

Charging Constrained Electric Vehicle
Routing Problem with Prioritized

Customers

By

Advaith Krishnan

In collaboration with

Miralis Data

Thesis for the Degree of Master of Science by Research

30 August 2023

This project was supported by the Centre for Global Eco-Innovation and

is part financed by the European Regional Development Fund.

Charging Constrained Electric Vehicle Routing Problem with Prioritized Customers
Advaith Krishnan, Masters by Research.

School of Management, Lancaster University
A thesis submitted for the degree of Masters by Research. August, 2023

Abstract

This thesis proposes a unique Vehicle Routing Problem (VRP) focusing on charging
management optimisations for electric vehicles with prioritised customers. This
problem is modelled as a hybrid of the Travelling Repairman Problem (TRP) and
the Electric Vehicle Routing Problem (EVRP). After a brief literature review around
the scope of the problem, a base mathematical model is formulated to explain the
constraints and objective function of the problem. The problem is solved using a
Nearest Neighbour Based Heuristic (NNBH) and Simulated Annealing with Variable
Neighbourhood Search. The Nearest Neighbour Based Heuristic (NNBH) generates an
initial solution. The initial solution is used by the metaheuristic for achieving a better
final solution. The base mathematical model is used to benchmark the performance of
the solution approach. The algorithmic framework developed is run for smaller and
larger instances to demonstrate the accuracy and scalability of the model produced,
respectively. The computational results of both instances show the success of the
proposed model.

i

Contents

1 Introduction 1

2 Literature Review 6

3 Base Mathematical Model 13
3.1 Research Problem Description . 13
3.2 Graph Notation . 14

3.2.1 Problem Parameters . 14
3.2.2 Data . 15

3.3 Mathematical Formulation of Model . 15

4 Heuristic Approach 17
4.1 Nearest Neighbour Based Heuristic . 17
4.2 Simulated Annealing . 19

4.2.1 Parameters Description . 20
4.2.2 Initial Solution Generation . 20
4.2.3 Simulated Annealing Algorithm . 21

4.3 Variable Neighbourhood Search . 22
4.3.1 Variable Neighbourhood Search Algorithm 24
4.3.2 1-opt Algorithm . 26
4.3.3 2-opt Algorithm . 28
4.3.4 Swap operator . 29
4.3.5 Insert operator . 30
4.3.6 Heuristic Approach Flowchart . 31

ii

5 Computational Results 33
5.1 Model Description . 33
5.2 Heuristic Solution . 36
5.3 Small Instances Results . 37
5.4 Large Instance Results . 41

6 Conclusions 46
6.1 Concluding Thoughts . 46
6.2 Future Work . 47

7 Appendix 50

References 51

iii

List of Tables

5.1 Fleet Information . 34
5.2 Customer Details . 34
5.3 Distance Matrix (in miles) . 35
5.4 Parameter Description . 36
5.5 Small Instance testing data . 38
5.6 Large instances testing data . 42

1 Definitions of acronyms used in the Introduction 50
2 Definitions of acronyms used in the Literature Review 50

iv

List of Figures

1.1 Example of VRP solution (M.A. Mohammed et al., 2017) 2
1.2 Scheduled Route for a vehicle on a specific day 4

2.1 Example of Travelling Repairman Problem (Muritiba et al., 2021) 8
2.2 Global Maximum/Minimum and Local Maximum/Minimum (Xie, 2019) . . . 11
2.3 Simulated Annealing for a minimisation problem (Ghasemalizadeh et al., 2016) 12

4.1 Example of 1-opt and 2-opt . 23
4.2 Flowchart of the Heuristic Approach . 32

5.1 Graph solution Example . 37
5.2 OFVs and CPU times of Base Mathematical Model and Heuristic Approach . 39
5.3 Small instance: Base Mathematical solution 40
5.4 Small instance: Heuristic Approach solution 40
5.5 NNBH OFVs vs Metaheuristic OFVs . 43
5.6 Influence of Energy Budget on Final OFVs 44
5.7 Large instance solution: NNBH . 45
5.8 Large instance solution: SA & VNS . 45

v

Acknowledgements

I want to thank the following people: Professor Guglielmo Lulli and Senior Lecturer Burak
Boyaci from the Management School of Lancaster University; Will Maden, Chief Operating
Officer (COO) of Miralis Data; the Centre of Global Eco-Innovation and the European
Regional Development Fund; the CGE admin team for helping throughout this project period;
and Ian Wright, Business Partnerships Officer of Lancaster University.

vi

Declaration

I declare that the work presented in this thesis is, to the best of my knowledge and belief,
original and my own work. The material has not been submitted, either in whole or in
part, for a degree at this, or any other university. This thesis does not exceed the maximum
permitted word length of 35,000 words including appendices and footnotes, but excluding
the bibliography. The word count is: 13,250

Advaith Krishnan

vii

Chapter 1

Introduction

Sustainable strategic interest in logistics has proliferated in recent years. This is mainly
because logistics is considered one of the few remaining areas where significant savings
are possible. In 2019, the Transport sector contributed £13.6 billion to the UK economy
and covered 18.6 billion kilometres in distance (Dadds, 2021). However, Transport is the
UK’s largest carbon emitting sector, accounting for more than a quarter of emissions (Waite,
2021). To counteract these carbon emissions that are produced, the UK has implemented a
decarbonizing strategy for the transport industry using the Net Zero programme (Skidmore,
2021). One of the many policies outlined in the ”Net Zero Strategy” is the prohibition on
the sale of non-zero emission Heavy Goods Vehicles (HGVs) by 2035. Hence, the attention
of the logistics industry has shifted from traditional petroleum and diesel-fuelled vehicles to
Electric Vehicles (EVs).

But two issues are hindering the complete electric transformation of the logistic fleets.
The first issue is that most EVs have a significantly shorter range than traditionally fuel-
powered vehicles. Therefore, logistics companies are moving cautiously to electrify their
fleets by swapping out the less-frequently used vehicles for electric vehicles. However, the
second issue is more concerned with the charging systems of fleets. The economic incentive
to cut costs drives companies and researchers. The charging infrastructure that the fleets use
for recharging the EVs has a budget for how much electricity it can use for recharging the
fleet (Keskin and Çatay, 2016). This means not all vehicles can be charged to 100%. Because
of these issues, the prioritisation of which vehicles should be assigned to daily tasks becomes
very complex. Along with this complexity, other variables such as distances needed to get

1

Chapter 1. Introduction

Figure 1.1: Example of VRP solution (M.A. Mohammed et al., 2017)

to the customer and back to the depot, prioritisation of each customer, and ranges of the
vehicles, if the fleet is heterogeneous, are also to be considered daily.

These considerations offer a compelling reason to optimise the usage of the fleet and
result in a need to address the Vehicle Routing Problem (VRP) for EVs. The optimisation
problem associated with Vehicle Routing Problem (VRP) has been extensively studied and
applied in distribution and collection services. In the traditional Vehicle Routing Problem,
we have several customers located at different places, each with a known demand level.
The vehicles leave the depot to deliver the required goods, and then they return. Only one
vehicle may service each client at a time, ensuring that all of their needs are met and on the
premise that only one vehicle visits each customer. Each vehicle can only travel a certain
total distance with a certain amount of capacity, as seen in Fig 1.1. The term “static vehicle
routing problem” (SVRP) refers to a situation in which all the details of the route are known
in advance and remain unchanged after the route has started. If any constraint is placed,
such as time, vehicle capacity, battery capacity, or other factors, the problem will increase
in complexity. To obtain a close-to-optimal solution for this variant of VRP, heuristics, and
metaheuristics are employed.

This paper gives a solution to this variant of VRP. Based on the above-stated variables,
the budgeted vehicles would have to be charged based on the tasks that the vehicles are
assigned. Vehicles would be assigned tasks based on battery capacity and range. The number
of vehicles should be fewer than the number of routes that may be suggested, and the number

2

Chapter 1. Introduction

of routes should be less than the number that can be offered to cover all the customers. As
there is a prioritisation list of customers, there is the possibility for all the customers not to
be delivered to, which is also a feasible solution.

The current project focuses on the heuristics and metaheuristics used to solve this
problem. Heuristics are described as problem-specific algorithms that adopt a practical
method which frequently delivers an acceptable level of accuracy for specific objectives.
Heuristic techniques are often used when exact methods fail to provide an optimal solution
due to problem complexity. As can be seen in Halim and Ismail (2017), the paper
demonstrates that heuristic techniques can efficiently find near-optimal solutions for the
TSP, which traditional methods cannot achieve in a reasonable time frame. In contrast,
metaheuristics can be thought of as advanced problem-solving techniques that build upon the
foundation of heuristic methods. While heuristic techniques are typically designed to solve
specific classes of problems, metaheuristics are more general-purpose and can be applied to a
wide range of optimisation problems. This thesis looks into heuristics and metaheuristics that
are being implemented into the above-referred problem. Specifically, the heuristic utilised in
this project is Nearest Neighbour Based Heuristic (NNBH) and the relevant metaheuristics
utilised are Variable Neighbourhood Search (VNS) and Simulated Annealing (SA).

This project is a collaboration with the Centre of Global Eco-Innovation (CGE). It
was founded in 2012 at Lancaster University and is aimed at building projects around the
sustainability ethos. The centre partners with Small and Medium Enterprises (SMEs) around
the region and works with the Research and Development departments of companies to tackle
the issues in the environmental approach of their commercial products. For the project here,
the University partnership is with Miralis Data (Clegg, 2021). Miralis Data is a software
and innovation company that focuses on technological solutions to reduce carbon emissions
in the transport, logistics and supply chain. Their most significant commercial product is
Fuuse, a hardware-agnostic charge point management application for electric vehicles. It is
aimed at both consumers, who are EV drivers, and charge point operators, who have installed
commercial charge points for EV drivers to charge their vehicles. This project will be a
vital piece of their new commercial product, called Fuuse Fleets. Fuuse Fleets is an end-to-
end solution for logistics and supply chain enterprises to transition their fleets of vehicles to
EVs. This project would help forecast the number of Electric Vehicles in their fleets based
on daily customer requirements while transitioning gradually without impacting profitability

3

Chapter 1. Introduction

Figure 1.2: Scheduled Route for a vehicle on a specific day

from their daily revenues and deliveries. The project hopes to schedule the adequate number
of transitioned vehicles required to service customers on any specific day based on customer
needs as illustrated in Fig 1.2.

This report has seven chapters. The Introduction chapter familiarises the reader with
the problem and briefly summarises the approach taken to solve it. Before examining the
solution to the problem, the Literature Review chapter looks at the background work that
researchers in the related Operational Research field have done in the past. It also describes
how the chosen approach to this problem has been derived. The following Base Mathematical
Model chapter explains the current problem and establishes the research problem and
mathematical definitions of the variables for solution modelling. The subsequent chapter,
named Heuristic Approach, is concerning the methodology used for finding a heuristical
technique to determine how each vehicle could be routed based on the battery capacity of the
vehicle and the priority of customers. It also includes a discussion on how the metaheuristics
are implemented and integrated with the heuristics approach using the various operators.

4

Chapter 1. Introduction

These analytical procedures and the results obtained from them are described in the next
chapter, named Computational Results. The following chapter, called Conclusion Chapter,
draws upon the entire thesis. This chapter also extends a discussion of the implication of the
findings to future research into this problem.

5

Chapter 2

Literature Review

This project aims to address the challenge of integrating charging management optimisations
for electric vehicles with the Electric Vehicle Routing Problem (EVRP) by developing a
tailored optimisation algorithm. The algorithm is specifically designed to incorporate unique
features of the problem, requiring the utilisation of customised heuristics and metaheuristics.
The objective is to devise the most effective routing algorithm that takes into account the
intricacies of EVRP and the optimisation of charging management.

Since Dantzig and Ramser’s investigation of the Vehicle Routing Problem (VRP) in 1959
(Dantzig and Ramser, 1959), the problem has drawn the attention of several researchers. For
more than 60 years, numerous researchers have studied it given there are several practical
uses for VRP. As mentioned earlier, VRP provides solutions to problems regarding a broad
range of transportation and distribution topics. This includes the movement of people and
goods, transportation services, and waste collection. All of these problems are significant
economically, especially in industrialised nations. Companies and academics are driven by
the economic incentive to reduce costs to identify the best solution and boost transportation
efficiency (M. Mohammed et al., 2012).

