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Abstract

We propose a new strategy for mean-variance portfolio selection that tackles transac-

tion costs and change detection in covariance matrix simultaneously. The new strategy solely

rebalances the portfolio when change points are detected in the covariance matrix, striking an

optimal trade-off between rebalancing the portfolio to capturing the recent information in re-

turn data and avoiding excessive trading. Our empirical results suggest favorable out-of-sample

performance of the new strategy in terms of portfolio variance, portfolio turnovers and portfolio

sharpe ratio with transaction cost. We also show that these gains come from the improved

accuracy for covariance matrix prediction and the ability for tracking significant changes in

covariance matrix.
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I. Introduction

We motivate our study from a mean-variance investor perspective, who adjusts their

allocation based on changes in the estimated conditional covariance matrix of returns. The pur-

pose of these portfolio strategies is to overcome the challenge that changing market conditions

present to traditional static asset allocation, and hence requires investors to actively adjust

portfolio weights based on sample information of the volatility dynamics. However, the pres-

ence of transaction costs makes otherwise optimal portfolio rebalancing costly, outweighing the

benefit of tracking changes in volatility. This presented investors with a dilemma: how should

we construct the portfolio in the presence of both transaction costs and structural changes in

volatility? To address this issue, we propose a new portfolio strategy that can detect significant

changes (or structural breaks) in the asset return covariance matrix even in a large dimension,

and thereby rebalances portfolios solely when a change point has been detected in the covariance

matrix. We examine the empirical performance of the new strategy through comparing it with

other alternatives, and document that our new strategy simultaneously lowers portfolio risk

exposure and turnovers, largely improving portfolio out-of-sample sharpe ratio with transaction

costs. These results suggest that investors can benefit from change detection in covariance ma-

trix when facing up both transaction costs and structural breaks in volatilities. To link with

existing literatures, we offer two alternative interpretations to the new strategy from Bayesian

portfolio choice and portfolio choice under turnover penalization perspectives.

To mitigate the impact of transaction cost in portfolio allocation, there is a large number

of existing studies in the literature. For example, the strategy discussed in Gârlranu and

Pedersen (2013) and Gârlranu and Pedersen (2016) suggest that investors should trade only

partially toward the desired position, e.g. trading only 15% toward the zero-cost optimal targets

each day. Another available strategy (Kirby and Ostdiek 2012) allows the sensitivity of portfolio

weights to volatility changes to be adjusted via a tuning parameter, and thus, the portfolio

turnover can be controlled to a desired low level. These strategies successfully control over

portfolio turnovers through reducing trading frequency, but a common drawback here is the use

of a constant trading reduction rate over time which ignores the time-varying trade-off between

portfolio risk reduction and the increase of transaction costs. Intuitively, when the asset return

volatility evolves smoothly, such as what we have seen during the market calm periods, using a

large reduction rate for trading can be appropriate as it can remarkably reduce the transaction
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cost but without increasing portfolio risk exposure too much. Conversely, in more turbulent

periods, the same level of trading reduction rate may not be appropriate as the portfolio weights

need to be adjusted faster to adapt with the significantly changed market conditions. Therefore,

to better strike the time-varying trade-off between portfolio risk and transaction cost, we need

a mechanism to locally detect significant variations in asset return covariance matrix, and then

suggest investors when significant updates on portfolio weights are needed.

So far, the canonical approach to assessing time variations in asset return volatility is to

use a rolling window estimation (see DeMiguel et al. 2009b,a, Kirby and Ostdiek 2012, Kourtis

et al. 2012, Goto and Xu 2015, for example). This analysis involves recursively estimating

sample covariance matrix of the asset returns by re-weighting new observations according to

the rolling window. Subsequently, analysis can be performed directly on the covariance matrix

estimate to infer the dependence structure of asset returns when new observations arise. While

rolling windows are a valuable tool for investigating dynamic changes, there are two main issues

associated with its use. Firstly, the choice of window length can be a difficult parameter to tune.

It is advisable to set the window length to be large enough to allow for a robust estimation but

without making it too large, which can result in overlooking short-term fluctuations. Secondly,

the rolling window faces the potential issue of variability between temporally adjacent estimates.

This arises as a direct consequence of the fact that each covariance matrix across the rolling

windows is estimated independently without any mechanism present to encourage temporal

homogeneity. This additional variability can jeopardise the accuracy of the estimation as well

as hugely increase turnovers in the context of portfolio allocation.

To address these issues, we propose a regularized rolling window (RRW) approach that

regularizes the standard rolling window estimation using a penalty term that assists exploiting

the temporal similarity between consecutive window estimates, resulting in a piecewise con-

stant estimate. Specifically, our approach estimates the covariance matrix using traditional

quasi-maximum likelihood but with an additional constraint to shrink the difference between

contemporaneous and lagged estimates. With the constraint, the overall size of element-wise

differences between the consecutive covariance matrix estimates are penalized, producing two-

fold estimation effects: (i) the time variation of any element of the covariance matrix (e.g. the

(i, j)th entry) is set to be zero if the sample variation is below than a constraint whose strength

relates to a turning parameter defined in the RRW optimisation problem; (ii) the time varia-
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tion of any element of the covariance matrix is decreased toward zero by the magnitude of the

threshold when the sample variation is above the threshold. As such, the penalty term leads the

covariance matrix estimate to achieve both shrinkage and sparsity in time variations, eliminat-

ing unnecessary evolutions embedded in the standard rolling window analysis. The motivation

of our RRW approach is similar to recent advances in machine learning and statistics on spar-

sity pursuit in time-varying regression parameters: the “fused lasso” estimator of Tibshirani

et al. (2005) that operates in a linear (least-squares) regression setting and acts to shrink the

insignificant changes in consecutive parameter estimates towards zero. We extend the idea to a

multivariate setting, and employ the matrix version of “fused lasso”, that is, “graphical fused

lasso” algorithm of Gibberd and Nelson (2017) to solve the estimation problem.

Next, we apply our new covariance matrix estimate to mean-variance portfolio decision

making to develop a new portfolio allocation strategy. Under our approach, the portfolios are

re-balanced monthly based solely on the significant changes detected in the covariance matrix.

