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Solitons induced by an in-plane magnetic field in rhombohedral multilayer graphene
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We model the influence of an in-plane magnetic field on the orbital motion of electrons in rhombohedral
graphene multilayers. For zero field, the low-energy band structure includes a pair of flat bands near zero energy,
which are localized on the surface layers of a finite thin film. For finite field, we find that the zero-energy bands
persist and that level bifurcations occur at energies determined by the component of the in-plane wave vector ¢
that is parallel to the external field. The occurrence of level bifurcations is explained by invoking semiclassical
quantization of the zero-field Fermi surface of rhombohedral graphite. We find parameter regions with a single
isoenergetic contour of Berry phase zero corresponding to a conventional Landau level spectrum and regions with
two isoenergetic contours, each of Berry phase 7, corresponding to a Dirac-like spectrum of levels. We write
down an analogous one-dimensional tight-binding model and relate the persistence of the zero-energy bands in
large magnetic fields to a soliton texture supporting zero-energy states in the Su-Schrieffer-Heeger model. We
show that different states contributing to the zero-energy flat bands in rhombohedral graphene multilayers in a
large field, as determined by the wave vector ¢, are localized on different bulk layers of the system, not just the

surfaces.

DOI: 10.1103/PhysRevB.108.115425

I. INTRODUCTION

Advances in the production of thin films of rhombohedral
multilayer graphene (RMG) [1-10] recently culminated in
the realization of high-quality films with up to 50 layers [8].
Scanning tunneling spectroscopy [1], magneto-Raman [2],
and photoemission [1,3] measurements have confirmed the
existence of flat bands near the Fermi surface, as predicted
theoretically [11-21]. Meanwhile, the observation of phases
including ferromagnetism [22] and superconductivity [23] in
trilayers of rhombohedral graphene have been attributed to flat
bands with strong electronic interactions.

The presence of flat bands localized at the surfaces of RMG
may be understood by analogy with edge states within the
bulk band gap of the one-dimensional Su-Schrieffer-Heeger
(SSH) model [24-27], whereby the intra and interlayer cou-
plings in RMG play the role of alternating hopping parameters
in the SSH model [17,18], Fig. 1. It was predicted [2,19] that
the bulk band gap of RMG closes with layer number N at
wave vector g. = y;/hv near the K-points at the corner of the
Brillouin zone, where y; is the interlayer hopping parameter
and v is the intralayer velocity. In the limit of large N, i.e., bulk
rhombohedral graphite, the band gap is closed and zero energy
states occupy a “Dirac spiral,” which rotates, as a function of
the perpendicular wave vector k, [28-31], around a K-point at
the in-plane radius q..
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The study of Landau level (LL) spectra and the integer
quantum Hall effect (QHE) in magnetic fields are key charac-
terization tools of graphene [32,33] and related nanomaterials.
For out-of-plane (perpendicular) magnetic field of magnitude
as little as B = 1 T, Shubnikov—de Haas oscillations emerge
in RMG [8]. For slightly stronger fields, B > 3T, discrete
LL form [19,34,35], leading to quantized Hall resistivity
and the onset of the QHE observed experimentally [8]. In-
plane (parallel) magnetic fields have also been explored in
graphene-related systems [19,36-38], specifically in relation
to the magnetic ratchet effect in bilayer graphene [39,40], su-
perconductivity in trilayers [23,41], and the energy spectrum
of Bernal stacked multilayers [42,43].

In this paper, we model the influence of an in-plane mag-
netic field on the orbital properties of electrons in RMG
stacks with layer number N > 1, using a tight-binding
model [11,15,19] and magnetic field incorporated via a Peierls
substitution [39]. We numerically study the effect of the
magnetic field on the band structure in the vicinity of the
Dirac points. Figure 2(a) shows the band structure for zero
field exhibiting two flat bands at zero energy [11-19,21], and
Fig. 2(b) shows the spectrum for large magnetic field where
we plot energy levels as a function of g,, which is the com-
ponent of the wave vector measured from the K point in the
direction of the applied field B, [44]. We note two qualitative
features of the spectrum in an in-plane field: First, there are a
series of bifurcations from doubly to singly degenerate energy
levels and, second, the zero-energy flat bands, observed at
zero field, persist up to very high field strengths.

For energies ¢, we find that the bifurcations occur along a
set of points in the ¢-g, plot, Fig. 2(b), given by
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FIG. 1. Schematic side view of the unit cell for three layers of
rhombohedral multilayer graphene. Labels A, and B, denote the
two nonequivalent atomic sites on each layer, y, and y, are the
intralayer and interlayer hopping parameters, respectively. The in-
plane carbon-carbon bond length is a/+/3 = 1.42 A where a is the
lattice constant, while the interlayer distance d = 3.46 A. The out-
of-plane z axis is shown on the left where z, is the coordinate of the
nth layer.

for |g:| < g.. The origin and position of the bifurcations (1)
may be understood by analysis of a two-band model for bulk
graphene in zero magnetic field, in which zero energy states
exist along the Dirac spiral in reciprocal space near each K
point [29,30]. With an approximately linear dispersion near
zero energy, an isoenergetic surface forms a tube-like struc-
ture around the spiral, Fig. 2(c). Semiclassical quantization
of LL [45-48] involves quantization of the area of an isoen-
ergetic surface in a plane perpendicular to the applied field.
For field with component B,, we consider cuts of the tube-like
structure in the y-z plane, where we find either one contour,
Fig. 2(d), or two contours, Fig. 2(f), depending on the g,
value. We calculate the Berry phase [49] of these contours
to be either zero or w (modulo 27) for one or two contours,
respectively. Thus, the region with one contour corresponds
to a “conventional” LL spectrum with constant level spacing
~[ (where [ is the level index) whereas the region with two
contours corresponds to a Dirac-like LL spectrum with doubly
degenerate levels including zero energy and level spacing
~+/1. Analysis of where the zero-field spectrum transitions
from one to two contours leads to Eq. (1), as we discuss in
further detail in Sec. II B.

In the presence of an applied field, the spectrum retains two
flat bands near zero energy. Just as these bands at zero field
may be related to edge states of the SSH model [17,18,24-27],
then their presence in a finite field may be understood by
analogy to zero-energy states localized on solitons in the
SSH model as in the Jackiw-Rebbi mechanism [26,50-53], as
explained in Sec. IV. As the magnetic field strength increases,
the position of the soliton tends to move towards the center of
the sample until, for very large magnetic field strengths, the
solitons are annihilated and the energy levels separate away
from zero energy. Similar bound states can also be found
in other systems, such as SSH models undergoing dynamic
quenching [54] or periodic driving [55]. Additionally, pho-
tonic SSH lattices have been shown to host a family of stable
solitons once nonlinearity is introduced to the lattice, despite
the breakdown of the bulk-boundary correspondence [56-59].

