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Abstract

This thesis proposes a unique Vehicle Routing Problem (VRP) focusing on charging
management optimisations for electric vehicles with prioritised customers. This
problem is modelled as a hybrid of the Travelling Repairman Problem (TRP) and
the Electric Vehicle Routing Problem (EVRP). After a brief literature review around
the scope of the problem, a base mathematical model is formulated to explain the
constraints and objective function of the problem. The problem is solved using a
Nearest Neighbour Based Heuristic (NNBH) and Simulated Annealing with Variable
Neighbourhood Search. The Nearest Neighbour Based Heuristic (NNBH) generates an
initial solution. The initial solution is used by the metaheuristic for achieving a better
final solution. The base mathematical model is used to benchmark the performance of
the solution approach. The algorithmic framework developed is run for smaller and
larger instances to demonstrate the accuracy and scalability of the model produced,
respectively. The computational results of both instances show the success of the

proposed model.
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Chapter 1
Introduction

Sustainable strategic interest in logistics has proliferated in recent years. This is mainly
because logistics is considered one of the few remaining areas where significant savings
are possible. In 2019, the Transport sector contributed £13.6 billion to the UK economy
and covered 18.6 billion kilometres in distance (Dadds, 2021). However, Transport is the
UK’s largest carbon emitting sector, accounting for more than a quarter of emissions (Waite,
2021). To counteract these carbon emissions that are produced, the UK has implemented a
decarbonizing strategy for the transport industry using the Net Zero programme (Skidmore,
2021). One of the many policies outlined in the ”Net Zero Strategy” is the prohibition on
the sale of non-zero emission Heavy Goods Vehicles (HGVs) by 2035. Hence, the attention
of the logistics industry has shifted from traditional petroleum and diesel-fuelled vehicles to
Electric Vehicles (EVs).

But two issues are hindering the complete electric transformation of the logistic fleets.
The first issue is that most EVs have a significantly shorter range than traditionally fuel-
powered vehicles. Therefore, logistics companies are moving cautiously to electrify their
fleets by swapping out the less-frequently used vehicles for electric vehicles. However, the
second issue is more concerned with the charging systems of fleets. The economic incentive
to cut costs drives companies and researchers. The charging infrastructure that the fleets use
for recharging the EVs has a budget for how much electricity it can use for recharging the
fleet (Keskin and Catay, 2016). This means not all vehicles can be charged to 100%. Because
of these issues, the prioritisation of which vehicles should be assigned to daily tasks becomes

very complex. Along with this complexity, other variables such as distances needed to get
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Figure 1.1: Example of VRP solution (M.A. Mohammed et al., 2017)

to the customer and back to the depot, prioritisation of each customer, and ranges of the
vehicles, if the fleet is heterogeneous, are also to be considered daily.

These considerations offer a compelling reason to optimise the usage of the fleet and
result in a need to address the Vehicle Routing Problem (VRP) for EVs. The optimisation
problem associated with Vehicle Routing Problem (VRP) has been extensively studied and
applied in distribution and collection services. In the traditional Vehicle Routing Problem,
we have several customers located at different places, each with a known demand level.
The vehicles leave the depot to deliver the required goods, and then they return. Only one
vehicle may service each client at a time, ensuring that all of their needs are met and on the
premise that only one vehicle visits each customer. Each vehicle can only travel a certain
total distance with a certain amount of capacity, as seen in Fig 1.1. The term “static vehicle
routing problem” (SVRP) refers to a situation in which all the details of the route are known
in advance and remain unchanged after the route has started. If any constraint is placed,
such as time, vehicle capacity, battery capacity, or other factors, the problem will increase
in complexity. To obtain a close-to-optimal solution for this variant of VRP, heuristics, and
metaheuristics are employed.

This paper gives a solution to this variant of VRP. Based on the above-stated variables,
the budgeted vehicles would have to be charged based on the tasks that the vehicles are
assigned. Vehicles would be assigned tasks based on battery capacity and range. The number

of vehicles should be fewer than the number of routes that may be suggested, and the number
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of routes should be less than the number that can be offered to cover all the customers. As
there is a prioritisation list of customers, there is the possibility for all the customers not to
be delivered to, which is also a feasible solution.