Otherwise, the portfolio remains as what it was in the last period. We control the sensitivity of

change detection in covariance matrix via a tuning parameter, and the tuning parameter can be

hence treated as a measure of change detection aggressiveness and allows us to keep the turnover

of the proposed strategies to a level competitive with other existed strategies, e.g. 1/N naive

diversification. To link with existing literatures, we offer two alternative interpretations for the

new strategy from both Bayesian portfolio choice and portfolio choice with turnover penalization

perspectives. A recent study of Hautsch and Voigt (2019) established a link between turnover

penalization and covariance shrinkage in portfolio allocation. We show that a zero-cost mean-

variance portfolio formed using our new covariance matrix estimator is equivalent to a sample

mean-variance portfolio achieved through using a turnover penalization, where (i) the turnover is

measured by a weighted quadratic transaction cost, and (ii) the weights on transaction costs are

determined by a term measuring the difference between the standard and our regularized rolling

window based covariance matrix estimates. A large difference between the standard and our

regularized rolling sample estimates implies that the real covariance structure is relatively stable

so that the regularization removes hugely the unnecessary evolutions generated by the standard

rolling window analysis. Regularizing the weighted transaction costs, therefore, ensures that

the strength of penalization on portfolio turnover is time-varying, depending on the magnitude

of time variation in covariance matrix. To the best of our knowledge, the time varying turnover
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penalization is novel in the literature, as previous studies (e.g. DeMiguel et al. 2009b, DeMiguel

and Olivares-Nadal 2018, Engle et al. 2012) usually adopted a constant tuning parameter to

control the level of penalization on portfolio turnovers. Turning to the Bayesian interpretation,

we know Bayesian investors often employ useful prior information about quantities of interest.

We show that the covariance matrix estimate from our RRW approach can be interpreted as

being the maximum a-posteriori (MAP) Bayesian estimate associated with Gaussian likelihood

for asset returns and a Laplace prior on the time change of the inverse covariance matrix. The

resulting portfolios are hence a Bayesian portfolio formed by the investors who have a prior

belief on the changes of covariance matrix, and where they construct a portfolio that maximizes

the posterior distribution of the change in the covariance matrix.

Lastly, we investigate the economic value of our new portfolio allocation strategy using

a range of real data sets. We evaluate the out-of-sample empirical gains associated with invest-

ing in mean-variance portfolios using our new covariance matrix estimate, where the portfolio

expected returns are measured using the sample estimate which is a constant. Therefore, the

portfolio weights mainly focus on our estimation on the structure of covariance matrix. We find

that the new strategy outperforms a set of commonly used mean-variance portfolio alternatives,

including the standard rolling sample strategy where the covariance matrix is measured by the

rolling sample estimate, the 1/N naive diversification strategy, the portfolio optimization with

covariance matrix forecasts from dynamic models, e.g., Exponential weighted moving average

(EWMA) model, and several recently developed new covariance matrix estimator and port-

folio optimization techniques, i.e., the linear shrinkage estimator by Ledoit and Wolf (2003),

the nonlinear shrinkage estimator by Ledoit and Wolf (2017), and the mean-variance portfolio

optimization technique suggested by Ao et al. (2018), in terms of both out-of-sample portfolio

risk and turnover control. More importantly, the new strategy earns significantly larger sharpe

ratio with considering transaction cost. We further provide additional insights into the gains

generated by our new strategy, and attribute the gains to the improved covariance matrix es-

timation accuracy as well as the better timing ability in significant changes of the covariance

matrix.

We make a methodological contribution and an empirical contribution. From a method-

ological perspective, our RRW approach relates to a burgeoning literature on estimating covari-

ance matrix using the shrinkage technique developed in statistics and machine learning fields.
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The idea behind is to shrink an unbiased estimator towards a lower variance (or more stable)

target so that the shrunk estimator can strike a balance between mis-specification biases and

estimation risk. These existing shrinkage estimators, so far, mainly focus on addressing the

static single-period estimation problem, e.g. the “sparse” estimator of Goto and Xu (2015)

that shrinks the off-diagonal elements of the (inverse) covariance matrix towards zero and thus

reduces the cross-sectional dimension (or the number) of assets in the portfolio selection. The

estimators of Ledoit and Wolf (2003) and Chan et al. (1999) shrink the sample covariance

matrix towards a more parsimonious target matrix, such as a constant correlation matrix or

a covariance matrix with industry factor structure. Our RRW estimator extends the shrink-

age idea to a dynamic setting, casting attention on the time change of the covariance matrix.

The improved covariance matrix estimator is hence particular conducive to dynamic portfolio

selection. In addition, our approach also links with the literature on estimating the dynamic

covariance matrix. The aforementioned EWMA model is the most parsimonious dynamic model

for covariance matrix, and the recent two studies (Engle et al. 2019, Kastner 2019) have rich

this literature on large dynamic covariance matrix estimation. Compared with the dynamic

models where the covariance matrix is continuously changing over time, our approach imposes

sparsity on the time variation to reduce random variation in the estimates, and this proper-

ty is particularly favorable for reducing transaction costs in the portfolio allocation. From an

empirical perspective, our study links with the work of Fleming et al. (2001), Fleming et al.

(2003) and Moreira and Muir (2017) who study portfolio allocation in the context of a short-

term mean-variance investor. We go well beyond the results in these papers by focusing on

discrete significant changes in covariance matrix, rather than continuous small changes. From

portfolio allocation perspective, large change detection in covariance matrix has two advantages

over the use of continuous dynamic models. First, the detected change points in covariance

matrix enables investors to assess when significant updates to portfolio weights are required,

allowing them to avoid excessive trading and the associated large transaction costs. Second,

change detection can better reflect structural breaks in covariance matrix, improving investors

extreme-market-timing ability.

The rest of the paper is organized as follows. Section 2 provides a small simulation study

to address the motivation of our new RRW method. Section 3 introduces the RRW method for

change detection in conditional covariance matrix and provides discussion on several empirical
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implementation issues. Section 4 develops our new volatility timing strategy using the RRW

covariance matrix estimator and offers two alternative interpretations on the new strategy.

Section 5 describes the data and presents the empirical analysis results. Section 6 examines the

robustness of our results. Section 7 concludes.

II. Econometric Methodology

A. The Regularised Rolling Window Approach

We start with the standard rolling window approach, where the covariance matrix at

each time t is estimated by minimizing a loss function (or negative log-likelihood) with return

observations from the time window [t− 1−h, t− 1], where h is the window length. Specifically,

we consider

Σ̂−1
t := arg min

Σ−1
t

[
l(Σ−1

t )
]
.

with the loss

l(Σ−1
t ) := − log det(Σ−1

t ) + trace(ŜtΣ
−1
t ) . (1)

where Ŝt and Σ−1
t denote the sample and our estimate of the covariance matrix, respectively.

Thus, the time-varying covariance matrix through each time point are estimated recursively by

including new observations according to the rolling window. Clearly, with the rolling window

analysis, the covariance matrix is estimated independently across estimation windows without

any mechanism present to encourage temporal similarity. A potential issue arises that the

estimates for two adjacent time points might be largely different due to estimation errors which

contradicts with the reality especially when the market is relatively stable. Additionally, the

extra variability caused by the independent estimation across rolling windows can potentially

mask significant changes in covariance matrix.