Section II describes the methodology beginning with the
minimal model in which only nearest-neighbor hopping pa-
rameters are considered, and Sec. II B discusses the qualitative
interpretation of level bifurcations in terms of the semiclas-
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FIG. 2. Low-energy band structures for rhombohedral graphene
with 20 layers, with a visualization of the corresponding semiclassi-
cal quantization showing isoenergetic contours in bulk rhombohedral
graphite in a plane perpendicular to the magnetic field. (a), (b)
show band structures for no magnetic field and B = 100 T, respec-
tively [44], they are calculated through the numerical diagonalization
of the Hamiltonian (2). (c) shows an isoenergetic tube (blue) centered
around the Dirac nodal spiral, a plane (red) corresponding to g, =
qg. = y1/hv intercepts the spiral (black), creating an isoenergetic
contour which is depicted in (d), indicating a singly degenerate state
(four-fold including spin and valley degeneracy). Panels (e) and (f)
are similar, except the plane now cuts through ¢, = 0, creating two
contours corresponding to a doubly degenerate state (eight-fold in-
cluding spin and valley degeneracy) found at low energy for ¢, < ¢,
in (b).

sical quantization of the zero-field Fermi surface. Beyond
the minimal model, Sec. IIC, we find that the introduction
of next-nearest neighbor and next-nearest layer hopping pa-
rameters does not materially affect Eq. (1). An alternative
calculation is presented in Sec. III whereby we numeri-
cally determine the energy spectrum for bulk rhombohedral
graphite (i.e., an infinite number of layers N) using a magnetic
supercell. These calculations recover the results presented
in Fig. 2(b) for a stack with a finite number of layers
N. Section IV explores the topological nature of the band
structure through a comparison to the SSH model, relating
the zero-energy flat bands in a finite field to zero-energy
states localized on solitons [26,50-53]. We also consider
the influence of disorder on the spectrum by calculating the
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disorder-averaged density of states (DOS) per unit energy, and
we find that chirality-preserving disorder does not affect the
DOS in a magnetic field to a significant degree, whereas the
zero-energy flat band is shown to be susceptible to chirality-
destroying disorder [21,52,53].

II. METHODOLOGY

A. Finite rhombohedral graphene layers
with an in-plane magnetic field

For numerical determination of the energy spectrum, we
employ a tight-binding model [15,19], initially using the min-
imal model including nearest-neighbor intra and interlayer
hopping only. We assume translational invariance within each
layer to Fourier transform to kj = (ky, k,) space and create
a 2N x2N Hamiltonian for N layers and two atomic sites (A

J

ikya  iezaB,
Hpp(k)) = —VO[CXP (4 - > + 2ex

N

(—ikya
p 2\/5

and B) per layer. We modify the in-plane terms Hyp of the
Hamiltonian with a Peierls substitution, which introduces a
path integral of the vector potential such that

3 : Ra
e
HAB(kH):_VO E exp <Ik| . (RBJ' — RA) — E/ A- dl),

j=1 Ry

where yy is the tight-binding parameter for intralayer hopping,
R, is the position of an A atom, and Rp; denotes the posi-
tions of three adjacent B atoms. The magnetic vector potential
A = z(B,, —B,, 0) is chosen so that translational invariance in
the in-plane direction is preserved [39], and z is the coordinate
perpendicular to the graphene layers. Expanding and simpli-
fying the above yields

4 iezan> cos (kxa n eza&)}
431 2 4n '

We shift the in-plane wave vector k|, as q = 7i(k; — K¢) to be measured with respect to the K-point at Kz = & (4 /3a, 0)
where & = *1 is a valley index. Then, we expand the Hamiltonian for small |q| and small |B|, which is valid for |qla// < 1
and e|z|a|B|/h < 1, conditions which hold at low energy. The resulting Hamiltonian reads

0 hwr! 0

hvr 0 Vi
0 )2 0
HYq) =] O 0  hvm,
0 0 0
0 0 0

where v = +/3ypa/2h and

0o - 0 0
0 0 0

hory -0 0
0 0 0 1, 2
0 0 v
0 - humy O

. (q) = §(qx + ez,By/h) +i(qy — ez,B. /1),

where z, is the position of the nth layer on the z axis, Fig. 1.
We choose z = 0 to be in the middle of the layered system. In
polar coordinates we can write

T[n(q) = \/(qx -+ eany/h)Z + (Qy _ EZan/fl)z eiE(pn — rneifga,,’

and it is clear the phase ¢, can be gauged away (e.g., by a
redefinition of the atomic orbital wave functions). However,
the magnetic field retains its influence through the magnitude
r, and cannot be gauged away. Without loss of generality,
we set By = 0 such that the magnetic field B = (By, 0, 0).
By diagonalizing the Hamiltonian (2) we obtain the band
structure of Fig. 2(b), which, when compared to the zero-
field band structure of Fig. 2(a), shows a spreading of the
energy levels along the energy axis and the appearance of
bifurcations of levels near the K-point, from doubly degen-
erate (eight-fold including spin and valley degeneracy) to
singly degenerate states (four-fold including spin and valley
degeneracy). We see similar qualitative features for larger
layer numbers and smaller fields, Fig. 3, although the bifur-
cations are less visible for these parameter values. For this
figure and other numerics in this paper the following hop-
ping parameter values are used: yp = 3.16eV, y; = 0.381 eV,

(

y» = —0.017eV, y3 =0.38¢eV, y4 =0.14eV [60,61], a =
2.46 A for the in-plane lattice constant, and d = 3.46 A for
the interlayer spacing [62].

The qualitative features of Fig. 2(b) are still observable
even at comparatively low field strengths [44], although, at
qx = 0, the energy levels are only slightly spread from the
zero-field degeneracy point of bulk eigenvalues at ¢ = %y.
At low field, the bifurcations are also localized in this region
of the e-g, plot, but still obey relationship (1). This also
holds true for small layer numbers N < 10 and larger fields,
although the zero energy states do not extend to the band-
gap closing point gy = g.. Additionally, bifurcations are not
present for N < 4 due to there being an insufficient number
of bands to realize doubly degenerate states for ¢ < y;. The
bifurcations occur at positions (1) that can be understood
through a comparison to an infinite layer graphene model, as
described in the next subsection.

B. Semiclassical quantization of the zero-field Fermi surface

To develop a qualitative understanding of the numerically
obtained spectrum, we consider bulk rhombohedral graphite
for zero magnetic field. Assuming translational invariance in
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FIG. 3. Low-energy band structures for rhombohedral multilayer
graphene with an applied in-plane magnetic field, obtained through
the numerical diagonalization of Hamiltonian (2). (a) N = 300 layers
and B, = 5T, where, for clearer presentation, only every fifth pair
of bands are depicted. (b) N = 1000 layers with B, = 1T, where
only every 25th pair of bands are depicted. Bifurcations are still
present at locations described by relation (1), but are less visible
when compared to Fig. 2(b) due to the larger layer number.

both the intra and interlayer directions, we introduce per-
pendicular wave vector k, in addition to the small in-plane
wave vector q measured from the K-point. By doing so the
Hamiltonian [29,30,63] is reduced to a 2 x2 matrix

0 Ao — yleikzd
i . E

H" (¢, k) = (

hvw — yre
where d is the interlayer spacing and # = &g, + ig,. In-plane
wave vectors at which the energy is zero are represented in
polar coordinates as qp = (gp cos ¢p, gp sin ¢p) where gp =
lap| with

= = ﬁ
qD qL‘ UFl’
i i
op = —§& (kzd - 5) — 5 4

The dependence of ¢p on k, shows that these solutions repre-
sent a spiral through Kk-space, shown in Fig. 4(a). The energy
dispersion very close to the Dirac spiral is linear as € = hv|k]|,
where « = (k,, ;) is the wave vector measured from the

(a) (b)

1

/ 0 0 y
q y qc -1 q\. q c
FIG. 4. Dirac spirals of Eq. (4) in k-space located at the bulk
rhombohedral graphite valley corresponding to £ = —1. (a) shows
the zero-energy Dirac points forming a nodal line and (b) the points
of an arbitrary small energy ¢ < y; centered around zero energy,
forming a “squashed” tube-like structure.

spiral for a given k, value. Isoenergetic contours are circles of
constant radius « centerd around the spiral for each k, value,
producing the tubular structure shown in Fig. 4(b).