As this research has developed over the years, the focus on various variants of the VRP
has drastically increased. This comprises topics such as Vehicle Routing Problem with
Time Windows (VRPTW) (Desrochers et al., 1992), Multi-Depot Vehicle Routing Problem
(MDVRP) (Crevier et al., 2007), Capacitated Vehicle Routing Problem (CVRP) (Fukasawa
et al., 2004), Vehicle Routing Problem with Backhauls (VRPB) (Toth and Vigo, 2002),
Electric Vehicle Routing Problem (EVRP) (Lin et al., 2016), etc. This thesis also can be

6

Chapter 2. Literature Review

attributed as a niche variant of VRP, EVRP and the Travelling Repairman Problem (TRP)
(Afrati et al., 1986). The paper by Desrochers et al. (1992) describes the original VRP model
as a fleet of vehicles leaving a depot and visiting a set of customers to deliver goods and
return to the depot. The problem that the model tries to tackle is the optimal set of routes for
a fleet of vehicles to traverse to deliver goods to a given set of customers. This modified VRP
has never been addressed before. However, they have been able to generate close-to-optimal
answers, whose efficacy varies depending on the search space.

The paper from Lin et al. (2016) focuses on an optimal routing strategy for a generalised
Vehicle Routing Problem aimed at electric vehicles. The paper focuses on how electric
commercial vehicles with a restricted range may recharge at a charging station during their
daily delivery (and pickup) activities. This is under the assumption that the charging station
facilities are already in the service area or along the route to the location. The vehicles
that depart from the depot must meet every customer exactly once to pick up or deliver
commercial goods. If a vehicle’s battery runs low, it will drive to the nearest charging station
in the range to recharge. The paper promises definitive routes for the customer sets it has been
provided and is built on a strong mathematical model that formulates all of the constraints.
But this paper from Lin et al. (2016) differs from the current project in several ways. From a
problem design perspective, the problem in the referenced paper has the inclusion of charging
stations that the vehicles could drive to while on the route. This contrasts with this project,
as this project focuses on assigning the route based on the vehicle’s battery capacity and the
distances between customers that the respective vehicle would have to traverse through. The
paper by Lin et al. (2016) did not consider the use of heuristics for enhancing computational
efficiency in their model, resulting in a substantial loss of processing and solution formulation
time for larger customer instances. In contrast, this current study aims to address this
limitation by exploring the application of both heuristics and metaheuristics to develop
computationally efficient solutions for smaller and larger customer sets and vehicle instances.

Another aforementioned paper is the Travelling Repairman Problem (TRP) (Afrati et al.,
1986). This paper creates a variation on the classical routing problem called the Travelling
Salesman Problem (TSP) (Lenstra and Rinnooy Kan, 1975). TSP gives the solution to the
problem: given a list of cities and distances between every city-to-city pair, derive the shortest
path that would let a travelling salesman visit each city exactly once and return to the city
of origin. The Travelling Repairman Problem (TRP) gives a solution to the same problem;

7

Chapter 2. Literature Review

except that the differences are that the objective function and that not all nodes need to be
visited. The objective function is aimed at maximising the profit function, and the other
difference is that each city is visited less than once or equal to one. As seen in figure 2.1, the
main premise of the TRP is that there are a set of speed cameras that needs to be maintained
by a repairman. The set of cameras has weighted waiting times to complete the maintenance
tasks by the repairman, called latency. The latency gives the set of cameras a priority of
what cameras need to be maintained first and in which order they should be maintained. The
current thesis takes inspiration from TRP because, in a real-world application, customers are
put on a priority list. The commercial goods will need to be delivered to customers based
on that priority list. In an ideal world, the priority list would be sorted in such a way that all
the customers will be offered delivery in a single day’s work. Unfortunately, the real world
falls short in this aspect as there is a limited capacity of the fleet to serve certain prioritised
customers daily. For that reason, it is safe to assume that many customers will not be visited
in a single day. One of the constraints in the current thesis takes this into account.

Figure 2.1: Example of Travelling Repairman Problem (Muritiba et al., 2021)

This thesis will also look at heuristics and metaheuristics to produce a feasible solution
within the range of an accurate answer while improving computational efficiency. It
looks at how a heuristic called the Nearest Neighbour Based Heuristic (NNBH) and
metaheuristics called Variable Neighbourhood Search (VNS) and Simulated Annealing (SA)

8

Chapter 2. Literature Review

are implemented to solve this problem. Heuristics are a “class of procedures for finding
acceptable solutions to a variety of difficult decision problems, that is, procedures for
searching for the best solutions to optimisation problems” (Laguna and Martı́, 2013).

Starting from the heuristics implemented, the Nearest Neighbour Based Heuristic is a
straightforward algorithm used in this project to assign vehicles to unserved nodes in each
route. The algorithm randomly selects an unserved node and assigns a vehicle to it. It then
searches for nearby unserved nodes iteratively until certain limitations are encountered.

In the context of this project, three primary limitations are incorporated into the algorithm.
Firstly, if all nodes have been visited, indicating that the entire route has been covered. The
second limitation pertains to the energy required to visit a customer. The algorithm checks
if the vehicle possesses sufficient charge to travel to the nearest unserved node and return
to the depot. If the vehicle’s energy capacity is insufficient to complete this journey, the
route is considered complete, and the vehicle returns to the depot. This limitation ensures
that the vehicle does not venture beyond its energy constraints, preventing it from being
stranded without adequate charge. The third constraint pertains to the cumulative energy
consumption required for a specified number of vehicles. Specifically, these vehicles are
designated to travel to the nearest customers and subsequently return to the depot. This
condition involves assessing whether the upcoming vehicle can effectively embark on a
journey to the nearest unvisited customer and subsequently complete the round trip back
to the depot. If the aggregate distance, which encompasses the distance from the depot to the
nearest customer, followed by the return trip to the depot, along with the cumulative distance
travelled by the preceding vehicles, exceeds the predetermined energy budget assigned to
the entire fleet, the route for that particular vehicle is concluded, and it returns to the depot.
This constraint guarantees that the energy consumption remains within the specified budget,
promoting sustainable fleet operation.

When any of these limitations are encountered, signifying that a route cannot be continued
due to node visitation or energy constraints, the algorithm finalises the route, assigning it to
the corresponding vehicle. By integrating these limitations, the Nearest Neighbour Based
Heuristic algorithm effectively considers the practicalities of node visitation and energy
availability, ensuring the optimisation of vehicle assignment while adhering to operational
and energy limitations.

This approach of NNBH is similar to the academic paper proposed by Tavakkoli-

9

Chapter 2. Literature Review

Moghaddam et al. (2006). However, their perspective of the problem has different constraints
on the limitations of heuristics. Specifically, the vehicle capacity is not exceeded, as it is
for the CVRP, and the service time for the vehicles is also not exceeded. In the current
thesis, these variables are not deemed necessary as our problem is more focused on charge
management juxtaposed with the Vehicle Routing Problem for EV fleets. Hence, the above
variables are assumed to be not relevant to this version of the problem. The reason for
choosing NNBH as the preferred heuristic was two-fold. Firstly, this heuristic is a local
search method that is easy to implement, because of its approach to finding the next customer
to visit. Secondly, the execution time of the heuristic is significantly quicker than many
heuristics tackling the same problem, since the worst-case space complexity of the algorithm
is Θ(N2).

The VNS metaheuristic is a well-known heuristic search approach that has been
effectively used for a wide range of problems (Hansen et al., 2008). The metaheuristic
uses the approach of iteratively moving between neighbourhoods to find a better value
for the objective function. It uses a method called ’shake’ which randomly changes the
neighbourhood to perform a local search on the result. The local search result is checked by
criterion to confirm whether the result is acceptable for that iteration or not. VNS has been
used to solve a variety of other VRPs, including Vehicle Routing Problem with Backhauls
(VRPB) (Crispim and Brandão, 2005), Large scale Vehicle Routing Problem (Kytöjoki et al.,
2007), Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW) (Polacek
et al., 2004), Vehicle Routing Problem with Time Windows (VRPTW) (Bräysy, 2003) and
Open Vehicle Routing Problem (OVRP) (Fleszar et al., 2009). The algorithm’s simplicity,
precision, multiplicity, and efficiency are key characteristics that make the VNS metaheuristic
an easy choice for an algorithm.

The Variable Neighbourhood Search (VNS) metaheuristic is employed in this context,
utilising four operators to construct new neighbouring solutions. If a customer is not visited
within the Nearest Neighbour Based Heuristic (NNBH) solution, two operators are employed
to address this scenario. The first operator (InsertUnivisted()) attempts to include the
unvisited customer in an existing solution. This involves evaluating the feasibility of adding
the customer to a suitable location within a route. The second operator (SwapUnvisited())
focuses on improving the solution by swapping a low-priority customer with an unvisited
customer. This exchange aims to enhance the overall quality of the solution by prioritising

10

Chapter 2. Literature Review

the unvisited customer. In cases where all customers have been visited within the NNBH
solution, the solution undergoes either the 1-opt or 2-opt operator. The 1-opt operator selects
a random customer from one route and transfers it to another randomly selected route. On
the other hand, the 2-opt operator takes a subroute from one randomly chosen route, reverses
the order of the nodes, and appends it to another randomly selected route. The solutions
generated by the swap or insert operators are only accepted if they result in an increase in
the total priority cost compared to the original solution. This ensures that the new solution
offers improved prioritisation of customers. In the case of the 1-opt or 2-opt operator, the
produced solution is accepted if it exhibits an increase in priority cost and if the vehicles have
sufficient charge to accommodate the inserted route. By utilising these operators, the VNS
metaheuristic explores different neighbourhood structures to enhance the quality of solutions.
The operators are designed to maximise the prioritisation of customers, ensure feasibility, and
optimise the utilisation of available energy resources.

Figure 2.2: Global Maximum/Minimum and Local Maximum/Minimum (Xie, 2019)

The other metaheuristic used in this project is called Simulated Annealing (SA) and it
is widely used in the VRP field. Simulated annealing operates by iteratively evaluating and
modifying candidate solutions. At each iteration, the algorithm considers a neighbouring
solution by applying a random modification to the current solution. If the new solution
improves the objective function (i.e., decreases the cost or increases the quality), it is
accepted as the new current solution. However, if the new solution is worse, it may still be
accepted with a certain probability based on a temperature parameter and the magnitude of the
degradation. This probabilistic acceptance allows the algorithm to escape local optima and
explore different areas of the solution space. Fig 2.2 and 2.3 shows an example of the global
and local minima and the trajectory SA would follow to solve the problem, respectively.

11

Chapter 2. Literature Review

Simulated Annealing comes from a concept from metallurgy in physics that involves the
heating and cooling of metal for it to alter its physical properties. Simulated annealing does
not guarantee to find the global optimum but aims to find good solutions in a reasonable
amount of time. The reason for choosing this approach is that the model mixes several local
search methods dedicated to the problem. This produces high-quality solutions in a very short
computational time compared to other methods associated with the exact VRP models (Afifi
et al., 2013).

Figure 2.3: Simulated Annealing for a minimisation problem (Ghasemalizadeh et al., 2016)

To conclude this section, the literature described in this chapter was used to highlight three
different parts of the project. Firstly, the current status of research in the field of Operational
Research associated with VRP and EVs. Secondly, the different techniques used for finding
a concrete solution to this version of VRP. Lastly, it shines a light on the uniqueness of this
version of VRP and the approach to solving it. There has not been any research on VRP
scenarios where the charging infrastructure has consumption budgets. Therefore, this would
be a unique problem that has never been tackled before.

12

Chapter 3

Base Mathematical Model

This chapter defines the research problem in detail, with assumptions made to solve the
problem. Using these assumptions, the graph notation is defined to propose the mathematical
formulation. The mathematical formulation is described in detail after the objective function
and constraints are established.

3.1 Research Problem Description

The proposed model has the following assumptions:

1. The customers must be met at most once by a single vehicle from a heterogeneous fleet
of vehicles. It is important to note that not every customer needs to be visited.

2. Each route starts and ends at the depot with a sequence of customer nodes that the EV
visits.

3. The fleet is heterogeneous with different ranges

4. The vehicles are all charged at the depot based on the journey they are meant to be
assigned for the day. The depot has an energy budget for charging the fleet entirely and
cannot be exceeded.

5. Variables such as vehicle driving speed, charging rates, delivery load and other second-
order factors (like traffic jams, road conditions, elevation change in route, temperature,
etc.) are not considered for this problem.

13

Chapter 3. Base Mathematical Model 3.2. Graph Notation

6. Energy consumption to cover a distance has a 1:1 conversion, i.e., 1 kWh of the vehicle
covers 1 km of distance, for ease of analysis (Earl et al., 2018).

In the following section, the proposed model presents the notations used for this thesis.
For this definition, V is the set of vehicles that are operational for the day’s journey. Let N

be a set of customers with a size of n that must be visited. R is a set of customers with the
inclusion of the depot at the start and end of the set. Hence, let vertices 0 and n+ 1 be the
depot (represented by ϕ). Sets with subscript 0 and n+1 indicate that they contain the depot,
such as R0 = Rn+1 = ϕ. The model can then be defined on a weighted and complete directed
graph G = (R,A), where A = {(i, j)|i, j ∈ R, i , j} denotes the graph’s arcs.

