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Abstract 

In songbirds, singing with precision (vocal consistency) has been proposed to reflect 

whole-organism performance. Vocal consistency is measured using Spectrogram Cross-

Correlation (SPCC) to assess the acoustic similarity between subsequent renditions of 

the same note. To quantify how SPCC is sensitive to the acoustic discrepancies found in 

birdsong, we created a set of 40,000 synthetic sounds, that were designed based on the 

songs of 345 species. This set included 10,000 reference sounds and 30,000 inexact 

variants with quantified differences in frequency, bandwidth or duration with respect 

to the reference sounds. We found that SPCC is sensitive to acoustic discrepancies 

within the natural range of vocal consistency, supporting the use of this method as a 

tool to assess vocal consistency in songbirds. Importantly, the sensitivity of SPCC was 

significantly affected by the bandwidth of sounds. The predictions derived from the 

analysis of synthetic sounds were then validated using 954 song recordings from 345 

species (20 families). Based on psychoacoustic studies from birds and humans, we 

propose that the sensitivity of SPCC to acoustic discrepancies mirrors a perceptual bias 

in sound discrimination. Nevertheless, we suggest the tool be used with care, since 

sound bandwidth varies considerably between singing styles and therefore SPCC scores 

may not be comparable.  
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I. INTRODUCTION 

Birdsong is arguably one of the most complex acoustic signals in animal communication. 

Songbirds are known for producing highly diverse songs of complex motifs, but singing  

also involves the execution of complex motor patterns through the coordination of 

various muscle systems (Suthers, 2004). As in other animal displays, motor performance 

of song conveys important information about a bird’s quality that is relevant during 

social interactions (Byers et al., 2010; Sakata and Vehrencamp, 2012; Botero and de 

Kort, 2013). One important aspect of motor performance is precision, the ability to 

produce the same act with minimal variation (Lane and Briffa, 2021). In birdsong, 

precision can be measured as vocal consistency, which refers to the ability to produce 

the same note without variation (de Kort et al., 2009; Sakata and Vehrencamp, 2012).  

A note is a short acoustic structure with a stereotypic shape within an individual’s 

repertoire, generally defined as a continuous trace in the spectrogram (Knudsen and 

Gentner, 2010). When a bird produces subsequent renditions of the same note, it is 

executing the same motor pattern multiple times (Allan and Suthers, 1994; Suthers et 

al., 1996). Hence, small discrepancies in the acoustic structure among renditions of the 

same note within a song must be due to variation in neuro-motor control and muscle 

activation patterns during the execution. Most movements performed during singing 

occur inside the body, hidden from view, but the song output is the manifestation of 

these motor patterns. By measuring the acoustic similarity between two renditions of 

the same note type, we can assess the precision with which the same motor pattern has 

been executed; referred to as vocal consistency (Cardoso, 2017). Other types of 

variation in vocal output, such as learning accuracy or syntactical arrangement, i.e. song-

type consistency (Schmidt et al., 2013), are not included here as vocal consistency. It has 

been shown that vocal consistency is a signal of fitness related to individual quality or 

reproductive success (Sakata and Vehrencamp, 2012; Botero and de Kort, 2013; Sierro 

et al., 2023) perhaps associated with the neuro-motor skills of the individual, but not in 

others (Kubli and MacDougall-Shackleton, 2014). Furthermore, vocal consistency varies 

in relation to the breeding season, similar to seasonal changes in hormone levels and 

brain structures, and with age (Smith et al., 1997; Ballentine et al., 2004; Botero et al., 

2009; de Kort et al., 2009; Cramer, 2013; Vehrencamp et al., 2013; Sierro et al., 2022) 

which further supports the importance of vocal consistency in communication of birds.  
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Playback studies have shown that songbirds react differently to high and low consistency 

songs (de Kort et al., 2009; Rivera-Gutierrez et al., 2011). In fact, songbirds are highly 

sensitive to minute variations in the acoustic structure of sounds (Margoliash, 1983; 

Theunissen and Doupe, 1998; Lawson et al., 2018; Fishbein et al., 2019). Birds can 

identify frequency discrepancies between sounds as small as 1% and they are most 

sensitive to sounds within the range of 2-5 kHz, with decreasing sensitivity towards 

lower and higher frequencies, resembling in general terms the audiogram curve of 

humans (Dooling et al., 2000; Knudsen and Gentner, 2010). Field studies show that 

spectral characteristics of song seem crucial in species recognition (Falls, 1963; 

Bremond, 1976; Fletcher and Smith, 1978; Nelson, 1989). In the temporal dimension, 

songbirds are able to discriminate differences in duration when sounds are at least 14-

23% different in duration, with shorter sounds being generally more difficult to 

discriminate (Maier and Klump, 1990). These results are similar to those found in 

humans (Maier and Klump, 1990), although birds seem to be more sensitive to temporal 

discrepancies in complex sounds (Dooling et al., 2002).  

Since birds are highly sensitive to minute acoustic discrepancies, the method to measure 

vocal consistency must be equally sensitive. A commonly used method is the 

Spectrogram Cross-Correlation (SPCC) algorithm that measures the acoustic similarity 

between two sounds represented by two spectrograms (Clark et al., 1987). A 

spectrogram is essentially a double matrix with frequency on the Y-axis, time on the X-

axis and the sound amplitude in each time-frequency bin. Two spectrogram matrices 

can be overlaid to estimate a correlation coefficient, as a measure of similarity between 

the two sounds, but there are many options for how these two spectrograms are 

aligned, a common problem when comparing time series. In the SPCC, this problem is 

solved by the second step in the method, the cross-correlation algorithm, which 

computes multiple correlations of both spectrograms at different temporal alignments. 