Onsager semiclassical quantization of LL [45-48] involves
quantization of the area S(¢) enclosed by isoenergetic con-
tours in k-space in a plane perpendicular to the magnetic field,
and is dependent on the Berry phase y of these contours

Sy = X141 5

(8)_xg<+2 2n)’ ®)
where A = +/7i/eB, is the magnetic length and integer / > 0.
For example, a “conventional” two-dimensional (2D) semi-
conductor has quadratic dispersion & = A*k?/(2m,,), effective
mass m,, and zero Berry phase. With area S(e¢) = Tk? =
2nmye/h, Eq. (5) gives the harmonic oscillator relation &; =
hw.(I + 1/2) with cyclotron frequency w, = eB/m,. By way
of contrast, monolayer graphene has a linear dispersion re-
lation ¢ = *hvk, Berry phase 7, and area S(¢) = Tk? =
me?/(hv)?. The Berry phase cancels the factor of 1/2 in
Eq. (5), producing ¢; + = :l:(hv/)nB)\/2_l, which does not have
zero point energy fiw./2, but a level fixed at o = 0. We as-
sume that / = 0 is admissible in Eq. (5), although it may relate
to contours enclosing zero area, and is therefore somewhat
ill-defined [46,47].

In this paper, we apply the semiclassical quantization
Eq. (5) to infinite layer graphite, Eq. (3), in an in-plane field
in the x direction. Perpendicular fields have already been
studied,where the relevant contours are circles of radius |« |
in the x-y plane, resulting in a LL spectrum that is essentially
the same as monolayer graphene [63]. For an in-plane field in
the x direction, the contours instead lie in the y-z plane, Fig. 2.
The number of contours varies for different values of ¢, and
we find

0 contours if |g¢| > g, + |e|/(hv),
if g — lel/(hv) < |gx| < gc + |el/(hv),
2 contours if |gy| < g. — |e|/(hv).

1 contour

Moreover, when there are two contours, they have the same
area. Thus, one and two contours correspond to singly and
doubly degenerate energy levels, respectively, i.e., the same
degeneracies observed in the energy spectrum under an ap-
plied in-plane magnetic field. The location at which the level
bifurcations occur in the finite field ¢-g, plot are the same as
the points of transition between one and two contours in the
zero-field quantization.

We find that a path around a single contour acquires a Berry
phase of zero whereas the double contours each correspond to
Berry phase 7 (modulo 2r). The later case corresponds to a
Dirac-like LL spectrum as observed in the finite field band
structure at g, = 0, Fig. 1(b). At zero field and g, = 0, each
of the double contours has a dispersion at low energy given by

e & £hv, k2 + (q.dx;)?, Q)

where k., is the wave vector in the z direction measured from
the center of the Dirac spiral. Contours described by Eq. (6)
are approximately circular with radius ¢ and the correspond-
ing enclosed area is S(¢) = we?. Substituting this into Eq. (5)
returns the Dirac-like LL spacing ~+/[, and, as there are two
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(a‘)lo semiclassical quantization (b) numerical diagonalization
O 1.0

06 08 1.0 00 02 04 06 08 10

0.4
q \_/( q \‘/q('

c

FIG. 5. Low-energy band structures for rhombohedral graphene
with an applied in-plane magnetic field, with an overlay (red) of the
linear relationship for the location of the bifurcation points in the
LL spectrum, Eq. (1). (a) shows the band structure obtained from
the semiclassical quantization, Eq. (5), of the numerically obtained
areas enclosed by isoenergetic contours in the infinite bulk graphite
model, Fig. 2. (b) depicts a similar band structure for a finite 40-layer
rhombohedral graphene stack with an applied in-plane magnetic
field of B, = 50T, obtained from the numerical diagonalization of
Hamiltonian (2).

identical contours, these levels are doubly degenerate. We can
extend this to finite values of g, by numerically calculating the
contour areas, resulting in LL corresponding to an infinite sys-
tem, Fig. 5(a), while maintaining the same qualitative features
as the band structure obtained numerically from the model
of a system with a finite number of layers, Fig. 5(b). The
location of bifurcations of contours in the zero-field spectrum
can be written as Eq. (1), and superimposing this linear ¢-g,
relationship over the numerically obtained band structures,
Fig. 5, visually confirms it.

C. Inclusion of long-range hopping parameters

We consider whether the qualitative features discussed in
the context of the minimal model still hold when considering
up to next-nearest layer (long-range) hopping parameters in
the Hamiltonian. The full Hamiltonian including these extra
parameters y», y3, ya [11,14,15,19] is

A B C - 0

B A4 B - 0 0

¢t B A .0 0
H(@=|: =+ = : :  }

0 0 0 Av.» B ¢C

o 0o o0 - B Ay, B

ct BT Ay
(N

where each element represents a 2 x2 matrix

(0 hvm! _(—hur?
An - (hvﬂn 0 )7 B= ( 4!

€= (8 ) v = Vay,

hvsm
—hva )

[=ININS

2h

B, =0T By = 100T
(a)? (b)2
1 1
-1 -1
-2 -2
-1 /0 1 -1 9 1
qy\' qC qx qC

FIG. 6. A comparison of band structures for 20-layer rhombo-
hedral graphene with up to next-nearest layer hopping parameters
Y0.1.2.3.4 included, according to the numerical diagonalization of
Hamiltonian (7), located at the valley corresponding to & = 1.
(a) shows the band structure for a 20-layer system for B =0 to
illustrate the difference compared to Fig. 1(a), 1(b) shows the same
system with the overlay of numerically obtained bifurcation points
for B=100T. Negative ¢, values are included here to highlight
anisotropy of the dispersion (trigonal warping) due to the presence
of parameter y;.

The band structure for this Hamiltonian, Fig. 6, retains sig-
nificant similarities to the minimal model, but y, introduces
finite dispersion with electron-hole asymmetry and y;3 creates
trigonal warping (anisotropy of the dispersion).

For the model (3) of infinite layer graphite at zero field, the
additional parameters modify matrix elements [63] as

H = HI' = 27hvy|q| cos(p + k.d),
HY = (H}}f)" = ~hvlgle™ + pe
+ yze—Zikzd + hv3|q|ei(q)—kzd)’

where ¢ is the polar angle. Since zero-energy states coincide
with a band degeneracy, their location may be determined by
setting HI%f = 0, and y, has no effect on the location of the
nodal line. The solution may be written as a perturbation to
Eq. (4) and, up to O(v3/v), it can be written as

ap = ﬁ(l + 23 cos(3kzd)>, 8)
vh v
Dp = —& (kzd + 2 sin(3kzd)), ©)
v

such that the original terms still dominate [63], and parameter
y» may be neglected. The presence of y3 (trigonal warping)
slightly modifies the semiclassical estimate (1) of the position
of the bifurcations which we determine numerically and show
as the dashed overlaid line in Fig. 5(b). It was recently sug-
gested that the sign of vz is negative [61,64], in which case
one should invert the sign of g, in Fig. 6(b).

III. NUMERICS FOR INFINITE BULK
RHOMBOHEDRAL GRAPHITE

In Sec II, we described the methodology for numerically
determining the spectrum of a system with a finite number of
layers in an external in-plane field. Here, instead, we describe
how to numerically determine the spectrum of bulk rhombo-
hedral graphite (with an infinite number of layers) using a
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finite-sized magnetic supercell. Specifically, we consider a magnetic supercell described by the Hamiltonian

my

0

Hsﬁlglpercell (q) = O
.T

1—‘1

0 0 - I
my 0 0
0 my - 0 (10)
0 0 nmyy

The magnetic supercell is composed of an integer number M of three-layer hexagonal unit cells, each described by a 6 x 6 matrix
m,(q), which is similar to the previously considered Hamiltonian (2),

0 hr 0 0 0 0

hU7T3n,2 0 Y1 0 0 0

_ 0 7 0 hwrl 0 0

m@ = 0 Ao 0 " 0
0 0 0 7 0  homi,

0 0 0 0 hwrs, 0

In the Hamiltonian (10), "y represents a 6 x 6 matrix with y; as
its top right entry and zeros everywhere else, i.e., (I'1);; =0
for all i, j, except (I'1)16 = y1. This accounts for periodicity
of the supercell.