The current project focuses on the heuristics and metaheuristics used to solve this
problem. Heuristics are described as problem-specific algorithms that adopt a practical
method which frequently delivers an acceptable level of accuracy for specific objectives.
Heuristic techniques are often used when exact methods fail to provide an optimal solution
due to problem complexity. As can be seen in Halim and Ismail (2017), the paper
demonstrates that heuristic techniques can efficiently find near-optimal solutions for the
TSP, which traditional methods cannot achieve in a reasonable time frame. In contrast,
metaheuristics can be thought of as advanced problem-solving techniques that build upon the
foundation of heuristic methods. While heuristic techniques are typically designed to solve
specific classes of problems, metaheuristics are more general-purpose and can be applied to a
wide range of optimisation problems. This thesis looks into heuristics and metaheuristics that
are being implemented into the above-referred problem. Specifically, the heuristic utilised in
this project is Nearest Neighbour Based Heuristic (NNBH) and the relevant metaheuristics
utilised are Variable Neighbourhood Search (VNS) and Simulated Annealing (SA).

This project is a collaboration with the Centre of Global Eco-Innovation (CGE). It
was founded in 2012 at Lancaster University and is aimed at building projects around the
sustainability ethos. The centre partners with Small and Medium Enterprises (SMEs) around
the region and works with the Research and Development departments of companies to tackle
the issues in the environmental approach of their commercial products. For the project here,
the University partnership is with Miralis Data (Clegg, 2021). Miralis Data is a software
and innovation company that focuses on technological solutions to reduce carbon emissions
in the transport, logistics and supply chain. Their most significant commercial product is
Fuuse, a hardware-agnostic charge point management application for electric vehicles. It is
aimed at both consumers, who are EV drivers, and charge point operators, who have installed
commercial charge points for EV drivers to charge their vehicles. This project will be a
vital piece of their new commercial product, called Fuuse Fleets. Fuuse Fleets is an end-to-
end solution for logistics and supply chain enterprises to transition their fleets of vehicles to
EVs. This project would help forecast the number of Electric Vehicles in their fleets based

on daily customer requirements while transitioning gradually without impacting profitability



Chapter 1. Introduction

Figure 1.2: Scheduled Route for a vehicle on a specific day

from their daily revenues and deliveries. The project hopes to schedule the adequate number
of transitioned vehicles required to service customers on any specific day based on customer
needs as illustrated in Fig 1.2.

This report has seven chapters. The Introduction chapter familiarises the reader with
the problem and briefly summarises the approach taken to solve it. Before examining the
solution to the problem, the Literature Review chapter looks at the background work that
researchers in the related Operational Research field have done in the past. It also describes
how the chosen approach to this problem has been derived. The following Base Mathematical
Model chapter explains the current problem and establishes the research problem and
mathematical definitions of the variables for solution modelling. The subsequent chapter,
named Heuristic Approach, is concerning the methodology used for finding a heuristical
technique to determine how each vehicle could be routed based on the battery capacity of the
vehicle and the priority of customers. It also includes a discussion on how the metaheuristics

are implemented and integrated with the heuristics approach using the various operators.
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These analytical procedures and the results obtained from them are described in the next
chapter, named Computational Results. The following chapter, called Conclusion Chapter,
draws upon the entire thesis. This chapter also extends a discussion of the implication of the

findings to future research into this problem.



Chapter 2
Literature Review

This project aims to address the challenge of integrating charging management optimisations
for electric vehicles with the Electric Vehicle Routing Problem (EVRP) by developing a
tailored optimisation algorithm. The algorithm is specifically designed to incorporate unique
features of the problem, requiring the utilisation of customised heuristics and metaheuristics.
The objective is to devise the most effective routing algorithm that takes into account the
intricacies of EVRP and the optimisation of charging management.

Since Dantzig and Ramser’s investigation of the Vehicle Routing Problem (VRP) in 1959
(Dantzig and Ramser, 1959), the problem has drawn the attention of several researchers. For
more than 60 years, numerous researchers have studied it given there are several practical
uses for VRP. As mentioned earlier, VRP provides solutions to problems regarding a broad
range of transportation and distribution topics. This includes the movement of people and
goods, transportation services, and waste collection. All of these problems are significant
economically, especially in industrialised nations. Companies and academics are driven by
the economic incentive to reduce costs to identify the best solution and boost transportation
efficiency (M. Mohammed et al., 2012).

