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Abstract—Digital Contact Tracing (DCT) is a great example
of information systems assisting societal problems. However,
privacy concerns lead to reduced DCT adoption rates. When
dealing with critical societal issues, policymakers seek to use
various strategies, such as interventions and financial subsidies,
to steer the behavors of individuals. This causes individuals to
face a sophisticated decision-making process when coping with
the public health crisis and the adoption of DCT, i.e., giving up
privacy and freedom to gain information to remain healthy. In
this paper, we consider a scenario, where policymakers allocate
rewards to individuals to motivate their compliance with the
interventions; And the individuals decide the optimal compliance
effort based on their health state, privacy loss, interaction with
their neighbors, and rewards. To tackle the trade-off between
a number of individuals and policymakers, in this paper, we
propose a Leader-Followers Mean-Field Game model to analyze
this time-dependent, dynamic, and large-scale decision-making
problem. The numerical results demonstrate that by allocating
appropriate rewards, policymakers can play a role in guiding the
behavior of individuals in various scenarios.

Index Terms—Digital Contact Tracing, Mean-Field Game,
Dynamic systems

I. INTRODUCTION

D Igital Contact Tracing (DCT) is the best digital means
available in containing an epidemic. However, DCT

efficacy can only be maximized under certain settings, such
as with unlimited testing resources, proper testing prioritiz-
ing strategies, and a considerable number of compliant app
users [1]. DCT is designed to utilize information, such as
location, test results, and contacts, to notify users of risks and
recommendations. For DCT to be effective, users’ cooperation
and participation are paramount. However, there are some
obstacles to the large-scale adoption of DCT. First, users have
privacy concerns when using DCT. Then, it leads to extra costs
if users follow the recommendations when high risk occurs,
such as quarantine and testing. Lastly, some users doubt if
the DCT works as promised in the wild, i.e., a complex
heterogeneous network. Users may desire more incentives to
participate in this large-scale information collection activity.

In this paper, we consider a scenario where society is
challenged by active infectious diseases, such as coronavirus
and influenza. For modeling purposes, we consider two main
characters, namely policymakers and individuals, who interact
with each other. Policymakers introduce multiple strategies,

e.g., DCT, to mitigate the impact of infectious disease. The
proposed scenario is depicted in Fig. 1. From the policymak-
ers’ point of view (the outer circle in Fig. 1), they continuously
counterbalance the societal resources of a complex system that
consists of social activities (such as education, sports events,
and family visiting) and economic activities (such as pro-
ducing, trading, and consuming products) under the pressure
of active virus transmission in the population. Policymakers
face a dilemma: On one hand, the seriousness of the disease
impacts the population’s well-being, straining the healthcare
system and hindering social and economic activities; on the
other hand, participation in these activities is vital, especially
during challenging times, but it can also lead to higher
infection rates. Policymakers aim to reduce the impact of
the pandemic and restore order in society by strategically
implementing interventions [2]. Intervention effectiveness is
gauged by disease progression and collective efforts. Based
on these indicators, policymakers dynamically adapt strategies
for optimal outcomes. For individuals, the general trend we
observe is that they desire normal activities for mental support
and material needs, yet these interactions can affect health.
Complying with interventions may incur economic costs and
privacy concerns. Individuals face an intricate decision-making
process of how to behave in this scenario. And their decisions
are a direct signal of the effectiveness of the interventions.

It is important for policymakers to find effective strategies
that can lead to positive effects on society while also respecting
the needs of individuals. In this paper, we investigate the
complex interactions in a simplified mathematical formulation
between individuals and policymakers by modeling their re-
spective decision-making processes. Various factors are used
to characterize individuals, such as their preferences for using
DCT, interactions with neighbors, and stubbornness. This
enables us to evaluate the effectiveness of the policymakers’
strategies in different scenarios. By analyzing the interactions
among individuals and policymakers, we aim to unveil the
essential criteria for achieving a balanced and harmonious
dynamic within. Note, in this paper, we make some as-
sumptions that may be oversimplified and only consider non-
pharmaceutical interventions. However, this is valuable in the
novel approach which can be easily extended in future work.

We propose a Leader-Follower Mean-Field Game (LFMFG)
to investigate a time-dependent, dynamic, and large-scale
decision-making problem for policymakers and individuals.
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Figure 1. The complex relationship between policymakers and individuals

Particularly, we would like to shed light on the following
issues: 1) Examine the interconnectedness of pandemics’ pro-
gression, individual decision-making, and rewards; 2) Ana-
lyze the dynamic decision-making of individuals in scenarios
involving influential neighbors and policymaker subsidies.
Explore the equilibrium in multiple populations regarding dy-
namic exogenous factors, including policymakers’ strategies;
3) Investigate policymakers’ decision-making in implementing
DCT and allocating subsidies and its impact on collective
control efforts. Assess the effectiveness and challenges of
policymakers’ strategies.

It is essential to investigate the relationship between
information-driven technology, individuals, and policymakers
as a whole. The proposed scenario can be also adopted to
analyze other complex systems, such as the influence of
personalized advertisement on an individual’s shopping prefer-
ences and market regulation; the influence of social media on
individual politic views and democracy; the influence of com-
munication technology on individual information transmission
speed and cultural revolution.

II. RELATED WORK

Mean-Field Game (MFG) was first proposed by Lasry et.
al [3]. MFG is unlike legacy game theory [4], which focuses on
studying the equilibrium among a limited number of agents. It
is often used to analyze large-scale interactions between non-
cooperative agents. MFG is widely adopted to solve population
mobility issues, such as emergency evacuation [5], opinion
evolution in social networks [6], and market dynamics [7].