We can choose the in-plane component of the magnetic
field to lie in the x direction without loss of generality (for
the minimal model). It can only take certain discrete values
related to the number M of hexagonal unit cells, as determined
by the periodicity of the Hamiltonian. In particular, for vec-
tor potential A = z(0, —By, 0), a matrix element connecting
positions R and R’ has a field-dependent phase factor such
as A = (Bye/h) f;‘l z dy. This should be equal to 27 for a
vertical translation of 3Md and a horizontal translation of
J3a /2, so that the allowed values of the magnetic field are

2h

B=—rw— 11
! 3+/3adeM an

for integer M. For example, when M = 100, then B, =
96.6 T, and the numerical calculation requires the diagonal-
ization of a 600x600 matrix (10). Despite differences, this
method produces similar qualitative results to those for a finite
system, Sec. II, including the location of bifurcations from
doubly to singly degenerate states in the energy spectrum as
shown in Fig. 7.

IV. ANALOGY TO THE SSH MODEL

For zero magnetic field, the spectrum of RMG in the min-
imal model may be related to the energy levels of the SSH
model [17,18,24-27] by dimensional reduction [65], i.e., by
treating the in-plane wave vector q as a parameter. In par-
ticular, alternating hoppings ¢ and w of the SSH model are
equivalent to 7Ziv|q| and y,, respectively, of RMG. Here we
generalize this analogy in the presence of an in-plane mag-
netic field, resulting in a one-dimensional tight-binding model
with spatially dependent hopping parameters that bears some
similarity to the commensurate off-diagonal Aubry-André-
Harper model [66].

Starting from the Hamiltonian (2) for N layers of RMG, we
gauge away the phase of the intralayer hopping term for layer

n leaving the magnitude

1|70, 20)| = vry =V (ivge? + (evzuB.)2, - (12)
with g, = B, = 0. For an even number of layers N, the verti-
cal coordinate of the nth layer is z, = d[n — (N + 1)/2] with
the origin (z = 0) at the center of the system.

Treating g, as a parameter, the Hamiltonian (2) may be
written as a one-dimensional tight-binding model which is a
generalization of the SSH model with 2N orbitals

0 4 0 0 0 0 0

n 0 w 0 0 0 0

0w 0 & 0 0 0

0 0 n 0 w 0 0
Hsu=|0o 0 0 w 0 o ol (3

o O
o O
o O
oo ...
= o
oz

FIG. 7. Low-energy band structures for infinite bulk rhombo-
hedral graphene with an applied in-plane magnetic field, obtained
through the numerical diagonalization of the supercell Hamilto-
nian (10). (a) shows the band structure for a supercell of size M =
200, and corresponding field B, = 96.6T. (b) Is the band struc-
ture for a supercell of size M = 400, and corresponding field B, =
48.3T.
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FIG. 8. Probability density of the wave functions close to the
K-point, g, = g, = 0, for rhombohedral graphene multilayers on
carbon atoms at positions j = 1,2, 3,...,2N. (a) shows edge-state
localization at zero energy while (b) is a generic bulk state lying
within the valence band. Both (a) and (b) are for a N = 10 layer
system with 20 atoms in total and zero magnetic field. (c) shows
the distribution of a soliton zero energy state for a N = 100 layer
system and an in-plane field B, = 50 T. We use a larger layer number
to better depict the two soliton states, n* denotes the center of the
soliton.

where

tnz\/tz—i-([n—%(N—i—l)]x)z, (14)

and yx is a parameter describing the strength of the modulated
hopping. This has the following equivalence with RMG:

t = hvlgyl, (15)
w =y, 16)
X = evd|B,|. (17)

The Hamiltonian (13) has constant intercell hopping w with
modulated hopping ¢, on every intracell bond. The modula-
tion is inversion symmetric about the center of the system,
increasing in magnitude from ty/, = /1% + (x/2)> ~ t at the
center to fy ~ /t2 + (N x /2)?* at the edge.

We can interpret the effect of y as producing a texture
of ¢ in the system, i.e., a soliton and antisoliton pair placed
symmetrically about the center, each of which supports a state
near zero energy. For t < w and x = 0, the Hamiltonian (2)
describes the SSH model with a bulk band gap of 2(w —t)
and states near zero energy localized at the edges, Fig. 8(a).
By contrast, Fig. 8(b) shows the spatial distribution of a state
lying within the bulk valence band. For nonzero yx, and large-

20

10

. 2d

0.5 1
q./4,

FIG. 9. Vertical position z*, as a function of the in-plane wave
vector ¢, of the localized states with zero-energy flat bands in
rhombohedral multilayer graphene with N = 50 layers and an ap-
plied in-plane magnetic field B, = 50 T. Solid lines are obtained by
numerically determining the peak positions of the wave functions,
the dashed line is the estimate Eq. (18). States at g, = 0 are local-
ized at high |z| values towards the surface of the thin film. As ¢,
increases, they move inwards to the center at which point they begin
to annihilate one another, asymptotically approaching the minimum
of |z =d/2.

enough N, ty at the edge becomes larger than w so that there
are no edge states. However, at some position n = n* there
will be t,» & w separating regions with #, > w towards the
edge and with 7, < w towards the center. Location n* is at
the center of a soliton and supports a zero-energy state, and
there is a corresponding antisoliton with the opposite texture
of t, at the other side of the system which also supports a
zero energy state, Fig. 8(c). Thus, as x increases, the soliton-
antisoliton pair move from the edges towards the center of
the system, always supporting zero-energy states. Finally, for
large-enough x, they will reach the center and annihilate,
when ty, = /12 + (x/2)> ~ w, and there will be no zero-
energy states.

For fixed yx, the location of the soliton n* is dependent
on the value of ¢. From #,- &~ w it may be estimated at the
right side of the system [n* > (N + 1)/2], say, to be n* =
min[N, (N + 1)/2 + x~'v/w? — ¢2]. Using the equivalence
to RMG, Egs. (15) to (17), we can express the layer position
7 = [n* — (N + 1)/2]d where the flat band state is localized
as

z %min<N—l7a\/q§—|CIx|2>, (18)
d 2 2m(ba/do)

for |qx| < g. where g, = y;/(hv), ¢4 = ad|B,| is the mag-
netic flux per unit cell, and ¢y = h/e is the single-particle
flux quantum. This expression is for the top half of the thin
film (z* > 0), and the position for the lower half is —z*.
Figure 9 shows a plot of z* obtained by numerically determin-
ing the peak positions of the wave functions, with the estimate
Eq. (18) shown for comparison as the dashed line. It shows
that the zero-energy flat bands are localized on different bulk
layers of the system, not just the surfaces, as determined by
the wave vector ¢,. This accounts for the behavior observed
for the flat bands at zero energy in RMG in the presence of
an in-plane magnetic field. As the field strength is increased,
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FIG. 10. Energy of the states near zero energy at g, = 0in N =
20 layer rhombohedral graphene as a function of magnetic field B,,
represented as a log-log plot. States localized on surfaces of the RMG
film at small magnetic field are characterized by a linear relation
between energy and magnetic field in the log-log plot, reflecting the
analytical solution & ox BY.

the zero-energy states persist, but the extent of the flat bands
in g, is reduced because, for large g, values, the solitons
have disappeared. Finally, at very large field strengths, they
separate and move into the bulk (when the solitons for all g,
values have vanished).

