complex question that will be partially addressed in this
paper. In particular, this paper will address how to detect
the presence of mechanisms and states of self-stress that
are related to the symmetry of a structure. This paper
reformulates the symmetry adapted counting rule, originally
developed in [7], with the aim of making the process
simple and avoiding extraneous details. Examples using this
counting rule are then given. Discussion of how structures
can be designed using the counting rule information
follows these examples. It is hoped that this paper will
make this counting rule more available to practitioners
whilst demonstrating how it can be used within structural
design. An accompanying paper develops the mathematical
background further [22]. This paper is aimed at a more
engineering based audience as opposed to the other paper
which is written for a more mathematically literate audience.
However, readers are referred to the accompanying paper
for more rigorous discussion of the underlying mathematics.
These papers focus on structural frameworks where no two
nodes overlap, no bars have zero length, and bars only
cross at nodes - this layout is also referred to as a planar
embedding of a graph. The term graph refers to a collection
of nodes connected by line segments and is a mathematical
representation of the layout of a framework or truss. The
methods presented here can be extended to consider non-
planar graphs, although this is not explored in this paper.

Utilising States of Self-Stress in the Design of
Structures
If a 3D structure is in equilibrium, then any 2D projection
of the structure is also in equilibrium. For 3D structures
where gravity and other vertical loads are important, it is
useful in design to consider the projection of the structure
and the forces on to the horizontal xy plane. In this
view, the vertical forces are not visible; one sees a 2D
structure that appears to be self-stressed against itself or its
boundary structure. In this paper, any boundary structure
for horizontal reactions is considered to be an integral part
of the structure, so the structure is considered to be ‘self-
tied’. If the structure requires a boundary structure for
horizontal equilibrium, then, for this paper, the boundary
structure is idealised as a horizontal reaction truss so that all
horizontal forces are resolved within the idealised structure
[13]. The accompanying paper [22] tackles frameworks with
horizontal supports as well.

There are certain types of structures where these 2D states
of self-stress are necessary for the 3D structure to function.
For example, long span roofs such as tensegrity domes
(Geiger domes) depend on the stressing the roof cables
against a perimeter compression ring in order to have a stable
and stiff structure.

Another class of structures that depend on the ability of
the 2D projection of the 3D structure to have states of self-
stress are funicular gridshells (Figure 1). A key motivation
in this paper is the study of gridshells. Millar et al [15]
discuss why it is beneficial that the 2D projection possesses
many states of self-stress. Each state of self-stress relates
to a set of axial loads within the gridshell which is in
equilibrium with a companion set of vertical nodal loads. For
a 2D projection of a gridshell with s linearly independent

states of self-stress and v nodes without vertical supports,
the load space which must be taken through bending is of
size v − s. Transferring load through bending is less efficient
than through funicular action (axial forces only). Therefore,
it is beneficial to maximise s. For architectural, structural
and construction reasons, gridshell layouts often have a great
deal of symmetry. Whilst this paper does not maximise s,
it does provide methods through which to increase s by
understanding the effects of symmetry on states of self-
stress.

Increasing the Number of States of Self-Stress
One way to increase s is to add more bars and make k more
negative. This would eventually lead to a fully triangulated
framework. However, it is often desirable to have a quad-
dominant framework in gridshells. This is because nodes
with more than 4 connecting bars are seldom torsion free in
a gridshell (the members at a node do not share a common
axis). Furthermore, triangular glass panels can produce a lot
of wastage and therefore increase the cost associated with the
design. Whilst some triangular panels and some nodes with
more than 4 bars are acceptable, these are typically kept to a
minimum for the design of a gridshell.

For a given count, k, it is sometimes possible to
increase the number of states of self-stress by having
a “special” geometry or layout of the structure. As
recognised by the Calladine’s refinement of the Maxwell
count, these additional states of self-stress will have
associated mechanisms. These associated mechanisms are
often stabilised by the geometric stiffness of the prestress in
cable structures or by flexural stiffness in gridshells.

“Special” Geometries
Maxwell [11] made the significant observation that for a
state of self-stress to exist in a 2D structure, the layout
must be the projection of a plane-faced polyhedron. If the
geometry of the 2D layout can be the projection of one or
more different, linearly independent polyhedra, then each
polyhedron is related to a different, linearly independent state
of self-stress. The layout, thus, represents a “special” layout.
It is noted that these plane-faced polyhedra have a meaning
in engineering mechanics in that they are discrete Airy stress
functions [4], but this aspect is not critical to this paper and
is not further discussed.

There are other geometric aspects of the 2D layout that
should be considered. Gridshells are often subjected to
uniform symmetric loads (for example, self-weight or a
snow load). Assuming a symmetric layout, a symmetric
load requires a symmetric state of self-stress if it is to be
funicular. Similarly, if an antisymmetric load is applied then
an antisymmetric state of self-stress is required. Half-loads,
such as snow drifts, can be decomposed into a symmetric and
antisymmetric load, as is discussed by McRobie et al [12].
The authors note that even if the form diagram possesses
a symmetric state of self-stress, the gridshell may not be
funicular for the desired load case.

The mechanisms and states of self-stress that are created
by “special” geometries are interrelated. Often, but not
always, the mechanisms and associated states of self-stress
that are related to symmetry will have the property that if
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the state of self-stress is symmetric then the mechanism will
be antisymmetric, and vice-versa. These will be detected
by the process described below. In the situation where
the mechanism and associated state of self-stress are both
symmetric or both antisymmetric, these are not detected.
One way to determine the exact values of s and m is to
investigate the rank of the equilibrium matrix, A. However,
this often does not aid the designer in obtaining geometries
with additional states of self-stress. Similarly, it does not help
to design symmetric and antisymmetric states of self-stress
which are desirable in gridshells, as described on Page 8.

States of self-stress are a projective property. If the 2D
layout of a structure is projected to a different 2D geometry
through an affine (shearing) or projective (perspective)
transformation, the 2D infinitesimal rigidity properties of
equilibrium (states of self-stress and mechanisms) are all
retained [9] [4] [16]. This can be useful in design when a
structural layout can be developed in a highly symmetric
layout and then projected to match the project requirements
(often projective transformations destroy symmetries). See
Figure 2 for an example.