As this research has developed over the years, the focus on various variants of the VRP
has drastically increased. This comprises topics such as Vehicle Routing Problem with
Time Windows (VRPTW) (Desrochers et al., 1992), Multi-Depot Vehicle Routing Problem
(MDVRP) (Crevier et al., 2007), Capacitated Vehicle Routing Problem (CVRP) (Fukasawa
et al., 2004), Vehicle Routing Problem with Backhauls (VRPB) (Toth and Vigo, 2002),
Electric Vehicle Routing Problem (EVRP) (Lin et al., 2016), etc. This thesis also can be
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attributed as a niche variant of VRP, EVRP and the Travelling Repairman Problem (TRP)
(Afrati et al., 1986). The paper by Desrochers et al. (1992) describes the original VRP model
as a fleet of vehicles leaving a depot and visiting a set of customers to deliver goods and
return to the depot. The problem that the model tries to tackle is the optimal set of routes for
a fleet of vehicles to traverse to deliver goods to a given set of customers. This modified VRP
has never been addressed before. However, they have been able to generate close-to-optimal
answers, whose efficacy varies depending on the search space.

The paper from Lin et al. (2016) focuses on an optimal routing strategy for a generalised
Vehicle Routing Problem aimed at electric vehicles. The paper focuses on how electric
commercial vehicles with a restricted range may recharge at a charging station during their
daily delivery (and pickup) activities. This is under the assumption that the charging station
facilities are already in the service area or along the route to the location. The vehicles
that depart from the depot must meet every customer exactly once to pick up or deliver
commercial goods. If a vehicle’s battery runs low, it will drive to the nearest charging station
in the range to recharge. The paper promises definitive routes for the customer sets it has been
provided and is built on a strong mathematical model that formulates all of the constraints.
But this paper from Lin et al. (2016) differs from the current project in several ways. From a
problem design perspective, the problem in the referenced paper has the inclusion of charging
stations that the vehicles could drive to while on the route. This contrasts with this project,
as this project focuses on assigning the route based on the vehicle’s battery capacity and the
distances between customers that the respective vehicle would have to traverse through. The
paper by Lin et al. (2016) did not consider the use of heuristics for enhancing computational
efficiency in their model, resulting in a substantial loss of processing and solution formulation
time for larger customer instances. In contrast, this current study aims to address this
limitation by exploring the application of both heuristics and metaheuristics to develop
computationally efficient solutions for smaller and larger customer sets and vehicle instances.

Another aforementioned paper is the Travelling Repairman Problem (TRP) (Afrati et al.,
1986). This paper creates a variation on the classical routing problem called the Travelling
Salesman Problem (TSP) (Lenstra and Rinnooy Kan, 1975). TSP gives the solution to the
problem: given a list of cities and distances between every city-to-city pair, derive the shortest
path that would let a travelling salesman visit each city exactly once and return to the city

of origin. The Travelling Repairman Problem (TRP) gives a solution to the same problem;
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except that the differences are that the objective function and that not all nodes need to be
visited. The objective function is aimed at maximising the profit function, and the other
difference is that each city is visited less than once or equal to one. As seen in figure 2.1, the
main premise of the TRP is that there are a set of speed cameras that needs to be maintained
by a repairman. The set of cameras has weighted waiting times to complete the maintenance
tasks by the repairman, called latency. The latency gives the set of cameras a priority of
what cameras need to be maintained first and in which order they should be maintained. The
current thesis takes inspiration from TRP because, in a real-world application, customers are
put on a priority list. The commercial goods will need to be delivered to customers based
on that priority list. In an ideal world, the priority list would be sorted in such a way that all
the customers will be offered delivery in a single day’s work. Unfortunately, the real world
falls short in this aspect as there is a limited capacity of the fleet to serve certain prioritised
customers daily. For that reason, it is safe to assume that many customers will not be visited

in a single day. One of the constraints in the current thesis takes this into account.

a (Ifncy: 6 d Latency: 5

Latency: 8 2

B 1
b

(,)
Base au' f
1 Total latency: 34
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c |"j Latency: 9 e E'J' Latency: 2

Figure 2.1: Example of Travelling Repairman Problem (Muritiba et al., 2021)

This thesis will also look at heuristics and metaheuristics to produce a feasible solution
within the range of an accurate answer while improving computational efficiency. It
looks at how a heuristic called the Nearest Neighbour Based Heuristic (NNBH) and
metaheuristics called Variable Neighbourhood Search (VNS) and Simulated Annealing (SA)
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are implemented to solve this problem. Heuristics are a “class of procedures for finding
acceptable solutions to a variety of difficult decision problems, that is, procedures for
searching for the best solutions to optimisation problems” (Laguna and Marti, 2013).