By definition, such an optimization process will result in a lower sensitivity of the 

method to detect temporal discrepancies. The peak correlation coefficient from all 

correlations computed is selected as the acoustic similarity score between the two 

sounds (Clark et al., 1987). The cross-correlation algorithm is essentially an optimizer (in 

the temporal dimension) that provides the similarity score between two sounds, 

rendering an acoustic similarity score from 0 (no similarity) to 1 (identical).  
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The SPCC has been shown to be a suitable tool to measure vocal consistency (Khanna et 

al., 1997), reflecting biologically meaningful variation in birdsong such as individual 

differences or age variation (de Kort et al., 2009; Rivera-Gutierrez et al., 2012; Cramer, 

2013). However, it is unclear how sensitive the method is to acoustic discrepancies 

found within the range of vocal consistency in birds. There are also reservations as to 

whether it provides an objective, universal tool to measure vocal consistency regardless 

of the singing style or song attributes (Cardoso, 2017). This a common problem in the 

study of vocal performance, since different singing styles might impose different 

physiological challenges and therefore the assessment of vocal performance is difficult 

to generalize (Cardoso, 2017). The bounded, standardized and unit-less nature of the 

SPCC similarity score has been an argument for the universality of the index, but it is still 

possible that the temporal or spectral properties of the sounds influence the SPCC 

response to acoustic discrepancies.  

Here, we investigate the response of SPCC to acoustic discrepancies in a controlled set 

of synthetic sounds that can be defined and manipulated. These synthetic sounds 

emulate whistle-like vocalizations of songbirds when upper harmonics are filtered out 

by the vocal tract (Nowicki, 1987; Nowicki et al., 1989; McGregor and Dabelsteen, 1996; 

Fletcher and Tarnopolsky, 1999). We used this set of synthetic sounds to test: 1) if the 

SPCC method is sensitive to acoustic discrepancies within the range of natural variation 

found in birdsong and 2) whether the SPCC response is influenced by the spectral or 

temporal properties of sounds. Because the cross-correlation algorithm of SPCC acts as 

an optimizer in the temporal dimension, we predict that the SPCC sensitivity to temporal 

discrepancies will be lower than to spectral discrepancies. We then tested the findings 

and predictions derived from the analysis of synthetic sounds in a data base of natural 

song recordings from 345 different species of songbirds (20 different families) from 

around the world. Finally, we compared the quantitative properties of SPCC with 

published data on the perception of acoustic discrepancies by birds and evaluate the 

validity of this method to provide a biologically meaningful measure of vocal 

consistency. 

II. METHODS 

 A. Natural variation in birdsong 
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To create the synthetic sounds that simulated bird notes, we used data derived from the 

analysis of 954 different recordings from 345 species that belong to 20 different families 

(Acrocephalidae, Cettiidae, Cinclidae, Emberizidae, Estrildidae, Fringillidae, Icteridae, 

Mimidae, Motacillidae, Muscicapidae, Paridae, Passerellidae, Passeridae, Petroicidae, 

Phylloscopidae, Remizidae, Sittidae, Troglodytidae, Turdidae and Vireonidae). For all 20 

families, we reviewed the song of all species (1,815 species in total) by listening to at 

least two recordings from the Xeno-Canto repository (www.xeno-canto.org). Then, we 

selected all those species that produced trills, defined as the consecutive repetition of 

the same note type at least five times. A note was defined as a continuous trace in the 

spectrogram, and the sample includes a large diversity of note shapes (Figure 1). From 

each species, we selected a maximum of five different individuals (i.e. five different 

recordings), with high signal-to-noise ratio and selected a maximum of five different 

trills.  

In each trill, we measured the duration of individual notes manually and tracked the 

fundamental frequency (window size: 512 samples; 90% overlap, amplitude threshold; 

15%). The fundamental frequency (F0) is a series of values measuring the peak 

frequency of a note at each time point (window) (Figure 2B). The F0 range was defined 

as the distance in kHz between the highest and the lowest values of the F0, hereafter 

referred to as bandwidth (Figure 2B). The central frequency was defined as the 

equidistant point in the F0 range, hereafter referred to only as frequency (Figure 2B). To 

measure the within-trill variation, we calculated the percentage difference between 

each note and the mean duration, mean bandwidth and mean frequency of all notes in 

the trill. Estimating percentages with zero in the denominator can be problematic, but 

we did not encounter any case where the mean bandwidth of all notes within a trill was 

zero (see the next section). 
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FIG 1 – Spectrograms showing different types of bird sounds included in our multi-

species analysis. From top to bottom, Acrocephalus paludicola (A), Setophaga pinus (B), 

Acrocephalus atyphus (C), Aimophila notosticta (D), Anthus spinoletta (E), Locustella 

montis (F). 

 

 B. Study design and sound synthesis 

To investigate the response of the SPCC score to acoustic discrepancies in frequency, 

bandwidth and duration, we created a set of 10,000 reference sounds that were tonal 

sounds with a gradient of possible frequency modulations (including pure tones), and 

2
0

6

1

2

8

2

8

0

6

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

10.5

0.40.2

0.60.40.2

0.20.1

4

2
8

4

0.40.2

A)

B)

C)

D)

E)

F)



 8 

no harmonics. The frequency modulation followed a shape based on a sine function (see 