Figure 2. When a Desargues configuration is projected, it
remains a Desargues configuration so that m = s = 1.

Prior Work on Mechanisms and States of
Self-Stress in Symmetric and Periodic
Structures
Fowler and Guest [7] introduced a symmetry adapted
counting rule based on the Maxwell-Calladine count [5].
This paper uses this counting rule and applies it to examples
from the field of gridshell design. Additional work in
this field was done by Connelly et al [6] and Schulze
[20]. Other contributions are well referenced in the twpo
referenced papers. One of the foci of this earlier work was
on establishing the conditions where a symmetric or periodic
structure could be isostatic (where there are no mechanisms
or states or self-stress). This paper takes a different approach
- its focus is on detecting and designing states of self-stress
with the goal of increasing their number.

An engineer may want to know how many states of
self-stress and how many mechanisms a given structural
layout possesses, what they look like, and how to manipulate
them. Singular value decomposition of the equilibrium or
compatibility matrix [5] is not easy to do by hand and may
not give the insight which the designer is seeking. Group
theory can provide some insight into the symmetrical and
antisymmetrical states of self-stress and mechanisms. Using
information from group theory, one can perform a block
diagonlisation on the equilibrium matrix and observe the
impact of structural symmetry on the states of self-stress and
mechanisms present within the framework.

States of Self-Stress Beyond Symmetry
As it is a projective property, the symmetry adapted count
discussed in this paper detects only the states of self-stress

that are associated with the symmetry. There are other special
conditions which might lead to a greater number of states
of self-stress [24]. Therefore, this paper presents a method
which finds symmetry detectable states of self-stress rather
than all states of self-stress. This paper restricts focus to 2D
pin-jointed frameworks, but the methods presented can be
extended to 3D trusses, such as space frames.

Theory
In this section, the underlying theory of the symmetry
adapted count is developed. It is based on an area of
mathematics called group theory. The resulting counts, as
shown in Table 1, and its implications are discussed on Page
5. It is possible to skip the next section, which provides
background information only, and just use the results.

Group Theory
The symmetry adapted counting rules are derived from
group theory. McWeeny [14] provides a good introduction
to group theory and presents applications of it. This section
tries to derive the counts with minimal use of group
theory terminology. A group is a fundamental algebraic
structure which can be used to formalise the notion of
symmetry mathematically (see Page 11 for a definition).
Since symmetry is a ubiquitous concept in mathematics and
in the applied sciences, group theory is a very large and well-
studied mathematical field.

A symmetry group is a collection of symmetry operations
(see [14] or Page 11 for the detailed mathematical definition).
A symmetry operation is a mirror reflection or rotation of
the framework which yields a framework with an identical
geometry. For example, the framework in Figure 7 has
reflection symmetry in a vertical (σv) and horizontal mirror
(σh), and a 180◦ (C2) rotation symmetry. Together with the
trivial identity operation E, this forms a common symmetry
group with four symmetry operations labelled G = C2v =
{E,C2, σh, σv}. A group is an unordered collection of
operations and is similar to a set, hence the use of curly
brackets {}. Examples of symmetry operations are given in
Figure 3. In this paper, all groups are labelled G.

All symmetry operations can be thought of through
transformation matrices, as well as through their physical
meaning. The identity operation, E, is effectively a zero
degree rotation as the transformation matrix is just the
identity matrix, I. The framework maps to itself under
this operation. This is the most fundamental of the
transformations and must be included in every group of
symmetries.

Each of these symmetry operations has a symbol (σ for
reflection or C2 for 180◦ rotation) and a ‘count’ that is given
in Table 1. The framework also has the Maxwell count, k,
regardless of the symmetry properties of the framework. This
basic property can be viewed as a count associated with
the zero degree rotation, or the identity operation, and is
labelled E. This combines with the symmetry operations of
a framework to form a symmetry group, G.

A count (number) is associated with each symmetry
operation. These are combined into an array of counts, as
in Table 1. If there are no symmetries (other than the identity
operation, E), then the only count is the Maxwell-Calladine
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count. For each additional symmetry operation, there is an
additional count, as given in Table 1.

(a) (b) (c)

Figure 3. Some symmetry operations. (a) Isosceles trapezoid
has reflectional symmetry G = {E, σv}. (b) Parallelogram has
C2 symmetry (180◦ rotation) G = {E,C2}.
(c) Rectangles have G = C2v = {E,C2, σh, σv} symmetry.
Higher order symmetries, such as that in a regular hexagon,
can be found but this paper focuses on smaller sets of
symmetry operations as the ideas easily extend to cover these
larger symmetry groups.

Before developing the idea of the symmetry adapted
count, it is worthwhile to examine the Maxwell-Calladine
count, 2v − b− r = m− s. The Maxwell-Calladine count
is derived from considerations of the equilibrium matrix, A
[5]. The equilibrium matrix relates to bar forces via A~T = ~P
where ~T is a vector of bar forces and ~P is a vector of applied
nodal loads. The equilibrium matrix, A, is of size (2v −
r)× b and has a rank of R. Therefore, the size of the space
of states of self-stress is s = b−R as they lie in the null-
space of A. Similarly, the size of the space of mechanisms
is m = 2v − r −R as they lie in the left-null-space of A.
Substituting to eliminate R gives the count 2v − b− r =
m− s. The Maxwell-Calladine count, m− s = 2v − b− r
is adapted with r = 3 to give k = 2v − b− 3, that is the
count for the identity operation, E.

The accompanying paper [22] describes the derivation of
the symmetry adapted count using a block diagonalisation
of the equilibrium matrix. This paper tries to explain this
in a simple way. Any matrix is written with respect to a
fixed choice of basis vectors, or coordinate system. The
equilibrium matrix is normally written in terms of the
standard xy coordinate system and the force in each bar taken
one at a time, but can be rewritten in a different coordinate
system which is based on symmetry and antisymmetry. This
then gives the block diagonalisation. For example, consider
two bars that are images of each other under a reflection
symmetry, as shown in Figure 4. The basis vectors for the
axial forces would normally be [1, 0]

T and [0, 1]
T , but they

are rewritten as [1, 1]
T and [1,−1]

T to leverage symmetry.
Note these vectors remain linearly independent. Such an
example is given in Figure 4 where each value could be
considered the force in the bar. An example based on a
Desargues framework is given on Page 12. A similar basis
change can be applied to the mechanism space (this is
explored more in the accompanying paper [22]). This block
diagonalisation of the equilibrium matrix was first described
by Kangwai and Guest [10] (see also [19] and [17]). This
block diagonalised matrix can be found through one of two
methods; it can be found computationally, as in Kangwai and
Guest [10], or one can manually write down the symmetry
based basis sets and construct the equilibrium matrix directly
from this. Further discussion of the block diagonalised
matrix using a Desargues framework as an example is given
on Page 12.