Starting from the heuristics implemented, the Nearest Neighbour Based Heuristic is a
straightforward algorithm used in this project to assign vehicles to unserved nodes in each
route. The algorithm randomly selects an unserved node and assigns a vehicle to it. It then
searches for nearby unserved nodes iteratively until certain limitations are encountered.

In the context of this project, three primary limitations are incorporated into the algorithm.
Firstly, if all nodes have been visited, indicating that the entire route has been covered. The
second limitation pertains to the energy required to visit a customer. The algorithm checks
if the vehicle possesses sufficient charge to travel to the nearest unserved node and return
to the depot. If the vehicle’s energy capacity is insufficient to complete this journey, the
route is considered complete, and the vehicle returns to the depot. This limitation ensures
that the vehicle does not venture beyond its energy constraints, preventing it from being
stranded without adequate charge. The third constraint pertains to the cumulative energy
consumption required for a specified number of vehicles. Specifically, these vehicles are
designated to travel to the nearest customers and subsequently return to the depot. This
condition involves assessing whether the upcoming vehicle can effectively embark on a
journey to the nearest unvisited customer and subsequently complete the round trip back
to the depot. If the aggregate distance, which encompasses the distance from the depot to the
nearest customer, followed by the return trip to the depot, along with the cumulative distance
travelled by the preceding vehicles, exceeds the predetermined energy budget assigned to
the entire fleet, the route for that particular vehicle is concluded, and it returns to the depot.
This constraint guarantees that the energy consumption remains within the specified budget,
promoting sustainable fleet operation.

When any of these limitations are encountered, signifying that a route cannot be continued
due to node visitation or energy constraints, the algorithm finalises the route, assigning it to
the corresponding vehicle. By integrating these limitations, the Nearest Neighbour Based
Heuristic algorithm effectively considers the practicalities of node visitation and energy
availability, ensuring the optimisation of vehicle assignment while adhering to operational
and energy limitations.

This approach of NNBH is similar to the academic paper proposed by Tavakkoli-
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Moghaddam et al. (2006). However, their perspective of the problem has different constraints
on the limitations of heuristics. Specifically, the vehicle capacity is not exceeded, as it is
for the CVRP, and the service time for the vehicles is also not exceeded. In the current
thesis, these variables are not deemed necessary as our problem is more focused on charge
management juxtaposed with the Vehicle Routing Problem for EV fleets. Hence, the above
variables are assumed to be not relevant to this version of the problem. The reason for
choosing NNBH as the preferred heuristic was two-fold. Firstly, this heuristic is a local
search method that is easy to implement, because of its approach to finding the next customer
to visit. Secondly, the execution time of the heuristic is significantly quicker than many
heuristics tackling the same problem, since the worst-case space complexity of the algorithm
is O(N?).

The VNS metaheuristic is a well-known heuristic search approach that has been
effectively used for a wide range of problems (Hansen et al., 2008). The metaheuristic
uses the approach of iteratively moving between neighbourhoods to find a better value
for the objective function. It uses a method called ’shake’ which randomly changes the
neighbourhood to perform a local search on the result. The local search result is checked by
criterion to confirm whether the result is acceptable for that iteration or not. VNS has been
used to solve a variety of other VRPs, including Vehicle Routing Problem with Backhauls
(VRPB) (Crispim and Brandao, 2005), Large scale Vehicle Routing Problem (Kytdjoki et al.,
2007), Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW) (Polacek
et al., 2004), Vehicle Routing Problem with Time Windows (VRPTW) (Briysy, 2003) and
Open Vehicle Routing Problem (OVRP) (Fleszar et al., 2009). The algorithm’s simplicity,
precision, multiplicity, and efficiency are key characteristics that make the VNS metaheuristic
an easy choice for an algorithm.