Figure S1). These synthetic sounds had a central frequency of 4.1 kHz, matching the 

mean frequency measured in natural birdsong, and a bandwidth ranging from 0 kHz 

bandwidth (pure tone) to 1.64 kHz bandwidth, matching the mean bandwidth measured 

in birdsong. Note length ranged between 28 and 172 ms, matching the natural range in 

note length measured in birdsong as mean ± one standard deviation (SD). For each 

reference sound we synthesized three inexact copies, one for each treatment group, 

hereafter frequency, bandwidth and duration treatments (Figure 2). Each variant 

differed from the reference sound in just one parameter. For the frequency treatment, 

we created inexact variants that had the same spectrographic shape, bandwidth and 

duration but with a higher or lower frequency (Figure 2A). For the bandwidth treatment, 

we created inexact copies that differed in bandwidth from the reference sound, by 

stretching or shrinking the reference sound in the frequency spectrum while keeping 

the duration and frequency unchanged (Figure 2B). Finally, in the duration treatment, 

we stretched or contracted the reference sound in the temporal dimension to create an 

inexact variant that differed only in duration, but with the same bandwidth and 

frequency (Figure 2C). The full synthesis process as well as the following acoustic 

analyses were conducted in R software (Sueur et al., 2006; Ligges, 2013; R Core Team, 

2022). 

The range of the variation introduced between a reference and a variant sound was 

derived from the naturally occurring variation between notes of the same trill measured 

in our birdsong database. In real birdsong, we measured the absolute difference in 

frequency, bandwidth and duration between notes of the same trill, relative to the mean 

frequency, bandwidth and duration of all notes within that trill. The absolute difference 

was transformed to a percentage relative to the mean frequency, bandwidth or duration 

found in that trill. Then, we calculated the mean of the differences within species and 

took the 75% quartile of the variation in frequency (6.0%), bandwidth (43.3%) and note 

duration (15.4%) as the maximum variation introduced between reference and variant 

sounds in each treatment of the set of synthetic sounds. For each variant sound we 

calculated the frequency and the duration as a percentage with respect to the reference 

sound frequency and duration. In the case of bandwidth, we calculated a range of 

possible bandwidths for variants, ranging from 0 to 0.71 Hz, which is 43.3% of the 
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maximum bandwidth (i.e. 1.64 kHz). A random value within this range was then added 

to or subtracted from the bandwidth defined for the reference sound. We did this 

because estimating a percentage of 0 kHz, or very low bandwidth sounds like pure tones, 

would lead to very small variations in bandwidth and therefore a bias throughout the 

range of bandwidth discrepancies. 

 

 
FIG 2 – Spectrograms of a synthetic sound built as a reference (red) and three inexact 

variants (green), one for the frequency treatment (A), one for the bandwidth treatment 

(B), and one for the duration treatment (C). Maximum, minimum and central frequency 

are indicated in 1B, as measured in the fundamental frequency (red line) 

 

C. Measuring sound similarity with the Spectrogram Cross-Correlation algorithm  

We measured the acoustic similarity between each synthetic sound (reference) and 

each variant using the SPCC algorithm (Clark et al., 1987; Cortopassi and Bradbury, 

2000). First, we computed the spectrogram matrices using an FFT algorithm with a 

window size of 512 samples, 80 % overlap between successive windows and ‘Hanning’ 

window type (Figure 3A). The algorithm overlays two spectrogram matrices at multiple 

(consecutive) time offsets, calculating a correlation coefficient at each point (Figure 3B). 

Plotting each correlation coefficient per time offset will produce a curve (Figure 3C), 

with the peak correlation in the curve taken as the acoustic similarity between those 

two sounds.  
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FIG 3 – Example of SPCC algorithm used to compare two notes of the trill of a blue tit 

(Cyanistes caeruleus). The two notes to be compared (A) are overlaid at different time 

offsets during the SPCC (B), producing multiple correlations coefficients, one at each of 

these alignments (C). The maximum correlation is taken as the SPCC score (C). 

 

 D. Statistical modelling of SPCC response 

All measures are presented as mean ± one SD, unless otherwise indicated. Statistical 

analysis was carried out in R software (Bates et al., 2015; R Core Team, 2022).  

We fitted Linear Models (LMs) to the SPCC score, the response variable, as a function of 

the difference between variant-reference sound pairs, taking the variation in frequency, 

bandwidth and duration as a percentage. In the case of variation in frequency and 

duration, the percentage was measured with respect to the reference sound 

(denominator). In the case of bandwidth, the reference sound could be a pure tone (i.e. 

0 Hz of bandwidth) and, to avoid having 0 as a denominator, we selected the highest 

value of bandwidth (between the reference and the variant) as a reference 

(denominator) to estimate the percentage difference in bandwidth between a reference 

and its variant. This solved the problem, as by definition there was no case where both 

variant and reference were pure tones. 

Three models were fitted, one for each treatment. The estimated parameter for the 

variable “variant-reference difference” would indicate the SPCC sensitivity to acoustic 

discrepancies. In the models, we also included the absolute bandwidth and note 

duration of the reference sound and the full interaction with the variant-reference 

differences, to explore how the acoustic structure of the note influenced the SPCC 
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sensitivity. These variables, bandwidth and duration of reference sound, were scaled 

and centered to allow the comparison of the impact regardless of different units 

(Gelman, 2008). 

Based on preliminary analysis and given the bounded distribution of SPCC score 

between 0 and 1, we transformed the response variable using an arcsine and a logit 

function. Both transformations seemed appropriate in some part of the distribution 

range but neither led to a reasonably good fit throughout the entire range. We observed 

that there was a change in the slope or curve (SPCC sensitivity) towards larger values of 

variant-reference difference, particularly in the frequency and the bandwidth 

treatments. Thus, we decided to fit two models in each case, splitting the range of 

acoustic discrepancies into two parts after calculating the break point by fitting a 

segmented model (Muggeo, 2008). Data were then split into two groups: one with small 

acoustic differences, those variant-reference pairs with a difference below the 

estimated break point, and another with large acoustic differences for those variant-

reference pairs with acoustic differences larger than the break point (Figure 4). In the 

frequency and the bandwidth treatments, we fitted a LM with an arcsine transformation 

of the SPCC score for the small differences group, while for large differences group we 

fitted an LM with a logistic transformation of the SPCC score. For the duration 

treatment, a single model with an arcsine transformation fitted well for the entire range 

of acoustic differences. We considered a variable to have a significant impact on the 

SPCC score if the 95% confidence intervals (CI) did not overlap with zero.  