To address these empirical features, we propose to minimize a penalized loss function

which contains the negative log-likelihood as shown in Equation 1 and an additional penalty

term that regularizes the difference between the contemporaneous and the lagged estimates

produced by previous estimation window:

l(Σ−1
t ) = − log det(Σ−1

t ) + trace(ŜtΣ
−1
t ) + λ‖Σ−1

t − Σ̂−1
t−1‖1 , (2)

where Σ̂−1
t is the lagged estimate from the previous estimation window, and the `1 norm, defined
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Figure 1: A graphical comparison between the standard and regularized ”rolling
window” approach. The top panel shows the estimation procedure of standard rolling window
approach and the bottom panel shows the estimation procedure of the regularized rolling window
approach.

as

‖Σ−1
t − Σ−1

t−1‖1 :=
∑
i,j

|Σ−1
ij,t − Σ−1

ij,t−1| ,

measuring the difference between the current and lagged inverse covariance matrix estimates

(that is, the sum of the absolute values of edgewise differences between the two estimates.). The

λ is a tuning parameter that controls the degree of regularization on the difference, becoming

a soft threshold.

Clearly, the new approach nests the standard rolling window estimation as a special case

when the regularization parameter (λ) is equal to zero. Figure 1 gives a graphical interpreta-

tion about the relation between our RRW approach and the standard rolling window analysis.

The regularization term, λ‖Σ−1
t − Σ̂−1

t−1‖1, restricts the difference between the current inverse

covariance matrix Σ−1
t and the estimate of previous period Σ̂−1

t−1. For off-diagonal entries, if

the consecutive difference in the inverse-covariance is below a pre-determined threshold, e.g.

related to the size of λ, we set the difference to be zero, when the difference is above the thresh-

old we shrink the difference towards zero. As such, the regularization achieves both sparsity

and shrinkage in time variations of the covariance matrix estimation, encouraging a temporally

stable (or piecewise constant) estimator which has capacity to reflect big changes in the matrix
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at element level, but is less sensitive to small ones.

B. Empirical Implementation

We next discuss several empirical issues related to the implementation of the RRW ap-

proach. Firstly, we consider the problem of solving Equation 2. Due to the structure of the

penalty terms, this loss function is convex, however, because of the `1 norm it is not contin-

uously differentiable. In this context, traditional optimization algorithms used for maximum

likelihood estimation, or generalized method of moments, etc., cannot be adopted without fur-

ther modifications. Instead, we employ the popular alternating directions method of multipliers

(ADMM) algorithm (Boyd et al. 2010) to solve the optimisation problem. The ADMM method

is a form of augmented Lagrangian algorithm that is particularly well suited to addressing the

highly structured nature of problems such as the one proposed here, for instance Danaher et al.

(2013), Gibberd and Nelson (2017) also use this approach for fused estimation of inverse covari-

ance matrices. We provide more detail on the estimation procedure using the ADMM algorithm

in Appendix A.

The second major challenge when implementing the RRW approach relates to the selec-

tion of the regularisation parameter λ. In this paper, we employ a heuristic parameter-tuning

technique inspired by the Akaike information criterion (AIC). We define the AIC for each win-

dow t = 1, . . . T as

AICt(λ) = − log det(Σ̂−1
t ) + trace(ŜtΣ̂

−1
t ) +Kt, (3)

where Kt is an estimate of the “degrees of freedom”. In practice, we use the first T = 120

months as a training period (with window width M = 60) and use it to search for the value

of λ that minimizes the average, (T −M)−1
∑T

t=M AICt(λ). Following this training period, we

adhere to this choice throughout the out-of-sample testing period1.

III. The Portfolio Problem

In this section, we use the RRW based covariance matrix estimates to develop a new

volatility timing strategy. To better understand the motivation of the new strategy, we offer two

alternative interpretations from the portfolio choice with turnover penalization and the Bayesian

1Goto and Xu (2015) stated that dynamic selection of the regulariser may improve the performance, but
they did not adopt this approach due to the intensive computation burden associated with it. We refer to their
statement here to justify our choice.
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portfolio choice perspectives. We conclude the section by introducing several commonly used

mean-variance strategies and performance metrics which we will use to evaluate RRW portfolios.

A. Global Minimum Variance Portfolio

To develop our mean-variance portfolio strategies, we consider a risk-averse investor

who allocates wealth across N risky assets plus a riskless asset, e.g. cash. The investor uses

conditional mean-variance analysis to make his allocation decisions and re-balances his portfolio

monthly. Let Rt+1, µ = E[Rt+1], and Σt = Et[(Rt+1 − µ)(Rt+1 − µ)′] denote an N × 1 vector

of risky asset returns, the expected value of Rt+1, and the conditional covariance matrix of

Rt+1. For each date t, to minimize conditional volatility subject to a given expected return, the

investor solves the following quadratic program:

wt+1 := min
w

[w>Σtw] (4)

s.t. µp = w>µ+ (1− w>1)rfree,

where w is an N × 1 vector of portfolio weights on the risky assets, rfree is the return on the

riskless asset, and µp is the target expected return. The solution to this optimization problem

is given by:

wt+1 =
µpΣ

−1
t µ

µ>Σ−1
t µ

, (5)

where w delivers the risky asset weights, and the weight on the riskless asset is 1− w>1.

The trading strategy implicit in Equation 5 identifies the dynamically re-balanced port-

folio that has a global minimum variance (GMV). We follow Ledoit and Wolf (2017) to estimate

the GMV portfolio, because it is a clean problem in terms of evaluating the quality of a covari-

ance matrix estimator, since it abstracts from having to estimate the vector of expected returns

at the same time.

B. A Transaction Cost Interpretation of RRW

In Hautsch and Voigt (2019), a link between turnover penalization and covariance shrink-

age in portfolio allocation is investigated. Specifically, they show that the optimization problem

with quadratic transaction costs can be interpreted as a classical mean-variance problem with-

out transaction costs, however, where the covariance matrix is regularized towards the identity

matrix. Following this line of interpretation, we show that how optimal MV portfolio achieved
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using our RRW based covariance matrix estimate without transaction costs links with MV

portfolio optimization problem with a time-varying quadratic transaction costs, where the time

dependence is determined by the difference between our regularized and the sample covariance

matrix.