The distance di j represents the amount of distance or energy required to travel from
customer i to customer j, which are the weights of the arcs in graph G. The profit gained
by visiting the prioritised customer i is symbolised by pi. The depot has a priority of 0, while
the rest of the customers have a priority with a positive integer value. The vehicles in the fleet
would be charged collectively by the energy budget, denoted as e. Each vehicle v can travel
a range of rv, hold a battery capacity of Cv and has an initial charge of qv.

In this implementation, it associates a binary variable yv
i j with decision variables that take

a value of 1 if vehicle v is travelling from i to j and 0 otherwise, where i, j ∈ R and v ∈ V . The
variable xv

i indicates whether the customer at i is served by vehicle v, where i ∈ N and v ∈ V .
The final decision variable is the amount of energy used to charge a vehicle v, indicated as zv.
The model aims to maximise the total priority cost.

Using these variables, the proposed mathematical formulation can be created.

3.2 Graph Notation

3.2.1 Problem Parameters

N : Customers {i, j,k}

R : Depot + Customers {ϕ, i, j,k,ϕ}

S : Subset of R
V: Vehicles {u,v}

qv : Initial charging level of vehicle v

Cv : Battery capacity of vehicle v

14

Chapter 3. Base Mathematical Model 3.3. Mathematical Formulation of Model

pi : Priority of customer i

rv : Range of vehicle v

di j : Energy consumption to travel from i to j

e : Energy budget

3.2.2 Data

zv: Amount of energy used to charge vehicle v

xv
i : 1, if the customer at i is served by vehicle v ; 0, otherwise

yv
i j: 1, if vehicle v is travelling from i to j ; 0, otherwise

3.3 Mathematical Formulation of Model

Objective function

Max
R∑

i=1

V∑
v=1

xv
i pi (3.1)

Subject to

V∑
v=1

xv
i ≤ 1 ∀i ∈ N (3.2)

R∑
i=1

yv
i j =

R∑
i=1

yv
ji = xv

j ∀ j ∈ R,v ∈ V, i , j (3.3)

∑
j

yv
0 j = 1 ∀v ∈ V, j ∈ N (3.4)

∑
i

yv
i0 = 1 ∀v ∈ V, i ∈ N (3.5)

∑
(i, j)∈R

yv
i jdi j ≤ qv+ zv ≤Cv ∀v ∈ V, i , j (3.6)

15

Chapter 3. Base Mathematical Model 3.3. Mathematical Formulation of Model

V∑
v=1

zv ≤ e ∀v ∈ V (3.7)

qv+ zv ≤ rv ∀v ∈ V (3.8)

∑
i, j∈S ;i, j;i=1

yv
i j ≤ |S | −1 ∀S ⊊ R, |S | ≥ 2,v ∈ V (3.9)

xv
i ∈ {0,1} ∀i,v (3.10)

yv
i j ∈ {0,1} ∀i, j,v (3.11)

The objective function (3.1) maximises the sum of the priority of the served customers.
Constraint (3.2) makes sure that any customer is not served by more than one vehicle.
Constraint (3.3) asserts that every vehicle that visits a customer has to leave the same
customer. The constraints (3.4) and (3.5) establish that every vehicle should leave and enter
back into the depot respectfully. Next, equation (3.6) defines that the arc a vehicle takes
to reach a customer exceeds neither the vehicle’s charge nor the vehicle’s maximum battery
capacity. The inequalities (3.7) indicate that the energy used to charge the vehicle does not
exceed the energy budget of the infrastructure that charges the vehicle, and (3.8) declares that
the vehicle’s journey does not exceed the range of the vehicle based on the charge it contains.
Constraint (3.9) eliminates any sub-tours that might be made by any vehicle. For each subset
of R, denoted as S, the maximum number of arcs between the elements in S is limited to
the number of elements in the S −1. Finally, constraints (3.10) and (3.11) specify that the
decision variables are binary.

16

Chapter 4

Heuristic Approach

4.1 Nearest Neighbour Based Heuristic

As mentioned in the Introduction, the main heuristic that is utilised for the metaheuristics to
have an initial solution is called Nearest Neighbour Based Heuristic (NNBH). NNBH is a
simple algorithm where, for each route, a node is chosen at random and then a vehicle visits
the node. The set of unserved neighbours is then searched for until one of the limitations is
met. Once they are met, the iteration is restarted for a new vehicle. In this implementation,
the limitations are:

• All of the nodes are visited

• The vehicle does not have enough charge to go to the node and then return to the depot

• The total cost of all the journeys is over the energy budget e

The steps of the proposed algorithm are as below:

17

Chapter 4. Heuristic Approach 4.1. Nearest Neighbour Based Heuristic

Algorithm 1 Nearest Neighbour Based Heuristic
Require: [nearestNode ∈ R, currentNode ∈ R]

1: totalCost = 0
2: distance = 0
3: for v ∈ V do
4: Cv = v.BatteryCapacity

5: currentNode = depot

6: while distance <Cv do
7: nearestNode = smallestDistanceFromCurrentNode(currentNode)
8: if (nearestNode == null ∥

9: calculateDistance(currentNode,nearestNode)+ totalCost > e ∥

10: calculateDistance(currentNode,nearestNode) >Cv−distance) then
11: ReturnToDepot()
12: else
13: if NearestNode.Visited == f alse then
14: distance+ = calculateDistance(currentNode,nearestNode)
15: AddToRoute(nearestNode,v)
16: currentNode = nearestNode

17: else
18: continue
19: end if
20: end if
21: end while
22: totalCost+ = distance

23: end for

The algorithm above begins by assigning the variables totalCost of the complete solution
and the distance of each vehicle to 0 in Step 1 and 2, respectively. Step 3 then commences
the process of iterating through each vehicle. In Step 4, the battery capacity of the vehicle
is reassigned to the battery capacity of the vehicle in iteration. Step 5 defines that the
currentNode starts with the depot. The second iteration begins, from Step 6 onward, where
the total distance travelled does not go beyond the battery capacity of the vehicle. While
this condition is true, the nearest node from the current node is calculated and assigned to

18

Chapter 4. Heuristic Approach 4.2. Simulated Annealing

the variable nearestNode, as seen in Step 7. The algorithm checks through a few conditions.
Firstly, whether there are no more nearest nodes to be visited, which is checked in Step 8.
Secondly, if the addition of the distance, from the current node to the nearest node and back
to the depot, and the total cost for the journey of the whole fleet, is greater than the energy
budget assigned to the fleet. This is seen in Step 9. Lastly, whether the remaining battery
left in the vehicle does not have enough charge to visit the current node and return to the
depot, as shown in Step 10. If any of these conditions are true, then it enters Step 11 and the
vehicle would be returned to the depot. If any of these conditions are false, however, then
visiting the nearest node can be considered which is after Step 12. If the nearest node that is
in consideration is not visited yet, then the distance travelled is aggregated. The current node
is then the nearest node that the vehicle has travelled to and the iteration for the respective
vehicle gets repeated. This is demonstrated in Steps 13 to 16. At the end of each iteration of
the vehicle, the total cost is aggregated with the distance the vehicle has travelled, which is
done in Step 21.

4.2 Simulated Annealing

Simulated Annealing (SA) is a stochastic optimisation algorithm technique that originated
from statistical mechanics (Kirkpatrick et al., 1983) The process involves repeatedly heating
a solid to a high temperature and then cooling it gradually to a lower temperature, allowing
the atoms to move freely. If the cooling process is too rapid, the atoms do not have enough
time to arrange themselves in an energetically favourable configuration. This analogy can
be applied to combinatorial optimisation problems, where the solid represents the possible
solution space, the energy corresponds to the objective function, and the minimum energy
state corresponds to the optimal solution.

SA directs the search using a stochastic technique. It permits the search to continue to an
adjacent state even if the move reduces the value of the objective function. The initial local
search approach is guided in the following way by SA. If a move to a neighbour X’ in the
neighbourhood N(X) reduces or maintains the objective function value, the move is always
allowed. More specifically, if ∆ ≥ 0, the solution X’ is accepted as the new current solution,
where ∆ = Cost(X0)−Cost(X) and Cost(X) is the value of the objective function. To move
from one local optimum to another, there needs to be a chance for inferior solutions to be

19

Chapter 4. Heuristic Approach 4.2. Simulated Annealing

accepted. Therefore, e(−∆/T) calculates the probability that allows inferior solutions to be
accepted and traverse away from a local optimum. T is a temperature parameter that ranges
from a relatively high number to a smaller number close to zero. A cooling schedule sets
the starting and incremental temperature levels at each algorithm stage, which controls these
values. The algorithm is demonstrated in Algorithm 2.

4.2.1 Parameters Description

The SA features an inner loop and an outer loop. The inside loop governs the attainment
of equilibrium at the current temperature, whereas the outside loop governs the pace of
temperature decline. The following are the SA parameters:

EL (Epoch Length) number of solutions accepted in each temperature for achieving
equilibrium

MTT maximum number of consecutive temperature trails

T0 initial temperature

α rate of the current temperature decrease

X a feasible solution

Cost(X) the value of objective function for X

n counter for the number of accepted solutions in each temperature

r counter for the number of consecutive temperature trails, where Tr is equal to
temperature in iteration r

4.2.2 Initial Solution Generation

The initial solution for the metaheuristic is generated from the NNBH approach explained in
Section 4.1 in Algorithm 1. The NNBH approach would be suitable for small to medium-
sized problem sets, however, in larger-sized problems, where there are more than 20-30
customer nodes to be visited, the SA mechanism would help. This example would need to
use several operators for improving the initially obtained solutions from the NNBH approach.

20

Chapter 4. Heuristic Approach 4.2. Simulated Annealing

4.2.3 Simulated Annealing Algorithm

Algorithm 2 Simulated Annealing with VNS neighbourhood generation method
Require: [r = 0,Xbest = Ø]

1: Generate X0 in NNBH algorithm
2: Xbest = X0

3: while r < MTT and Tr > 0 do
4: n = 0
5: while n < EL do
6: Select an operator by Variable Neighbour Search and run over Xn as Xn 7→ Xnew

7: ∆Cost =Cost(Xnew)−Cost(Xbest)
8: Generate y→ U(0,1) randomly
9: Set Z = e(−∆Cost/Tr)

10: if ∆Cost > 0 or y < Z then
11: Xbest = Xnew

12: n = n+1
13: Xn = Xnew

14: else if y < Z then
15: n = n+1
16: Xn = Xnew

17: end if
18: end while
19: r = r+1
20: Tr = Tr−1−α∗Tr−1

21: end while
22: Return Xbest

The SA algorithm starts with generating an initial solution from the NNBH, named X0, in
Step 1 and the last best solution, named Xbest, being X0 in Step 2. The first do-while loop
begins by checking if either the temperature trails counter (named r) is less than the MTT or
temperature in the current iteration, which is showcased in Step 3. The number of accepted
solutions counter (named n) is assigned to 0 in Step 4. Step 5 moves into the second loop
where the accepted solution counter is less than the Epoch Length, named EL. The following

21

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

step in Step 6 uses the Variable Neighbourhood Search to have a new neighbouring solution
to compare with the acceptance criterion. The VNS algorithm outputs a new solution that gets
saved as Xnew. Step 7 checks the change in priority costs between the current best solution
and the new solution saved as ∆Cost. It also generates a random number between 0 and 1 in
Step 8. In Step 9, the probability of accepting the new solution is calculated called Z which
is used later in the algorithm. If the change in the priority costs is greater than the priority
costs in the current best solution, as seen in Step 10, it passes the acceptance criteria and the
solution is accepted. Steps 11-13 save the new solution as the current best solution (Step 11),
increase the accepted solutions counter (Step 12), and save it to the list of accepted solutions
for each iteration (Step 13). If it does not pass the acceptance criteria, then it continues the
iteration through Step 13. If the randomly generated number is less than the probability, the
solution is accepted as seen in Steps 14 - 17. Steps 19 and 20 would see the consecutive
temperature trails counter being incremented and the temperature data-set being aggregated
with the rate of the current temperature decreased as the offset. Finally, Step 22 prints out the
best solution from the metaheuristic.

4.3 Variable Neighbourhood Search

In the context of the neighbourhood generation mechanism, VNS is used to move into
feasible space and obtain the neighbourhood solution. In this implementation, the search
variably checks through modified versions of 1-opt, 2-opt, Swap and Insert operators. The
performance of operators in 1-opt and 2-opt methods between two routes can be seen in
Figure 4.1. In the referenced figure, 1-opt moves the customer node C from the black route
to the blue route. The 2-opt algorithm in the figure shows that a route from the black route is
extracted (i.e., C-D), the route is reversed, and then inserted into the blue route.