 D. Testing the results with real birdsong 

We investigated whether the conclusions derived from the analysis of synthetic sounds 

were reflected in real data using the multi-species song data. To this end, we first 

classified all notes with a bandwidth lower than 100 Hz as narrowband sounds and those 

with a bandwidth higher than 100 Hz as broadband sounds. Then, all notes were 

classified as “similar in frequency” if the difference was less than 63 Hz with respect to 

the mean trill frequency, or “different in frequency” If the difference between the note 

and the mean trill frequency was larger than 63 Hz. The 63 Hz frequency threshold was 

the median variation in frequency in all notes from the birdsong data set, with respect 

to mean frequency within trill. Thus, using this threshold divides the whole sample 

approximately in half. Similarly, all notes were classified as “different in duration” if the 
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difference between note duration and mean trill note duration was larger than 4%. 

Again, this threshold was the median difference in note duration in our birdsong data. 

This analysis allowed us to explore the impact of bandwidth in measuring vocal 

consistency when two notes were different in frequency or in duration. We used a 

Mann-Whitney U test to compare the SPCC scores of broad and narrowband trills with 

the same and with different frequency. Similarly, we compared the SPCC scores of 

narrowband and broadband notes that were different in duration, but not in frequency. 

III. RESULTS 

 A. SPCC response to discrepancies in synthetic sounds 

We found that the relationship between SPCC score and acoustic discrepancies fitted an 

arcsine curve in the duration treatment and for small acoustic differences of the 

bandwidth and frequency treatments. In the case of large acoustic differences in the 

frequency and the bandwidth treatment, the observed pattern best fitted a logistic 

curve. The breakpoints detected by the segmented models were 3.4 ± 0.12% mean ± SE 

in the case of frequency discrepancies and 21.3 ± 0.36% in the case of bandwidth 

discrepancies. In general, qualitative results from the arcsine and logistic models in the 

frequency and bandwidth treatments were very similar, henceforth we will refer to the 

arcsine curves (Table 1), although for completeness the logit models are presented in 

Table S1. 

In all cases, the SPCC method was sensitive to acoustic discrepancies between 

reference-variant pairs, as the SPCC score showed a significant negative correlation with 

the acoustic discrepancies in frequency, bandwidth and duration generated between 

the reference-variant pairs (Figure 4, Table 1). The SPCC method was most sensitive to 

differences in frequency, with a mean decrease of 22% in SPCC score with an increment 

of 1% in frequency difference (Figure 4, Table 1). SPCC was less sensitive to differences 

in bandwidth as SPCC score decreased by a mean of 4.7% with a 1% increment in 

bandwidth differences, and finally, SPCC was least sensitive to differences in duration, 

as SPCC decreased by a mean of 1.8% with a 1% increment in the difference in duration 

(Figure 4, Table 1). Note that these estimates considered the mean change in SPCC 

throughout the range of possible discrepancies. We also found that the SPCC score was 

influenced by the bandwidth of the sounds being compared in all treatments, but the 

direction and size of the effect of bandwidth varied across treatments (Figure 4, Table 
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1). In the frequency treatment, where sounds were only different in frequency, the SPCC 

score was generally higher if the reference sound had a broad bandwidth than if it was 

narrowband sound (Figure 4). This is shown in the model by the positive, significant 

impact of reference bandwidth and its interaction with variant-reference difference 

(Table 1). The steeper down slope in the SPCC response for narrowband notes in the 

frequency treatment is shown in Figure 4A, with the bandwidth shown by a gray 

gradient. See also a visual explanation in Figure 5A-B. For the bandwidth treatment, the 

impact of bandwidth was similar to the frequency treatment but smaller (Table 1). In 

the duration treatment, the impact of bandwidth was opposite, as the same difference 

in duration rendered a higher SPCC score in narrowband sounds than in broadband 

sounds (Figure 4C & Figure 5C-D). In general, shorter sounds rendered higher SPCC 

scores in all treatments, as shown by the negative effect of note duration and its 

interactions with the reference-variant difference (Table 1). This means that SPCC was 

less sensitive to acoustic discrepancies of shorter sounds, although this effect was 

relatively small. Finally, we found a significant interaction in all models of both 

bandwidth and duration with the reference-variant difference (Table 1). This indicates 

that the impact of bandwidth and duration is not homogeneous throughout the range 

of acoustic discrepancies but increases with increasing acoustic discrepancies. Such an 

effect is represented in Figure 4A-C as all three lines showing sensitivity for sounds of 

different bandwidth converge in the upper left corner, at which point SPCC sensitivity is 

unaffected by bandwidth.  

Our detailed quantitative analysis allows to quantify the exact sensitivity of SPCC 

throughout the range of acoustic discrepancies, while considering the effect of 

bandwidth and duration. To derive the exact values one can apply the estimated 

coefficients using a linear model: SPCC = αp + βw – γd + δ(pw) + ψ(pd). P is the 

percentage difference between sounds while the bandwidth and duration of the 

reference sound are represented by w and d respectively. Then, α is the reference-

variant coefficient, β is the bandwidth coefficient, γ is the duration coefficient, δ is the 

coefficient for the reference-variant interaction with bandwidth and ψ is the coefficient 

for the reference-variant interaction with duration. In the models shown in Tables 1 and 

S1, some explanatory variables are scaled and centered to allow for a comparison of the 
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impact of each predictor. In order to get the real values for sensitivity we provide the 

estimates derived from models with the original, non-scaled variables (Tables S2 & S3). 