Game theory is adopted to address large-scale decision-
making problems. [8]–[10]combine game theory and compart-
mental models in epidemiology, e.g., the SIR (Susceptible-
Infected-Recovered) model and the SEIR (Susceptible-
Exposed-Infected-Recovered) model, to study the dynamics
of COVID-19 and investigate the optimal actions taken by the
government and individuals. Hubert et. al [11] study moral
hazard in an SIR-based principle-agent model. The optimal
government subsidy is calculated considering the infection rate
and optimal effort of the population. Elie et. al [12] adopt MFG
in the compartmental model to inform the optimal contact
behavior of the individuals. However, individuals and govern-
ment are modeled separately. [13] reassembles most closely

the proposed model in this paper. It proposes a Stackelberg-
based extended MFG framework in a single population. The
agents aim to control the rates of transition in the SIR model
to minimize the individual cost. Monte Carlo simulations
and machine learning tools are used to solve the problem.
Although integrating compartmental models is beneficial in
modeling the progress of the pandemic, it also oversimplifies
the decision-making process of the individuals. Additionally,
the transition of different states is in a Markov fashion, where
an individual progresses from a susceptible state to an infected
state. However, this is not the case in reality, since individuals
can make more effort in protecting themselves.

We observe the emergence of information technology as a
means to mitigate the impact of infectious diseases. Informa-
tion technology, including data collection and dissemination
techniques like DCT, gather data to optimize the utilities of
the agents. Policymakers, in turn, proactively utilize infor-
mation technology and interventions to address the adverse
effects of infectious diseases. Consequently, it is crucial to
investigate how these factors influence individuals’ decision-
making processes. Haw et. al [14] study the trade-off between
economic, social, and health outcomes in the management of
a pandemic in a macro view. López et. al [15] study the key
factors that affect the effectiveness of DCT in France. They
propose a network and SIR-based model to analyze different
transmission settings, adoption rates, and ages. It informs
policymakers in designing and implementing effective DCT
strategies to control the spread of infectious diseases. Although
several network structures are considered to demonstrate the
various relationships of individuals, the decision-making pro-
cesses of individuals are merely presented. Lorch et. al [16]
propose a temporal point access modeling framework to
study COVID-19 transmission in super spreading events. The
proposed model combines an agent-based approach and a
compartmental model together to introduce new human behav-
ioral elements, namely appearance at the hotspots. However,
people’s subjective initiative is neglected, such as they may
decide not to be present.

In comparison to existing work, this paper offers several
distinct differences and contributions, as follows:

• Compared to the SIR and network-based models, our agent-
based model introduces continuous health states and factors
like compliance cost, interaction cost, information cost, and
rewards. This comprehensive approach provides a detailed
perspective on strategy dynamics and reward effectiveness,
setting it apart from the previous study.

• This work considers the collective effort of multiple popu-
lations, integrating specific influential factors. The proposed
model offers valuable insights into motivating interactions
among heterogeneous populations using rewards.

• The proposed LFMFG captures time-dependent individ-
ual decisions and population health distribution, revealing
the impact of policymakers’ determination and rewards. It
explains interventions’ adjustments, providing a compre-
hensive understanding of the interplay between individual
decisions, policymaker interventions, and population health.
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III. MODELING

In this work, we consider the interactions between poli-
cymakers and individuals as a leader-followers game. The
objective of policymakers is to optimize their determination
in implementing rewards, which serve to motivate individuals’
control efforts and encourage the adoption of DCT. A higher
determination corresponds to a more robust implementation
of the rewards, which can also be seen as encompassing in-
terventions. Individuals make optimal control efforts based on
factors, such as health state, interaction cost, privacy cost, and
rewards provided by policymakers. A higher level of control
effort can result in reduced infection risk, as indicated by a
lower health state value. While maintaining a low infection risk
is advantageous for both individuals and society, the increased
control effort can impose significant costs on daily life due to
the potential restrictions on social and economic activities.

We consider multiple populations in the proposed model
over a period of time t ∈ [0, T ]. Individuals are denoted as
i ∈ I = {1, ..., N}. We assume that individuals of different
populations can interact freely. The contact set of individual
i is defined as Ni = {0, 1, ...,M}. The health state of
individual i is represented as ri ∈ [0, 1] and it is influenced
by its contacts Ni. Each individual exerts a time-dependent
control effort ui(ri, t) based on its current health state ri. In
the following subsections, we first introduce the optimization
problem faced by policymakers, followed by the individual
decision-making dynamics. Lastly, we establish the LFMFG
to solve this dynamic, time-dependent, large-scale game.

A. Leader’s objective and constraints

Policymakers provide incentives to individuals based on
the collective control effort of populations, with the objective
of minimizing the overall cost of regulation implementation,
DCT deployment, and total incentive expenditure. We quantify
the policymakers’ determination of rewards implementation
and denote it as D(t). A set of rewards for policymakers is
denoted as G, and the reward at time t is represented as g(t).
The value of g(t) is influenced by the collective control effort
u and the determination D(t). Hence, we define the dynamics
of the reward as a partial differential equation (PDE) [17]

dg(t) = {ω1[D(t)− u]g(t) + ω2

P∑
p=1

δ̄p(t)}dt (1)

where ω1, ω2 are positive weights. When D(t) ≥ u, the unit
reward g(t) increases, indicating that policymakers exert a
strong determination to implement regulations and DCT. On
the contrary, weak collective compliance requires generous
rewards to be stimulated. The second term represents the aver-
age health state, where

∑P
p=1 δ̄p(t) represents the aggregated

average state of population p. The aggregated average state
will be explained in more detail in Section III-B. Subsequently,
we define the cost of policymakers

J0(D, g,u) =

∫ T

0

[ug(t) + ηD(t) + τD(t)
2
]dt (2)

where η and τ represent the unit costs of data processing
and system maintenance, respectively. ug(t) represents the

total reward. ηD(t) denotes the data processing cost, which
is proportional to the determination. τD(t)

2 represents the
maintenance cost. The quadratic form of the maintenance cost
ensures diminishing returns [18]. In summary, policymakers
aim to minimize the cost by solving this PDE-constrained
optimization problem

min
D(t)

J0 =

∫ T

0

[ug(t) + ηD(t) + τD(t)2]dt (3a)

s.t.

dg(t) = {ω1[D(t)− u]g(t) + ω2

P∑
p=1

δ̄p(t)}dt (3b)