22

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

Figure 4.1: Example of 1-opt and 2-opt

The fundamental logic of 1-opt and 2-opt operators is two routes of two different vehicles
in a feasible solution are randomly chosen. For 1-opt, one customer node is randomly chosen
from the first route and inserted into a random location in the second route to find the best
location. Contrastingly, 2-opt selects a random sub-route from the first route and inserts it
at a random index in the second route. In this implementation, the acceptance criterion in
1-opt and 2-opt is unique from any other implementation. For a solution to be accepted,
we first check if the aggregation of the customers’ priority in the inserted route is better or
worse. If it is better and if the vehicle has enough battery to do the proposed route, then the
solution is accepted and returned into the Simulated Annealing process. The pseudocode of
the algorithm for 1-opt can be seen below in Algorithm 5, 2-opt can be seen in Algorithm 6,
the Swap operator in Algorithm 7, and the Insert operator in Algorithm 8.

23

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

4.3.1 Variable Neighbourhood Search Algorithm

Using these four operators, the Variable Neighbourhood Search would first check if there
are any unvisited customers from the solution produced by the Nearest Neighbour Based
Heuristic. If there are, the unvisited customers would randomly be either swapped with a
visited customer or inserted into a random route. The solution from either of the two edge
case operators would then be passed to the 1-opt or 2-opt operators randomly. Using the
solution produced by either 1-opt or 2-opt, it passes through the acceptance criterion. If it
passes through the acceptance criterion, it chooses that route and makes it more biased toward
the operator that chose the route. If it does not pass the acceptance criterion, the search is
iterated again until it finds a better solution. The biased approach makes finding the solution
to the problem more variable. The algorithm for the Variable Neighbourhood Search is found
in Algorithms 3 and 4.

Algorithm 3 Variable Neighbourhood Search
Require: [kmax,route ∈ route = Xn]

1: k = 1
2: while k < kmax do
3: Randomly generate a number between 0 and 1000→ randomNumber

4: if unvisitedCustomers.size > 0 then
5: Randomly generate a 1 or 0 (unvisitedRandomNumber)
6: if unvisitedRandomNumber > 0 then
7: route = S wapUnvisitedCustomers()
8: else
9: route = InsertUnvisitedCustomer()

10: end if
11: else if randomNumber < NS V then
12: twoOptedRoute = 2opt(route)
13: route = NeighbourhoodChange(twoOptedRoute,route)
14: else
15: oneOptedRoute = 1opt(route)
16: route = NeighbourhoodChange(route,oneOptedRoute)
17: end if

24

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

18: if k = 1 then
19: break
20: end if
21: end while

Algorithm 4 Neighbourhood Change Algorithm
Require: [twoOptedRoute,oneOptedRoute passed from Algorithm 3]

1: Calculate the priority cost (onePriority) of the 1-optedRoute
2: Calculate the priority cost (twoPriority) of the 2-optedRoute
3: if onePriority! = twoPriority then
4: k = 1
5: if onePriority > twoPriority then
6: NS V− = 2
7: Return oneOptedRoute

8: else
9: NS V+ = 2

10: Return twoOptedRoute

11: end if
12: else
13: k++

14: end if

Variable Neighbourhood Search is a 3-phased local search method. The first phase is
called the Shake function. The algorithm uses this phase to escape from the local optima
when the local search gets stuck. It helps the diversification in the search by perturbing
the incumbent solution and resorting to a different solution in the neighbourhood under
exploration. The second phase is the Local search method, which is a search for finding the
local optima of the neighbourhood selected. The final stage is the Neighbourhood Change

where the local optima are checked to verify if it is the maximised value or not. In this
implementation, the Shake and Local search phases are located in all three operators. Hence
starting with Algorithm 3, Step 1 creates an iterator variable called k. Step 3 creates a
randomNumber ranging from 0-1000, which would be used as the coin flip to select the

25

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

operator chosen. The range of 0-1000 allows the opportunity for an impartial operator to
provide a better solution, as compared to a binary 0-1 variable. The NSV is the deciding
factor on probabilities of getting the right operator based on previous successful solutions.
If any unvisited customers are missed in the NNBH heuristic, either the SwapUnvisited()

or InsertUnvisited() is selected randomly. If the randomNumber is smaller than NSV, the
2-opt method is selected, otherwise, 1-opt is pursued. The two operators would result
in a route after the Shake and Local search functions and the result is passed into the
NeighbourhoodChange() function. This function’s algorithm is seen in Algorithm 4.

Algorithm 4 begins with the calculation of the priority costs of both routes passed on from
Algorithm 3, named onePriority and twoPriority. If there is a difference between the priority
costs of both routes, then the selection for an operator begins. The algorithm then compares
the two priority costs, to see which is the better solution. If the route produced by the 1-opt
is better than the 2-opt, the variable NSV will be decreased by 2. Otherwise, the variable will
be increased by 2. This is to increase the chance of using the more successful operator. The
increment/decrement of 2 allows the variable to be biased enough to pick one operator over
the other. On the other hand, it is not incremented/decremented too much where the model is
forcing the randomNumber to only pick one operator over the other for every iteration.

4.3.2 1-opt Algorithm

Algorithm 5 Priority-based 1-opt algorithm
Require: [soln = Xn]

1: Generate a randomRoute from soln

2: Select a random customer, removedCustomer, from the selected route
3: Get the index of the selected customer, removedIndex, in the selected route
4: Remove the selected customer from the selected route
5: Select a random route, insertedRoute, from the current solution, soln

6: Select a random index, insertedIndex, in the selected route
7: Insert the removed customer in the selected route at the selected index
8: changeInDistanceInsertedRoute←−CalculateDistanceDelta(insertedIndex)
9: newPriorityCostForInsertedRoute

10: ←− insertedRoute.PriorityCost()+ removedCustomer.priorityCost

26

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

11: if newPriorityCostInInsertedRoute > insertedRoute.PriorityCost then
12: if insertedRoute.cost+ changeInDistanceInsertedRoute

13: ≤ insertedRouteVehicle.BatteryCapacity then
14: Return modified route
15: else
16: break
17: end if
18: else
19: break
20: end if

The 1-opt algorithm above starts with the assumption that the solution used in this iteration is
the last solution from the solution set produced by the Simulated Annealing process. Using
this assumption, Steps 1 and 2 randomly pick a route from the solution and a customer from
the route, respectively. The index of the removed customer from the route is also saved, in
Step 3. Step 4 removes the selected customer from the selected route. Step 5 picks a random
route where the removed customer can be inserted. Step 6 selects a random index from the
route for the removed customer to be injected into. Step 7 inserts the customer at the selected
index into the selected route. Step 8 calculates the change in distance costs by deducting
the distance between customers before and after the inserted customer while aggregating
the distance connecting the inserted customer to the adjacent customers on either side. The
formula for the change in the length of inserting customer v1 into a route is found in equation
4.1 below. In the formula, dist(x,y) calculates the distance between customer nodes x and y
using the Euclidean distance formula.

DistanceDelta = −dist(v1-1, v1+1)+dist(v1-1, v1)+dist(v1, v1+1) (4.1)

In Steps 9 and 10, the new priority costs of the inserted route is calculated. From Step 11,
the acceptance criterion is checked. Firstly, it checks if there is an increase in prioritisation of
the route. If there is an increase in prioritisation costs (Step 11), then the solution is accepted
on the condition that the vehicle has enough battery to do the journey (Step 12). If it does not
pass the acceptance criterion, then the solution is not passed into the Simulated Annealing
process (Steps 16 & 19).

27

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

4.3.3 2-opt Algorithm

Algorithm 6 Priority-based 2-opt algorithm
Require: [soln = Xn]

1: Randomly select a route removedRoute from the current solution soln

2: Randomly select two distinct customers removedCustomer1 and removedCustomer2
from removedRoute

3: Find the index of removedCustomer1 (removedIndex1) and removedCustomer2
(removedIndex2) in removedRoute

4: Create a new route (extractedRoute) from removedCustomer1 to removedCustomer2
and reverse the order of customers in extractedRoute

5: Remove extractedRoute from removedRoute

6: Randomly select another route (insertedRoute) from the current solution soln

7: Randomly select an index (insertedIndex) in insertedRoute

8: Insert extractedRoute into insertedRoute starting at index insertedIndex

9: changeInDistanceInsertedRoute←−CalculateDistanceDelta(extractedRoute)
10: Compute the new priority cost for insertedRoute due to the insertion of extractedRoute

(newPriorityCost)
11: if (newPriorityCost > insertedRoute.PriorityCost()) then
12: if insertedRoute.cost+ changeInDistanceInsertedRoute

13: ≤ insertedRouteVehicle.BatteryCapacity then
14: Return modified route
15: else
16: break
17: end if
18: else
19: break
20: end if

The 2-opt algorithm follows a similar approach to the 1-opt algorithm with the difference of
a route being moved from one route to another rather than a customer. Steps 1-3 focus on the
end customer nodes that need to be extracted with the indexes of both to be remembered. Step
4 focuses on creating the route that has all customer nodes in between removedCustomer1

28

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

and removedCustomer2 and reverses it. Step 5 proceeds with the removal of the extracted
route from the selected route. Steps 6 & 7 select a random route from the solution and a
random index from the route that the extracted route can be inserted into. The extracted route
is inserted at the selected index, as seen in Step 8. Step 9 calculates the change in cost in
insertedRoute when the extracted route is inserted. The formula for the DistanceDelta in this
implementation, where the customers v1 and v2 are the end customer nodes, can be found
in equation 4.2. Similar to 1-opt, the dist(x,y) formulation follows the Euclidean distance
formula.

DistanceDelta = dist(v1-1, v1)+dist(v2, v2+1)+dist(v1, v2)−dist(v1-1, v2+1) (4.2)

Step 10 shows the computation of the change in distance cost. From Steps 11 to 20, the
acceptance criterion checks results are the same as 1-opt.

4.3.4 Swap operator

Apart from these two operators, there is also another operator that is used for edge cases
called the Swap operator. The requirement of this operator is that the metaheuristic only
works with the solution given if the solution from the NNBH does not visit some of the
customers. As such the metaheuristic would not consider any unvisited customers. This is
solved with a swap operator. This operator randomly picks a route from the solution, picks
the least prioritised customer from the route and removes it. From the removed customer,
the index of the customer is recorded and an unvisited customer from NNBH is inserted into
the route. If it passes the same acceptance criterion, the swap is accepted and returned to the
Simulated Annealing process. The algorithm follows very similarly to the 1-opt algorithm,
with the key difference that the removed customer is the lowest prioritised customer from the
removed route. The algorithm can be found below in Algorithm 7.

29

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

Algorithm 7 Swapping Unvisited Customer
Require: [soln = Xn,unvisitedNodes.size >= 1 ∈ unvisitedNodes ⊊ N]

1: Choose a route randomly from the existing solution (insertedRoute)
2: Find the lowest priority customer in the chosen route
3: Insert an unvisited node at the position of the removed customer in the route
4: Calculate the change in priority of the modified route

(changeInPriorityInInsertedRoute)
5: Calculate the change in distance of the modified route (changeInDistanceInsertedRoute)
6: if changeInPriorityInInsertedRoute > insertedRoute.PriorityCost() then
7: if insertedRoute.cost+ changeInDistanceInsertedRoute

8: ≤ insertedRouteVehicle.BatteryCapacity then
9: Return modified route

10: else
11: break
12: end if
13: else
14: break
15: end if

The Swap algorithm above is very similar to the 1-opt algorithm with a couple of very
key differences between the two algorithms. First, the insertedRoute and the removedRoute

are the same as the route that the customer is being removed from is the same route where
the unvisited customer is being inserted in. Second, if the solution is accepted, based on the
acceptance criteria, the customer that is inserted is removed from the data set that contains
all of the unvisited customers. The customer that is swapped with the inserted customer is
inserted into the dataset as that customer is now unvisited. This helps increases the prioritised
customers being visited on a route.

4.3.5 Insert operator

Another operator that is used to reduce the number of unvisited customers produced by the
Nearest Neighbour Based Heuristic is the Insert operator. The reason for using this operator
is to increase the number of visited customers in the final solution produced, which increases

30

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

the OFV of the final solution. This operator randomly picks a route from the solution and
picks a random index from the route. After selecting the index, a random unvisited customer
is selected and inserted at the selected index from the selected route. If the vehicle assigned
for the selected route can travel the extra distance taken to visit the selected customer, then
the solution will be accepted. This accepted solution will then be returned to the Simulated
Annealing process. The algorithm is found below in Algorithm 8.