By equating the two terms on the right side of Eq. (18), we
can estimate the extent of the flat band, in terms of ¢,, that
remains on the surface in the presence of the in-plane field as

qa = /g2 — (ndy/d0)?. (19)

where the magnetic flux summed over all layers is ¢y = (N —
)¢y = ad(N — 1)B,.

The limit + = 0 for the SSH model corresponds to g, = 0
in RMG, in which case ry ~ N x /2 at the edge. Thus, the zero-
energy states for + = 0 remain at the edge until ty ~ w, i.e.,
X ~ 2w/N. In terms of RMG, this means that states at g, =
0 remain on the surfaces until the magnetic flux ¢y reaches
values
N _ 2n

®o \/§7T Y0 '

where ¢9 = h/e is the single-particle flux quantum; numeri-
cal values give ¢n ~ ¢/20. We can alternatively write this
estimate as ¢y/¢o ~ g.a/m. Up to this point, we can use
the zero-field estimate for the energy of the surface states,
e ~ (liv|q)V /y' ", with the substitution |q| — B to es-
timate that the surface states at ¢, = 0 behave as & ~ +BY.
This is confirmed numerically in Fig. 10, which also depicts
larger magnetic fields breaking this relationship as the lo-
calized states move from the edges towards the center. The
localized states will eventually be destroyed when #y,» =
V2 + (x/2)* ~ w and, for t = 0, this gives an estimate y ~
2w. In terms of RMG, this means that the zero-energy states
remain until

(20)

dn 2Ny
b0 3y
We can alternatively write this estimate as ¢q/¢po ~ g.a/m

where ¢, = ad|By| is the magnetic flux per unit cell. Clearly,
this is a huge magnetic field, a large factor (of N > 1) greater

2n

unperturbed RMG magnetic field
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FIG. 11. The DOS as a function of energy for N = 20 layer
rhombohedral graphene systems calculated numerically using the
minimal model Hamiltonian (2) and DOS definition (22). (a) depicts
DOS for pristine RMG at zero field. (b) pristine RMG with an applied
in-plane magnetic field of B, = 50T. (c) is the disorder-averaged
DOS at B, = 50T created by averaging over 20 randomized disorder
realizations for chirality-destroying disorder. (d) disorder-averaged
DOS at B, = 50T for 20 realizations of chirality-preserving disorder.

than the field (20) for which the zero-energy states move away
from the edge.

We determine the density of states (DOS) per unit energy
per unit area to show how the flat bands at zero energy
contribute to sharp features in the DOS. Since the Hamil-
tonian (2) satisfies sublattice chiral symmetry in the same
way as the SSH model, we check that the zero-energy states
are robust to chiral-preserving disorder by calculating the
disorder-averaged DOS in the presence of disorder. We calcu-
late the DOS per unit energy numerically by approximating
the Dirac delta function as a Lorentzian with finite width
¢ =0.005y,,

_ Ly &
8&)= "1 Z (e —en)? 42 22)

where L? is the area of the system.

For pristine RMG at zero magnetic field, the DOS is char-
acterized by a series of Van Hove singularities at energies
corresponding to turning points of the bulk bands, Fig. 11(a),
with a prominent central peak at zero energy caused by the flat
bands. The DOS in a magnetic field of B, = 50T is shown in
Fig. 11(b), and is characterized by the softening of Van Hove
singularities, but the peak corresponding to flat bands remains
as prominent as before.

We introduce chirality-breaking disorder through the addi-
tion of on-site energies randomly chosen from a distribution
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[—4, 8], where § = 50meV < y; [21]. The resulting disorder-
averaged DOS in the presence of a magnetic field is shown
in Fig. 11(c) with averaging over 20 disorder realisations.
We also consider chirality-preserving disorder in the form of
random additions § to the interlayer coupling y; as y; + 6,
chosen from a distribution [, §], where § = 50 meV < y;.
The result of averaging over 20 disorder realizations in a finite
magnetic field is shown in Fig. 11(d).

The DOS for both types of disorder are characterized
by further softening of the Van Hove singularities at finite
energies. However, chirality-destroying disorder destroys the
zero-energy flat band peak, whereas chirality-preserving dis-
order has no visible effect on the zero-energy peak. This is
expected because the zero-energy states rely on the protection
of chiral symmetry [25,52,67,68]. In the plot of Fig. 11(c),
for chirality-destroying disorder, there is also electron-hole
asymmetry in the DOS, but this is only an artifact of having a
finite number of disorder realizations.

V. CONCLUSION

We numerically determine the effect of an in-plane mag-
netic field on the electronic spectrum of rhombohedral
multilayer graphene (RMG). The spectrum shows two qual-
itative features: First, there are a series of bifurcations from
doubly to singly degenerate energy levels and second, the
zero-energy flat bands, observed at zero field, persist up
to very high field strengths. Using semiclassical quantiza-
tion [45—48] of the zero-field Fermi surface of rhombohedral
graphite, we are able to relate the presence of level bifurca-
tions to bifurcations of zero-field isoenergetic contours from
one contour, with zero Berry phase, to two contours each with
Berry phase m. By writing down a one-dimensional tight-
binding model that is analogous to RMG in an in-plane field,
we are able to relate the persistence of the zero-energy bands

in large magnetic fields to a soliton texture supporting zero-
energy states in the Su-Schrieffer-Heeger model. Whereas
the zero-energy flat bands at zero field are localized on the
surfaces of the RMG thin film, in a finite magnetic field they
are generally localized on different layers, ranging from the
surface to the bulk as a function of the wave vector.

The electronic properties of RMG films may be experi-
mentally accessed by a variety of methods including scan-
ning tunneling spectroscopy [1], magneto-Raman [2,69-74],
photoemission [1,3], and magnetotransport [8,75-77]. For ex-
ample, scanning tunneling microscopy was recently used to
probe the surface states of RMG with up to N = 17 lay-
ers [10], and magnetotransport properties, probing the Landau
level spectra, were measured in RMG with up to N = 50
layers [8] and in Bernal-stacked graphitic films with up to a
few hundred layers [76,77].

We neglected spin splitting and assumed a four-fold de-
generacy due to spins and valleys throughout. In an external
in-plane magnetic field, splin splitting of the energy levels
will occur. With the g-factor g = 2, the spin splitting should
be Ae = 2upB for Bohr magneton g and field strength B.
Thus, for B = 100 T, we expect Ae = 0.012eV and Ae/y; =
0.030. Experiments [78] in monolayer and bilayer graphene
reported an effective g-factor, g* = 2.7 + 0.2, and attributed
its enhancement to electron-electron interaction effects. Nev-
ertheless, even with such an enhancement, we expect the spin
splitting to be a small effect on the scale of our typical plots,
e.g., Fig. 2(b).

All relevant data presented in this paper can be ac-
cessed [79].

ACKNOWLEDGMENT

The authors thank A. Mishchenko and S. Ozdemir for
helpful discussions.

[1] D. Pierucci, H. Sediri, M. Hajlaoui, J.-C. Girard, T. Brumme, M.
Calandra, E. Velez-Fort, G. Patriarche, M. G. Silly, G. Ferro, V.
Souliere, M. Marangolo, F. Sirotti, F. Mauri, and A. Ouerghi,
Evidence for flat bands near the fermi level in epitaxial thom-
bohedral multilayer graphene, ACS Nano 9, 5432 (2015).