 
FIG 4 – Response of the SPCC score to acoustic discrepancies in frequency, defined as 

the equidistant point between maximum and minimum points of the F0 (A), bandwidth, 

defined as the distance in kHz between the maximum and minimum frequencies of the 

F0 (B), and sound duration in milliseconds (C). The gray gradient of the points shows the 

bandwidth of the reference sound from 0 kHz, i.e. a pure tone (light gray) to 1.6 kHz 

(black). For each treatment, lines represent the predicted values from the model 

adjusted to different bandwidth (0 kHz in yellow, 0.5 kHz in blue and 1.7 kHz in red). The 

SPCC algorithm is most sensitive to frequency discrepancies, as shown by the steeper 

down slope in (A) regarding the frequency treatment. The duration treatment in (C) 

shows the shallowest slope, indicating that SPCC is least sensitive to temporal 

discrepancies. Figure (A) shows the impact of bandwidth in the SPCC response when 

dealing with frequency discrepancies. Here, SPCC score of narrowband notes (light gray 

points and yellow line) decrease in a steeper slope than broadband sounds (black points 

and red line). This effect is opposite in the case of SPCC response to discrepancies in 

duration, where narrowband sounds (light gray points and yellow line) have a very 

shallow slope compared to broadband sounds (black points and red line). 

  B. SPCC and bandwidth in real birdsong 

The birdsong database included 28,266 notes of 3,100 trills in 954 different recordings 

from 345 species in 20 families (mean ± SD = 17.3 ± 13.5 species per family). As predicted 

by our analysis of synthetic sounds, we found that SPCC scores were significantly higher 

in broadband notes than in narrowband notes if they differed in frequency (Broadband: 

0.80 ± 0.11, Narrowband: 0.68 ± 0.20 SPCC score, W = 13819, P < 0.001, 5% CI = -0.13, 
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95% CI = -0.05; Figure 6A) but not if they were similar in frequency (Broadband: 0.85 ± 

0.09, Narrowband: 0.87 ± 0.08 SPCC score, W = 39891, P = 0.004, 5% CI = 0.009, 95% 

=0.045, Figure 6B). Similarly, analysis of real birdsong confirmed our findings on the 

impact of bandwidth on SPCC between sounds of different duration. In this case, 

broadband sounds showed significantly lower SPCC scores than narrowband sounds, for 

the same difference in duration (Broadband: 0.84 ± 0.10, Narrowband: 0.87 ± 0.09 SPCC 

score, W = 31169, P < 0.001, 5% CI = 0.017, 95% =0.052, Figure 6C). Figure 5 is a visual 

explanation of these effects. 

 

FIG 5 – Visual representation of the impact of bandwidth on SPCC sensitivity to acoustic 

discrepancies, using natural notes recorded from blue tit song. In green, two notes types 

arbitrarily used as a reference. Another rendition of each note type is overlaid using red 

colors. (A) depicts the two note types (green) and variants (red) that differed mainly in 

frequency, with the associated cross-correlation curve in (B). The broadband note (type 

II) produces a high SPCC score by shifting the red note earlier in time. This is shown by 
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the peak in correlation before zero in the X-axis in the cross-correlation curve for note 

type II in (B). Hence, for the same difference in frequency, the SPCC score is lower in 

narrowband notes in grey (type I), compared to broadband notes in black (type II). (C) 

depicts two pairs of notes that differ in duration, but not in frequency, with the 

respective SPCC curves on (D). In this case, the red note in the narrowband note (type I) 

shows a high overlap regardless of the difference in duration, whereas lengthening a 

broadband note (type II) will change the shape of the note and therefore reduce the 

SPCC score. In this case, (D) shows that for the same difference in duration, narrowband 

notes in grey (type I) render a slightly higher SPCC score than broadband notes in black 

(type II). 

 

 

FIG 6 – Differences in SPCC score between broad band sounds (dark grey) and narrow 

band sounds (light grey), measured in natural songs of 345 different species. As 

predicted by our analysis of synthetic sounds, SPCC scores of narrow band sounds with 

different frequency are lower than in broadband sounds with different frequency (A). 

However, if frequency is the same, narrowband sounds have higher SPCC scores (B). 
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When two narrowband sounds differ in duration (but with the same frequency) they 

show higher SPCC scores than two broadband sounds of different duration (C). 

 

 

TABLE 1 – Output of the model investigating the SPCC response to acoustic differences in frequency, 
duration and bandwidth. 