Algorithm 8 Inserting Unvisited Customer
Require: [soln = Xn,unvisitedNodes.size >= 1 ∈ unvisitedNodes ⊊ N]

1: Choose a route randomly from the existing solution (insertedRoute)
2: Choose an index randomly from the selected route (insertIndex)
3: Insert an unvisited node at the index insertIndex in insertedRoute)
4: Calculate the change in distance of the modified route (changeInDistanceInsertedRoute)
5: if insertedRoute.cost+ changeInDistanceInsertedRoute

6: ≤ insertedRouteVehicle.BatteryCapacity then
7: Return modified route
8: else
9: break

10: end if

The acceptance criteria for this operator are different from the other operators for a logical
reason. When a new customer is added to a randomly selected route, the priority costs will
only increase. This is because the priority costs of all of the customers are positive integer
values. So passing the final solution through the condition of checking whether there is an
increase in priority costs is redundant. Hence, the only checking criteria that need to be
validated is if the increase in distance can be traversed by the assigned vehicle.

4.3.6 Heuristic Approach Flowchart

An overview of the entire heuristic approach can be seen in 4.2. This includes the Nearest
Neighbour Based Heuristic (NNBH) and the metaheuristics Variable Neighbourhood Search
(VNS) and Simulated Annealing (SA) working in tandem.

31

Chapter 4. Heuristic Approach 4.3. Variable Neighbourhood Search

Figure 4.2: Flowchart of the Heuristic Approach

32

Chapter 5

Computational Results

The computational results are presented in four sections. The first section is to define the
environment in which the model is developed. The second section looks at an example of
what the solution outputted looks like. The third and fourth section looks at the results of
small and large instances of the problem, respectively.

5.1 Model Description

The model is developed in Microsoft Visual Studio C# 2019 and performed on an Intel(R)
Core(TM) i7-10750H machine at 2.60GHz, with 16GB of RAM, running on a 64-bit platform
on a Windows 11 Operating System. The Base Mathematical Model, as defined in Chapter 3,
is also implemented in the same computer with the CPLEX library for the C# .Net framework.

The model is solved for small data on a heterogeneous fleet of vehicles as seen in Table
5.1. The data is derived from an electric commercial truck brand named Volta. Their
website showcases the two main electric truck types; a standard range and a long-range
(Anonymous, 2023). The test data uses a combination of the two types of fleets to incorporate
some heterogeneity into the fleet. It solves on a small instance of 21 customers each with
coordinates on an X-Y graph and priorities assigned to them. The higher the customer
priority, the higher the priority for the fleet to deliver goods to them. The origin of the
X-Y graph (i.e. coordinates of (0,0)) is the depot from which the vehicles would depart. The
distances between each of the customers and the individual customer details are found in
Table 5.3 and Table 5.2 respectively.

33

Chapter 5. Computational Results 5.1. Model Description

Fleet Van1 Van2 Van3 Van4 Van5 Van6 Van7 Van8 Van9 Van10 Van11 Van12 Van13 Van14 Van15 Van16 Van18 Van20
Battery Capacity (KwH) 150 150 225 225 225 150 150 225 150 150 150 150 150 225 225 225 225 225

Range (miles) 150 150 225 225 225 150 150 225 150 150 150 150 150 225 225 225 225 225

Table 5.1: Fleet Information

Customers x y Priority
D 0 0 0
1 10 20 1
2 30 10 2
3 -10 -20 2
4 -30 -40 3
5 -50 -10 3
6 45 -10 5
7 60 -20 3
8 90 25 3
9 60 50 3

10 21 49 3
11 15 39 3
12 38 42 4
13 28 19 2
14 -18 -49 5
15 30 27 2
16 -41 29 1
17 4 33 4
18 50 -19 5
19 -2 -41 4
20 -36 39 3
21 21 39 3

Table 5.2: Customer Details

34

Chapter 5. Computational Results 5.1. Model Description

D
ist

an
ce

D
1

2
3

5
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

D
0

22
.3

60
68

31
.6

22
78

22
.3

60
68

50
50

.9
90

2
46

.0
97

72
63

.2
45

55
93

.4
07

71
78

.1
02

5
53

.3
10

41
41

.7
85

16
56

.6
39

21
33

.8
37

85
52

.2
01

53
40

.3
60

87
50

.2
19

52
33

.2
41

54
53

.4
88

32
41

.0
48

75
53

.0
75

42
44

.2
94

47
1

22
.3

60
68

0
22

.3
60

68
44

.7
21

36
72

.1
11

03
67

.0
82

04
46

.0
97

72
64

.0
31

24
80

.1
56

1
58

.3
09

52
31

.0
16

12
19

.6
46

88
35

.6
08

99
18

.0
27

76
74

.4
64

76
21

.1
89

62
51

.7
88

03
14

.3
17

82
55

.8
65

91
62

.1
69

12
49

.7
69

47
21

.9
54

5
2

31
.6

22
78

22
.3

60
68

0
50

78
.1

02
5

82
.4

62
11

25
42

.4
26

41
61

.8
46

58
50

40
.0

24
99

32
.6

49
66

32
.9

84
85

9.
21

95
44

76
.0

59
19

17
73

.4
98

3
34

.7
13

11
35

.2
27

83
60

.2
07

97
72

.0
90

22
30

.3
64

45
3

22
.3

60
68

44
.7

21
36

50
0

28
.2

84
27

41
.2

31
06

55
.9

01
7

70
10

9.
65

86
98

.9
94

95
75

.6
43

9
64

.0
78

08
78

.4
09

18
54

.4
51

81
30

.0
83

22
61

.7
17

1
57

.9
82

76
54

.8
17

88
60

.0
08

33
22

.4
72

21
64

.4
74

8
66

.6
48

33
4

50
72

.1
11

03
78

.1
02

5
28

.2
84

27
0

36
.0

55
51

80
.7

77
47

92
.1

95
44

13
6.

47
34

12
7.

27
92

10
2.

57
68

90
.9

17
55

10
6.

52
7

82
.7

34
52

15
89

.9
38

87
69

.8
71

31
80

.5
29

5
82

.7
10

34
28

.0
17

85
79

.2
27

52
94

.0
31

91
5

50
.9

90
2

67
.0

82
04

82
.4

62
11

41
.2

31
06

36
.0

55
51

0
95

11
0.

45
36

14
4.

30
87

12
5.

29
96

92
.3

14
68

81
.4

00
25

10
2.

21
55

83
.2

16
58

50
.4

47
99

88
.1

41
93

40
.0

24
99

69
.0

28
98

10
0.

40
42

57
.1

40
18

50
.9

60
77

86
.2

67
03

6
46

.0
97

72
46

.0
97

72
25

55
.9

01
7

80
.7

77
47

95
0

18
.0

27
76

57
.0

08
77

61
.8

46
58

63
.6

94
58

57
.4

54
33

52
.4

69
04

33
.6

15
47

74
.0

94
53

39
.9

24
93

94
.4

29
87

59
.4

13
8

10
.2

95
63

56
.3

02
75

94
.6

67
84

54
.5

61
89

7
63

.2
45

55
64

.0
31

24
42

.4
26

41
70

92
.1

95
44

11
0.

45
36

18
.0

27
76

0
54

.0
83

27
70

79
.2

59
07

74
.2

02
43

65
.7

87
54

50
.4

47
99

83
.2

16
58

55
.7

58
41

11
2.

25
86

77
.1

03
83

10
.0

49
88

65
.4

59
91

11
2.

68
1

70
.7

24
82

8
93

.4
07

71
80

.1
56

1
61

.8
46

58
10

9.
65

86
13

6.
47

34
14

4.
30

87
57

.0
08

77
54

.0
83

27
0

39
.0

51
25

73
.0

54
77

76
.2

95
48

54
.7

08
32

62
.2

89
65

13
0.

91
98

60
.0

33
32

13
1.

06
11

86
.3

71
29

59
.4

64
27

11
3.

22
54

12
6.

77
54

70
.4

05
97

9
78

.1
02

5
58

.3
09

52
50

98
.9

94
95

12
7.

27
92

12
5.

29
96

61
.8

46
58

70
39

.0
51

25
0

39
.0

12
82

46
.3

24
94

23
.4

09
4

44
.5

53
34

12
6.

03
57

37
.8

02
12

10
3.

16
01

58
.5

23
5

69
.7

20
87

11
0.

11
36

96
.6

28
15

40
.5

21
6

10
53

.3
10

41
31

.0
16

12
40

.0
24

99
75

.6
43

9
10

2.
57

68
92

.3
14

68
63

.6
94

58
79

.2
59

07
73

.0
54

77
39

.0
12

82
0

11
.6

61
9

18
.3

84
78

30
.8

05
84

10
5.

47
51

23
.7

69
73

65
.1

45
99

23
.3

45
24

73
.9

25
64

92
.8

92
41

57
.8

70
55

10
11

41
.7

85
16

19
.6

46
88

32
.6

49
66

64
.0

78
08

90
.9

17
55

81
.4

00
25

57
.4

54
33

74
.2

02
43

76
.2

95
48

46
.3

24
94

11
.6

61
9

0
23

.1
94

83
23

.8
53

72
93

.9
84

04
19

.2
09

37
56

.8
85

85
12

.5
29

96
67

.7
42

16
81

.7
86

31
51

6
12

56
.6

39
21

35
.6

08
99

32
.9

84
85

78
.4

09
18

10
6.

52
7

10
2.

21
55

52
.4

69
04

65
.7

87
54

54
.7

08
32

23
.4

09
4

18
.3

84
78

23
.1

94
83

0
25

.0
79

87
10

6.
85

04
17

80
.0

62
48

35
.1

71
01

62
.1

69
12

92
.1

35
77

74
.0

60
79

17
.2

62
68

13
33

.8
37

85
18

.0
27

76
9.

21
95

44
54

.4
51

81
82

.7
34

52
83

.2
16

58
33

.6
15

47
50

.4
47

99
62

.2
89

65
44

.5
53

34
30

.8
05

84
23

.8
53

72
25

.0
79

87
0

82
.0

97
5

8.
24

62
11

69
.7

20
87

27
.7

84
89

43
.9

09
67

.0
82

04
67

.0
52

22
21

.1
89

62
14

52
.2

01
53

74
.4

64
76

76
.0

59
19

30
.0

83
22

15
50

.4
47

99
74

.0
94

53
83

.2
16

58
13

0.
91

98
12

6.
03

57
10

5.
47

51
93

.9
84

04
10

6.
85

04
82

.0
97

5
0

89
.8

88
82

81
.3

20
35

84
.8

99
94

74
.3

23
62

17
.8

88
54

89
.8

22
05

96
.2

54
87

15
40

.3
60

87
21

.1
89

62
17

61
.7

17
1

89
.9

38
87

88
.1

41
93

39
.9

24
93

55
.7

58
41

60
.0

33
32

37
.8

02
12

23
.7

69
73

19
.2

09
37

17
8.

24
62

11
89

.8
88

82
0

71
.0

28
16

26
.6

83
33

50
.1

59
74

75
.1

53
18

67
.0

82
04

15
16

50
.2

19
52

51
.7

88
03

73
.4

98
3

57
.9

82
76

69
.8

71
31

40
.0

24
99

94
.4

29
87

11
2.

25
86

13
1.

06
11

10
3.

16
01

65
.1

45
99

56
.8

85
85

80
.0

62
48

69
.7

20
87

81
.3

20
35

71
.0

28
16

0
45

.1
77

43
10

2.
88

34
80

.1
31

14
11

.1
80

34
62

.8
01

27
17

33
.2

41
54

14
.3

17
82

34
.7

13
11

54
.8

17
88

80
.5

29
5

69
.0

28
98

59
.4

13
8

77
.1

03
83

86
.3

71
29

58
.5

23
5

23
.3

45
24

12
.5

29
96

35
.1

71
01

27
.7

84
89

84
.8

99
94

26
.6

83
33

45
.1

77
43

0
69

.4
26

22
74

.2
42

84
40

.4
47

5
18

.0
27

76
18

53
.4

88
32

55
.8

65
91

35
.2

27
83

60
.0

08
33

82
.7

10
34

10
0.

40
42

10
.2

95
63

10
.0

49
88

59
.4

64
27

69
.7

20
87

73
.9

25
64

67
.7

42
16

62
.1

69
12

43
.9

09
74

.3
23

62
50

.1
59

74
10

2.
88

34
69

.4
26

22
0

56
.4

62
38

10
3.