Proposition 1. RRW Equivalence to Transaction Cost Penalisation

In the case of our RRW approach, the resulting covariance matrix is derived from the

following optimization problem:

Σ̂t,RRW := arg max
Σt

[
log det(Σt)− tr(Σ−1

t−1,Σt − Ŝt)
]
. (6)

s.t. ‖Σt − Ŝt‖∞ ≤ λ

where ‖X‖∞ := maxij |Xij | is the dual norm of ‖X‖1. Thus, the RRW covariance matrix

estimator Σ̂t,RRW can be expressed associated with the sample covariance estimator plus some

difference, i.e. Ŝt as Σ̂t,RRW = Ŝt +λ∆t, where ∆t := (Σ̂t,RRW − Ŝt)/λ. The proof of the above

is given in the Appendix B and follows from basic duality properties of the RRW optimization

problem. Plugging the RRW estimator into the standard mean-variance portfolio optimization,

the portfolio allocation w∗t+1 can then be stated as

w∗t+1 = arg min
w

[
w>Σ̂t,RRWw − w>µ

]
(7)

= arg max
w

[
w>µ∗ − w>Ŝtw − λ(w − w+

t )>∆t(w − w+
t )
]
,

where

µ?t = µ− 2∆tw
+
t ,

and the weights are normalized such that w>1 = 1.

Intuitively, our RRW estimator regularizes the sample estimator Ŝt through an addition-

al matrix ∆t, with λ serving as shrinkage parameter. Note that the regularization effect of RRW

estimator exhibits some similarity to the implications of the shrinkage approach proposed by

Ledoit and Wolf (2003), but the RRW approach replaces the identity matrix in the Ledoit and

Wolf estimator with ∆t which is time-varying. The resulting zero-cost mean-variance portfolio

using our RRW estimator is thus equivalent to a portfolio formed with a time-varying penalty
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on transaction cost. Figure 2 provides an example of time evolution of λ∆t
2 and highlights re-

cession periods according to the NBER business cycle classification in grey. Clearly, in contrast

with the constant identity matrix, the figure shows the ∆t changes over time and peaks at the

recession periods.

To further illustrate the effect of time-varying transaction cost penalty on portfolio

optimization, Figure. 3 plots the surface of mean-variance optimization function over time with

both our time-varying and traditional constant quadratic transaction cost penalty. The optimal

solution for first asset allocation (that is, w1) is also provided in the lower panel of the figure.

The NBER defined recession periods are also highlighted in grey. We observe that the function

surface under the time-varying transaction cost penalty (top left panel) exhibits much more

stable than the one using constant penalty (top right panel) in most of time without losing

capacity to reflect abrupt changes of market conditions during recession periods, such as the

observed spikes in the function surface during 2008 crisis period. These findings are further

corroborated by the time series plot of w1 in the lower panel of the figure. Taken together,

the time-varying transaction cost penalty resulting from our RRW covariance matrix estimator

helps to impose a market-condition-dependent regularization on the transaction cost, assisting

investors to achieve better marketing timing and better balance between portfolio risk exposure

and turnovers.

C. Bayesian Portfolio Interpretation

Kyung et al. (2010) and Wang (2012) respectively give Bayesian interpretations for

regularised regression via the lasso (Tibshirani 1996) and the graphical lasso (Friedman et al.

2008). Since these estimators are closely aligned with the RRW optimisation problem we can

follow their line of reasoning to give a Bayesian interpretation for our RRW covariance matrix

estimator as well as the resulting portfolios.

Assumption 1. We start with the assumption that future stock returns are independently nor-

mally distributed according the previously estimated covariance, i.e.

rt+1 ∼ N (0,Σt) , (8)

2To generate the examples in Figures. 2 and 3, we construct a two-asset portfolio using two randomly selected
assets from the Fama-French 48 Industry portfolio dataset. We consider both the max and min elements of the
matrix ∆t to illustrate its time evolution in Figure 2
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and rt+1 ⊥ rt, i.e. there is no auto-correlation structure in returns.

Assumption 2. In order to understand the RRW estimator, we now make a further assump-

tion, and put ourselves in the shoes of an investor who has a prior belief that the inverse covari-

ance may change in a sparse manner over time, i.e. changes will not be at every time-step, but

occur rarely. Specifically, we will assume that the temporal variation of the inverse-covariance

follows a Laplace (double exponential) distribution:

p(Θt+1 − Θ̂t|ρ) = Z−1
∏
i<j

{
fDE(Θt;ij − Θ̂t−1;ij |ρ)

}
×

N∏
i=1

{
fExp(Θt+1;ii − Θ̂t;ii|ρ/2)

}
1Θt�0 ,

where fDE(x|ρ) = (ρ/2) exp(−ρ|x|) has the form of the double exponential density, fExp(x|ρ) =

ρ exp(−ρx)1x>0 has the form of the exponential density, and Z is a normalising constant. The

notation 1Θ�0 is used to denote the indicator function, in this case for the space of positive

definite matrices for Θt.

Proposition 2. Given that assumptions 1 and 2 hold, and we further assume Σt = Σ̂t in Equa-

tion 8, then one can interpret the RRW estimator (minimiser of Eq.2) as being the maximum-

a-posteriori (MAP) estimate for the inverse covariance at time t+ 1. Specifically, assume that

investor believes the temporal variation of inverse covariance matrix has a prior distribution as

above, there exists a threshold parameter ρ such that our RRW estimator is the mode of the

posterior distribution of Θt.

Now it is clear that under our framework, choosing the portfolio that maximizes the

posterior distribution of the change of (inverse) covariance matrix guarantees that the investor

is choosing the portfolio with the highest probability of being the MV portfolio given the in-

vestors prior distribution on the temporal change of the (inverse) covariance matrix and the

observed asset-return data. In other words, in our setting, the investor chooses the portfolio

that maximizes the posterior probability (i.e. the posterior mode) of the change of (inverse)

covariance matrix. This interpretation is a bit different from the traditional Bayesian portfolio

choice literature in which the investor either chooses the portfolio that maximizes expected util-

ity with respect to the posterior distribution of stock returns (for instance, Jorion 1986) or the

portfolio that maximizes the posterior distribution of portfolio weights directly (see DeMiguel

et al. 2009a, Tu and Zhou 2010). In our framework the investor has a prior belief on the change

of (inverse) covariance matrix rather than on the asset-return distribution or on the portfolio
12



weights. Consequently, while the Bayesian investor in the traditional setting chooses the port-

folio that maximizes expected utility with respect to the posterior distribution of asset returns,

or chooses the portfolio that maximizes portfolio weights with respect to the posterior distri-

bution of portfolio weights, in our setting the investor chooses the portfolio that maximizes the

posterior distribution of the (inverse) covariance matrix changes.