[2] Y. Henni, H. P. O. Collado, K. Nogajewski, M. R. Molas, G.
Usaj, C. A. Balseiro, M. Orlita, M. Potemski, and C. Faugeras,
Rhombohedral multilayer graphene: a magneto-raman scatter-
ing study, Nano Lett. 16, 3710 (2016).

[3] H. Henck, J. Avila, Z. Ben Aziza, D. Pierucci, J. Baima, B.

Pamuk, J. Chaste, D. Utt, M. Bartos, K. Nogajewski, B. A.

Piot, M. Orlita, M. Potemski, M. Calandra, M. C. Asensio, F.

Mauri, C. Faugeras, and A. Ouerghi, Flat electronic bands in

long sequences of thombohedral-stacked graphene, Phys. Rev.

B 97, 245421 (2018).

T. Latychevskaia, S.-K. Son, Y. Yang, D. Chancellor, M. Brown,

S. Ozdemir, I. Madan, G. Berruto, F. Carbone, A. Mishchenko,

and K. S. Novoselov, Stacking transition in rhombohedral

graphite, Front. Phys. 14, 13608 (2019).

[5] Y. Yang, Y.-C. Zou, C. R. Woods, Y. Shi, J. Yin, S. Xu,
S. Ozdemir, T. Taniguchi, K. Watanabe, A. K. Geim, K. S.
Novoselov, S. J. Haigh, and A. Mishchenko, Stacking or-

H
&

der in graphite films controlled by van der waals technology,
Nano Lett. 19, 8526 (2019).
[6] F. R. Geisenhof, F. Winterer, S. Wakolbinger, T. D. Gokus,
Y. C. Durmaz, D. Priesack, J. Lenz, F. Keilmann, K. Watanabe,
T. Taniguchi, R. Guerrero-Avilés, M. Pelc, A. Ayuela, and R.
Thomas Weitz, Anisotropic strain-induced soliton movement
changes stacking order and band structure of graphene multilay-
ers: implications for charge transport, ACS Appl. Nano Mater.
2, 6067 (2019).
[7] C. Bouhafs, S. Pezzini, F. R. Geisenhof, N. Mishra, V. Miseikis,
Y. Niu, C. Struzzi, R. T. Weitz, A. A. Zakharov, S. Forti,
and C. Coletti, Synthesis of large-area rhombohedral few-layer
graphene by chemical vapor deposition on copper, Carbon 177,
282 (2021).
Y. Shi, S. Xu, Y. Yang, S. Slizovskiy, S. V. Morozov, S.-K. Son,
S. Ozdemir, C. Mullan, J. Barrier, J. Yin, A. I. Berdyugin, B. A.
Piot, T. Taniguchi, K. Watanabe, V. I. Fal’ko, K. S. Novoselov,
A. K. Geim, and A. Mishchenko, Electronic phase separation in
multilayer rhombohedral graphite, Nature (London) 584, 210
(2020).
A. Kerelsky, C. Rubio-Verdd, L. Xian, D. M. Kennes, D.
Halbertal, N. Finney, L. Song, S. Turkel, L. Wanga, K.

(8

—_—

[9

—

115425-9


https://doi.org/10.1021/acsnano.5b01239
https://doi.org/10.1021/acs.nanolett.6b01041
https://doi.org/10.1103/PhysRevB.97.245421
https://doi.org/10.1007/s11467-018-0867-y
https://doi.org/10.1021/acs.nanolett.9b03014
https://doi.org/10.1021/acsanm.9b01603
https://doi.org/10.1016/j.carbon.2021.02.082
https://doi.org/10.1038/s41586-020-2568-2

TYMCZYSZYN, CROSS, AND MCCANN

PHYSICAL REVIEW B 108, 115425 (2023)

Watanabe, T. Taniguchi, J. Hone, C. Dean, D. N. Basov, A.
Rubio, and A. N. Pasupathy, Moiréless correlations in ABCA
graphene, Proc. Natl. Acad. Sci. USA 118, 2017366118
(2021).

[10] I. Hagymadsi, M. S. Mohd Isa, Z. Tajkov, K. Madrity, L.
Oroszlany, J. Koltai, A. Alassaf, P. Kun, K. Kandrai, A.
Pélinkds, P. Vancsd, L. Tapasztd, and P. Nemes-Incze, Obser-
vation of competing, correlated ground states in the flat band of
rhombohedral graphite, Sci. Adv. 8, eabo6879 (2022).

[11] J. W. McClure, Electron energy band structure and electronic
properties of rhombohedral graphite, Carbon 7, 425 (1969).

[12] S. Latil and L. Henrard, Charge Carriers in Few-Layer
Graphene Films, Phys. Rev. Lett. 97, 036803 (2006).

[13] M. Aoki and H. Amawashi, Dependence of band structures on
stacking and field in layered graphene, Solid State Commun.
142, 123 (2007).

[14] D. P. Arovas and F. Guinea, Stacking faults, bound states, and
quantum Hall plateaus in crystalline graphite, Phys. Rev. B 78,
245416 (2008).

[15] M. Koshino and E. McCann, Trigonal warping and Berry’s
phase N in ABC-stacked multilayer graphene, Phys. Rev. B
80, 165409 (2009).

[16] F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald,
Spontaneous Quantum Hall States in Chirally Stacked Few-
Layer Graphene Systems, Phys. Rev. Lett. 106, 156801 (2011).

[17] T. T. Heikkila and G. E. Volovik, Dimensional crossover in
topological matter: Evolution of the multiple Dirac point in the
layered system to the flat band on the surface, JETP Lett. 93, 59
(2011).

[18] R. Xiao, F. Tasnddi, K. Koepernik, J. W. F. Venderbos, M.
Richter, and M. Taut, Density functional investigation of
rhombohedral stacks of graphene: Topological surface states,
nonlinear dielectric response, and bulk limit, Phys. Rev. B 84,
165404 (2011).

[19] S. Slizovskiy, E. McCann, M. Koshino, and V. I. Fal’ko,
Films of rhombohedral graphite as two-dimensional topological
semimetals, Commun. Phys. 2, 164 (2019).

[20] A. Garcfa-Ruiz, S. Slizovskiy, M. Mucha-Kruczynski, and
V. 1. Fal’ko, Spectroscopic signatures of electronic excitations
in raman scattering in thin films of rhombohedral graphite,
Nano Lett. 19, 6152 (2019).

[21] J. H. Muten, A. J. Copeland, and E. McCann, Exchange inter-
action, disorder, and stacking faults in rhombohedral graphene
multilayers, Phys. Rev. B 104, 035404 (2021).

[22] H. Zhou, T. Xie, A. Ghazaryan, T. Holder, J. R. Ehrets, E. M.
Spanton, T. Taniguchi, K. Watanabe, E. Berg, M. Serbyn, and
A. F. Young, Half- and quarter-metals in rhombohedral trilayer
graphene, Nature (London) 598, 429 (2021).

[23] H. Zhou, T. Xie, T. Taniguchi, K. Watanabe, and A. F.
Young, Superconductivity in rhombohedral trilayer graphene,
Nature(London) 598, 434 (2021).

[24] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

[25] J. K. Asboéth, L. Oroszlany, and A. Palyi, A Short Course on
Topological Insulators (Springer, Switzerland, 2016).

[26] J. Cayssol and J.-N. Fuchs, Topological and geometrical aspects
of band theory, J. Phys. Mater. 4, 034007 (2021).

[27] E. McCann, Catalog of noninteracting tight-binding models
with two energy bands in one dimension, Phys. Rev. B 107,
245401 (2023).