Treatment Parameters Estimate T CI 5% CI 95% P 

Frequency Intercept 0.911 874.2 0.91 0.913 < 0.0001 

Reference -variant difference  -0.22 -168.9 -0.222 -0.217 < 0.0001 

Bandwidth 0.08 61.1 0.078 0.083 0.26 

Duration -0.015 -11.7 -0.018 -0.013 0.92 

Reference -variant difference : 
Bandwidth 0.044 33.7 0.042 0.047 < 0.0001 

Reference -variant difference : 
Duration -0.009 -6.8 -0.012 -0.006 < 0.0001 

Bandwidt
h 

Intercept 0.998 742.3 0.998 0.998 < 0.0001 

Reference -variant difference  -0.047 -269.6 -0.047 -0.046 < 0.0001 

Bandwidth 0.000 0.2 -0.003 0.004 0.83431 

Duration 0.000 0.2 -0.003 0.004 0.81524 

Reference -variant difference : 
Bandwidth 0.002 14.4 0.002 0.003 < 0.0001 

Reference -variant difference : 
Duration -0.002 -14.1 -0.003 -0.002 < 0.0001 

Duration Intercept 0.999 1307.1 0.999 0.999 < 0.0001 

Reference -variant difference  -0.018 -282.5 -0.018 -0.018 < 0.0001 

Bandwidth -0.012 -10.6 -0.015 -0.01 < 0.0001 

Duration -0.004 -3.6 -0.006 -0.002 < 0.001 

Reference -variant difference : 
Bandwidth -0.004 -64.9 -0.004 -0.004 < 0.0001 

Reference -variant difference : 
Duration -0.001 -22.7 -0.002 -0.001 < 0.0001 

 
The response variable is the arcsine transformation of the SPCC score. For each fixed effect, the 
model estimate, the lower and higher CI and the T statistic are shown. The estimate of the parameter 
of reference-variant difference indicates the slope in the correlation between the SPCC score and the 
programmed difference between synthetic sounds, i.e., the sensitivity of the SPCC. The bandwidth of 
the sounds being compared has a significant impact on the SPCC score, especially in the frequency 
and duration treatment but with opposite effects. The duration of the sound shows a significant 
impact on the SPCC score as shorter sounds tend to have higher SPCC values, but the effect size is 
small 
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IV. DISCUSSION 

Our results support the use of SPCC to measure vocal consistency in birds, since the 

acoustic similarity score derived from SPCC correlated significantly with the known 

acoustic discrepancies between synthetic sounds based on natural birdsong 

parameters. As expected from the optimizing algorithm, the SPCC sensitivity to spectral 

differences was higher than to temporal differences, when both parameters were within 

the range of natural variation in vocal consistency found in birds. The relationship 

between SPCC and acoustic discrepancies (sensitivity) was not linear and best fitted an 

arcsine curve or a logistic curve. We also found that, in the case of spectral discrepancies 

(frequency and bandwidth), the sensitivity of SPCC decreased as the note bandwidth 

increased. This means that spectral discrepancies between narrowband sounds were 

easier to detect than those in broadband sounds. The opposite pattern was found when 

measuring differences in duration. Differences in note duration between broadband 

sounds were easier to detect than those in narrowband sounds. In general, shorter 

sounds produced higher SPCC scores, suggesting that SPCC is less sensitive when dealing 

with shorter sounds. The findings derived from the analysis of synthetic sounds were 

confirmed in our analysis of birdsong including 345 different species as: 1) broadband 

sounds had higher SPCC than narrowband sounds when notes differed in frequency and 

2) narrowband sounds of different duration had higher SPCC scores than broadband 

sounds with the same difference in duration. Quantifying the SPCC response along the 

range of acoustic discrepancies found in birdsong allows for the comparison of the 

sensitivity of SPCC with the perceptual abilities of birds (i.e. Dooling, 1982). 

Furthermore, such a quantitative analysis permits researchers to determine the 

suitability of the method for their study model and scientific question.  

We found that the response of SPCC along the range of acoustic discrepancies was not 

linear, which is likely due to the frequency resolution of the spectrograms that limits 

detectability of small acoustic differences. As differences between two sounds approach 

the frequency resolution, such differences are more difficult to detect and therefore the 

sensitivity of SPCC is reduced. The frequency resolution is determined by the chosen 

window length of the FFT algorithm. Increasing the window length would increase 

frequency resolution and thus SPCC sensitivity to small spectral discrepancies but, in 

turn, temporal resolution would be lower, compromising sensitivity of SPCC to temporal 



 19 

differences. Choosing the appropriate window length is an important step depending 

on the target of the study (Khanna et al., 1997; De Kort et al., 2002).  

In birds, the frequency discrimination threshold is estimated at 1%  (Dooling, 1982). In 

our simulated data, the SPCC score of acoustic similarity decreased by 4.4 % when two 

sounds of intermediate bandwidth differed by 1% in frequency, supporting the use of 

this method to measure the smallest frequency discrepancies perceived by birds. In 

contrast, with a 1% discrimination threshold for frequency differences, birds are only 

able to detect discrepancies in duration when two sounds are at least 14% different in 

duration, going up to 23% for short sounds of < 100 ms (Maier and Klump, 1990). For a 

14% difference in duration between two sounds, the SPCC similarity score decreased by 

3.1%, again supporting the use of SPCC to assess the smallest temporal differences as 

perceived by birds. Hence, the sensitivity of SPCC to detect temporal discrepancies is 

effectively similar to the frequency sensitivity when considering the hearing capacities 

of birds (Knudsen and Gentner, 2010). Technically, a lower sensitivity of SPCC to 

temporal discrepancies is inherent to the method as a result of the cross-correlation 

algorithm. By computing multiple comparisons at different time offsets, the SPCC 

maximizes the chances of finding a match (i.e. optimization), while reducing the 

sensitivity to temporal discrepancies. However, this step is important to solve the 

problem of aligning two time series during their comparison. There are alternative 

methods to solve the alignment problem (i.e., Dynamic Time Warping; DTW or 

comparing the power-spectrum of notes in addition to the SPCC). But, unless the 

optimization acts in the three dimensions, for instance conducting a second cross-

correlation in the frequency axis, this step will always cause differential sensitivity in the 

acoustic similarity score between spectral, amplitude or temporal discrepancies.  

Another consequence of the cross-correlation algorithm, computing multiple 

comparisons in time (X-axis), implies that the frequency bandwidth (Y-axis) influences 

the SPCC score. Considering two sounds that differ in frequency, two pure tones of zero 

bandwidth will be represented by two parallel lines in the spectrogram. These two lines 

will never overlap regardless of the cross-correlation process sliding two notes along the 

temporal dimension, rendering low SPCC scores (see Figure 5). On the other hand, 

broadband sounds of different frequency can be partly matched during SPCC if the 

difference in frequency is smaller than the bandwidth (see Figure 5). The better fit of a 
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logistic curve to large acoustic differences indicates that there is a threshold over which 

SPCC is relatively insensitive to increasing differences, as the logistic curve will approach 

zero asymptotically. Nevertheless, this is close to the upper range of the natural 

variation in vocal consistency, suggesting that this should be a minor issue in the use of 

the SPCC method in birds. 