D. Performance Evaluation Metrics

To measure the economic value of our new approach, we compare its performance with

several competing GMV strategies using a series of performance evaluation metrics. We firstly

compare the GMV strategies constructed using different covariance matrix estimator. There are

mainly two broad avenues for estimating a covariance matrix: structure-based and structure-

free estimation. We start with other structure-free estimation, including the standard rolling

window covariance estimator, and thus, the corresponding GMV portfolio refers to as GMVsample

(Chan et al. 1999, DeMiguel et al. 2009b,a, Kirby and Ostdiek 2012, Kourtis et al. 2012, Goto

and Xu 2015). To further reduce the estimation error of the sample covariance matrix, we

use the shrunk version of the sample covariance estimator (Ledoit and Wolf 2003) that shrinks

the sample estimate towards an identity matrix, where the corresponding GMV portfolio is

denoted as GMVLin. A more advanced nonlinear covariance shrinkage estimator (Ledoit and

Wolf 2017) was also considered for comparison, where the constructed GMV portfolio denoted by

GMVNonLin. In addition, we include a robust covariance estimator, the Minimum Covariance

Determinant (Rousseeuw 1984), and the constructed GMV portfolio refers to as GMVrobust.

Counterparts for the RRW approach can be generated by using the shrunk sample estimator for

Ŝt in Equation 1. The resulting GMV portfolio is defined as GMVRRW. Secondly, we consider

GMV portfolio strategies using structure-based covariance estimation. We start with the GMV

portfolios using covariance forecasts from dynamic models, e.g. the Exponentially Weighted

Moving Average (EWMA) model (Zakamulin 2015), denoted by GMVEWMA. This method

of estimating the covariance matrix is popularized by the RiskMetrics group, and Zakamulin

(2015) also find that the simple EWMA covariance matrix forecast performs comparably with

the multivariate GARCH forecast. In this approach, the exponentially weighted covariance

matrix is estimated using the following recursive form:

ŜEWMA
t = (1− λEWMA)εt−1ε

>
t−1 + λEWMAŜ

EWMA
t−1 , (9)
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where 0 < λEWMA < 1 is the decay constant, and εt−1 is the return residual. We follow

the recommendations of the RiskMetrics group and estimate the EWMA covariance-matrix

using λEWMA = 0.97. This comparison is of particular useful for examining whether investors

benefit from sparse rather than continuous time variation assumption on covariance matrix3.

Thirdly, we consider the näıve 1/N strategy, denoted by GMVequal. The näıve 1/N strategy

demonstrates favorable out-of-sample performance and has been found very hard to beat in

practice, especially in the presence of high transaction costs. We use it as a benchmark in

order to examine the ability of our new approach in terms of controlling transaction costs. In

addition, we consider an alternative mean-variance portfolio optimization techniques suggested

by Ao et al. (2018) that relies on a novel unconstrained regression representation of the mean-

variance optimization problem combined with high-dimensional sparse-regression methods. The

resulting GMV portfolio is denoted as GMVSparreg.

Next, we evaluate portfolio out-of-sample performance from several perspective. First,

we test out-of-sample performance in terms of risk exposure and turnovers. The portfolio

risk exposure is measured by the variance of out-of-sample portfolio returns, and the portfolio

turnovers are measured by

Turnover =
1

T

T∑
t=1

N∑
i=1

(|ŵi,t+1 − ŵi,t+ |), (10)

where ŵi,t+1 and ŵi,t are the desired portfolio weights in asset i at time t and t + 1, after

rebalancing, and ŵi,t+ is the portfolio weight before rebalancing at t+1. The turnover quantity

defined can be interpreted as the average percentage of wealth traded in each period. Lastly,

we assess whether our new strategy has economic gain. We lastly calculate the Sharpe ratio

after deducting transaction costs. We first take transaction costs into account and compute

the returns net of transaction costs. Following Robert et al. (2012), we compute the portfolio

return net of transaction costs in each period as follows:

rnet,t = (1−
∑
i

ct,i|wi,t+1 − wi,t+ |)(1 + rt)− 1, (11)

3We also use a covariance estimator proposed by Foster and Nelson (1996) that was used in the paper by
Fleming et al. (2001). This estimator is a weighted rolling average of the squares and cross products of past
re-turn innovations that nests most ARCH, GARCH, and stochastic volatility models as special cases. We follow
Fleming et al. (2001) to determine the weights through minimizing the asymptotic mean squared error (MSE) of
the estimator. We do not report the corresponding GMV portfolio here, as the portfolio performs closely to the
GMVEWMA and the results are available upon request.
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where ct,i is a cost level that measures the transaction cost per dollar traded for trading asset

i, and rt is the portfolio return without transaction cost in period t. For the cost level ct,i, we

follow Robert et al. (2012) to set ct,i to decrease linearly from 0.6% to 0.1% during the period

1967 to 1990, and set it to be a constant 0.1% from 1991 to 2017. The Sharpe ratio after

deducting transaction cost is thus defined as

ˆSRt = (r̂net,t − rfree)
/
σ̂net,t , (12)

where ˆσnet,t is the standard deviation of portfolio return net of transaction cost over the out-

of-sample testing period.

IV. Empirical Analysis

A. Data

We employ two data sets: one from Ken French’s Web site for portfolio investing analysis,

including the returns on 25 value-weighted portfolios of stocks sorted by size and book-to-market

(that is, 25FF), the 48 industry value-weighted portfolios (that is, 48Ind), 100 portfolios formed

on size and book-to-market (that is, 100SBM), 100 Portfolios formed on size and operating

profitability (that is, 100SOP), and 100 Portfolios formed on size and investment (that is, 100SI).

For close-to-close returns, we use data from 1967 to 2017 downloaded from Ken French’s Web

site.

The second data set consists of individuals stocks from the Center for Research in

Security Prices (CRSP). We follow Ledoit and Wolf (2017) to consider the following portfolio

sizes: N = 30, 50, 100, 250, 500. This range covers the majority of the important stock indexes,

from the Dow Jones Industrial Average to the S&P 500. We first determine the 500 largest

stocks, as measured by their market value on the investment date t that have a complete return

history over the most recent T = 250 days as well as a complete return ”history” over the next

21 days. Out of these 500 stocks, we then select N at random: these N randomly selected stocks

constitute the investment universe for the upcoming 21 days. The corresponding portfolios are

labelled as IndN .

Table 1 summarizes the sample information for each data set, and also provides infor-

mation regarding the question whether the sparse assumption on time variation of covariance

matrix is supported by the real data. Looking at the column 8 and 9 of the table, where we
15



report the optimal value of λ we choose for each data set (as selected via AIC), and the average

percentage of non-changed off-diagonal elements between consecutive covariance matrix esti-

mates throughout the whole sample periods. The latter measures the degree of sparsity in time

variation of the covariance matrix. We find that the degree of sparsity ranges from 35.78% to

23.55% across these data sets, meaning that a significant fraction of elements in covariance ma-

trix did not significantly change between consecutive periods. Hence, the sparse time variation

assumption appears reasonable in practice.