B. Follower’s objective and constraints

Individuals, as followers, face this complex decision-making
process that requires balancing participation in social and eco-
nomic activities, potential privacy loss, control effort, health
preservation, and rewards. The total cost is bounded by the
dynamics of their health states, which are influenced by the
health condition of their contacts, control effort, and rewards.
We first present the dynamics of an individual i’s health state
ri. Health state is a time-dependent variable. The dynamics of
health states can be defined as a PDE

dri(t) = [

∑
n∈Ni

αi,nri,n(t)∑
n∈Ni

αi,n
− ri(t) + βui(ri, t) + γg(t)]dt

(4)
where β, γ are positive weights. The health state difference
over time depends on the interaction between one’s contacts
in the first term, one’s current health state ri(t), control
effort ui(t), and rewards g(t) allocated by policymakers.
The interaction between individual i and its neighbor n is
denoted as a binary variable αi,n ∈ {0, 1}. ri,n represents
the encounter risk between individual i and n, which can
be further defined based on factors, e.g., contact duration,
distance, and environment. Health state ri can also be regarded
as the risk factor, with a low value indicating low risk and vice
versa. Throughout the rest of this paper, the term "health state"
will be used as the default expression.

We then define the cost of individual i, which includes
the control cost, interaction cost with its neighbors, privacy
cost while using the DCT, penalty when the actual health
state deviates from the ideal state, the termination cost, and
the reward for the control effort. To simplify the interactions
between individual i and its neighbors, we define a mean-field
term that aims to replace the description of the many-to-many
interactions with an aggregated term. We define the mean-field
term of population i as δi(r, t), which enables us to indicate
the population i’s influence on its neighbor population n.
• Control cost fc: The control cost of the current state ri

is defined as fc(ri, ui, t) = 1
2a1u

2
i (ri, t), where a1 is a

positive weight. The control cost is in quadratic form to
ensure diminishing returns [4].

• Interaction cost fa: The interaction cost is based on
individual i and its neighbors. We then denote the interaction
cost as fa(ri, δn, t) = ri(t) + a2

∑M
n=1 δn, where a2 is

a positive weight and δn is the neighbor’s health state
distribution. The underlying assumption is that if individual
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i interacts with its contacts, it will be affected by higher
risk ri. However, if individual i interacts with contacts who
have low-risk, its state remains the same.

• Privacy cost fp: DCT requires users’ data to provide
accurate warnings. We assume that individuals are selfish
and have varying preferences for data sharing. For example,
in the benchmark setting, individuals may feel hesitant or
ashamed to share their information when the risk factor
is high. We also introduce the concept of a “technology
embracer” who is more inclined to share information when
the risk is either very low or high. The privacy cost is
defined as fp(ri, t) = a3δi[(ri−w1)

2+w2], where a3 is the
unit value of privacy. w1 is the differentiator between the
benchmark setting and the technology embracer scenario.

• Penalty fpe: We define the ideal health state as r0, represent-
ing a state where there is no risk to one’s health. Individual
aims to achieve a health state as close to r0 as possible
to avoid the penalty. Therefore, the penalty is defined as
fpe(ri, r0, t) = a4[ri(t) − r0(t)]

2, where a4 represents the
unit penalty for the deviation between the current health
state and the ideal health state. The definition implies that
the greater the deviation from the ideal state, the higher the
penalty will be.

• Termination cost ft: Termination cost is determined by
the health state at the termination time T . We define the
termination cost as ft(r(T )) = a5r(T ), where a5 is a
positive weight.

• Reward: The individual’s control effort is rewarded by
policymakers, which is defined as g(t)ui(ri, t).

According to the definitions of the individuals’ costs, the cost
function is denoted as Li for individual i.

Li(ui, δ, g, ri) =
1

2
a1u

2
i (ri, t) + (ri + a2

M∑
n=1

δn) (5)

+ a3δi[(ri − w1)
2 + w2] + a4(ri − r0)

2

+ a5ri(T )− g(t)ui(ri, t)

Then, we define the expected accumulated cost function of
individual i as follows

Ji(ui, δ, g, ri) =

∫ T

0

[Li(ui, δ, g, ri)]dt+ a5ri(T ) (6)

Since the cost function contains δi and δn, we only write δ
in the cost function. However, it is not realistic to assume
that an individual has only a limited number of contacts dur-
ing social and economic activities, considering “next closed”
encounters. Each individual aims to minimize the cost, and
all the individuals in this population share the same objective.
Hence, to analyze the decision-making process at a population
level, we can adopt an individual i to represent the entire
population to which they belong. It is important to note that in
this paper, we replace notion i, which represents an individual,
with population i to represent the corresponding population.
We now define the health state dynamics of population i as

dri = [

M∑
n=1

ϵnζi,pδn − ri + βui(ri, t) + γg(t)]dt+ σidWi(t)

= fi(ui, δn, g, ri)dt+ σdW (t) (7)

where ϵn is the impact factor of population i’s neighboring
population n, which can be proportional to the size of the
population or the mobility of the population. ζi,n is the
correlation between population i and n. We can infer when two
populations are geographically adjacent when the correlation
is strong. δn is population n’s distribution of health state. We
capture the randomness by using Brownian motion, where σi is
the diffusion constant of population i, and Wi(t) is a standard
Wiener process [3].

Hence, we generalize the individual’s optimization problem
to population i as the following PDE-constrained optimization
problem

min
ui, g

Ji =

∫ T

0

[Li(ui, δ, g, ri)]dt+ a5ri(T ) (8a)

s.t.

dri = fi(ui, δn, g, ri)dt+ σidWi(t) (8b)

IV. SOLUTION OF LFMFG
To solve the optimal control in a dynamic environment,

we use Hamilton-Jacobi-Bellman (HJB) equation for optimal
control and Fokker-Planck-Kolmogorov (FPK) equation for
system dynamics [3].