The Variable Neighbourhood Search (VNS) metaheuristic is employed in this context,
utilising four operators to construct new neighbouring solutions. If a customer is not visited
within the Nearest Neighbour Based Heuristic (NNBH) solution, two operators are employed
to address this scenario. The first operator (InsertUnivisted()) attempts to include the
unvisited customer in an existing solution. This involves evaluating the feasibility of adding
the customer to a suitable location within a route. The second operator (SwapUnvisited())
focuses on improving the solution by swapping a low-priority customer with an unvisited

customer. This exchange aims to enhance the overall quality of the solution by prioritising

10
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the unvisited customer. In cases where all customers have been visited within the NNBH
solution, the solution undergoes either the 1-opt or 2-opt operator. The 1-opt operator selects
a random customer from one route and transfers it to another randomly selected route. On
the other hand, the 2-opt operator takes a subroute from one randomly chosen route, reverses
the order of the nodes, and appends it to another randomly selected route. The solutions
generated by the swap or insert operators are only accepted if they result in an increase in
the total priority cost compared to the original solution. This ensures that the new solution
offers improved prioritisation of customers. In the case of the 1-opt or 2-opt operator, the
produced solution is accepted if it exhibits an increase in priority cost and if the vehicles have
sufficient charge to accommodate the inserted route. By utilising these operators, the VNS
metaheuristic explores different neighbourhood structures to enhance the quality of solutions.
The operators are designed to maximise the prioritisation of customers, ensure feasibility, and
optimise the utilisation of available energy resources.

Global
Maximum

d {
18] ZEERNG
A

Elobal
Minimum

Figure 2.2: Global Maximum/Minimum and Local Maximum/Minimum (Xie, 2019)

The other metaheuristic used in this project is called Simulated Annealing (SA) and it
is widely used in the VRP field. Simulated annealing operates by iteratively evaluating and
modifying candidate solutions. At each iteration, the algorithm considers a neighbouring
solution by applying a random modification to the current solution. If the new solution
improves the objective function (i.e., decreases the cost or increases the quality), it is
accepted as the new current solution. However, if the new solution is worse, it may still be
accepted with a certain probability based on a temperature parameter and the magnitude of the
degradation. This probabilistic acceptance allows the algorithm to escape local optima and
explore different areas of the solution space. Fig 2.2 and 2.3 shows an example of the global

and local minima and the trajectory SA would follow to solve the problem, respectively.

11
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Simulated Annealing comes from a concept from metallurgy in physics that involves the
heating and cooling of metal for it to alter its physical properties. Simulated annealing does
not guarantee to find the global optimum but aims to find good solutions in a reasonable
amount of time. The reason for choosing this approach is that the model mixes several local
search methods dedicated to the problem. This produces high-quality solutions in a very short
computational time compared to other methods associated with the exact VRP models (Afifi
et al., 2013).

Starting
Configuration

v

Perturb
(Hill Climbing)

-

Perturb
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Objective Function f(X)

Global

Minimum
el

A J

Variable X

Figure 2.3: Simulated Annealing for a minimisation problem (Ghasemalizadeh et al., 2016)

To conclude this section, the literature described in this chapter was used to highlight three
different parts of the project. Firstly, the current status of research in the field of Operational
Research associated with VRP and EVs. Secondly, the different techniques used for finding
a concrete solution to this version of VRP. Lastly, it shines a light on the uniqueness of this
version of VRP and the approach to solving it. There has not been any research on VRP
scenarios where the charging infrastructure has consumption budgets. Therefore, this would

be a unique problem that has never been tackled before.

12



Chapter 3

Base Mathematical Model

This chapter defines the research problem in detail, with assumptions made to solve the
problem. Using these assumptions, the graph notation is defined to propose the mathematical
formulation. The mathematical formulation is described in detail after the objective function

and constraints are established.

3.1 Research Problem Description

The proposed model has the following assumptions:

1. The customers must be met at most once by a single vehicle from a heterogeneous fleet

of vehicles. It is important to note that not every customer needs to be visited.

2. Each route starts and ends at the depot with a sequence of customer nodes that the EV
visits.

3. The fleet is heterogeneous with different ranges

4. The vehicles are all charged at the depot based on the journey they are meant to be

assigned for the day. The depot has an energy budget for charging the fleet entirely and
cannot be exceeded.

5. Variables such as vehicle driving speed, charging rates, delivery load and other second-
order factors (like traffic jams, road conditions, elevation change in route, temperature,

etc.) are not considered for this problem.

13
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6. Energy consumption to cover a distance has a 1:1 conversion, i.e., 1 kWh of the vehicle

covers 1 km of distance, for ease of analysis (Earl et al., 2018).