Conventional basis Symmetric basis

Figure 4. A set of conventional basis vectors and the symmetry
based basis vectors.

Once the equilibrium matrix is rewritten in this form, it
is block diagonalised and one can consider the rank of each
block of the equilibrium matrix [19]. Each block is related to
a particular type of symmetry. A count related to the size of
each block is then combined to form an array of counts, γ,
which is called the symmetry adapted count (this is similar
to the rank argument used by Calladine [5]).

Symmetry Adapted Counts
For each symmetry operation, it is possible to write down
a number (from a counting system). A 2D structure can
have symmetries based on reflection operations or rotational
operations. Reflectional symmetries are labelled σ (σv is
a vertical mirror and σh is a horizontal mirror in this
paper), a rotational symmetry of 180◦ is labelled C2, and
all other rotational symmetries by repeated rotation φ are
labelledCn (rotation by φ = 2π

n - for example, a 90◦ rotation
symmetry is labelled C4 as four of these operations returns
it to its original state). The identity operation, E, leaves the
framework unchanged and its count is the Maxwell count,
k = 2v − b− 3. This is only related to topology (the number
of interconnecting nodes and bars) and is independent of any
other symmetries. The array of symmetry adapted counts is
labelled γ. The length of this array is equal to the number of
symmetry operations (including E).

The terms in the counts are defined by:

• v is the total number of nodes.

• vc is the number of nodes lying on the centre of
rotation.

• vσ is the number of vertices lying on a given mirror.

• b is the total number of bars.

• b2 is the number of bars left unshifted by a C2

symmetry operation. Such a bar must have its midpoint
lying at the centre of rotation.

• bσ is the number of bars left unshifted by a reflection.
These bars must lie within the mirror plane or be a
perpendicular bisector of the mirror plane.

Some notes on the rotational symmetry:

• The centre of rotation is the same for every rotational
symmetry.

• vc can only be 0 or 1 as nodes cannot be coincident.

• b2 can only be 0 or 1 as this paper only considers planar
graphs.

• vc and b2 cannot both be equal to 1 as this paper only
considers planar graphs.
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Concept Identity operation n-fold rotational symmetry 180◦ rotational symmetry Mirror symmetry
Symbol E Cn C2 σ
γ 2v − b− 3 2(vc − 1) cosφ− 1 −2vc − b2 + 1 −bσ + 1

Table 1. Symmetry adapted counts, γ, for all possible symmetry operations in the plane.

• It is not possible for a bar to be unshifted by a
rotational symmetry that is not 180◦. Therefore, for a
Cn symmetry operation bn = 0.

• If b2 = 1, then it is not possible to have any rotational
symmetry other than C2.

Some rotational operations introduce complex numbers
in γ which are avoided in this paper for the sake of
simplicity. This is a consequence of the cosφ term which
can give a non-integer value. Note that the coefficients of the
symmetry adapted count basis vectors, βi, described below,
are necessarily integer values even if the count terms are not.

Using the Symmetry Adapted Count
The symmetry adapted count, γ, gives an array of
numbers or counts. There is one entry for each symmetry
operation, including E. For example, Figure 6(b) has
G = {E, σh} and γ = (2v − b− 3,−bσ + 1) = (2× 6−
9− 3,−3 + 1) = (0,−2). It can be shown that this array is a
linear combination of symmetry adapted count basis vectors
where the coefficient of each symmetry adapted count basis
vector has an integer value. These symmetry adapted count
basis vectors are irreducible characters in group theory.

The counting rule gives an array of counts, γ; group
theory literature labels this array γ = Γ(m)− Γ(s), but this
paper has labelled the count γ for the sake of brevity.
A lot of information can be gleaned by rewriting γ as a
linear combination of symmetry adapted count basis vectors.
This is essentially a change in basis vectors. Tables of
symmetry adapted count basis vectors, also called irreducible
characters, can be found in [1] [2] and the coefficients
appearing in the linear combination of these vectors can be
found through a simple formula. The examples given on Page
6 show how this can be done. From here on, irreducible
characters are called symmetry adapted count basis vectors
as this more accurately describes their role in this paper. It
is worth noting the symmetry adapted count basis vectors of
the group which contains E and only one other symmetry
operation - these vectors are shown in Table 2 where
A1 is symmetric and A2 is antisymmetric (see Figure 5).
Finding the coefficients, βi, can be done through multiple
means, including by considering simultaneous equations.
In this paper, all symmetry adapted count basis vectors
are, for simplicity, labelled A1, A2, ..., Ai in contrast to
other notations. The reason for introducing these symmetry
adapted count basis vectors is because the count, γ, can be
rewritten in terms of them with the coefficients, βi, providing
information on the number of mechanisms and states of self-
stress, as discussed later in this paper.

γ = (α1, α2, . . . , αN ) = β1A1 + β2A2 + . . .+ βjAj (1)

Each symmetry adapted count basis vector can be thought
of as a 1×N array, matrix, or row vector, where N is the
number of symmetry operations, including E. These row

E σ or C2

A1 1 1
A2 1 −1

Table 2. Symmetry adapted count basis vectors for a group
with E and one other symmetry operation.

+ +

A1

+ −

A2

Figure 5. The symmetry conditions of the symmetry adapted
count basis vectors in Table 2

vectors form a basis of a certain vector space (so called
class-functions). Each of these basis vectors describes a
fundamental pattern that axial forces or displacement vectors
at the nodes of the framework may exhibit with respect
to the symmetry operations. Note that these symmetry
adapted count basis vectors are independent and necessarily
orthogonal.