B. Covariance forecasting performance

In this section, we evaluate different covariance matrix forecasting methods by directly

evaluating their forecast accuracy. In particular, we compare the performances of different

methods by performing out-of-sample forecasts of the monthly covariance matrix. That is, the

covariance matrix for month t is forecast based on information available at the end of month

t − 1. More specifically, our forecasts are based on the rolling window estimation scheme by

using a look back period of 60 months. We follow Zakamulin (2015) to evaluate the covariance

matrix forecast accuracy using the mean squared forecast error (MSFE) as defined below:

SFE =

n∑
i=1

i∑
j=1

(σij,t − σ̂ij,t)2,

MSFE = 1/t
M∑
t=1

SFEt (13)

where σij,m and σ̂ij,t denote the monthly realized and a forecast of the covariance matrix for

month t. The SFE denotes the squared forecasting error and the MSFE denotes the mean

squared forecasting errors. M is the number of months in the out-of-sample evaluation period.

Table 2 reports the MSFE produced by different covariance-matrix forecasting methods

for each data set separately. The results demonstrate that i). the rolling window based sample

covariance method and the rolling window based sample covariance with shrinkage method

provide almost identical forecast accuracy. This finding is consistent with Disatnik and Benninga

(2007) and Zakamulin (2015) that the linear shrinkage does not produce a significantly better

forecast of the covariance matrix; ii). the nonlinear shrinkage method largely reduced the

forecasting errors, followed by the robust covariance estimator; and iii). the dynamic model

EWMA performs the best in the covariance matrix forecast, and our RRW method performs
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similarly to the EWMA in most cases.

C. Portfolio performance

We now turn to evaluating the out-of-sample portfolio performance. We start with port-

folio investing by focusing on the five Fama-French portfolio data sets: 25FF, 48Ind, 100SBM,

100SOP, and 100SI. A move towards analysis on the individual stock level is given in the nex-

t section. In each month t, we construct the GMV portfolios using stock returns from past

M = 60 months (5 years)4. We hold such portfolios for 1 month and calculate the portfolio

returns for out-of-sample month t + 1. We continue this process by adding the return for the

next period in the data set and dropping the earliest return from the estimation window.

Our primary interest is in the ability of the proposed GMV strategy in reducing the

out-of-sample portfolio risk. We first construct the time series of out-of-sample returns for

our GMVRRW and other seven competing GMV portfolios. We then compare out-of-sample

return variance to see whether GMVRRW achieves out-of-sample risk reduction. Last, we test

the significance of any difference between GMVRRW and other alternatives using the stationary

bootstrap of Politis and Romano (1994). Panel A of Table 3 reports the monthly out-of-

sample risk for each GMV portfolio strategy, and Panel B gives the difference test results.

From the table, we observe: i). compared to the standard sample GMV portfolio, GMVsample,

our portfolio (GMVRRW) significantly reduces the portfolio out-of-sample risk, suggesting that

the regularization increases the ability of the rolling sample estimates in change detection of

the covariance matrix, and thereby improves the portfolio performance by better controlling

portfolio risk exposure. For example, the portfolio risk decreases from 27.629(%2) to 13.707(%2)

for 25FF, and from 26.5335(%2) to 13.157(%2) for 48IND; ii). compared with the portfolios with

other structure-free covariance estimators, such as linear and nonlinear covariance shrinkage

estimators (i.e., GMVLin and GMVNonlin), the robust covariance estimators, (i.e., GMVrobust),

the RRW covariance estimator still reduces the portfolio risk in all the cases, further supporting

the benefit of exploiting the significant change in covariance matrix for portfolio construction.

iii). compared with the näıve 1/N strategy (GMVequal), our portfolio (GMVRRW) still achieves

lower risk, implying that tracking the variance changes is favorable to portfolio out-of-sample

risk reduction; iv). compared with the GMV portfolio formed using covariance matrix forecasts

4The choice of the rolling estimation window size, M = 60, follows the standard practice in the literature. To
save space, we report the results only for M = 60. We have also conducted an analysis using a longer estimation
window of M = 120 and found the results are generally robust. The results are available upon request.
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from the EWMA model, GMVEWMA, our portfolio once again offers smaller risk, e.g. 13.707

v.s. 14.422 in 25FF, and 13.157 v.s. 13.8565 in 48IND. This supports the assumption that

sparse rather than continuous changes in the covariance matrix does not weaken, but rather

strengthens the portfolio out-of-sample risk reduction; v). compared with GMVSparreg, the

(GMVRRW) achieved smaller risk when the portfolio dimension is relatively small and performs

similarly for large portfolios (i.e., the portfolio dimension is greater than 100).

We next turn to investigating the ability of our RRW strategy in controlling portfolio

turnover. We calculate the monthly portfolio turnovers as stated in Equation 10 for the eight

portfolios and report these results in Panel B of Table 3. It is not surprising we observe that

the equally weighted 1/N portfolio provides the lowest turnover for all the data sets. The

näıve diversification requires only a very small amount of trades to maintain the equal weights.

On the contrary, the sample portfolio GMVsample and the other GMV portfolio strategy, i.e.,

GMVEWMA, GMVrobust, GMVLin, always suffer large turnovers, because it requires active trad-

ing to adapt with the changing covariance matrix in order to achieve the best risk diversification.

Our portfolio (GMVRRW) significantly reduces the portfolio turnovers, even compared with the

portfolios with more advanced covariance estimator and optimization technique (GMVNonlin and

GMVSparreg). The favorable performance in portfolio turnover control verifies that the RRW

approach offers a more stable estimate for the covariance matrix that significantly reduces the

portfolio turnovers and thus the associated transaction costs.

Finally, we assess the sharpe ratio after deducting transaction costs. Following standard

practice of Robert et al. (2012), we set the transaction cost per dollar traded to decrease linear

from 0.6% to 0.1% during the period 1967 to 1990, and set it to be a constant 0.1% from 1991

to 2017. Panel C of Table 3 reports the results. We observe that the portfolios GMVRRW still

outperform all the alternatives by retaining the highest Sharpe ratios across all the data sets.

The Sharpe ratio (after deducting the transaction costs) of the portfolio GMVRRW ranges from

0.212 to 0.289, followed by the portfolio GMVSparreg.