[28] T. T. Heikkild, N. B. Kopnin, and G. E. Volovik, Flat bands in
topological media, JETP Lett. 94, 233 (2011).

[29] C.-H. Ho, C.-P. Chang, and M.-F. Lin, Landau subband wave
functions and chirality manifestation in rhombohedral graphite,
Solid State Commun. 197, 11 (2014).

[30] C.-H. Ho, C.-P. Chang, and M.-F. Lin, Evolution and di-
mensional crossover from the bulk subbands in ABC-stacked
graphene to a three-dimensional Dirac cone structure in rhom-
bohedral graphite, Phys. Rev. B 93, 075437 (2016).

[31] W. Chen, H.-Z. Lu, and O. Zilberberg, Weak Localization
and Antilocalization in Nodal-Line Semimetals: Dimension-
ality and Topological Effects, Phys. Rev. Lett. 122, 196603
(2019).

[32] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. L.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Two-dimensional gas of massless Dirac fermions in graphene,
Nature (London) 438, 197 (2005).

[33] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental
observation of the quantum Hall effect and Berry’s phase in
graphene, Nature (London) 438, 201 (2005).

[34] C. H. Ho, Y. H. Ho, Y. H. Chiu, Y. N. Chen, and M. F.
Lin, Magneto-electronic properties of rhombohedral trilayer
graphene: Peierls tight-binding model, Ann. Phys. 326, 721
(2011).

[35] C.-H. Ho, Y.-H. Ho, Y.-Y. Liao, Y.-H. Chiu, C.-P. Chang, and
M.-F. Lin, Diagonalization of landau level spectra in rhombo-
hedral graphite, J. Phys. Soc. Jpn. 81, 024701 (2012).

[36] M. B. Lundeberg and J. A. Folk, Rippled Graphene in an In-
Plane Magnetic Field: Effects of a Random Vector Potential,
Phys. Rev. Lett. 105, 146804 (2010).

[37] M. Van der Donck, F. M. Peeters, and B. Van Duppen, Transport
properties of bilayer graphene in a strong in-plane magnetic
field, Phys. Rev. B 93, 115423 (2016).

[38] W. Qin and A. H. MacDonald, In-Plane Critical Magnetic
Fields in Magic-Angle Twisted Trilayer Graphene, Phys. Rev.
Lett. 127, 097001 (2021).

[39] N. Kheirabadi, E. McCann, and V. I. Fal’ko, Magnetic
ratchet effect in bilayer graphene, Phys. Rev. B 94, 165404
(2016).

[40] N. Kheirabadi, E. McCann, and V. 1. Fal’ko, Cyclotron res-
onance of the magnetic ratchet effect and second harmonic
generation in bilayer graphene, Phys. Rev. B 97, 075415
(2018).

[41] A. L. Szab6 and B. Roy, Metals, fractional metals, and super-
conductivity in rhombohedral trilayer graphene, Phys. Rev. B
105, 1081407 (2022).

[42] S. S. Pershoguba and V. M. Yakovenko, Energy spectrum of
graphene multilayers in a parallel magnetic field, Phys. Rev. B
82, 205408 (2010).

[43] N. A. Goncharuk and L. Smrcka, Tight-binding description of
Landau levels of graphite in tilted magnetic fields, J. Phys.:
Condens. Matter 24, 185503 (2012).

[44] For clarity of presentation, we show numerical data for systems
with a relatively small number of layers and very large mag-
netic fields, see Fig. 1(b). However, similar qualitative features
appear for lower magnetic field strengths in samples with more
layers, Fig 3, although bifurcations in the energy spectrum are
less visible for these parameter values.

[45] L. Onsager, Interpretation of the de Haas-van Alphen effect,
Philos. Mag. 43, 1006 (1952).

115425-10


https://doi.org/10.1073/pnas.2017366118
https://doi.org/10.1126/sciadv.abo6879
https://doi.org/10.1016/0008-6223(69)90073-6
https://doi.org/10.1103/PhysRevLett.97.036803
https://doi.org/10.1016/j.ssc.2007.02.013
https://doi.org/10.1103/PhysRevB.78.245416
https://doi.org/10.1103/PhysRevB.80.165409
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1134/S002136401102007X
https://doi.org/10.1103/PhysRevB.84.165404
https://doi.org/10.1038/s42005-019-0268-8
https://doi.org/10.1021/acs.nanolett.9b02196
https://doi.org/10.1103/PhysRevB.104.035404
https://doi.org/10.1038/s41586-021-03938-w
https://doi.org/10.1038/s41586-021-03926-0
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1088/2515-7639/abf0b5
https://doi.org/10.1103/PhysRevB.107.245401
https://doi.org/10.1134/S0021364011150045
https://doi.org/10.1016/j.ssc.2014.07.022
https://doi.org/10.1103/PhysRevB.93.075437
https://doi.org/10.1103/PhysRevLett.122.196603
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1016/j.aop.2010.11.004
https://doi.org/10.1143/JPSJ.81.024701
https://doi.org/10.1103/PhysRevLett.105.146804
https://doi.org/10.1103/PhysRevB.93.115423
https://doi.org/10.1103/PhysRevLett.127.097001
https://doi.org/10.1103/PhysRevB.94.165404
https://doi.org/10.1103/PhysRevB.97.075415
https://doi.org/10.1103/PhysRevB.105.L081407
https://doi.org/10.1103/PhysRevB.82.205408
https://doi.org/10.1088/0953-8984/24/18/185503
https://doi.org/10.1080/14786440908521019

SOLITONS INDUCED BY AN IN-PLANE MAGNETIC ...

PHYSICAL REVIEW B 108, 115425 (2023)

[46] A. Korményos, P. Rakyta, L. Oroszlany, and J. Cserti, Bound
states in inhomogeneous magnetic field in graphene: Semiclas-
sical approach, Phys. Rev. B 78, 045430 (2008).

[47] J. N. Fuchs, F. Piéchon, M. O. Goerbig, and G. Montambaux,
Topological Berry phase and semiclassical quantization of cy-
clotron orbits for two dimensional electrons in coupled band
models, Eur. Phys. J. B 77, 351 (2010).

[48] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[49] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. London A 392, 45 (1984).

[50] R. Jackiw and C. Rebbi, Solitons with fermion number 1/2,
Phys. Rev. D 13, 3398 (1976).

[51] R. Jackiw, Fractional and Majorana fermions: the physics of
zero-energy modes, Phys. Scr. 2012, 014005 (2012).

[52] M. Scollon and M. P. Kennett, Persistence of chirality in the
Su-Schrieffer-Heeger model in the presence of on-site disorder,
Phys. Rev. B 101, 144204 (2020).

[53] R. E. J. Allen, H. V. Gibbons, A. M. Sherlock, H. R. M.

Stanfield, and E. McCann, Nonsymmorphic chiral symmetry

and solitons in the Rice-Mele model, Phys. Rev. B 106, 165409

(2022).

L. Rossi, F. Rossi, and F. Dolcini, Real-space effects of a

quench in the Su-Schrieffer-Heeger model and elusive dynami-

cal appearance of the topological edge states, New J. Phys. 24,

013011 (2022).

Z. Fedorova (Cherpakova), C. Jorg, C. Dauer, F. Letscher,

M. Fleischhauer, S. Eggert, S. Linden, and G. von Freymann,

Limits of topological protection under local periodic driving,

Light Sci. Appl. 8, 63 (2019).

[56] D. Leykam and Y. D. Chong, Edge Solitons in Nonlinear-
Photonic Topological Insulators, Phys. Rev. Lett. 117, 143901
(2016).