Each symmetry adapted count, γ, lies in this space and
so can be written uniquely as a linear combination of these
symmetry adapted count basis vectors. The coefficient ofAi,
here labelled βi, is 1

N γ ·Ai where 1
N normalises Ai and · is

the dot product of the two arrays γ and Ai. It is important
to note that γ can have non-integer entries but when written
as a linear combination of symmetry adapted count basis
vectors, the coefficients, βi, are always integers. It is these
coefficients that provide information on the number of states
of self-stress and mechanisms. This is why the count, γ,
is typically written as Γ(m)− Γ(s) in the rigidity theory
literature.

The coefficients, βi, can be rewritten as mi − si. This is
because the coefficient, βi, gives the difference between the
number of mechanisms and number of states of self-stress.
Whilst this is rarely explicitly written, it is an important
feature of this symmetry adapted count. mi is the number
of mechanisms of symmetry type Ai and si is the number
of states of self-stress of symmetry type Ai. The reason for
writing βi = mi − si instead of γ = Γ(m)− Γ(s), which
is common in previous literature, is because the number
of mechanisms and states of self-stress is described by the
coefficients and not the array.

If a coefficient, βi is negative then it indicates a minimum
number of states of self-stress. Similarly, if it is positive
then it indicates a minimum number of mechanisms. Say
β1 = −3; this would indicate the presence of at least 3
states of self-stress which are A1 symmetric. Say β2 = +2;
this would indicate the presence of at least 2 mechanisms
which are A2 symmetric. For G = {E, σ} and using Table
2, A1 is symmetric and A2 is antisymmetric (see Figure
5). For symmetric states of self-stress, axial force terms
are preserved by symmetry. For symmetric mechanisms, the
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magnitude of the velocity vectors are preserved by reflection
and the direction is mirrored.

It is possible to obtain structures which contain a
symmetric state of self-stress and a symmetric mechanism
(this is related to the Maxwell-Calladine count of 2v − b−
3 = m− s; note the minus sign on s and the plus sign
on m). The coefficient, βi, actually counts the number
of mechanisms minus the number of states of self-stress
for symmetry type Ai (note βi = mi − si). This can lead
to frameworks where γ = +A1 −A1 = 0. Therefore, the
mechanism and state of self-stress cannot be immediately
detected using this count. One way to determine the exact
values of s and m is to investigate the rank of the
equilibrium matrix, A. However, this does not aid the
designer in obtaining geometries with additional states of
self-stress. Similarly, it does not help to design symmetric
and antisymmetric states of self-stress which are desirable in
gridshells, as described on Page 8.

Note that the count for the identity operation, E, returns
the count 2v − b− 3 = k = m− s. Therefore, the sum of all
coefficients is equal to k (succinctly written as

∑
i βi = k).

The sum of all negative coefficients gives the total number
of symmetry detectable states of self-stress. Similarly, the
sum of all positive coefficients gives the total number of
symmetry detectable mechanisms. Therefore, the Maxwell-
Calladine count is contained within the symmetry adapted
count, but this count may find additional states of self-stress
and mechanisms and provides information on the type of
self-stress or mechanism present.

Examples
This section introduces a number of examples of how the
count can be used to detect and design symmetric and
antisymmetric states of self-stress and mechanisms.

Desargues Configuration
The Desargues configuration involves two triangles con-
nected by three straight bars in a ‘special’ geometry such
that it contains m = s = 1. As noted on Page 2, this special
geometry is achieved if the 2D configuration is a projection
of a 3D plane-faced polyhedron. By enforcing a horizontal
mirror symmetry on the topology, a Desargues configuration
is necessarily obtained.

(a) (b) (c)

Figure 6. The Desargues configuration. (a) Geometry with
m = s = 0 - this is not a Desargues configuration despite
having the same topology. (b) Symmetric configuration
(horizontal mirror, σh), necessarily with s = 1. (c) Configuration
with s = 1 which is not symmetric.

The graph of the Desargues configuration satisfies 2v −
b− 3 = 0 and since for the framework in Figure 6(b) there
are exactly three bars that are unshifted by the horizontal
reflection, we have bσh = 3. Figure 6(b) has the symmetry
groupG = {E, σh} and the symmetry adapted count is given

in Equation (2). There is only one line of symmetry so the
symmetry adapted count basis vectors of Table 2 are used
(see also Figure 5). There is at least one symmetric state of
self-stress (since β1 = −1) and at least one antisymmetric
mechanism (since β2 = +1). Thus, the simple calculation in
Equation (2) shows that there is at least one symmetric state
of self-stress.

G = {E, σh}
γ = (2v − b− 3,−bσh + 1)

= (0,−2)

= β1A1 + β2A2

= β1(1, 1) + β2(1,−1)

= −A1 +A2

(2)

A further discussion of the Desargues configuration is given
on Page 12.

Rectangular Boundary
Consider the grid for a rectangular boundary shown in
Figure 7. The triangulation around the perimeter acts like
a truss and allows forces from a state of self-stress to be
equilibriated. This has two perpendicular mirror lines and
a C2 symmetry (this 180◦ symmetry is the result of the
two mirror symmetries) - this set of symmetries, which
is very common and important, is referred to as a G =
C2v = {E,C2, σh, σv} (Schoenflies notation). There are four
symmetry adapted count basis vectors, as given in Table 3.
The meaning of each of the symmetry adapted count basis
vectors is shown in Figure 8. The symmetry adapted count is
given in Equation (3). In this example, engineering intuition
shows that m = 0 so it is known that all states of self-stress
have been detected. Furthermore, because of the symmetry
adapted count the engineer knows more information on the
states of self-stress in the framework - 5 are fully symmetric
(A1 type - doubly symmetric), 4 are antisymmetric about
both mirrors (A2 type), 4 are antisymmetric about the vertical
mirror only (A3 type), and 4 are antisymmetric about the
horizontal mirror only (A4 type).

Figure 7. Grid for a rectangular boundary. The count follows
from vc = 1, b2 = 0 and bσh = bσv = 2.