When considering differences in note duration between sounds, two pure tones of 

different duration are essentially two overlapping lines, meaning that the shape of the 

note does not vary by changing the duration and thus, SPCC renders high scores. 

However, the spectrographic shape of a sound with modulating frequency will change 

substantially by changing the note’s duration, meaning that the SPCC score will decrease 

considerably in response to differences in duration. These examples show the impact of 

bandwidth on the SPCC response, indicating that the same difference in frequency or 

duration is not reflected with a similar decrease in SPCC if measured in two pairs of 

sounds with different bandwidths (Figure 5).  

At first, the impact of bandwidth on SPCC sensitivity may appear a flaw, implying that 

measurement of vocal consistency is biased, but this bias may not be a drawback if birds 

show similar perception of acoustic differences. In fact, it is expected that sensitivity to 

detect acoustic discrepancies by birds or other animals will not follow a linear response 

and will likely be affected by sound structure, as found in the SPCC response. Common 

starlings (Sturnus vulgaris), show lower discrimination thresholds when presented with 

two pure tones than when presented with a frequency modulated tone (Langemann and 

Klump, 1992). In humans, the threshold of frequency discrimination increases 

significantly with increasing frequency modulation (Dooley and Moore, 1988). Similarly, 

when two pure tones of different frequency are presented in sequence, the threshold 

of frequency discrimination is lower than when those two tones are presented by 

modulating the first frequency into the second frequency (Fastl, 1978). These studies 

strongly suggest that assessing acoustic differences is more difficult when the sounds to 

be compared have frequency modulations. In this sense, the impact of bandwidth in the 

SPCC score could mirror the perception of acoustic discrepancies in frequency, if birds 

follow similar perceptual patterns (Knudsen and Gentner, 2010). Other psychoacoustic 

studies on common starlings also show that sensitivity to frequency differences is higher 
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for longer sounds (Maier and Klump, 1990), again similar to our findings that SPCC 

sensitivity is higher for longer sounds.  

If the ability to detect vocal inconsistencies is higher in narrowband sounds, receivers 

could show a preference for narrowband trills to assess motor performance skills faster 

and more accurately. From the sender’s perspective, less skilled birds could in turn use 

broadband trills to ‘hide’ their mistakes, as inconsistencies are difficult to perceive. In 

line with this idea, common nightingales (Luscinia megarhynchos) produce narrowband 

trills (whistle songs) that are important in mate attraction, and vocal consistency within 

those trills indicates male quality (Bartsch et al., 2016). It has been shown that 

individuals with higher vocal consistency produced more narrowband trills (Bartsch et 

al., 2016), which suggests that less skilled individuals could hide their mistakes by 

avoiding narrowband trills. Common nightingales also produce fast trills of broadband 

tones during simulated intrasexual conflicts (Schmidt et al., 2008), a type of song that is 

challenging and indicates muscle speed (Podos, 1997; Podos et al., 2016). Hence, it 

seems possible that individual song repertoire (i.e. diversity of song types within 

individuals) may serve to demonstrate neuro-motor skills in relation to different 

performance constraints (Cardoso, 2017). In this case, narrowband trills may display 

precision (Cardoso, 2017; Lane and Briffa, 2021) while fast broadband trills may display 

speed  (Podos and Nowicki, 2004; Lane and Briffa, 2021). This could help explain the lack 

of ecological correlates of some performance parameters in studies that use multiple 

song types (Cardoso, 2012). 

In conclusion, our results support the use of the SPCC method to measure vocal 

consistency in birdsong notes and possibly in other taxa. Our findings further support 

multiple field studies that found meaningful correlations between vocal consistency 

measured by SPCC and individual features or ecological factors. Despite these results in 

support of SPCC as a biologically meaningful measure of vocal consistency, there are 

some concerns. We found that the sensitivity of SPCC was not linear along the range of 

naturally occurring vocal consistency and that sensitivity to detect acoustic 

discrepancies is significantly affected by frequency bandwidth. We suggest that these 

patterns found in SPCC sensitivity may reflect a similar perceptual pattern in acoustic 

discrimination in bird hearing. Further empirical studies are needed to explore bird 

perception of vocal consistency and how it is affected by acoustic structure of sound. 
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Despite this, we recommend caution when comparing absolute values of SPCC scores if 

the songs analyzed have different spectral structure (e.g. emitted by different species). 

If appropriate, a possible solution would be to normalize or standardize SPCC scores 

using statistical techniques to compare vocal consistency. Finally, we highlight the 

importance of understanding and validating the methods of measuring song 

performance to provide meaningful measures that can be generalized (Cardoso, 2017). 
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Supplementary Tables 

TABLE S1 – Output of the model investigating the SPCC response to acoustic differences in frequency, 
duration and bandwidth, with a logistic transformation of the SPCC score. 