73
04

64
.8

45
97

19
41

.0
48

75
62

.1
69

12
60

.2
07

97
22

.4
72

21
28

.0
17

85
57

.1
40

18
56

.3
02

75
65

.4
59

91
11

3.
22

54
11

0.
11

36
92

.8
92

41
81

.7
86

31
92

.1
35

77
67

.0
82

04
17

.8
88

54
75

.1
53

18
80

.1
31

14
74

.2
42

84
56

.4
62

38
0

86
.9

25
26

83
.2

40
62

20
53

.0
75

42
49

.7
69

47
72

.0
90

22
64

.4
74

8
79

.2
27

52
50

.9
60

77
94

.6
67

84
11

2.
68

1
12

6.
77

54
96

.6
28

15
57

.8
70

55
51

74
.0

60
79

67
.0

52
22

89
.8

22
05

67
.0

82
04

11
.1

80
34

40
.4

47
5

10
3.

73
04

86
.9

25
26

0
57

21
44

.2
94

47
21

.9
54

5
30

.3
64

45
66

.6
48

33
94

.0
31

91
86

.2
67

03
54

.5
61

89
70

.7
24

82
70

.4
05

97
40

.5
21

6
10

6
17

.2
62

68
21

.1
89

62
96

.2
54

87
15

62
.8

01
27

18
.0

27
76

64
.8

45
97

83
.2

40
62

57
0

Ta
bl

e
5.

3:
D

is
ta

nc
e

M
at

ri
x

(i
n

m
ile

s)

35

Chapter 5. Computational Results 5.2. Heuristic Solution

A few parameters were assigned for the metaheuristics, specifically on the SA and
VNS methods. Table 5.4 shows the parameters assigned for this implementation in both
Metaheuristics.

Parameter sections
Variable
Name

Value

Energy budget for the charg-
ing facilities

e 1000

Simulated
Annealing

EL 100
MTT 200
T0 50
α 0.95

Variable Neighbourhood
Search

kmax 100
NSV 500

Table 5.4: Parameter Description

5.2 Heuristic Solution

A graph solution for 5 vehicles with 15 customers can be seen in Figure 5.1. Each vehicle
is associated with a colour, with a key of the colour-vehicle association on the top left of the
solution. The depot is numbered 0 and every customer node is numbered between 1− 15.
The distance between the selected customers is shown above the route. Hence from the
referenced figure, it can be seen that Van 1 has taken route 0−10−11−0, Van 2 takes route
0−14−4−0, Van 3 takes route 0−15−12−8−6−0, Van 4 covers route 0−5−0, and Van 5
travels the route 0−15−12−8−6−0. This fits the ranges of the vans as they cover ranges of
106.76,117.20,215.18,101.98,221.54 for Van 1,2,3,4, and 5 respectively. The distance cost
of the whole route is 762.66 which is less than the energy budget. The priority value of the
total solution is 38.

36

Chapter 5. Computational Results 5.3. Small Instances Results

Figure 5.1: Graph solution Example

5.3 Small Instances Results

The results of the small instances can be seen below in Table 5.5. The first column (named
Instance) shows the index of the test done on smaller instances of the problem to validate the
heuristic model. The second column (named Customers) shows that the instances delivers to
customers ranging from 2 to 16. In the following column (named Vehicles) the number of
vehicles used for the delivery ranged from 2 to 5.

The fourth column is called Base Mathematical Model, which demonstrates the data
collected by the Base Mathematical Model. The fourth column has 3 sub-columns, which
will be referred to as 4.1, 4.2, and 4.3. Sub-column 4.1, named OFV has information
about the objective function value resulting from the Mathematical Model. Sub-column 4.2,
named Customers Visited, displays the customers visited in each solution produced by the
Base Mathematical Model. The computational time for the Base Mathematical Model is
also recorded in seconds, as seen in Sub-column 4.3 as CPU Time (seconds). This Base

37

Chapter 5. Computational Results 5.3. Small Instances Results

Mathematical Model has been used to benchmark the problem in similar instances and
compare it with the heuristic method.

The fifth column is data collected by the final solution produced by the Heuristic
Approach, named Heuristic Approach. This column has 4 sub-columns, which will be
referred to as 5.1, 5.2, 5.3, and 5.4. Sub-column 5.1, named OFV is the objective function
value produced by the Heuristic Approach. This is based on the customers visited by the
solution, as seen in Sub-column 5.2 named Customers Visited. The computational time is
recorded for the solutions to be produced, which can be seen in sub-column 5.3 named CPU

Time (seconds). The final 5.2 sub-column is named Heuristic Applied, showing if the solution
was developed by the heuristic or a combination of the heuristic and the metaheuristic. This
is because, for smaller and simpler instances, the use of Simulated Annealing is unnecessary
and a feasible solution is produced just by the heuristic.

Column 6, named Optimality Gap, is the difference between the Objective Function
Values between the solutions of the Base Mathematical Model and the Heuristic Approach.
The formula for calculating the Optimality Gap is shown in equation 5.1.

(OFVBaseMathematicalModel−OFVHeuristicApproach)/OFVBaseMathematicalModel (5.1)

The data represented in Table 5.5 in column 5 is an average across multiple runs of the
model for each instance. This is because there are multiple random operators chosen in
each Simulated Annealing iteration. Hence each run would produce a different answer. For
the OFVs and customers visited (sub-columns 5.1 & 5.2), each of the instances was run 10
times, calculated the average of the results from the runs and rounded out. The data for the
computation time (sub-column 5.3) for each instance was done the same but rounded out to
the nearest hundredths decimal.

Instance Customers Vehicles Base Mathematical Model Heuristics Approach
Optimality Gap

No. N V OFV Customers Visited CPU Time (seconds) OFV Customers Visited CPU Time (seconds) Heuristc Applied
1 2 2 3 2 0.61 3 2 0.31 NNBH 0.00%

3 5 2 11 5 0.65 11 5 0.38 NNBH 0.00%

4 9 4 25 9 0.82 25 9 0.41 NNBH 0.00%

5 10 4 28 10 1.17 28 10 0.39 NNBH 0.00%

6 12 4 35 12 4.51 35 12 0.38 NNBH 0.00%

7 15 4 44 15 165.88 44 15 0.37 NNBH 0.00%

8 15 5 44 15 55.91 44 15 0.38 NNBH 0.00%

9 16 4 45 16 261.00 45 16 0.40 NNBH + SA 0.00%

Table 5.5: Small Instance testing data

38

Chapter 5. Computational Results 5.3. Small Instances Results

Figure 5.2: OFVs and CPU times of Base Mathematical Model and Heuristic Approach

As can be seen in Table 5.5 and Figure 5.2, there are many observations that can be
made about the proposed model. Firstly, the proposed model can produce optimal solutions
compared to the Base Mathematical Model. The optimality gap throughout the tests is all
0%. This indicates that the solutions generated by the heuristic approach exhibit a high
degree of alignment with the desired outcomes, in relation to objective function values.
Finally, the heuristic approach can produce solutions in less than half a second, with a
mean computational time of 0.378 seconds. This shows how drastically quicker the heuristic
approach can produce solutions as compared to the Base Mathematical Mode, which has a
mean of 61.319 seconds. Combining the two observations, the heuristic approach produces
reliable and high-quality solutions very efficiently.

Figures 5.3 and 5.4 show examples of how a Base Mathematical Model and Heuristic
Approach solutions are produced. The solutions are for Testing Result 9 where 16 customers
are delivered by 4 vehicles.

39

Chapter 5. Computational Results 5.3. Small Instances Results

Figure 5.3: Small instance: Base Mathematical solution

Figure 5.4: Small instance: Heuristic Approach solution

40

Chapter 5. Computational Results 5.4. Large Instance Results

5.4 Large Instance Results

The benefits of the Simulated Annealing and its importance can be showcased by testing the
model with larger instances of customers and vehicles. The testing data is seen in Table 5.6
below. Similar to Table 5.5, the first column is called the Instance, which shows the index of
the testing instance done for the model. The second column is called Customers, which is the
number of available customers that can be visited. The following column, named Vehicles,
shows the number of vehicles in the fleet assigned with the energy budget. The value of the
energy budget assigned for the fleet is seen in column 4, named Energy Budget.

The fifth column, named NNBH Solution, establishes the data collected from the Nearest
Neighbour Based Heuristic. The fifth column has 4 sub-columns, which will be referred
to as 5.1, 5.2, 5.3, and 5.4. Sub-column 5.1, named OFV, shows the Objective Function
Value produced by the heuristic. Sub-column 5.2, called Customers Visited, shows how many
customers are visited by the number of vehicles given for that instance. Sub-column 5.3,
named CPU Time (seconds), records the computational time taken for the heuristic to produce
a final result. Column 5.4 is named Distance Cost, which displays the total distance covered
for the iteration. This is to confirm that the distance of the solutions is within the energy
budgets.

The sixth column, named Metaheuristic Solution, displays the data collected from the so-
lutions produced by Variable Neighbourhood Search and Simulated Annealing metaheuristic.
Similar to the previous column, this column also has 4 sub-columns, which will be referred
to as 6.1, 6.2, 6.3, and 6.4. The representation of each sub-column is the same as the previous
column but for the metaheuristic results. The seventh column, named Combined CPU Time

(seconds), shows the combined computational time of both the heuristic and metaheuristic
working together. The final column, called Final OFV, shows the final OFV produced.

Similar to the data collected in Small Instances, the data represented in the table is an
average across multiple runs of the model for each instance. Hence, the OFVs and Customers

Visited (sub-column 5.1 & 6.1 and sub-column 5.2 & 6.2 respectively) are averaged out and
rounded out. Meanwhile, the CPU Time and Distance Cost (sub-column 5.3 & 6.3 and sub-
column 5.4 & 6.4 respectively) are averaged out and rounded to the nearest hundredths.

Many observations could be made in this table. The first observation from Table 5.6 is
how the heuristic can quickly and consistently produce an initial solution, with a mean CPU
time of 0.375 seconds. It also demonstrates how the metaheuristic produces a better result in

41

Chapter 5. Computational Results 5.4. Large Instance Results

In
st

an
ce

C
u

st
om

er
s

V
eh

ic
le

s
E

n
er

gy
B

u
d

ge
t

N
N

B
H

S
ol

u
ti

on
M

et
ah

eu
ri

st
ic

S
ol

u
ti

on
C

om
b

in
ed

C
P

U
T

im
e

(s
ec

on
d

s)
F

in
al

O
F

V
N

o.
R

V
e

O
F

V
C

u
st

om
er

s
V

is
it

ed
C

P
U

T
im

e
(s

ec
on

ds
)

D
is

ta
n

ce
C

os
t

O
F

V
C

u
st

om
er

s
V

is
it

ed
C

P
U

T
im

e
(s

ec
on

d
s)

D
is

ta
n

ce
C

os
t

1
20

5
10

00
61

20
0.

43
80

6.
55

61
20

0.
09

87
7.

73
0.

52
61

2
30

5
10

00
73

24
0.

32
81

8.
12

73
24

0.
11

89
1.

33
0.

43
73

3
30

6
10

00
73

24
0.

41
81

8.
12

74
25

0.
08

96
8.

76
0.

49
74

4
30

6
20

00
74

24
0.

39
81

8.
12

85
28

0.
09

10
05

.1
4

0.
48

85
5

40
7

20
00

94
31

0.
32

11
32

.5
1

96
32

0.
55

11
98

.9
6

0.
87

96
6

40
8

20
00

10
0

33
0.

34
13

17
.2

1
10

3
34

0.
49

13
01

.5
0.

83
10

3
7

50
9

20
00

11
5

38
0.

35
12

09
.2

3
11

8
39

0.
6

15
63

.0
9

0.
95

11
8

8
50

10
20

00
11

5
38

0.
43

12
09

.2
3

12
1

40
0.

55
15

86
.5

2
0.

98
12

1
9

60
11

20
00

12
7

42
0.

39
13

21
.1

8
13

6
46

0.
52

17
61

.9
0.

91
13

6
10

60
12

20
00

12
7

42
0.

4
13

21
.1

8
13

9
46

0.
53

19
08

.6
2

0.
93

13
9

11
60

15
30

00
13

9
46

0.
35

16
94

.2
9

14
9

50
0.

57
27

13
.7

3
0.

92
14

9

Ta
bl

e
5.

6:
L

ar
ge

in
st

an
ce

s
te

st
in

g
da

ta

42

Chapter 5. Computational Results 5.4. Large Instance Results

rapid time, with an average CPU time of 0.38 seconds.
The second observation from the data set is that the metaheuristic can visit a higher

prioritised and higher number of customers than the heuristic solution. This increases the
objective function values of each instance, with an average increase of 5% in OFVs. This
is with the help of the Swap, Insert, 1-opt and 2-opt operators in use with the VNS and SA
metaheuristics.