[57] M. A. Gorlach, and A. P. Slobozhanyuk, Nonlinear topologi-
cal states in the Su-Schrieffer-Heeger model, Nanosyst. Phys.
Chem. Math. 8, 695 (2017).

[58] M. Guo, S. Xia, N. Wang, D. Song, Z. Chen, and J. Yang,
Weakly nonlinear topological gap solitons in Su-Schrieffer-
Heeger photonic lattices, Opt. Lett. 45, 6466 (2020).

[59] Y.-P. Ma and H. Susanto, Topological edge solitons and their
stability in a nonlinear Su-Schrieffer-Heeger model, Phys. Rev.
E 104, 054206 (2021).

[60] A. B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, and
K. S. Novoselov, Determination of the gate-tunable band gap
and tight-binding parameters in bilayer graphene using infrared
spectroscopy, Phys. Rev. B 80, 165406 (2009).

[61] C. Bao, W. Yao, E. Wang, C. Chen, J. Avila, M. C. Asensio,
and S. Zhou, Stacking-Dependent electronic structure of trilayer
graphene resolved by nanospot angle-resolved photoemission
spectroscopy, Nano Lett. 17, 1564 (2017).

[62] J. D. Bernal, The structure of graphite, Proc. R. Soc. London A
106, 749 (1924).

[63] C. H. Ho, C. P. Chang, W. P. Su, and M. F. Lin, Precessing
anisotropic Dirac cone and Landau subbands along a nodal
spiral, New J. Phys. 15, 053032 (2013).

[64] A. Garcia-Ruiz, S. Slizovskiy, and V. I. Fal’ko, Flat bands for
electrons in rhombohedral graphene multilayers with a twin
boundary, Adv. Mater. Inter. 10, 2202221 (2023).

[54

—

[55

—

[65] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
Topological insulators and superconductors: tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[66] S. Ganeshan, K. Sun, and S. Das Sarma, Topological Zero-
Energy Modes in Gapless Commensurate Aubry-André-Harper
Models, Phys. Rev. Lett. 110, 180403 (2013).

[67] M. Inui, S. A. Trugman, and E. Abrahams, Unusual proper-
ties of midband states in systems with off-diagonal disorder,
Phys. Rev. B 49, 3190 (1994).

[68] M. Bellec, C. Poli, U. Kuhl, F. Mortessagne, and H.
Schomerus, Observation of supersymmetric pseudo-Landau
levels in strained microwave graphene, Light Sci. Appl. 9, 146
(2020).

[69] C. Faugeras, M. Amado, P. Kossacki, M. Orlita, M. Sprinkle, C.
Berger, W. A. de Heer, and M. Potemski, Tuning the Electron-
Phonon Coupling in Multilayer Graphene with Magnetic Fields,
Phys. Rev. Lett. 103, 186803 (2009).

[70] J. Yan, S. Goler, T. D. Rhone, M. Han, R. He, P. Kim, V.
Pellegrini, and A. Pinczuk, Observation of Magnetophonon
Resonance of Dirac Fermions in Graphite, Phys. Rev. Lett. 105,
227401 (2010).

[71] C. Faugeras, M. Amado, P. Kossacki, M. Orlita, M. Kiihne,
A. A. L. Nicolet, Yu. I. Latyshev, and M. Potemski, Magneto-
Raman Scattering of Graphene on Graphite: Electronic and
Phonon Excitations, Phys. Rev. Lett. 107, 036807 (2011).

[72] M. Kiihne, C. Faugeras, P. Kossacki, A. A. L. Nicolet, M.
Orlita, Yu. I. Latyshev, and M. Potemski, Polarization-resolved
magneto-Raman scattering of graphenelike domains on natural
graphite, Phys. Rev. B 85, 195406 (2012).

[73] S. Goler, J. Yan, V. Pellegrini, and A. Pinczuk, Raman
spectroscopy of magneto-phonon resonances in graphene and
graphite, Solid State Commun. 152, 1289 (2012).

[74] C. Qiu, X. Shen, B. Cao, C. Cong, R. Saito, J. Yu, M. S.
Dresselhaus, and T. Yu, Strong magnetophonon resonance in-
duced triple G-mode splitting in graphene on graphite probed by
micromagneto Raman spectroscopy, Phys. Rev. B 88, 165407
(2013).

[75] FE. Chiappini, S. Wiedmann, M. Titov, A. K. Geim, R. V.
Gorbachev, E. Khestanova, A. Mishchenko, K. S. Novoselov,
J. C. Maan, and U. Zeitler, Magnetotransport in single-layer
graphene in a large parallel magnetic field, Phys. Rev. B 94,
085302 (2016).

[76] J. Yin, S. Slizovskiy, Y. Cao, S. Hu, Y. Yang, I. Lobanova,
B. A. Piot, S.-K. Son, S. Ozdemir, T. Taniguchi, K. Watanabe,
K. S. Novoselov, F. Guinea, A. K. Geim, V. Fal’ko, and A.
Mishchenko, Dimensional reduction, quantum Hall effect and
layer parity in graphite films, Nat. Phys. 15, 437 (2019).

[77] C. Mullan, S. Slizovskiy, J. Yin, Z. Wang, Q. Yang, S. Xu,
Y. Yang, B. A. Piot, S. Hu, T. Taniguchi, K. Watanabe, K. S.
Novoselov, A. K. Geim, V. I. Fal’ko, and A. Mishchenko,
Mixing of moiré-surface and bulk states in graphite, Nature
(London) 620, 756 (2023).

[78] E. V. Kurganova, H. J. van Elferen, A. McCollam, L. A.
Ponomarenko, K. S. Novoselov, A. Veligura, B. J. van Wees,
J. C. Maan, and U. Zeitler, Spin splitting in graphene studied
by means of tilted magnetic-field experiments, Phys. Rev. B 84,
121407(R) (2011).

[79] https://doi.org/10.17635/1ancaster/researchdata/614.

115425-11


https://doi.org/10.1103/PhysRevB.78.045430
https://doi.org/10.1140/epjb/e2010-00259-2
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevD.13.3398
https://doi.org/10.1088/0031-8949/2012/T146/014005
https://doi.org/10.1103/PhysRevB.101.144204
https://doi.org/10.1103/PhysRevB.106.165409
https://doi.org/10.1088/1367-2630/ac3cf6
https://doi.org/10.1038/s41377-019-0172-8
https://doi.org/10.1103/PhysRevLett.117.143901
https://doi.org/10.1364/OL.411102
https://doi.org/10.1103/PhysRevE.104.054206
https://doi.org/10.1103/PhysRevB.80.165406
https://doi.org/10.1021/acs.nanolett.6b04698
https://doi.org/10.1098/rspa.1924.0101
https://doi.org/10.1088/1367-2630/15/5/053032
https://doi.org/10.1002/admi.202202221
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevLett.110.180403
https://doi.org/10.1103/PhysRevB.49.3190
https://doi.org/10.1038/s41377-020-00351-2
https://doi.org/10.1103/PhysRevLett.103.186803
https://doi.org/10.1103/PhysRevLett.105.227401
https://doi.org/10.1103/PhysRevLett.107.036807
https://doi.org/10.1103/PhysRevB.85.195406
https://doi.org/10.1016/j.ssc.2012.04.020
https://doi.org/10.1103/PhysRevB.88.165407
https://doi.org/10.1103/PhysRevB.94.085302
https://doi.org/10.1038/s41567-019-0427-6
https://doi.org/10.1038/s41586-023-06264-5
https://doi.org/10.1103/PhysRevB.84.121407
https://doi.org/10.17635/lancaster/researchdata/614

