Quantitative scanning thermal microscopy studies of the influence of interfaces and heat transport anisotropy in 2D materials

S. Gonzalez-Munoz¹, K. Agarwal¹, A. Maiti^{2,3}, and O. V. Kolosov¹

¹Lancaster University, ²Indian Association for the Cultivation of Science, ³Université Paris-Saclay

Introduction

- Intrinsic anisotropy in bi-dimensional materials.¹
- Interface / substrate role in the heat transport.²
- ? True nanoscale resolution of thermal properties depending on thickness.³
- \Box Thermal transport in anisotropic graphene, γ -InSe, and perovskite.
- \Box Interface effects on Si and SiO₂ substrates.

- Quantification of anisotropic thermal conductivities and interfacial thermal resistivity.

Exfoliation and BEXP

universite

PARIS-SACLAY

Lancaster University

Characterization

- HV-SThM (see right scheme) performed under high vacuum conditions and room temperature.
- □ SThM's probe incorporates a resistive heater receiving constant power via a DC-AC Wheatstone bridge.
- \Box $V_{out} \propto T_{probe} \rightarrow T_{probe}$ changes due to variations of the probe-sample heat flow.
- □ By moving the probe across the sample surface, a quantitative map of the sample heat transport is obtained.⁴

 \checkmark r_{int} affects heat transport up to a limit, then it becomes negligible.

 \checkmark Record-low anisotropic k for novel TE devices.

 \checkmark True nanoscale resolution of heat transport features.

We acknowledge the financial support of the Graphene Flagship Core 3 project, the EPSRC EP/V00767X/1 HiWiN project and the Paul Instrument Fund. We appreciate the technical support from NT-MDT and Leica Microsystems.

References,

- 1. Gonzalez-Munoz, S. et al. Adv. Mater. Interfaces 10 (2023).
- 2. Buckley, D. et al. Adv. Funct. Mater. 31 (2021).

3. Spièce, J. et al. *Nanoscale* **13** (2021).

4. Evangeli, C. et al. Adv. Electron. Mater. 5 (2019).