G = C2v = {E,C2, σh, σv}
γ = (2v − b− 3,−2vc − b2 + 1,−bσh + 1,−bσv + 1)

= (−17,−1,−1,−1)
= −5A1 − 4A2 − 4A3 − 4A4

(3)
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E C2 σh σv
A1 1 1 1 1
A2 1 1 −1 −1
A3 1 −1 1 −1
A4 1 −1 −1 1

Table 3. Symmetry adapted count basis vectors of the group
G = C2v = {E,C2, σh, σv}.

σv

σh

+ +

+ +

A1

σv

σh

+ −
− +

A2

σv

σh

+ −
+ −
A3

σv

σh

+ +

− −
A4

Figure 8. The symmetry conditions of the symmetry adapted
count basis vectors in Table 3.

The authors note that it is possible to consider many
symmetry groups and the symmetry adapted count basis
vectors (irreducible characters) for each symmetry group can
be found in [1] [2]. This paper does not go beyond three
symmetry operations, in addition to the identity operation E,
so as to demonstrate the simplicity of the method. Examples
containing a greater number of symmetry operations is given
in other papers [8] [22].

A quad-dominant gridshell
Consider the 2D projection of a 3D quad-dominant gridshell
shown in Figure 9. It has a horizontal mirror symmetry, σh,
a vertical mirror symmetry, σv , and a C2 symmetry (this is
again theG = C2v = {E,C2, σh, σv} symmetry group). The
count is given in Equation (4).

Figure 9. Gridshell roof layout with a horizontal mirror, σh, a
vertical mirror, σv and C2 symmetry. Symmetry group
G = C2v = {E,C2, σh, σv}.
(The structure has v = 561, b = 1102, vc = 1, b2 = 0, bσh = 4,
bσv = 18.)

G = C2v = {E,C2, σh, σv}
γ = (2v − b− 3, −2vc − b2 + 1,−bσh + 1,−bσv + 1)

= (2× 561− 1102− 3,−2− 0 + 1,−4 + 1,−18 + 1)

= (17,−1,−3,−17)
= −A1 + 9A2 + 8A3 + A4

(4)

The symmetry adapted count detects at least one state
of self-stress which is fully symmetric (A1 type). This

framework was form-found using the force density method
[18] so it is already known that it possessed at least one
fully symmetric state of self-stress. This symmetry adapted
count verifies this observation. Note that there are some ‘T’
connections along the structural perimeter. These necessarily
are zero force members and could be removed from the
framework during analysis.

If a designer wishes to increase the number of states of
self-stress (in order to increase the nodal load cases which
can be taken with only axial forces), one can add bars along
the line of the horizontal mirror symmetry, as shown in
Figure 10. The new counts are shown in Equation (5). The
revised structure has at least 6 fully symmetric (A1 type)
states of self-stress, as opposed to 1 previously. It is noted
that although the new bars create additional triangular panels,
the nodes are still not twisted because they occur on a line of
symmetry.

Figure 10. Modified gridshell layout based on Figure 9. The
new bars are shown in grey.
(The structure has v = 561, b = 1112, vc = 1, b2 = 0,
bσh = 14, bσv = 18.)

G = C2v = {E,C2, σh, σv}
γ = (2v − b− 3, −2vc − b2 + 1,−bσh + 1,−bσv + 1)

= (2× 561− 1112− 3,−2− 0 + 1,−14 + 1,−18 + 1)

= (7,−1,−13,−17)
= −6A1 + 9A2 + 3A3 + A4

(5)

Increasing the number of states of
self-stress
One aim of this paper is to present a simple method based on
the symmetry adapted count through which the number of
states of self-stress can be increased. Each type of symmetry
will be considered separately.

The authors note that equilibrium as well as infinitesimal
and static rigidity are projectively invariant. That is, for a
2D pin-jointed truss, an affine or projective transformation
preserves m and s, as discussed on Page 2. Therefore, one
can design a highly symmetric geometry which possesses
many states of self-stress and then project it to obtain
a different geometry with the same number of states of
self-stress. The symmetries might be destroyed by the
transformation, but this might not be important to the
designer (in fact, the designer may want to destroy certain
symmetries). Larger groups of symmetry operations can help
to detect more states of self-stress and more mechanisms
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which are not otherwise detected - this is discussed in
greater depth in Schulze et al [22]. In that paper, an example
with higher order symmetry; 4 mirror symmetries and 90◦

rotational symmetry -G = C4v = {E, 2C4, C2, 2σv, 2σd} in
Schoenflies notation is given which is then transformed into a
framework with onlyG = C2v = {E,C2, σh, σv} symmetry.
Note the 2C4 because there is a 90◦ and 270◦ rotational
symmetry with the same associated count. Similarly, there
are two diagonal mirrors, σd, with the same count and a
vertical and horizontal mirror with the same count, hence 2σv
and 2σd. The integers m and s are preserved, but the count
of the new framework may not be able to detect all the states
of self-stress previously detected. Therefore, working with
frameworks with greater levels of symmetry can sometimes
detect more states of self-stress and more mechanisms.

Reflection Symmetry: σ
For a reflection symmetry operation, σ, the count is shown
in Equation (6). Here, A1 is the symmetric and A2 is the
antisymmetric symmetry adapted count basis vector.

γ = (k,−bσ + 1) =
k − bσ + 1

2
A1 +

k + bσ − 1

2
A2 (6)

k b bσ

Even Odd Odd
Odd Even Even

Table 4. Table of bar counts for mirror symmetry.

Table 4 gives information on how the number of bars must
be arranged for a framework with reflectional symmetry.

Assume that k is fixed by a chosen topology. To increase
the number of symmetric states of self-stress, then one must
revise the geometry to increase bσ to make the coefficient of
A1 more negative. In turn, this creates more antisymmetric
mechanisms. For each symmetric state of self-stress gained,
an antisymmetric mechanism accompanies it. This maintains
the overall Maxwell-Calladine count. If one wants more
antisymmetric states of self-stress, then bσ should be kept
small to make the coefficient ofA2 negative. It is not possible
to detect an antisymmetric state of self-stress unless k ≤
−1. When one performs a symmetry extended count on
a framework, not only is it possible to detect additional
states of self-stress and mechanisms beyond the Maxwell-
Calladine count, but information on the symmetry properties
of the states of self-stress and mechanisms is also readily
obtained.