A. Problem reformulation
Any individual in population i aims to minimize the cost.

The evolution of the optimal compliance ui and the mean-
field term δi can be captured by HJB and FPK equations,
respectively. The fore-mentioned optimization problems in Eq.
(3) and (8) can be represented in HJB and FPK equations.
First, we define the value function vi(ri, t) for population i

vi(ri, t) = inf
u∗
i ∈U

Ji(ui, δ, g, ri) (9)

As indicated in Eq.(9), the value function represents the
minimum value of the cost when choosing an optimal u∗

i .
To obtain the optimal control, we adopt the HJB as follows

∂tvi +Hi(ri, Drvi, D
2
rrvi, δ) = 0 (10)

where value function vi is twice differentiable with ri and
differentiable with t. Hi(ri, Drv,D

2
rrv, δ) is Hamiltonian,

which is defined as

Hi(r, p, q, δ) = inf
u∈U

[Li(ui, δ, g, ri)+pfi(ui, δn, g, ri)]+
σ2

2
q (11)

where p = Drvi is the adjoint variable and q = D2
rrvi.

Since u∗
i can be obtained from Hamiltonian, we also have

the solution of the following equation

fi(u
∗
i , δ, g, ri) =

∂Hi

∂p
(ri, δ, p) (12)

δ(ri, t) is the distribution of state ri at time t. The distribution
δ changes over time, which is affected by the individuals
changing into state ri and individuals changing state ri into
other states. We could capture the dynamics by using the
divergence of the distribution’s gradient.

∂tδi + div(DpHi(ri, δ,Du)δi)−
σ2

2
∂2
rrδi = 0

∂tδi + div(fi(ri, δ, ui)δi)−
σ2

2
∂2
rrδi = 0 (13)
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We re-formulate the optimization problem according to HJB
and FPK. We aim to find the optimal control u∗

i and deter-
mination D∗ as a Nash Equilibrium point for populations and
policymakers, respectively.

Definition 1 (Equilibrium of populations and policymaker).
For a given reward g, the population i reaches Nash Equilib-
rium, if and only if all the individuals in population i reach
the relationship described by the following equations

Ji(u
∗
i , δ, g, ri) > Ji(ui, δ, g, ri)

J0(D
∗, g,u) > J0(D, g,u)

According to the NE, no individuals in population i can
benefit from deviating from the optimal control strategy u∗

i ,
while policymakers strive to exert the optimal determination
D∗ in implementing the rewards. To find the NE, we adopt
a backward induction approach: First, the followers treat the
reward g from policymakers as given and optimize the control
effort ui. Then, the leader takes the collective control effort
into account and optimizes the policy deployment determina-
tion D.

B. Equilibrium of the populations

In Eq. (8b), the dynamics of the health state of individual i is
based on the individual’s control effort, neighbor’s health state,
rewards, and the current health state. To generalize the problem
into a multiple population scale, we need to reformulate Eq.
(8b) to present the mean-field term of population i, i.e., the
dynamics of the health state distribution, according to Eq. (13).

∂tδi + div(fi(ui, δn, g, r)δi)−
σ2
i

2
∂2
rrδi = 0 (14)

The divergence term can be derived as div(fiδi) =
∂fi(ui,δn,g,r)

∂r δi + fi(ui, δn, g, r)
∂δi
∂r . This term represents the

diffusion rate of population i’s health state distribution caused
by neighboring populations. Therefore, we reformulate the
optimization problem for the multiple-population scenario as
follows

min
ui, g

Ji =

∫ T

0

[Li(ui, δ, g, ri)δi]dt+ a5δi(ri, T )ri(T )

(15a)
s.t.

∂tδi = −div(fi(ui, δn, g, r)δi) +
σ2
i

2
∂2
rrδi (15b)

The objective function in Eq. (15a) represents the expected
cost of population i with the constraint of the mean-field term
δi dynamics in Eq. (15b). We solve this optimization problem
by adopting the method of Lagrangian multipliers. We then
write the Lagrangian function as follows.

Li(ui, δi, vi) =

∫ t

0

∫
r∈Rd

Li(ui, δ, g, ri)δidrdt (16)

+

∫
r∈Rd

a5δi(r, T )r(T ) +

N∑
i=1

∫ t

0

∫
r∈Rd

pi[∂tδi + div(fiδi)−
σ2
p

2
∂2
rrδi]drdt

where pi(r, t) = ∂vi(r,t)
∂r is the Lagrangian multiplier. We

assume that there exists a tuple (ui, δi, vi) to minimize the
cost function, which satisfies ∂Ji

∂ui
= 0, ∂Ji

∂δi
= 0, and ∂Ji

∂vi
= 0.

Therefore, we obtain

∂Li

∂ui
= δi

∂Li

∂ui
+

∂vi
∂r

∂fi
∂ui

∂δ

∂ri
(17)

∂Li

∂δi
=

∂vi
∂t

+Hi + a5r + δi
∂Li

∂δi
+ δi

∂fi
∂δi

∂vi
∂r
− σ2

2

∂2vi
∂r2

(18)

∂Li

∂vi
=

∂δi
∂t

+
∂fiδi
∂r
− σ2

2

∂2δi
∂r2

(19)

We adopt finite difference method (FDM) [19] to solve the Eq.
(17), (18), and (19). We first discretize the time step t ∈ [0, T ]
and health state step j ∈ [0, 1]. Then, we define the iteration
step sizes of time and state space as ∆t = T

X and ∆r = 1
Y ,

where X and Y are the numbers of time and state step size,
respectively. By applying the FTCS scheme, we first Hence,
we denote the discrete mean-field term of population i’s jth
health state at time t as dt

i,j , the value function as vt
i,j , and

control effort as ut
i,j .

dt+1
i,j =

1

2
(dt

i,j+1 + dt
i,j−1)−

∆t

2∆r
(f t

i,j+1d
t
i,j+1 − f t

i,j−1d
t
i,j−1)

+
∆t

4∆r2
σ2
j

2
(dt

i,j+2 − dt
i,j + dt

i,j−2) (20)

vt−1
i,j =

1

2
(vt

i,j+1 + vt
i,j−1) + ∆t(Li,j + a5r + ut

i,j
∂Li,j

∂ut
i,j

)