In the following section, the proposed model presents the notations used for this thesis.
For this definition, V is the set of vehicles that are operational for the day’s journey. Let N
be a set of customers with a size of n that must be visited. R is a set of customers with the
inclusion of the depot at the start and end of the set. Hence, let vertices O and n + 1 be the
depot (represented by ¢). Sets with subscript O and n + 1 indicate that they contain the depot,
such as Ry = R,,+1 = ¢. The model can then be defined on a weighted and complete directed
graph G = (R,A), where A = {(i, )i, j € R,i # j} denotes the graph’s arcs.

The distance d;; represents the amount of distance or energy required to travel from
customer i to customer j, which are the weights of the arcs in graph G. The profit gained
by visiting the prioritised customer i is symbolised by p;. The depot has a priority of 0, while
the rest of the customers have a priority with a positive integer value. The vehicles in the fleet
would be charged collectively by the energy budget, denoted as e. Each vehicle v can travel
a range of r,, hold a battery capacity of C, and has an initial charge of g,.

In this implementation, it associates a binary variable yle with decision variables that take
a value of 1 if vehicle v is travelling from i to j and O otherwise, where i, j€ Rand v € V. The
variable le indicates whether the customer at i is served by vehicle v, where ie N andv e V.
The final decision variable is the amount of energy used to charge a vehicle v, indicated as z,.
The model aims to maximise the total priority cost.

Using these variables, the proposed mathematical formulation can be created.

3.2 Graph Notation

3.2.1 Problem Parameters

N : Customers {i, j,k}

R : Depot + Customers  {¢,1, j,k, ¢}
S : Subset of R

V: Vehicles  {u,v}

gy : Initial charging level of vehicle v

C, : Battery capacity of vehicle v

14
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pi . Priority of customer i
ry . Range of vehicle v
d;j : Energy consumption to travel from i to j

e : Energy budget

3.2.2 Data

Zy: Amount of energy used to charge vehicle v

le: 1, if the customer at i is served by vehicle v ; 0, otherwise

yl.vj: 1, if vehicle v is travelling from i to j ; 0, otherwise

3.3 Mathematical Formulation of Model

Objective function

Max Z i X; pi

i=1 v=1

Subject to

D= =2t VjeRveVi#|
Zygjzl YveV,jeN
D=1 VveVieN

(i,))eR

15
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1%
Da<e  Wvev (3.7)
v=1
G+ <1y YveV (3.8)
> sISI-1 VS CRIS|22veV (3.9)
i,jes;i# ;=1
e(0, 1) Vi (3.10)

The objective function (3.1) maximises the sum of the priority of the served customers.
Constraint (3.2) makes sure that any customer is not served by more than one vehicle.
Constraint (3.3) asserts that every vehicle that visits a customer has to leave the same
customer. The constraints (3.4) and (3.5) establish that every vehicle should leave and enter
back into the depot respectfully. Next, equation (3.6) defines that the arc a vehicle takes
to reach a customer exceeds neither the vehicle’s charge nor the vehicle’s maximum battery
capacity. The inequalities (3.7) indicate that the energy used to charge the vehicle does not
exceed the energy budget of the infrastructure that charges the vehicle, and (3.8) declares that
the vehicle’s journey does not exceed the range of the vehicle based on the charge it contains.
Constraint (3.9) eliminates any sub-tours that might be made by any vehicle. For each subset
of R, denoted as S, the maximum number of arcs between the elements in S is limited to
the number of elements in the S —1. Finally, constraints (3.10) and (3.11) specify that the

decision variables are binary.
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Chapter 4

Heuristic Approach

4.1 Nearest Neighbour Based Heuristic

As mentioned in the Introduction, the main heuristic that is utilised for the metaheuristics to
have an initial solution is called Nearest Neighbour Based Heuristic (NNBH). NNBH is a
simple algorithm where, for each route, a node is chosen at random and then a vehicle visits
the node. The set of unserved neighbours is then searched for until one of the limitations is
met. Once they are met, the iteration is restarted for a new vehicle. In this implementation,

the limitations are:
e All of the nodes are visited
e The vehicle does not have enough charge to go to the node and then return to the depot
e The total cost of all the journeys is over the energy budget e

The steps of the proposed algorithm are as below:
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Algorithm 1 Nearest Neighbour Based Heuristic
Require: [nearestNode € R, currentNode € R]