As an example, consider the frameworks in Figure 11.
Both have mirror symmetry and G = {E, σv}. (a) has been
designed so that bσv = 0 and k = −1. By Equation (6), one
obtains γ = 0A1 −A2 and so it contains one antisymmetric
state of self-stress and no mechanisms. In contrast, (b) has
bσv = 4 and k = −1 (same underlying topology). Therefore,
γ = −2A1 +A2 so it contains at least two symmetric states
of self-stress and at least one antisymmetric mechanism.
This shows that increasing the number of unshifted bars in a
framework increases the number of symmetric states of self-
stress and the number of anti-symmetric mechanisms, for a
fixed value of k.

(a) (b)

Figure 11. Reflection-symmetric frameworks with an
anti-symmetric self-stress (a) and fully-symmetric self-stresses
(b). Note that (b) has four bars that are unshifted by the
reflection, whereas (a) has none. Note that the two frameworks
have the same topology (rotate (b) anticlockwise 45◦ and
compare).

Rotational Symmetry: C2 & Cn

Table 5 gives information on how the number of bars must
be arranged for a framework with rotational symmetry. For a
C2 symmetry operation (180◦ rotation), Table 6 is obtained.
Again, A1 is symmetric and A2 is antisymmetric.

k b b2

Even Odd 1
Odd Even 0

Table 5. Table of bar counts for rotational symmetry.

vc = 0 vc = 1

b2 = 0 k+1
2 A1 + k−1

2 A2
k−1
2 A1 + k+1

2 A2

b2 = 1 k
2A1 + k

2A2

Table 6. C2 symmetry count

If one wants to increase s, then one must make k more
negative. It turns out that for Cn, with n ≥ 3, the symmetry
adapted count does not reveal any self-stresses in addition
to the ones that are detected with the standard Maxwell-
Calladine count, but additional information on the symmetry
type is obtained (see [22] for details).

Designing Symmetric and Antisymmetric
states of self-stress

Layouts for gridshells possessing both symmetric and
antisymmetric states of self-stress can be desirable, as
discussed on Page 1. It is often a design preference to have a
symmetric ‘spider-net’ state of self-stress where all interior
members have forces of the same sign. This corresponds to
a compression-only gridshell. Antisymmetric states of self-
stress can be hard to design as any bar which is bisected by a
mirror line must have zero force.

An example of how to design this is given below
for a framework with a horizontal mirror, σh, vertical
mirror, σv , and C2 symmetry (symmetry group G = C2v =
{E,C2, σh, σv}). The count is given in Equation (7). The
symmetry adapted count basis vectors are given in Table 3.
The count expressed as a linear combination of symmetry
adapted count basis vectors is given in Table 7.
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γ = (2v − b− 3,−2vc − b2 + 1,−bσh + 1,−bσv + 1)
(7)

An analysis of Table 7 shows that to increase the number
of symmetric states of self-stress for any mirror, one should
increase the number of unshifted bars associated with
that mirror (this complements the discussion on Page 8).
This has the impact of introducing more mechanisms of
type A2 (antisymmetric about each mirror but rotationally
symmetric). The meaning of each symmetry adapted count
basis vector is shown in Figure 8. Most pattern loads on
gridshells relate to A3 and A4 and not A2 so focus is given
to the coefficients of these. Table 8 gives information on how
the number of bars must be arranged for a framework with
G = C2v = {E,C2, σh, σv} symmetry.

Assume that bσh ≥ bσv for this section. If one were to
increase the value of bσh − bσv , then one obtains more
antisymmetric states of self-stress about the vertical mirror
(A3 type) and more antisymmetric mechanisms about the
horizontal mirror (A4 type). It is often preferable to maintain
a given topology and, therefore, k is fixed. One can therefore
design frameworks by placing bars and nodes on lines of
symmetry as desired. For example, consider the problem
where one wants to obtain at least one fully symmetric state
of self-stress and at least one antisymmetric state of self-
stress for each mirror whilst maintaining k as positive as
possible. Assuming vc = 0 and b2 = 0, then bσh = bσv and
k = −3 to give β3 = β4 = −1 (see the expressions for the
coefficients, βi, shown in the Table 8). Increasing bσh (and
bσv ) will make β1 more negative and thus produce more fully
symmetric states of self-stress. This is discussed in more
detail in the accompanying paper [22].

Limitations in the Design of Gridshells

Not all states of self-stress are detectable using these
counts; only symmetry detectable ones are. There are special
conditions which can lead to a greater number of states of
self-stress [24]. This is because states of self-stress relate
to the projection of plane-faced polyhedra [4] and not
symmetry.

Methods beyond symmetry

As has previously been discussed, this method does not
detect all states of self-stress, nor all symmetric states of self-
stress. The symmetry adapted count only detects states of
self-stress which exist because of a relationship to symmetry.
For example, consider the example shown in Figure 12 which
consists of two frameworks ‘glued’ together. By inspection,
this framework has two states of self-stress, one symmetric
and the other antisymmetric. The count, given in Equation
(8), does not detect either state of self-stress. This is because
the states of self-stress are not related to the symmetry
of the framework. In practice, β1 = −1 + 2 (so s1 = 1
and m1 = 2) and β2 = −1 + 2 (so s2 = 1 and m2 = 2).
Similarly, states of self-stress which lie within a portion of
the framework (and are then replicated by symmetry) will
not be detected.

Figure 12. Two frameworks ‘glued’ together. G = {E, σv}.
Note that no states of self-stress are detected by the symmetry
adapted count even though s = 2. The count gives bσv = 1.

G = {E, σv}
γ = (2v − b− 3,−bσv + 1)

= (2, 0)

= A1 +A2

(8)

One can create a framework with many states of self-stress
by ‘gluing’ primitive frameworks together, as in Figure 12.
This can create symmetric and antisymmetric states of self-
stress as needed. However, the symmetric state of self-stress
may not be a ‘spider web’ in that the interior bars may have
forces of varying signs and, therefore, it might not be useful
in the design of a gridshell which tend to be compression
only, where possible.