− ∆t

2∆r
(fi,j +

∂fi,j
∂u

)(vt
i,j+1 − vt

i,j−1)

+
σ2
i,j

8∆r
(vt

i,j+2 − 2vt
i,j + vt

i,j−2) (21)

ut
i,j =

1

a1
[g(t)− β

vt
i,j+1 − vt

i,j−1

2∆r

dt
i,j+1 − dt

i,j−1

2∆r
] (22)

C. Solution of the Leader’s optimal determination

We solve the leader’s optimization problem. The leader
allocates reward g(t) ∈ G and expects the followers exert
the best collective control effort ut

i,j
∗, which is defined as

u =
∑N

i=1

∑R
j=1 u

t
i,j

∗
δti . The aggregating average health state

is defined as δ̄ti =
∑N

i=1 δ
t
i . We can obtain the leader’s optimal

determination D∗(t) according to HJB, which is defined as
H = L0 + λf0, where λ is the adjoint variable. Additionally,
L0 and f0 are defined as

L0 = ug + ηD(t) + τD(t)
2 (23)

f0 = ω1[D(t)− u]g(t) + ω2δ̄ (24)

By solving the first derivation of H with respect to D, we
obtain the optimal D∗ at reward state k at time t

D∗(t) = − 1

2τ
(η + λω1g) (25)

We define the value function of the leader’s objective as
V(g, t) = infD(t)J0, which also satisfies ∂V

∂t + ∂H
∂g = 0.

Hence, we obtain

−∂V

∂t
= u+ λω1[D(t)− u] (26)

We substitute the optimal determination in (25) into (26)

−∂V

∂t
= u+ λω1[−

1

2τ
(η + λω1g)− u] (27)
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where λ = ∂V
∂g . We discretize the reward state space [0, gmax]

and the time interval [0, T ]. Then, we define the step size of
time and state space as ∆t = T

Y and ∆g = 1
Z , where Y and Z

are the numbers of time and reward state steps, respectively.

Vt−1
k =

1

2
(Vt

k+1 +Vt
k−1) +

∆t

∆g
ω1(

η

2τ
+ u)(Vt

k+1 −Vt
k−1)

+
∆t

∆g2
ω1

2g

2τ
(Vt

k+1 −Vt
k−1)

2 −∆tu (28)

By solving leaders value function V, we obtain the leader’s
optimal strategy, namely the policy deployment determination,
Dk(t)

∗ for the kth reward at time t according to (25)

D∗
k(t) = − 1

2τ
(η +

Vt
k+1 −Vt

k−1

∆g
ω1g) (29)

D. Algorithm of LFMFG

We propose algorithm 1 to solve the proposed LFMFG.
We first initiate the discrete mean-field term d0

i,j and control
effort u0

i,j , for population i at time 0; And value function
vT
i,j for population i at time T . We then initiate the discrete

value function VT
k of the kth reward at time T . In Algorithm

1, we first solve the population i’s optimization problem by
considering reward k. Then, the adjoint variable and health
state distribution of population p are updated according to
Eq. (21) and (20), respectively. The control effort ut

i,j is
updated according to Line 15, where α is the learning rate.
The iteration runs until the error reaches the satisfaction or the
maximum iteration limitation, where the maximum iteration is
I = 25 and the error ρ = 0.1. The policymakers’ optimiza-
tion solution is presented from Line 21. After obtaining the
collective control effort, the value function and the optimal
determination of policymakers are calculated by HJB. The
complexity of Algorithm 1 depends on the dimension of the
problem, discrete step sizes, and the required accuracy. For
the proposed FDM-based LFMFG, the current settings and
the various simulated scenarios show stable performance and
convergence. The details are presented in Section V-G.

V. SIMULATION OF THE PROPOSED MODEL

We present simulation results for our proposed model in this
section. We define scenarios to contextualize the parameters.
We showcase results for these scenarios, including health
state distribution, epidemic progression, individuals’ optimal
control evolution, policymakers’ optimal determination, and
model stability and equilibrium.

A. Evaluation setup

We first set the benchmark scenario with two populations.
The initial distributions of population 1 and 2 are (0.25, 0.2)
and (0.75, 0.5), respectively. The impact of populations 1 and
2 is denoted as ϵ1 = 0.8 and ϵ2 = 0.5. Additionally, the
correlation factor of populations is set as ζ12 = 2 to indicate
population 1 has a greater influence on population 2. In the
benchmark scenario, individuals have a higher overall cost
of data contribution with a privacy weight w1 = 1.5. These
individuals can be referred to as data conservatives. We set
X = 30, Y = 50, and Z = 20 as the steps of health states,

Algorithm 1 LFMFG
1: Initialize: d0

i,j ,u
0
i,j ,v

T
i,j ,V

T
k , and err

2: for Reward k = 0, ..,K do
3: for Population i = 0, .., N do
4: while it ≤ I or err ≥ ρ do
5: for j = 0, ..., J , t = 0, ..., T do
6: if ui,j = 0 then
7: dt+1

i,j = dt
i,j

8: else
9: Solve dt

i,j using (20)
10: end if
11: end for
12: for j = 0, ..., J , t = T, ..., 0 do
13: Solve vt

i,j using (21)
14: end for
15: for j = 0, ..., J , t = 0, ..., T do
16: Update ut

i,j ← αut
i,j + (1− α)

∂Lt
i,j

∂ut
i,j

17: end for
18: Compute err = |Lt

i,j(it)− Lt
i,j(it− 1)|

19: end while
20: end for
21: end for
22: Leader’s optimization problem
23: for t = 0, ..., T , k = 0, ...,K do
24: Update ut

k =
∑N

i=1

∑J
j=1 u

t
i,j

∗
dt
i,j

25: end for
26: for t = T, ..., 0, k = 0, ..,K do
27: Update Vt

k using (28)
28: end for
29: for t = 0, ..., T , k = 0, ..,K do
30: Update Dt

k using (29)
31: end for

time states, and rewards, respectively. The ideal health state
is set as r0 = 0.1. In the following simulations, we assess
scenarios with influential populations, technology embracers,
and intrinsic seekers, exploring their impact on policymakers’
reward strategies. For the influential populations scenario, we
raise ζ12, enhancing population 1’s influence on population
2. In the technology embracers scenario, we set w1 = 0.1,
lowering overall data contribution costs. In the intrinsic seekers
scenario, individuals prioritize intrinsic costs with a smaller γ.