: totalCost =0

—

. distance =0
: forveVdo
C, = v.BatteryCapacity
currentNode = depot
while distance < C,, do
nearestNode = smallestDistance FromCurrentNode(currentNode)

if (nearestNode == null ||

A A A o

calculateDistance(currentNode,nearestNode) + totalCost > e ||
10: calculateDistance(currentNode,nearestNode) > C, —distance) then

11: ReturnT oDepot()

12: else

13: if NearestNode.Visited == false then

14: distance+ = calculateDistance(currentNode,nearestNode)
15: AddT oRoute(nearestNode,v)

16: currentNode = nearestNode

17: else

18: continue

19: end if

20: end if

21:  end while
22: totalCost+ = distance
23: end for

The algorithm above begins by assigning the variables totalCost of the complete solution
and the distance of each vehicle to 0 in Step 1 and 2, respectively. Step 3 then commences
the process of iterating through each vehicle. In Step 4, the battery capacity of the vehicle
is reassigned to the battery capacity of the vehicle in iteration. Step 5 defines that the
currentNode starts with the depot. The second iteration begins, from Step 6 onward, where
the total distance travelled does not go beyond the battery capacity of the vehicle. While

this condition is true, the nearest node from the current node is calculated and assigned to
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the variable nearestNode, as seen in Step 7. The algorithm checks through a few conditions.
Firstly, whether there are no more nearest nodes to be visited, which is checked in Step 8.
Secondly, if the addition of the distance, from the current node to the nearest node and back
to the depot, and the total cost for the journey of the whole fleet, is greater than the energy
budget assigned to the fleet. This is seen in Step 9. Lastly, whether the remaining battery
left in the vehicle does not have enough charge to visit the current node and return to the
depot, as shown in Step 10. If any of these conditions are true, then it enters Step 11 and the
vehicle would be returned to the depot. If any of these conditions are false, however, then
visiting the nearest node can be considered which is after Step 12. If the nearest node that is
in consideration is not visited yet, then the distance travelled is aggregated. The current node
is then the nearest node that the vehicle has travelled to and the iteration for the respective
vehicle gets repeated. This is demonstrated in Steps 13 to 16. At the end of each iteration of
the vehicle, the total cost is aggregated with the distance the vehicle has travelled, which is

done in Step 21.

4.2 Simulated Annealing

Simulated Annealing (SA) is a stochastic optimisation algorithm technique that originated
from statistical mechanics (Kirkpatrick et al., 1983) The process involves repeatedly heating
a solid to a high temperature and then cooling it gradually to a lower temperature, allowing
the atoms to move freely. If the cooling process is too rapid, the atoms do not have enough
time to arrange themselves in an energetically favourable configuration. This analogy can
be applied to combinatorial optimisation problems, where the solid represents the possible
solution space, the energy corresponds to the objective function, and the minimum energy
state corresponds to the optimal solution.

SA directs the search using a stochastic technique. It permits the search to continue to an
adjacent state even if the move reduces the value of the objective function. The initial local
search approach is guided in the following way by SA. If a move to a neighbour X’ in the
neighbourhood N(X) reduces or maintains the objective function value, the move is always
allowed. More specifically, if A > 0, the solution X’ is accepted as the new current solution,
where A = Cost(XY) — Cost(X) and Cost(X) is the value of the objective function. To move

from one local optimum to another, there needs to be a chance for inferior solutions to be
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accepted. Therefore, e(=*/T) calculates the probability that allows inferior solutions to be
accepted and traverse away from a local optimum. 7 is a temperature parameter that ranges
from a relatively high number to a smaller number close to zero. A cooling schedule sets
the starting and incremental temperature levels at each algorithm stage, which controls these

values. The algorithm is demonstrated in Algorithm 2.

4.2.1 Parameters Description

The SA features an inner loop and an outer loop. The inside loop governs the attainment
of equilibrium at the current temperature, whereas the outside loop governs the pace of

temperature decline. The following are the SA parameters:

EL (Epoch Length) number of solutions accepted in each temperature for achieving

equilibrium
MTT maximum number of consecutive temperature trails
Ty initial temperature
a rate of the current temperature decrease

X afeasible solution

Cost(X) the value of objective function for X

n counter for the number of accepted solutions in each temperature

r counter for the number of consecutive temperature trails, where 7, is equal to

temperature in iteration r

4.2.2 Initial Solution Generation

The initial solution for the metaheuristic is generated from the NNBH approach explained in
Section 4.1 in Algorithm 1. The NNBH approach would be suitable for small to medium-
sized problem sets, however, in larger-sized problems, where there are more than 20-30
customer nodes to be visited, the SA mechanism would help. This example would need to

use several operators for improving the initially obtained solutions from the NNBH approach.
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4.2.3 Simulated Annealing Algorithm