Future Work
This methodology provides tools for a designer to increase
the number of states of self-stress and to design states of
self-stress which are symmetric or antisymmetric. This has
direct applications in gridshell design. However, there are
still avenues for future work.

• How to maximise the number of states of self-stress,
s, for a given topology (without changing the graph
connectivity) under the restriction of non-degeneracy
of the framework. There are multiple avenues to
explore related to this: maximising the number of
states of self-stress or planar liftings, maximising
the number of mechanisms or parallel redrawings,
or maximising the decomposability of the discrete
Airy stress function polyhedron [21]. The authors
note the results of Smilansky [23] whose plot of
decomposability directly aligns with the Maxwell-
Calladine count for 2D frameworks.

• The special projective conditions which provide
additional states of self-stress have been studied [24].
An area for future research is to expand the knowledge
and understanding of these special conditions so that
one can design them into frameworks, if desired.

• For structures containing multiple states of self-stress,
it is desirable to be able to perform subdivisions
without losing the states of self-stress. Therefore,
during the subdivision linearly independent states of
self-stress should not be directly connected. Further
development and research into this is left to future
work.
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Conditions γ

vc = 0 & b2 = 0
k−bσh−bσv+3

4 A1 +
k+bσh

+bσv−1

4 A2 +
k−bσh+bσv−1

4 A3 +
k+bσh

−bσv−1

4 A4

vc = 0 & b2 = 1
k−bσh−bσv+2

4 A1 +
k+bσh

+bσv−2

4 A2 +
k−bσh+bσv

4 A3 +
k+bσh

−bσv
4 A4

vc = 1 & b2 = 0
k−bσh−bσv+1

4 A1 +
k+bσh

+bσv−3

4 A2 +
k−bσh+bσv+1

4 A3 +
k+bσh

−bσv+1

4 A4

Table 7. Symmetry count, γ, for a framework with G = C2v = {E,C2, σh, σv} symmetry.

k b2 bσh bσv
Even 1 Odd Odd
Odd 0 Even Even

Table 8. Table of bar counts for G = C2v = {E,C2, σh, σv}
symmetry.

• McRobie et al [13] describes the relationship between
mechanisms and states of self-stress in the dual
form and force diagrams. An investigation into this
relationship with an emphasis on symmetry could
yield interesting results.

Discussion of states of self-stress and mechanisms is
common within the field of graphic statics [13]. Graphic
statics relies upon the reciprocal relationship between
the form diagram, χ, and the force diagram, χ∗, which
describe the structural form and forces within the structure
respectively. The number of mechanisms, m∗, and states of
self-stress, s∗, in the reciprocal diagram are related to those
in the original diagram via s = m∗ + 1 and s∗ = m+ 1
[13]. It is sometimes easier to design the reciprocal force
diagram than the form diagram of the structure.

What is the topological maximum number of
states of self-stress?

Given a self-stressable 2D (planar) framework, one can lift
it to form a 3D plane-faced polyhedron. Defining the first
three points on a single face will position the plane in 3D
space. The z-coordinates of all nodes of the face will be then
known. Defining an additional node belonging to a different
face with known elevations of 2 nodes will position the
plane for that face in space. Defining elevation of a single
node may define more than one plane. If not all planes for
the faces are defined, an elevation of an additional node is
required. Each of these additional points can correspond to
an additional state of self-stress. However, completing the
definitions of all planes one may encounter planes defined
by 4 or more known nodes. These situations, that we call
“conflicts”, possibly reduce the number of states of self-
stress. Each conflict gives an additional condition which
may be satisfied by making a lift node dependant on others
(thereby reducing the number of states of self-stress), or by
moving nodes to special locations (generating an additional
mechanism in the process). The number of possible states of
self-stress and conflicts depends on the selection of the nodes
for which we define z-coordinates. It is not possible to define
more independent states of self-stress than the minimum
number of nodes, reduced by 3, needed to be defined in order
to obtain all faces of the polyhedron. Therefore, this method
gives us an upper bound on the number of states of self-
stress.

Let the number of points which need to be defined
be d+ 3 and the number of conflicts be c. The upper-
bound maximum number of states of self-stress is smax = d,
although it may not be possible to achieve this. The lowest
possible number of states of self-stress is smin = d− c (note
that s ≥ 0). An example is shown in Figure 13 [3]. The
authors note that it is always possible to get one state of self-
stress for any topology with a restraining frame using the
force density method [18].

Figure 13. The spider web geometry shown requires a total of
six points (shown in red with d = 3) to be defined in order to
know the full polyhedron, but there are also seven conflicts.
Therefore, the net has an upper-bound maximum of three states
of self-stress. This spider web geometry was first discussed by
Baker et al [3].

Conclusions
This paper introduced the symmetry adapted counting rule
with the aim of making it simple and avoiding extraneous
details. Examples using this counting rule were then given,
including a focus on the gridshell design. Discussion of how
structures can be designed using the information contained
within the counting rule followed these examples. The
methods presented are easy to use, as they rely only on
counting nodes and bars, but also provide more information
than the standard Maxwell-Calladine count. It is noted that
by placing more bars on a line of symmetry, the number
of states of self-stress in a framework can be increased.
By increasing the accessibility of these counting rules, it is
hoped that more engineers will understand how states of self-
stress and mechanisms manifest themselves in symmetric
frameworks and how they can be used in the design of
structural layouts.
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Glossary
• Graph - A mathematical structure of a set of

nodes connected by edges. Such graphs are often
used to represent pin-jointed frameworks with bars
represented by straight edges.

• Planar graph - A graph which can be embedded in the
plane (it can be drawn in a way so that no two edges
cross each other).

• Group - A group is a set of objects, G, together with
an operation ◦ so that for any two elements a, b ∈ G,
then a ◦ b is again in G. The operation ◦ satisfies the
associativity law (brackets can be placed arbitrarily).
Moreover, each group has a special element e, called
the identity element, which has no effect on any of
the elements of G under ◦, that is a ◦ e = e ◦ a = a
(the identity operation for symmetry is defined below).
Each element a of G also has an inverse a′ in G such
that a ◦ a′ = a′ ◦ a = e (note that a′ may be written as
a−1 in other papers).