B. Health state dynamics and progression of epidemic
First, we study the dynamics of the health state distribu-

tion in Fig. 2 to understand the reward effectiveness. We
demonstrate the impact of different rewards on the health
state distribution of populations 1 and 2. The majority of the
population naturally moves towards the low health states even
if there are no rewards given, as shown in Fig. 2a (left). This
finding demonstrates that rational individuals in a natural
setting are able to make sound decisions without additional
influences. Then, we introduce nudges from policymakers by
allocating rewards in Fig. 2a (middle), where population 1
experiences fluctuation but eventually settles in a fairly ideal
state. This demonstrates that when regulation and rewards
are enforced by policymakers, it initially leads to disruption,
followed by a majority of the population settling at low health
states. On the other hand, the health state distribution of
population 2 is influenced by population 1. With the aid of
rewards, the population of the mediocre health state dominates
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Figure 2. The health state distribution of populations 1 and 2 with respect to various rewards and health states: population 1 is represented
by solid lines with dots, where the size of the dots increases with the time step. population 2 is depicted by dash lines with stars. The
subfigures in 2a and 2b correspond to rewards g = 0 (left), 10 (middle), and 20 (right), respectively. Populations naturally tend towards
low health states regardless of rewards. With increasing rewards, populations are initially disrupted but eventually settle into the ideal health
states based on the given reward.

the majority compared to those without rewards. Surprisingly,
when implementing g = 20, population 2 reaches the lowest
health state and stabilizes in a fairly low health state. However,
population 1 exhibits a highly polarised health distribution,
namely a significant portion of the population is concentrated
in very low and high health states. This indicates that the
reward plays a substantial role in the decision marking process
of individuals. Although being in high health states can lead
to penalties, the reward can still compensate for the negative
effects. It is astonishing that the maximum reward can encour-
age reckless behaviors and resistance to maintaining health.
We also show that when considering influential population 1
and technology embracers, the distributions follow the same
pattern. The scenario of intrinsic seekers is displayed in Fig.
2b. Although the population still has incentives to move
towards lower health states, the results show resistance to the
rewards.

SIR model [20] demonstrates epidemic dynamics with sus-
ceptible and infected populations changing over time. It lacks
considerations for regulations, information, and individual
subjectivity. In contrast, our proposed model captures epidemic
progression dynamics along with other influential factors. In
Fig. 3 (left), we observe a similar result to the SIR model:
the low-risk group keeps increasing but eventually shows
a decrease; the mediocre-risk group decreases initially, and
then increases; and the high-risk group increases and then
stabilizes. The deviations, such as the increasing mediocre-

risk group, demonstrate a realistic decision-making process,
namely individuals can afford mediocre risks in the current
setting. This demonstrates a scenario where a mild infectious
disease progresses naturally. The majority is able to keep well
without any intervention by the government. Policymakers
need to closely evaluate the progression of the situation and
the impact on society, such as whether the available medical
resource is enough to accommodate the increasing high-risk
population. In Fig. 3 (middle), the high-risk and low-risk
groups decrease significantly after reaching the peak, and the
mediocre-risk group goes through periods of adjustment over
time. These results show with the aid of rewards, the group
moves to mediocre risks, allowing individuals to participate in
social and economic activities while maintaining a balanced
control and health cost. We can observe an improvement where
the majority deviates from high risks when a greater reward
is allocated. In Fig. 3 (left), we observe periodic dynamics
with respect to different groups. Initially, low and high-risk
groups dominate the population, followed by an increase in
the mediocre-risk group. This situation echoes the COVID-19
scenario in Belgium, as policymakers deploy the most robust
intervention and rewards, we observe the periodic dynamics
of cases rising and declining [21].

C. Optimal control and precaution
We study the evolution of individuals’ optimal control effort

with a fixed reward g = 10. Fig. 4 illustrates a consistent
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Figure 3. The health state distribution of population 1 with respect to various rewards and time in benchmark setting: Health states are used
to demonstrate three distinct groups, namely the low risk (recovered), the mediocre risk (susceptible), and the high risk (infected). Health
state r = 0.1 represents the low-risk group; health state r = 0.5 indicates the mediocre-risk group; and health state r = 1 stands for the
high-risk group. With increasing rewards, the sizes of high, mediocre, and low-risk groups demonstrate a faster and periodic evolution.
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(d) Intrinsic seekers
Figure 4. Optimal control effort of populations 1 and 2 with respect to health state given reward g = 10: The control effort evolution of
populations 1 and 2 are depicted by solid lines with dots, where the size of the dots increases with time steps (time = 0, 10, ..., 50). In
general, populations exert positive control efforts when health states are high. However, it is possible to alter this phenomenon by lowering
the overall decision-making cost of individuals, as in the technology embracers scenario.

trend of the optimal control effort being amplified in situations
where the health state is high (i.e., the risk is high). In
our definition, a positive control effort signifies regulation
compliance, while a negative control effort reflects a laid-
back attitude. Note that due to the settings of the final state
penalty parameter, when t = 50, there exists a uniformed
optimal control effort. We also investigate the control effort
with respect to rewards at t = 30 in Fig. 5. It shows that
the proposed rewards effectively encourage individuals to be
preventive; larger rewards lead to early precautions (e.g., as
low as r = 0.4 with reward g = 20). Subsidies/rewards,
such as the ’State Aid’ program by the European Commission,
enable the setup of home-care equipment for the elderly.