Treatment Parameters Estimate T CI 5% CI 95% P 

Frequency Intercept 0.74 39.8 0.811 0.659 < 0.0001 

Reference -variant difference  -0.384 -32.3 -0.406 -0.361 < 0.0001 

Bandwidth 0.193 3.3 0.08 0.304 < 0.001 

Duration -0.056 -1 -0.17 0.058 0.33347 

Reference -variant difference : 
Bandwidth 0.102 8.3 0.078 0.125 < 0.0001 

Reference -variant difference : 
Duration -0.007 -0.5 -0.031 0.018 0.60 

Bandwidth Intercept 0.991 23.7 1 0.962 < 0.0001 

Reference -variant difference  -0.069 -24.8 -0.075 -0.064 < 0.0001 

Bandwidth 0.305 4.4 0.17 0.435 < 0.0001 

Duration -0.045 -0.6 -0.184 0.095 0.53 

Reference -variant difference : 
Bandwidth -0.007 -2.7 -0.013 -0.002 0.008 

Reference -variant difference : 
Duration -0.004 -1.5 -0.01 0.001 0.13 

 
For each fixed effect, the model estimate, the lower and higher CI of the estimate and the T statistic are 
shown. The estimate of the parameter of reference-variant difference indicates the slope in the correlation 
between the SPCC score and the programmed difference between synthetic sounds, i.e., the sensitivity of 
the SPCC to detect acoustic differences in each treatment. The slope is significantly lower than zero, 
indicating that the acoustic similarity from SPCC is sensitive to acoustic variation in the three treatments. 
The SPCC is most sensitive to spectral differences (frequency and bandwidth) than in temporal differences 
(duration). The bandwidth of the sounds being compared has a significant impact on the SPCC score, 
especially in the frequency and duration treatment but with opposite effects. The duration of the sound 
shows a significant impact on the SPCC score as shorter sounds tend to have higher SPCC values, but the 
effect size is relatively small. 
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TABLE S2 – Output of the model investigating the SPCC response to acoustic differences in frequency, 
duration and bandwidth, with an arcsine transformation of the SPCC score. 

Treatment Parameters Estimate T CI 5% CI 95% P 

Frequency Intercept 0.999 183.3 0.998 1 < 0.0001 

Reference -variant difference  -0.278 -66.7 -0.286 -0.27 < 0.0001 

Bandwidth 0 1.1 0 0 0.26 

Duration 0.006 0.1 -0.117 0.129 0.92 

Reference -variant difference : 
Bandwidth 0 33.7 0 0 < 0.0001 

Reference -variant difference : 
Duration -0.216 -6.8 -0.277 -0.154 < 0.0001 

Bandwidth Intercept 0.998 247.9 0.997 0.999 < 0.0001 

Reference -variant difference  -0.045 -83.8 -0.046 -0.044 < 0.0001 

Bandwidth 0 0.2 0 0 0.83 

Duration 0.011 0.2 -0.084 0.106 0.82 

Reference -variant difference : 
Bandwidth 0 14.4 0 0 < 0.0001 

Reference -variant difference : 
Duration -0.059 -14.1 -0.067 -0.051 < 0.0001 

Duration Intercept 1 427.1 1 1 < 0.0001 

Reference -variant difference  -0.007 -36.6 -0.008 -0.007 < 0.0001 

Bandwidth 0 -10.6 0 0 < 0.0001 

Duration -0.1 -3.6 -0.155 -0.045 < 0.001 

Reference -variant difference : 
Bandwidth 0 -64.9 0 0 < 0.0001 

Reference -variant difference : 
Duration -0.035 -22.7 -0.038 -0.032 < 0.0001 

 
This table shows the model coefficients as in Table 1 but, in this case, the variables “bandwidth” and 
“duration” were not scaled. The estimates from these models can be used to derive the sensitivity of 
SPCC at the chosen range of acoustic discrepancies and for a given bandwidth and sound duration 
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TABLE S3 – Output of the model investigating the SPCC response to acoustic differences in frequency, 
duration and bandwidth, with a logistic transformation of the SPCC score. 

Treatment Parameters Estimate T CI 5% CI 95% P 

Frequency Intercept -0.983 239.8 -0.975 -0.989 < 0.0001 

Reference-variant difference  -0.787 -166.1 -0.794 -0.78 < 0.0001 

Bandwidth 0.257 13.7 0.221 0.293 < 0.0001 

Duration 0.001 0 -0.036 0.038 0.96 

Reference -variant difference : 
Bandwidth 0.09 16.5 0.079 0.101 < 0.0001 

Reference -variant difference : 
Duration -0.025 -4.6 -0.036 -0.014 < 0.0001 

Bandwidth Intercept 0.923 4.9 0.648 0.997 < 0.0001 

Reference -variant difference  -0.044 -4.7 -0.062 -0.026 < 0.0001 

Bandwidth 0.001 4.4 0 0.001 < 0.0001 

Duration -0.882 -0.6 0.962 0.763 0.53 

Reference -variant difference : 
Bandwidth 0 -2.7 0 0 0.008 

Reference -variant difference : 
Duration -0.102 -1.5 -0.23 0.029 0.13 

 
 
This table shows the model coefficients as in Table S1 but, in this case, the variables “bandwidth” and 
“duration” were not scaled. The estimates from these models can be used to derive the sensitivity of SPCC 
at the chosen range of acoustic discrepancies and for a given bandwidth and sound duration. 
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Supplementary Figures

 
FIG S1 – The shape of the synthetic sounds was based on a sine shape with a starting 

point in sin(𝑥𝜋) and an ending point in sin(𝑦𝜋), where 𝑥 could be a value between 0 to 

1 and 𝑦 could be a value from 1 to 2. The entire range is depicted in blue in the figure, 

while the yellow and red traces show two possible shapes that would derive from the 

process. The selected shape would then be transported to a central frequency of 4.1 kHz 

and then adjusted to match a randomly selected bandwidth between 0 and 1.64 kHz. In 

the case of a 0 kHz bandwidth, the resulting sound would be a pure tone, regardless of 

the original shape.  

 
 

−1
0

1

0 2ππ 3π
2

View publication stats

https://www.researchgate.net/publication/372974869