We also conduct a portfolio analysis operating based on individual assets. We randomly

select 500 samples from CRSP stocks and randomly selectN stocks from them to form portfolios,

where N = 30, 50, 100, 250, 500. Table 3 shows that the portfolio (GMVRRW achieves lower out-

of-sample portfolio risk than other alternatives in all the cases, which offers compelling evidence

for the ability of GMVRRW to achieve significant reduction in out-of-sample portfolio risk. We
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turn to portfolio turnovers and observe that GMVRRW achieves the lowest turnovers in all the

cases. In terms of the Sharpe ratio after deducting transaction costs, we find that the GMVRRW

provides the highest Sharpe ratio after transaction cost in all the data sets. These results once

again suggest that the RRW estimator provides larger economic gains for a panel of samples

that have a relatively stable covariance matrix structure and calls for a higher level of temporal

stability regularization.

Since some fund managers face a no-short-sales constraint, we now impose a lower bound

of zero on all portfolio weights. Table 4 reports the results. The ranking of the portfolios across

the three performance evaluation metrics are pretty much similar, except that the GMVsample

performs much better. These findings are consistent with Jagannathan and Ma (2003) who

demonstrate theoretically that imposing a no-short-sales constraint corresponds to an implicit

shrinkage of the sample covariance matrix in the context of estimating the global minimum-

variance portfolio.

D. Decomposing the Performance Gain: Estimation Accuracy and the Ability to Time Signif-

icant Changes

While the above findings support the existence of additional economic gains from using

our RRW estimator in GMV strategies, in this section, we attempt to answer the question:

where are the gains generated from? We explain the advantage of our RRW estimator from two

perspectives: estimation accuracy and the ability o timing significant changes.

Firstly, we attribute the better portfolio performance to the improved covariance matrix

forecasts. We examine forecasting accuracy of our RRW approach based covariance matrix

estimate, compared with the shrunk rolling sample estimate and the forecasts from EWMA

model using the following log predictive likelihood:

lt(Σ
−1) = ln(det(Σ̂−1

t−1))− r̃>t Σ̂−1
t−1r̃t, (14)

where T is the total number of out-of-sample testing periods. r̃t denotes the demeaned return

vector at time t, and Σt−1 is the covariance matrix estimate for time t but made at time

t − 1. We average lt(Σ
−1) across the whole out-of-sample testing period, that is, L(Σ−1) =

(1/T )
∑T

t=1 lt(Σ
−1). We calculate out-of-sample log predictive likelihood for each covariance

matrix estimator, and then test the significance of the difference between ones from our estimator
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and the other alternatives. Table 2 reports the testing results. Column 2 of the table shows that

our RRW estimate has a significantly higher predictive likelihood than does the shrunk rolling

sample estimates in all the data sets, proving that imposing temporal similarity regularization

in rolling window approach reduces the covariance matrix predictive errors. Column 3 shows

that the RRW estimate outperforms the EWMA based estimate, suggesting that allowing for

piecewise constancy is conducive to increase the predictive accuracy for out-of-sample covariance

matrix. Overall, these results confirm that the RRW approach improves forecasting accuracy

of the covariance matrix, leading to the better out-of-sample portfolio performance.

Next, we demonstrate the advantage of our RRW approach in timing significant changes

of the covariance matrix. The top panel of Figure 4 plots the temporal variation of our RRW (the

solid line) and the shrunk sample (the dotted line) covariance matrix estimators, measured by

the trace of the estimated covariance structures (
∑

ii Σ̂ii,t). We highlight in grey the recession

periods according to the NBER business cycle classification. Clearly, the RRW estimator is

more stable than the sample counterpart during the calm period, such as the period between

2002-2007, but without loosing capacity to reflect large changes during the recession period,

such as the GFC period from 2008-2010.

To further illustrate this point, we split the whole sample into “good” and “bad” econom-

ic periods according to the NBER business cycle classification. Then, we compare out-of-sample

portfolio turnover and risk exposure of our RRW strategy with other alternatives. The results

are reported in Table 5. If our strategy has better capacity in timing significant changes, we

expect that it allows more aggressive updates in portfolio weights and thus larger increase in

portfolio turnovers compared with the 1/N strategy during “bad” periods. On the contrary,

during “good” periods, it should have more conservative response to the change of covariance

matrix, leading much less portfolio turnovers compared with the shrunk rolling sample strat-

egy. Looking at the portfolio turnovers reported in the table, we observe that during “good”

periods, the portfolio turnover of GMVRRW is quite close to that of the 1/N portfolio, but the

both are much less than that of GMVsample. For example, for the data of 25FF , the portfolio

turnover of GMVRRW is only 0.019 that is close to 0.017 of the 1/N portfolio, but much less than

0.047 of the GMVsample. On the other hand, during the bad periods, the portfolio turnover of

GMVRRW hugely increases to 1.033, but the turnover of the 1/N portfolio only slightly increas-

es to 0.018. Comparatively, the sample portfolio GMVsample has a constantly higher portfolio
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turnovers, which is also increasing during the bad period. The bottom panel of Figure 4 plots

the portfolio turnovers using our RRW (the solid line) and the sample (the dotted line) strate-

gies against the business cycles. Our RRW strategy always offers less portfolio turnovers, but

reasonably increases turnovers when the market is in distress. We also test the significance of

different improvement from the second best estimator to our our RRW estimator (denoted as

MVRRW) between the good and bad periods. We find that the improvement achieved by the

RRW estimator appears more pronounced during the bad periods.

To conclude the section we examine the portfolio risk and whether the better ability of

GMVRRW to time changes results in a better control on portfolio risk exposure. We notice that

GMVRRW always achieves the lowest risk, and the 1/N strategy outperforms the sample strategy

in “good” periods by achieving lower risk, and vice versa in “bad” periods. In summary, we

observe that our RRW covariance estimator has a great ability to highlight significant changes,

helping the resulting portfolio to strike a better balance between portfolio turnovers and risk

exposure.

V. Robustness Checks

A. The Estimation Window Length

To some extent, one may argue that the RRW estimator uses longer samples (from the

previous estimation window) than other competing methods used in empirical evaluations of

the out-of-sample portfolio performance. This makes it difficult to evaluate the performance

gain from the RRW approach over other methods. Does the performance gain come from the

particular regularization, or does it comes from the use of a longer sample? We examine a

simple way to address this question, that is, we adopt the standard rolling window approach in

other competing methods with a fixed longer estimation window, e.g. M = 120 months. Table 6

reports the results and two patterns are observed: i) all the competing methods perform better

with longer estimation window. This is not surprising as the longer sample of observations pro-

vides more historical information which helps achieving more robust estimation; ii) the RRW

estimator still outperforms all the other competitors, confirming that through exploiting simi-

larity between two consecutive estimation windows using the temporal similarity regularization,

the temporally stable estimator largely reduces “spurious” time variations caused by estima-

tion errors based on the standard rolling window approach. The resulting portfolio, therefore,
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exhibits more stable out-of-sample performance.