The technology embracers scenario in Fig. 4b demonstrates
a significantly distinct perspective. In this case, technology
embracers show a greater inclination to share information
in both low and high health states due to the lower data

contribution cost compared to the benchmark, which leads to
an enhancement of control efforts. Additionally, individuals
in mediocre health states are motivated to avoid extreme
rebellion over time. It’s worth noticing that individuals exert
positive control efforts over a larger spectrum of health states
(0 < r < 0.2 and 0.7 < r < 1), which showcases that
promoting the technology by making it cost-effective to use can
promote precarious behaviors. We then analyze the influential
population scenario in Fig. 4c. In this case, population 1
has a greater impact on population 2. The laid-back attitude
of population 2 at r = 0.4 reflects a scenario where in-
teractions with individuals from a generally healthy region
(population 1) make the mediocre-healthy individuals feel
relaxed. Fortunately, this situation changes over time, namely
the laid-back attitude eventually disappears. The laid-back
attitude can cause temporary negative effects when gathering
happens among different populations, such as superspreading
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Figure 5. Optimal control effort of populations 1 with respect to
health state at t = 30: The control effort evolution of population
1 is depicted by solid lines with dots, where the size of the dots
increases with rewards. Rewards effectively encourage individuals to
be preventive. With increasing rewards, it leads to early precautions
when the health states are still relatively low.

events [22]. Hence, policymakers need to be cautious when
multiple populations interact together due to those temporary
negative effects.

D. Leader’s determination
In Fig. 6, we explore policymakers’ optimization. The

optimal determination links to collective control efforts and
rewards. Strong determination implies more intervention and
rewards, fostering higher collective control effort by individ-
uals. In Fig. 6a and 6c, we demonstrate the evolution of the
optimal determination with respect to the reward state in the
benchmark and influential population scenarios, respectively.
In Stage 1, the optimal determination evolves drastically: when
t = 0, the optimal determination mirrors the collective control
effort in Fig. 7a and 7c where the collective control effort
is at a low value regardless of the rewards. To stimulate the
collective control effort, policymakers put more determination
on the high reward in Stage 1. In Fig. 6c, policymakers
increase the optimal determination in general to mitigate the
impact of the influential population in Stage 1, which can be
verified in Fig. 7c. In Stage 2, it illustrates the counter-effect
of the determination and the collective control effort. There
is an intensive degradation of high reward determination after
acknowledging that collective control effort can be encouraged
with lower rewards. The evolution finally settles down in Stage
3. With the collective control effort settling at an average value,
the optimal determination reaches stability when allocating
different rewards. However, the optimal determination severely
drops to discourage individuals’ prone to interest seeking.

In the benchmark and influential population scenarios, indi-
viduals are more sensitive to rewards due to additional overall
costs. Policymakers show increased determination in Stages
1 and 2. They implement higher rewards to motivate the
public because individuals need more compensation to take
action. However, in Stage 3, policymakers lose motivation
to implement high rewards. This is because there is a long-
lasting effect on individuals who continue to exert appropriate

control effort when the rewards are low. This reflects the
situation where, at the beginning of COVID-19, policymakers
enforced various interventions and subsidies; however, once
the public became accustomed to the situation, the inten-
sity of publicity campaigns decreased. We then analyze the
scenarios of technology embracers and intrinsic seekers in
Fig. 6b and 6d, respectively. Individuals from these groups
are easily motivated due to the lower overall cost. As a
result, the determination is disproportional to the collective
control effort in Fig. 7b in Stage 1, which represents a cost-
effective strategy for policymakers. The rewards effectively
motivate the intrinsic seekers as the reward grows and do not
cause any significant disturbance in Fig. 6d and 7d. Based
on the results in Fig. 6b and 6d, it’s worth noticing that the
policymakers’ determination demonstrates a similar evolution,
where they show resistance to implementing high rewards,
while individuals still exert fair control efforts. This reflects
a scenario where individuals behave cautiously and rationally
based on the pandemic situation with only moderate govern-
ment guidance. Overall, the determination can counterbalance
the collective control effort. When the collective control effort
is high at a particular reward state, policymakers decrease the
determination associated with that reward state.

E. Determination and epidemic progression

The proposed model can also demonstrate the relationship
between epidemic progression and intervention implementa-
tion. Policymakers exert strong determination when the low-
risk group shrinks or a dominated high-risk group increases.
For instance, there is a decrease in the low-risk group as shown
in Fig. 3 (right) at t = 0.4 − 0.8, policymakers increase the
determination in Fig. 8a (right, g = 20). Similarly, when
the dominated high-risk group increases in Fig. 3 (left) at
t = 0.2 − 0.6, the determination increases drastically in Fig.
8a (left, g = 0). Policymakers show higher determination
to implement interventions that protect the low-risk groups
from being infected. Simultaneously, they closely monitor the
dynamics of the high-risk group to adjust the interventions
accordingly, such as New Zealand [23] implemented lockdown
when the confirmed cases significantly increased. Policymak-
ers demonstrate stronger determination with more drastic
changes when allocating generous rewards. For instance, in
Fig. 8a (right, g = 20), when t = 0.2 − 0.4, due to the
decrease in the low-risk group in Fig. 3 (right), policymakers
increase the determination drastically. Additionally, there is
a further increase in determination as the low-risk group
continues to shrink at t = 0.4−0.6. We can observe a periodic
dynamic in these three groups in Fig. 3 (right). With resolute
determination and high rewards, policymakers implement a
range of regulations, resulting in heightened control efforts
by individuals. This, in turn, triggers a rapid evolution of the
epidemic progression, manifesting as a periodic effect, which
potentially speeds up the epidemic progression. This dynamic
mirrors the situation during COVID-19, where policymakers’
strong determination gave rise to periodic fluctuations in the
number of cases.
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Figure 6. Optimal determination evolution with respect to reward state: Stage 1 is from t = 0 to t = 20; Stage 2 is from t = 21 to t = 40;
Stage 3 is from t = 41 to t = 48. The optimal determination evolution is depicted by solid lines with dots, where the size of the dots
increases with time steps. Policymakers’ optimal determination demonstrates a similar evolution based on the individuals’ overall costs. They
show a willingness to implement high rewards when individuals can be effectively motivated.
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Figure 7. Collective control effort with respect to rewards: It demonstrates the key factor that influences the determination of policymakers.