Algorithm 2 Simulated Annealing with VNS neighbourhood generation method
Require: [r=0,X" = @]
1: Generate X° in NNBH algorithm

9. Xbest — X()
3: while r < MTT and T, > 0 do
4: n=0
5. whilen < EL do
6: Select an operator by Variable Neighbour Search and run over X" as X" +— X"
7: ACost = Cost(X"") — Cost(XPe*")
8: Generate y — U(0, 1) randomly
9: Set Z = e(~ACos!/Ty)
10: if ACost >0 or y < Z then
11: Xbest — Xnew
12: n=n+1
13: X" = Xnew
14: else if y < Z then
15: n=n+1
16: X" = Xnew
17: end if

18:  end while

190 r=r+1

20 T,=T,_1—axT,_y
21: end while

22: Return X?e

The SA algorithm starts with generating an initial solution from the NNBH, named X°, in
Step 1 and the last best solution, named X%**', being X in Step 2. The first do-while loop
begins by checking if either the temperature trails counter (named r) is less than the MTT or
temperature in the current iteration, which is showcased in Step 3. The number of accepted
solutions counter (named n) is assigned to O in Step 4. Step 5 moves into the second loop

where the accepted solution counter is less than the Epoch Length, named EL. The following
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step in Step 6 uses the Variable Neighbourhood Search to have a new neighbouring solution
to compare with the acceptance criterion. The VNS algorithm outputs a new solution that gets
saved as X"". Step 7 checks the change in priority costs between the current best solution
and the new solution saved as ACost. It also generates a random number between 0 and 1 in
Step 8. In Step 9, the probability of accepting the new solution is calculated called Z which
is used later in the algorithm. If the change in the priority costs is greater than the priority
costs in the current best solution, as seen in Step 10, it passes the acceptance criteria and the
solution is accepted. Steps 11-13 save the new solution as the current best solution (Step 11),
increase the accepted solutions counter (Step 12), and save it to the list of accepted solutions
for each iteration (Step 13). If it does not pass the acceptance criteria, then it continues the
iteration through Step 13. If the randomly generated number is less than the probability, the
solution is accepted as seen in Steps 14 - 17. Steps 19 and 20 would see the consecutive
temperature trails counter being incremented and the temperature data-set being aggregated
with the rate of the current temperature decreased as the offset. Finally, Step 22 prints out the

best solution from the metaheuristic.

4.3 Variable Neighbourhood Search

In the context of the neighbourhood generation mechanism, VNS is used to move into
feasible space and obtain the neighbourhood solution. In this implementation, the search
variably checks through modified versions of 1-opt, 2-opt, Swap and Insert operators. The
performance of operators in 1-opt and 2-opt methods between two routes can be seen in
Figure 4.1. In the referenced figure, 1-opt moves the customer node C from the black route
to the blue route. The 2-opt algorithm in the figure shows that a route from the black route is

extracted (i.e., C-D), the route is reversed, and then inserted into the blue route.
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Figure 4.1: Example of 1-opt and 2-opt

The fundamental logic of 1-opt and 2-opt operators is two routes of two different vehicles
in a feasible solution are randomly chosen. For 1-opt, one customer node is randomly chosen
from the first route and inserted into a random location in the second route to find the best
location. Contrastingly, 2-opt selects a random sub-route from the first route and inserts it
at a random index in the second route. In this implementation, the acceptance criterion in
1-opt and 2-opt is unique from any other implementation. For a solution to be accepted,
we first check if the aggregation of the customers’ priority in the inserted route is better or
worse. If it is better and if the vehicle has enough battery to do the proposed route, then the
solution is accepted and returned into the Simulated Annealing process. The pseudocode of
the algorithm for 1-opt can be seen below in Algorithm 5, 2-opt can be seen in Algorithm 6,

the Swap operator in Algorithm 7, and the Insert operator in Algorithm 8.
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4.3.1 Variable Neighbourhood Search Algorithm

Using these four operators, the Variable Neighbourhood Search would first check if there
are any unvisited customers from the solution produced by the Nearest Neighbour Based
Heuristic. If there are, the unvisited customers would randomly be either swa