Another key observation that can be made from the instances solved is the importance of
energy budgeting in the problem. Focusing on Instance 2 & 3, the increase of vehicles from
5 to 6 does not affect the number of customers visited drastically. This is because the energy
budget of 1000 restricts the possibility of visiting more customers, as the total distance cost
for that instance is 968.76. However, in Testing Result 4, increasing the energy budget from
1000 to 2000 increases the OFV from 74 to 85.

Another observation that is made by the data set collected is the scalability of this model.
This is shown in Testing Result 11, as the computational time for visiting 60 customers by 15
vehicles is less than a second. This establishes the applicability of this model in real-world
scenarios.

Figures 5.5 and 5.6 show the visualisations of the data collected. Figure 5.5 compares the
OFVs between the heuristic and metaheuristic solutions. Meanwhile, Figure 5.6 shows the
influence of the energy budget on the final OFVs for each instance.

Figure 5.5: NNBH OFVs vs Metaheuristic OFVs

43

Chapter 5. Computational Results 5.4. Large Instance Results

Figure 5.6: Influence of Energy Budget on Final OFVs

Figure 5.5 points out an interesting observation between the heuristic and metaheuristic
OFVs. As the number of customers increases, the metaheuristic progressively improves
in OFVs compared to the heuristic OFVs. This is because as the number of customers
increases, the NNBH heuristic has more unvisited customers. This gives the metaheuristic
more customers to swap with customers or insert into routes randomly, which has a better
chance of yielding a higher objective function value. Figure 5.5 also shows the consistency
of the solutions produced by the Nearest Neighbour Based Heuristic.

Figure 5.6 shows the influence that the energy budget has on the final OFV produced
by the model. It is to demonstrate how even in the best-case scenarios, the energy budget
constraints have an impact on the threshold of the OFV produced. As seen in Instances 2-4,
the increase in the energy budget shows a gradual increase in OFV as mentioned earlier. This
can also be seen between Instances 10 & 11. In Testing Result 11, the increase in the energy
budget and the number of vehicles result in an increase in the OFV by 7.12%.

An example of a solution produced from the largest instance is seen in Figures 5.7 and 5.8.
These examples are from a solution for 60 customers and 15 vehicles, which is the solution
from Testing Result 11. Figure 5.7 shows the solution produced by the Nearest Neighbour
Based Heuristic and Figure 5.8 shows the result of the Simulated Annealing metaheuristic.
Figure 5.7 shows how each route is based on the nearest neighbour that the respective vehicle
can travel to. Figure 5.8 shows how the operators move individual, sets of customers, or
insert unvisited customers, from the routes defined previously by NNBH as they are shuffled

44

Chapter 5. Computational Results 5.4. Large Instance Results

around for a better solution.

Figure 5.7: Large instance solution: NNBH

Figure 5.8: Large instance solution: SA & VNS

45

Chapter 6

Conclusions

6.1 Concluding Thoughts

This report demonstrates a unique variant of the traditional VRP model compiled as a hybrid
of the Travelling Repairman Problem (TRP) and Electric Vehicle Routing Problem while
incorporating an energy budget constraint on charging a fleet of vehicles. The objective
function is to maximise the priority of the customers while being constrained by an energy
budget for charging the fleet. The report proposes an algorithmic framework that uses a
Nearest Neighbour Based Heuristic with a metaheuristic called Simulated Annealing and
Variable Neighbourhood Search. A statistical test is conducted to compare the performances
of the solution approach and the model verification. The testing phase initially uses the base
mathematical model as a benchmark for smaller instances of solutions. For larger instances,
computation times and objective function values are considered to demonstrate progress.

The computational results of both instances show the success of the proposed algorithmic
framework. In smaller instances, the model was able to produce optimal solutions with
an optimality gap of 0.00%. Furthermore, it can produce solutions within less than half
a second, with a mean computational time of 0.378 seconds. For larger instances, the
metaheuristic solutions produced have an increase of 5% in the OFVs compared to the initial
solution produced by the heuristic. It also demonstrates the scalability prospect for large
instances. Another speciality of this model is the metaheuristic progressively improves in
OFVs compared to the heuristic as larger instances get larger. This is useful for real-world
applications of this model.

46

Chapter 6. Conclusions 6.2. Future Work

The effectiveness of the model demonstrated by this paper will enable organisations that
currently deploy, or intend to deploy, electric vehicle fleets in the commercial or logistics
sector to incorporate this model for their successful use cases. The constraint considered by
this, of the energy budget, is pressing a real-world case scenario as the demand for fleets of
electric vans and trucks increases. By incorporating this model, fleet operators that face
an increasing need for efficiency and priority maximisation of customers will be able to
enhance their revenues by planning and scheduling efficient delivery of goods to their priority
customers.

6.2 Future Work

The potential success of this model is promising based on the above data. However, there is
always the need to improve the heuristic and metaheuristic approaches.

Many alternative heuristics can be implemented into this specific problem other than
NNBH. The most famous heuristic for Vehicle Routing Problem is the Clarke and Wright
Savings Algorithm (Rand, 2009). This heuristic is based on the idea of consolidating the
routes of multiple vehicles to minimise the total cost. It starts by calculating the savings
obtained by consolidating each pair of customers and then building routes by selecting pairs
with the highest savings until all customers are assigned. In this implementation, the savings
can be considered as the increase in the priority of customers in each route.

For the options of using metaheuristics, many can be added to or replaced with the current
metaheuristic approach for this type of problem. One that can be added to this model is
Tabu Search (Cordeau and Laporte, 2005). Tabu Search is a local search-based metaheuristic
that uses a memory-based mechanism to avoid revisiting previously explored solutions. It
iteratively explores the neighbourhood of the current solution and selects the best one that is
not in the tabu list. Hence the solutions that are rejected by the Simulated Annealing approach
can be added to the tabu list. This would result in finding an optimal solution at a quicker
rate.

Another metaheuristic that can be added to the existing metaheuristic or be replaced is
a Large Neighbourhood Search (Dumez et al., 2021). Large Neighbourhood Search is a
heuristic approach that iteratively destroys and repairs a portion of the solution, called the
neighbourhood, to find a better solution. Large Neighbourhood Search aims to focus on a

47

Chapter 6. Conclusions 6.2. Future Work

small subset of the decision variables and apply a powerful optimisation algorithm, such as
integer programming or local search, to find a better solution.

One more option that would also work as an additional or replacement metaheuristic is
the Ant Colony Optimisation (Bell and McMullen, 2004). Ant Colony Optimisation is a
metaheuristic optimisation technique inspired by the foraging behaviour of ants. Ant Colony
Optimisation uses artificial ants to search for good solutions to optimisation problems, and
the ants deposit pheromone trails as they move through the problem space. The pheromone
levels on the edges of the solutions increase over time, guiding the search process towards
these edges and increasing the probability of other ants choosing these edges in the future.

From a testing perspective, the use of an exact method approach would help benchmark
the approach further. There are many implementations of exact method models for problems
similar to this problem. Column Generation (Choi and Tcha, 2007) is a great example
of an exact method approach. Column Generation is an optimisation technique used to
solve large-scale optimisation problems. It is particularly useful for problems that involve
a large number of variables or constraints, making them difficult to solve using traditional
optimisation methods. This can be used to find an optimal solution for larger instances of this
problem to understand the lower bound of the model.

A different approach to benchmark the model for larger instances is using Branch, Price
and Cut algorithm (Archetti et al., 2015). The algorithm works by iteratively dividing the
problem into smaller subproblems and solving them optimally using a pricing subproblem.
The pricing subproblem generates new routes and assigns priority customers to them. The
algorithm uses a cutting plane approach to eliminate sub-optimal solutions and strengthens
the linear programming relaxation of the problem. The cuts are derived from violated
constraints that are found during the solution process. This algorithm is particularly well-
suited for problems with a large number of priority customers, as it can efficiently generate
and evaluate a large number of routes. This approach can be used to find the lower bound of
the problem.

In terms of how this project is utilised by Miralis Data, the project is aimed at being
integrated with their product called Fuuse Fleets. The project helps the end-to-end fleet
transformation solution have a succinct and comprehensive dashboard of what vehicles can
be transformed in total. This project would help forecast the number of Electric Vehicles
in their fleets based on daily customer requirements while transitioning gradually without

48

Chapter 6. Conclusions 6.2. Future Work

impacting profitability from their daily revenues and deliveries. The project hopes to schedule
the adequate number of transitioned vehicles required to service customers on any specific
day based on customer needs.

49

Chapter 7

Appendix

EV Electric Vehicle
HGV Heavy Goods Vehicle
SVRP Static Vehicle Routing Problem
VRP Vehicle Routing Problem

NNBH Nearest Neighbour Based Search
VNS Variable Neighbourhood Search
SA Simulated Annealing

CGE Centre of Global Eco-Innovation

Table 1: Definitions of acronyms used in the Introduction

CVRP Capacitated Vehicle Routing Problem
EVRP Electric Vehicle Routing Problem

MDVRP Multi-Depot Vehicle Routing Problem
NNBH Nearest Neighbour Based Search

SA Simulated Annealing
TRP Travelling Repairman Problem
TSP Travelling Salesman Problem

VRPTW Vehicle Routing Problem with Time Windows
VRPB Vehicle Routing Problem with Backhauls
VNS Variable Neighbourhood Search

Table 2: Definitions of acronyms used in the Literature Review

50

References

Afifi, S., Dang, D., and Moukrim, A. (2013), “A simulated annealing algorithm for the vehicle
routing problem with time windows and synchronization constraints”, International

Conference on Learning and Intelligent Optimization, Springer, pp. 259–265, doi: 10.
1007/978-3-642-44973-4_27.

Afrati, F., Cosmadakis, S., Papadimitriou, C.H., Papageorgiou, G., and Papakostantinou, N.
(1986), “The complexity of the travelling repairman problem”, RAIRO - Theoretical

Informatics and Applications 20 (1), pp. 79–87, doi: 10.1051/ita/1986200100791.

Anonymous (Apr. 2023), Volta Trucks - Volta Zero Ambient Created specifically for urban

distribution, url: https://voltatrucks.com/volta-zero-ambient.

Archetti, C., Bianchessi, N., and Speranza, M.G. (2015), “A branch-price-and-cut algorithm
for the commodity constrained split delivery vehicle routing problem”, Computers &

Operations Research 64, pp. 1–10.

Bell, J.E. and McMullen, P.R. (2004), “Ant colony optimization techniques for the vehicle
routing problem”, Advanced engineering informatics 18 (1), pp. 41–48.

Bräysy, O. (2003), “A reactive variable neighborhood search for the vehicle-routing problem
with time windows”, INFORMS Journal on Computing 15 (4), pp. 347–368, doi: 10.
1287/ijoc.15.4.347.24896.

Choi, E. and Tcha, D.-W. (2007), “A column generation approach to the heterogeneous fleet
vehicle routing problem”, Computers & Operations Research 34 (7), pp. 2080–2095.

Clegg, B. (2021), “Miralis Data”, Impact 2021 (1), pp. 35–39, doi: 10.1080/2058802X.
2021.1886768, url: https://doi.org/10.1080/2058802X.2021.1886768.

51

https://doi.org/10.1007/978-3-642-44973-4_27
https://doi.org/10.1007/978-3-642-44973-4_27
https://doi.org/10.1051/ita/1986200100791
https://voltatrucks.com/volta-zero-ambient
https://doi.org/10.1287/ijoc.15.4.347.24896
https://doi.org/10.1287/ijoc.15.4.347.24896
https://doi.org/10.1080/2058802X.2021.1886768
https://doi.org/10.1080/2058802X.2021.1886768
https://doi.org/10.1080/2058802X.2021.1886768

References References

Cordeau, J.-F. and Laporte, G. (2005), Tabu search heuristics for the vehicle routing problem,
Springer.

Crevier, B., Cordeau, J.-F., and Laporte, G. (2007), “The multi-depot vehicle routing problem
with inter-depot routes”, European Journal of Operational Research 176 (2), pp. 756–
773, issn: 0377-2217, doi: https://doi.org/10.1016/j.ejor.2005.08.015, url:
https://www.sciencedirect.com/science/article/pii/S0377221705006983.

Crispim, J. and Brandão, J. (2005), “Metaheuristics applied to mixed and simultaneous
extensions of vehicle routing problems with backhauls”, Journal of the Operational

Research Society 56 (11), pp. 1296–1302, doi: 10.1057/palgrave.jors.2601935.

Dadds, K. (July 2021), “Domestic Road Freight Statistics, United Kingdom 2020”, Road

Freight Statistics: 2020, London, United Kingdom: Department for Transport of UK
Government.