F. Equilibrium and stability

To evaluate the equilibrium and stability of the model,
we use entropy. According to the Second Law of Ther-
modynamics, an isolated system will naturally evolve to
reach maximum entropy, which corresponds to thermodynamic
equilibrium [24]. Furthermore, maximum entropy indicates
system stability and can be represented by an entropy equation
E = −κ

∑N
i=1 piln(pi), where κ is the Boltzmann constant,

and pi represents the probability of the system being in the i-th
micro-state. Here, we consider the individuals’ health states as
the micro-states of society. The strategies of policymakers can
be viewed as external heat applied to the system. This external
influence affects the behavior of individuals and drives them to
adapt their strategies accordingly. Consequently, the changing

dynamics of individual actions impact the overall entropy of
society. In Fig. 9 (left, g = 20), we observe three stationary
points, namely at t = 0.4, t = 0.8, and t = 1. Prior to reaching
the first equilibrium at t = 0.4, the optimal determination
increases at t = 0.2−0.4, as shown in Fig. 8a (right, g = 20).
As the entropy starts to decrease from t = 0.4, indicating
system instability, policymakers respond by exerting a higher
level of determination to address the instability at t = 0.4−0.6.
To maintain stability and promote entropy, policymakers seek
more information on micro-states, which consequently leads
to a further increase in determination at t = 0.4 − 0.6. It is
noticeable that the dynamics of determination and entropy do
not match perfectly, such as the decreasing determination at
t = 0.6 − 0.8 with entropy reaching another peak at t = 1,
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Figure 8. Optimal determination with respect to time: To clearly illustrate the evolution of the optimal determination, the reward states are
divided into 3 sets, namely g = [0, 6] (left), g = [7, 15] (middle), and g = [16, 20] (right). The size of the dots on the solid lines increases
with respect to the reward states. By adjusting the optimal determination, policymakers can steer the epidemic progression and the stability
of society. The optimal determination in Fig. 8b, 8c, and 8c shows similar evolution. However, the intrinsic seekers scenario demonstrates
distinct evolution to achieve the same outcome.
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Figure 9. Entropy with respect to time: The stationary points in this figure indicate crucial points within society, with the local maxima
suggesting stability and equilibrium. Policymakers adjust the optimal determination to maintain societal stability, in correspondence with the
evolution of entropy. The scenario involving intrinsic seekers showcases significant differences compared to the other scenarios, driven by
individual preferences and the lag effect in the optimal determination.

suggesting a potential time lag. If we consider the policy-
makers’ determination as external heat applied to the system,
this lag can be likened to a phenomenon called "thermal lag"
in thermodynamics [25], This lag effect can persist for a
considerable duration. In the case of low reward states (from
g = 0 to g = 14), the determination initially drops for a
period of time and then increases again. Higher rewards have a
more significant impact on society, leading to more drastic and
frequent policy changes. The technology embracers scenario
mirrors the benchmark scenario in Fig. 8b (right, g = 20).
However, the determination increases stably since individuals
in this scenario contribute more information. In the influential
population case, the results align with the benchmark but
with slightly higher determination throughout the reward states
in Fig. 8d. The increasing determination ensures that the
system maintains its stability, since the interaction among
populations is more difficult to infer compared to benchmark
scenario. For intrinsic seekers scenario, the system entropy
gradually approaches its maximum regardless of the reward.
When studying the optimal determination with respect to time

in Fig. 8d, we observe that with the increasing reward, the
determination initially rises but then decreases as the system
approaches stability. Conversely, When the reward is high,
the determination drops at the beginning. To maintain the
stability of the system, determination increases once again.
Additionally, when the entropy reaches a peak, it indicates a
well-balanced mixture of various health states. This can be a
positive outcome, with the majority of the population being
low/mediocre-risk individuals. In Fig. 9 (left), we observed
that the peak occurs when g = 20 at t = 0.4. Referring to Fig.
3 (right), we notice a well-balanced distribution of individuals
with different health states. It is not ideal for any health state,
but a low-risk group, to dominate the population. Hence, if
the statistics suggest that the entropy is decreasing regardless
of the reason, it is time for policymakers to enforce stricter
interventions. The ultimate goal is to reduce the number of
infections and minimize the impact of the disease on the
population. Public health efforts aim to lower the number of
susceptible individuals (through vaccination or other means)
and reduce the transmission of the disease to control the
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Figure 10. Convergence of the proposed algorithm: The performance
and convergence of the proposed algorithm are highly related to
the dimension of the problem. However, in the current setting, the
proposed algorithm can converge in a reasonable number of iterations.

outbreak, which leads to an increase in determination at
t = 0.4− 0.6, g = 20 in Fig. 8a, to eliminate the susceptible.
This corresponds to the decrease in entropy in Fig. 9.

G. Convergence
In Fig. 10, we show the convergence of our LFMFG model

with ρ = 0.1. The complexity of our model, encompassing
health states, population, reward, determination, control effort,
and time, can pose challenges for convergence. Although
machine learning methods can offer insights [26], this paper
focuses on rewards’ impact on decision dynamics, excluding
machine learning approaches. The algorithm’s convergence
in Fig. 10 varies with rewards, with higher rewards causing
more disturbance and requiring more iterations for accuracy.
Notably, our current setting allows the algorithm to converge
reasonably quickly.

VI. CONCLUSION

This paper introduces an LFMFG exploring the interplay of
technology, individuals, and society during emergencies like
pandemics. The model captures the time-dependent dynamic
decision-making of individuals and policymakers. Through
varied scenario analysis, we demonstrate rewards’ and inter-
ventions’ effectiveness, individuals’ dynamic decision-making,
and the link between collective efforts and epidemic progres-
sion. Future work will consider innovative reward mechanisms
to enhance societal stability.
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