• Symmetry operation - A symmetry operation of
a 2D structure is an isometry (distance-preserving
transformation) of the plane that leaves the structure
invariant. A symmetry operation of a 2D structure is
either a reflection or a rotation.

• Symmetry group - A symmetry group (sometimes
also called a point group) of a 2D structure is a group
G, where each element of G is a symmetry operation
of the structure, and ◦ is the composition of symmetry
operations.

• Identity operation, E - The identity element of a
symmetry group is also called the identity operation.
This is simply the identity map which maps every

Prepared using sagej.cls



12 Journal Title XX(X)

point of the plane to itself. The identity operation is
often denoted by E. It can be considered a zero degree
rotation. Similarly, if symmetry transformations are
considered through a transformation matrix, then the
identity operation is the identity matrix, I.

• Group representation - A group representation of
a group G describes the group G by assigning an
invertible matrix to each element of G.

• Character of a group representation - Given a group
representation of G, the row vector of length |G|
that has the trace of the matrix corresponding to the
ith element of G in the ith component is called the
character of the representation. (Here |G| denotes the
number of elements in G.)

• Irreducible characters - Each symmetry group G
has a set of irreducible characters (corresponding to
the most basic group representations of G) which can
be found in standard character tables [1] [2]. The
character of any group representation of G can always
be written uniquely as a linear combination (with
integer coefficients) of the irreducible characters of G.
These irreducible characters for a symmetry group are
a set of linearly independent orthogonal vectors - in
this paper they are referred to as the symmetry adapted
count basis vectors.

• Block diagonalised matrix - This is a matrix that
has been broken up into submatrices, where all
submatrices are zero matrices, except possibly the
ones along the diagonal.

• Freedom number, k - A count associated with the
identity operation, E. It is essentially the Maxwell
count with r = 3 so that k = 2v − b− 3. This is a
fundamental part of the symmetry adapted count. This
paper has focused on unpinned frameworks with r =
3, but the methods can easily be extended to consider
pinned frameworks with r > 3, as discussed in the
accompanying paper [22].

• The count, γ, is often written as γ = Γ(m)− Γ(s) to
indicate how it only detects the difference between
the number of mechanisms and number of states of
self-stress. In this paper, the difference is denoted by
the coefficient of the symmetry adapted count basis
vectors, βi, which is then broken down to βi = mi −
si.

• Schoenflies notation is often used to describe common
symmetry groups such as G = C2v = {E,C2, σh, σv}
and
G = C4v = {E,C4, C2, C

2
4 , σh, σ45, σv, σ−45}.

Block Diagonalised Kinematic Matrix for
Desargues Framework
Here, the doubly symmetric (G = C2v = {E,C2, σh, σv}
symmetry) Desargues layout framework example shown in
Figure 15 is considered. The kinematic matrix, AT , is formed
based on a set of symmetry adapted basis. The left-hand
column shows the member extensions basis and the right
hand column shows the nodal displacement basis which are
all of unit magnitude. Note that the same could be done

for the equilibrium matrix, A, using the same bases for
external loads and internal forces. The equilibrium matrix
is the transpose of the kinematic matrix [13] so it follows
easily.

The Desargues example has G = C2v = {E,C2, σh, σv}
symmetry, as discussed in on Page 6. As the framework
is symmetric, a symmetric loading/displacement creates a
similarly symmetric set of internal forces/extensions.

Once the basis sets have been written out in terms
of symmetry, as in Figure 15, one can construct the
corresponding kinematic matrix, as shown in Figure 14.
This consists of ‘blocks’ for each symmetry type of the
symmetry adapted count basis vectors (see Page 6 for the
symmetry adapted count basis vectors and how they relate
to the different symmetry operations). The top left block is
rectangular and contains the single state of self-stress (extra
row) found in this framework - this block relates to fully
symmetric (A1 type) axial forces and displacement vectors
so shows that the state of self-stress is fully symmetric.
The second block is also rectangular and contains the
single mechanism (extra column) in the framework. The
mechanism is of A2 symmetry type (rotational), as expected.
The third block (A3 type) is square and has no obvious
rank deficiencies meaning that it contains no mechanisms or
states of self-stress. The fourth block (A4 type) is rectangular
(2× 3 in size - column λ has no on-zero entries) and contains
at least one mechanism - this mechanism is clearly λ as is has
no non-zero entries in the matrix. This is shown in Table 9.

The symmetry adapted count gives Equation (9). This
shows the state of self-stress of symmetry type A1 and
the mechanism present of type A2. There is an additional
mechanism of type A4 (motion of the central node up and
down). Note that k = 1 and this is why the rigidity matrix
is of size 10× 11. A more traditional analysis of a similar
framework is discussed on Page 6.

G = C2v = {E,C2, σh, σv}
γ = (2v − b− 3,−2vc − b2 + 1,−bσh + 1,−bσv + 1)

= (1,−1,−3,−1)
= −A1 + A2 + 0A3 + A4

(9)

The symmetry adapted count discussed in this paper finds
the size of each of these submatrices. The size is related to
how many basis vectors can be obtained for each symmetry
type. As in this example, it is possible to create more fully
symmetric sets of extensions than fully symmetric nodal
motions so the submatrix associated with A1 symmetry is
rectangular. If one of the submatrices is rank deficient, then
there is an additional state of self-stress and an additional
mechanism but this is not detected by the symmetry adapted
count - a full analysis of the equilibrium matrix is required.

Symmetry type A1 A2 A3 A4

Bar elongations a, b, c, d e f, g, h i, j
Nodal motions α, β, γ δ, ε ζ, η, θ ι, κ, λ

Table 9. Symmetry adapted counts, (γ), for all possible
symmetry operations in the plane.

The kinematic matrix, AT , in Figure 14 relates the bar
extensions, ~δl and the nodal displacements ~u via AT~u = ~δl.
Also, the equilibrium matrix, A, relates the bar forces, ~T , and
the nodal forces, ~P via A~T = ~P .

Prepared using sagej.cls



Millar et al 13

Figure 14. Construction of a block diagonalised kinematic
matrix, AT , from a set of symmetric basis sets for a Desargues
framework.

Figure 15. Construction of a block diagonalised kinematic
matrix from a set of symmetric basis sets for a Desargues
framework.
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