Dantzig, G.B. and Ramser, J.H. (1959), “The Truck Dispatching Problem”, Management

Science 6 (1), pp. 80–91, doi: 10.1287/mnsc.6.1.80, url: https://doi.org/10.
1287/mnsc.6.1.80.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992), “A New Optimization Algorithm for
the Vehicle Routing Problem with Time Windows”, Operations Research 40 (2), pp. 342–
354, doi: 10.1287/opre.40.2.342, url: https://doi.org/10.1287/opre.40.2.
342.

Dumez, D., Lehuédé, F., and Péton, O. (2021), “A large neighborhood search approach to
the vehicle routing problem with delivery options”, Transportation Research Part B:

Methodological 144, pp. 103–132.

Earl, T., Mathieu, L., Cornelis, S., Kenny, S., Ambel, C.C., and Nix, J. (Aug. 2018), “Analysis
of long haul battery electric trucks in EU”, url: https://www.transportenvironment.
org / wp - content / uploads / 2021 / 07 / 20180725 _ T & E _ Battery _ Electric _

Trucks_EU_FINAL.pdf.

Fleszar, K., Osman, I., and Hindi, K. (2009), “A variable neighbourhood search algorithm for
the open vehicle routing problem”, European Journal of Operational Research 195 (3),

52

https://doi.org/https://doi.org/10.1016/j.ejor.2005.08.015
https://www.sciencedirect.com/science/article/pii/S0377221705006983
https://doi.org/10.1057/palgrave.jors.2601935
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/opre.40.2.342
https://doi.org/10.1287/opre.40.2.342
https://doi.org/10.1287/opre.40.2.342
https://www.transportenvironment.org/wp-content/uploads/2021/07/20180725_T&E_Battery_Electric_Trucks_EU_FINAL.pdf
https://www.transportenvironment.org/wp-content/uploads/2021/07/20180725_T&E_Battery_Electric_Trucks_EU_FINAL.pdf
https://www.transportenvironment.org/wp-content/uploads/2021/07/20180725_T&E_Battery_Electric_Trucks_EU_FINAL.pdf

References References

pp. 803–809, issn: 0377-2217, doi: 10.1016/j.ejor.2007.06.064, url: https:
//www.sciencedirect.com/science/article/pii/S0377221707011046.

Fukasawa, R., Lysgaard, J., Poggi de Aragão, M., Reis, M., Uchoa, E., and Werneck,
R.F. (2004), “Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing
Problem”, Integer Programming and Combinatorial Optimization, ed. by D. Bienstock
and G. Nemhauser, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–15, isbn: 978-
3-540-25960-2.

Ghasemalizadeh, O., Khaleghian, M., and Taheri, S. (Sept. 2016), “A Review of Optimization
Techniques in Artificial Networks”, International Journal of Advanced Research 4,
pp. 1668–1686, doi: 10.21474/IJAR01/1627.

Halim, A.H. and Ismail, I. (2017), “Combinatorial Optimization: Comparison of Heuristic
Algorithms in Travelling Salesman Problem”, Archives of Computational Methods in

Engineering 26 (2), pp. 367–380, doi: 10.1007/s11831-017-9247-y, url: https:
//doi.org/10.1007%5C%2Fs11831-017-9247-y.

Hansen, P., Mladenović, N., and Moreno Pérez, J.A. (2008), “Variable Neighbourhood
Search: Methods and Applications”, 4OR 6 (4), pp. 319–360, doi: 10.1007/s10288-
008-0089-1.

Keskin, M. and Çatay, B. (2016), “Partial recharge strategies for the electric vehicle routing
problem with time windows”, Transportation Research Part C: Emerging Technologies

65, pp. 111–127, issn: 0968-090X, doi: https : / / doi . org / 10 . 1016 / j . trc .
2016.01.013, url: https://www.sciencedirect.com/science/article/pii/
S0968090X16000322.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983), “Optimization by Simulated Anneal-
ing”, Science 220 (4598), pp. 671–680, doi: 10.1126/science.220.4598.671, url:
https://www.science.org/doi/abs/10.1126/science.220.4598.671.

Kytöjoki, J., Nuortio, T., Bräysy, O., and Gendreau, M. (2007), “An efficient variable
neighborhood search heuristic for very large scale vehicle routing problems”, Computers

& Operations Research 34 (9), pp. 2743–2757, issn: 0305-0548, doi: https://doi.

53

https://doi.org/10.1016/j.ejor.2007.06.064
https://www.sciencedirect.com/science/article/pii/S0377221707011046
https://www.sciencedirect.com/science/article/pii/S0377221707011046
https://doi.org/10.21474/IJAR01/1627
https://doi.org/10.1007/s11831-017-9247-y
https://doi.org/10.1007%5C%2Fs11831-017-9247-y
https://doi.org/10.1007%5C%2Fs11831-017-9247-y
https://doi.org/10.1007/s10288-008-0089-1
https://doi.org/10.1007/s10288-008-0089-1
https://doi.org/https://doi.org/10.1016/j.trc.2016.01.013
https://doi.org/https://doi.org/10.1016/j.trc.2016.01.013
https://www.sciencedirect.com/science/article/pii/S0968090X16000322
https://www.sciencedirect.com/science/article/pii/S0968090X16000322
https://doi.org/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://doi.org/https://doi.org/10.1016/j.cor.2005.10.010
https://doi.org/https://doi.org/10.1016/j.cor.2005.10.010

References References

org/10.1016/j.cor.2005.10.010, url: https://www.sciencedirect.com/
science/article/pii/S0305054805003394.

Laguna, M. and Martı́, R. (2013), “Heuristics”, Encyclopedia of Operations Research and

Management Science, ed. by S. Gass and M. Fu, Boston, MA: Springer US, pp. 695–703,
isbn: 978-1-4419-1153-7, doi: 10.1007/978-1-4419-1153-7_1184.

Lenstra, J.K. and Rinnooy Kan, A.H.G. (1975), “Some Simple Applications of the Travelling
Salesman Problem”, Journal of the Operational Research Society 26 (4), pp. 717–733,
doi: 10.1057/jors.1975.151, url: https://doi.org/10.1057/jors.1975.151.

Lin, J., Zhou, W., and Wolfson, O. (2016), “Electric Vehicle Routing Problem”, Transporta-

tion Research Procedia 12, Tenth International Conference on City Logistics 17-19 June
2015, Tenerife, Spain, pp. 508–521, issn: 2352-1465, doi: https://doi.org/10.
1016/j.trpro.2016.02.007, url: https://www.sciencedirect.com/science/
article/pii/S2352146516000089.

Mohammed, M., Ahmad, M., and Mostafa, S. (2012), “Using Genetic Algorithm in im-
plementing Capacitated Vehicle Routing Problem”, 2012 International Conference on

Computer & Information Science (ICCIS), vol. 1, pp. 257–262, doi: 10.1109/ICCISci.
2012.6297250.

Mohammed, M.A., Ghani, M.K.A., Hamed, R.I., Mostafa, S.A., Ibrahim, D.A., Jameel, H.K.,
and Alallah, A.H. (2017), “Solving vehicle routing problem by using improved K-nearest
neighbor algorithm for best solution”, Journal of Computational Science 21, pp. 232–240,
issn: 1877-7503, doi: https://doi.org/10.1016/j.jocs.2017.04.012, url:
https://www.sciencedirect.com/science/article/pii/S187775031730426X.

Muritiba, A.E.F., Bonates, T.O., Da Silva, S.O., and Iori, M. (2021), “Branch-and-Cut and
Iterated Local Search for the Weighted k-Traveling Repairman Problem: An Application
to the Maintenance of Speed Cameras”, Transportation Science 55 (1), pp. 139–159, doi:
10.1287/trsc.2020.1005, url: https://doi.org/10.1287/trsc.2020.1005.

Polacek, M., Hartl, R., Doerner, K., and Reimann, M. (2004), “A variable neighborhood
search for the multi depot vehicle routing problem with time windows”, Journal of

heuristics 10 (6), pp. 613–627, doi: 10.1007/s10732-005-5432-5.

54

https://doi.org/https://doi.org/10.1016/j.cor.2005.10.010
https://doi.org/https://doi.org/10.1016/j.cor.2005.10.010
https://doi.org/https://doi.org/10.1016/j.cor.2005.10.010
https://www.sciencedirect.com/science/article/pii/S0305054805003394
https://www.sciencedirect.com/science/article/pii/S0305054805003394
https://doi.org/10.1007/978-1-4419-1153-7_1184
https://doi.org/10.1057/jors.1975.151
https://doi.org/10.1057/jors.1975.151
https://doi.org/https://doi.org/10.1016/j.trpro.2016.02.007
https://doi.org/https://doi.org/10.1016/j.trpro.2016.02.007
https://www.sciencedirect.com/science/article/pii/S2352146516000089
https://www.sciencedirect.com/science/article/pii/S2352146516000089
https://doi.org/10.1109/ICCISci.2012.6297250
https://doi.org/10.1109/ICCISci.2012.6297250
https://doi.org/https://doi.org/10.1016/j.jocs.2017.04.012
https://www.sciencedirect.com/science/article/pii/S187775031730426X
https://doi.org/10.1287/trsc.2020.1005
https://doi.org/10.1287/trsc.2020.1005
https://doi.org/10.1007/s10732-005-5432-5

References References

Rand, G.K. (2009), “The Life and Times of the savings method for vehicle routing problems”,
ORiON 25 (2), pp. 125–145, doi: 10.5784/25-2-78.

Skidmore, C. (Oct. 2021), “Net Zero Strategy: Build Back Greener”, Net Zero Strategy: Build

Back Greener, London, United Kingdom: Department for Business, Energy & Industrial
Strategy of UK Government, isbn: 978-1-5286-2938-6.

Tavakkoli-Moghaddam, R., Safaei, N., and Gholipour, Y. (2006), “A hybrid simulated
annealing for capacitated vehicle routing problems with the independent route length”,
Applied Mathematics and Computation 176 (2), pp. 445–454, issn: 0096-3003, doi:
https : / / doi . org / 10 . 1016 / j . amc . 2005 . 09 . 040, url: https : / / www .
sciencedirect.com/science/article/pii/S0096300305008210.

Toth, P. and Vigo, D. (2002), “VRP with Backhauls”, The Vehicle Routing Problem, pp. 195–
224, doi: 10.1137/1.9780898718515.ch8, url: https://epubs.siam.org/doi/
abs/10.1137/1.9780898718515.ch8.

Waite, C. (Feb. 2021), “2019 UK Greenhouse Gas Emissions”, Final UK greenhouse gas

emissions national statistics: 1990 to 2019, London, United Kingdom: Department for
Business, Energy & Industrial Strategy of UK Government, url: https://assets.
publishing . service . gov . uk / government / uploads / system / uploads /

attachment_data/file/957887/2019_Final_greenhouse_gas_emissions_

statistical_release.pdf.

Xie, S. (Dec. 2019), “Extrema: Maxima & Minima - Calculus Basics - Medium”, url:
https : / / medium . com / self - study - calculus / extrema - maxima - minima -

4e2e6956a44a.

55

https://doi.org/10.5784/25-2-78
https://doi.org/https://doi.org/10.1016/j.amc.2005.09.040
https://www.sciencedirect.com/science/article/pii/S0096300305008210
https://www.sciencedirect.com/science/article/pii/S0096300305008210
https://doi.org/10.1137/1.9780898718515.ch8
https://epubs.siam.org/doi/abs/10.1137/1.9780898718515.ch8
https://epubs.siam.org/doi/abs/10.1137/1.9780898718515.ch8
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/957887/2019_Final_greenhouse_gas_emissions_statistical_release.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/957887/2019_Final_greenhouse_gas_emissions_statistical_release.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/957887/2019_Final_greenhouse_gas_emissions_statistical_release.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/957887/2019_Final_greenhouse_gas_emissions_statistical_release.pdf
https://medium.com/self-study-calculus/extrema-maxima-minima-4e2e6956a44a
https://medium.com/self-study-calculus/extrema-maxima-minima-4e2e6956a44a

	Introduction
	Literature Review
	Base Mathematical Model
	Research Problem Description
	Graph Notation
	Problem Parameters
	Data

	Mathematical Formulation of Model

	Heuristic Approach
	Nearest Neighbour Based Heuristic
	Simulated Annealing
	Parameters Description
	Initial Solution Generation
	Simulated Annealing Algorithm

	Variable Neighbourhood Search
	Variable Neighbourhood Search Algorithm
	1-opt Algorithm
	2-opt Algorithm
	Swap operator
	Insert operator
	Heuristic Approach Flowchart

	Computational Results
	Model Description
	Heuristic Solution
	Small Instances Results
	Large Instance Results

	Conclusions
	Concluding Thoughts
	Future Work

	Appendix
	References