B. Weekly Return Data

We use monthly stock returns in the benchmark analysis; here, we evaluate the per-

formance of the different portfolios regarding weekly return data for the five data sets to see

whether the results are robust to the return data frequency. We report the portfolio perfor-

mances in Table 7. We find that our results are generally robust to the use of weekly data. For

instance, we find that even with weekly data, our regularized portfolios with γ = 5 generally

outperform the alternatives. When we compare the performance of the portfolios for monthly

and weekly return data, we find that the portfolios perform slightly better with monthly than

with weekly data. We believe the reason is that the benefit of more frequently adjusting the

hedge trades is offset by the higher transaction costs.

VI. Conclusion

In this paper, we propose a regularized rolling window approach to estimate the time-

varying covariance matrix, and construct novel minimum-variance portfolios. Through imposing

a temporal variation constraint on the standard rolling window based sample estimates this new

method is both simple and interpretable, whilst also yielding superior out-of-sample forecasts for

the covariance matrix and being capable of detecting significant changes in covariance matrix.

We demonstrate that in the presence of both structural changes and transaction cost, the

resulting minimum-variance portfolio achieves simultaneously low risk exposure and turnover,

earning significant economic gains compared to a set of commonly used alternatives. These

results support our initial motivation of this study: in the presence of transaction cost, investors

can benefit from significant change detection in volatility.
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Table 1: Data Description. This table lists the data sets used in our empirical analysis.
Column 2 provides the abbreviation used to refer to the testing portfolios. Column 3 gives
more detailed descriptions about the data sets. Column 4 reports the number of stocks in each
data set, and Column 5 reports the length of sample period. Column 6 and 7 present the
training and testing period in out-of-sample analysis. Column 8 and 9 give the optimal value
we used for the regularization parameter (λ) in RRW approach and the average percentage of
non-changed off-diagonal elements between consecutive covariance matrix estimates throughout
the whole sample period.

Data Set Abbreviation Description N T Training Period Testing Period λ Percentage of unchanged matrix off-diagonal elements

1 25FF 25 size and BM portfolios 25 553 Jan. 1967-Dec. 1972 Jan.1973-Dec.2017 0.5 23.55%
2 48IND 48 industry portfolios 48 553 Jan. 1967-Dec. 1972 Jan.1973-Dec.2017 0.5 30.23%
3 100SBM 100 size and book-to-market portfolios 100 553 Jan. 1967-Dec. 1972 Jan.1973-Dec.2017 0.5 31.75%
4 100SOP 100 size and operating profitability portfolios 100 553 Jan. 1967-Dec. 1972 Jan.1973-Dec.2017 0.5 32.33%
5 100SI 100 size and investment portfolios 100 553 Jan. 1967-Dec. 1972 Jan.1973-Dec.2017 0.5 31.86%
6 Ind30 30 stocks from CRSP 30 553 Jan. 1992-Dec. 1997 Jan.1998-Dec.2017 0.4 26.74%
7 Ind50 50 stocks from CRSP 50 553 Jan. 1992-Dec. 1997 Jan.1998-Dec.2017 0.4 25.28%
8 Ind100 100 stocks from CRSP 100 553 Jan. 1992-Dec. 1997 Jan.1998-Dec.2017 0.5 30.27%
9 Ind25 250 stocks from CRSP 250 553 Jan. 1992-Dec. 1997 Jan.1998-Dec.2017 0.6 35.78%
10 Ind500 500 stocks from CRSP 500 553 Jan. 1992-Dec. 1997 Jan.1998-Dec.2017 0.5 32.29%
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Table 2: Out-of-sample covariance matrix prediction. This table reports the MSFE
produced by different covariance-matrix forecasting methods. COVsample denotes the rolling
window based sample estimation of the covariance matrix; COVEWMA denotes the EWMA
covariance; COVLin denotes the linear shrinkage covariance estimator by Ledoit and Wolf (2003);
COVNonlin denotes the nonlinear shrinkage covariance estimator by Ledoit and Wolf (2017);
COVrobust denotes the robust covariance estimator, the Minimum Covariance Determinant; and
COVRRW denotes our RRW covariance estimator. In all methods, the length of the rolling
estimation window is 120 months.

Data Set COVsample COVLin COVNonlin COVEWMA COVrobust COVRRW

25FF 0.0085 0.0083 0.0061 0.0049 0.0078 0.0059
48IND 0.0092 0.0091 0.0065 0.0058 0.0086 0.0063
100SBM 0.0105 0.0099 0.0093 0.0083 0.0098 0.0088
100SOP 0.0101 0.0099 0.0095 0.0087 0.0097 0.0089
100SI 0.0106 0.0103 0.0099 0.0091 0.0095 0.0092
Ind30 0.0073 0.0069 0.0066 0.0055 0.0069 0.0056
Ind50 0.0081 0.0079 0.0070 0.0059 0.0077 0.0062
Ind100 0.0098 0.0097 0.0083 0.0073 0.0089 0.0076
Ind250 0.0107 0.0105 0.0098 0.0094 0.0098 0.0095
Ind500 0.0112 0.0110 0.0105 0.0099 0.0106 0.0101
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Table 3: Out-of-Sample Portfolio Performance (without short-sales restrictions). For
each data set, this table reports the out-of-sample monthly risk (return variances) (Panel A),
overall turnover (Panel B), and monthly sharpe ratio (Panel C) for the following eight portfo-
lios: portfolio using our RRW estimator (denoted as GMVRRW); portfolio using rolling window
based shrunk sample estimate of the covariance matrix (denoted as GMVsample); equally weight-
ed portfolio (denoted as GMVequal); portfolio using EWMA based estimates of covariance matrix
(denoted as MVEWMA); portfolio using the linear shrinkage covariance estimator by Ledoit and
Wolf (2003) (denoted as GMVLin); portfolio using the nonlinear shrinkage covariance estima-
tor by Ledoit and Wolf (2017) (denoted as GMVNonlin); portfolio using the robust covariance
estimator, the Minimum Covariance Determinant (denoted as GMVrobust); portfolio using the
mean-variance portfolio optimization technique (sparse regression) suggested by Ao, Yingying,
and Zheng (2019) (denoted as GMVSparreg). We test the significance of any difference between
GMVRRW and other alternatives using the stationary bootstrap of Politis and Romano (1994).
We only report the significance between GMVRRW and the closest alternative due to the re-
stricted space. *, **, and *** indicate significant differences at the 10%, 5% and 1% levels,
respectively.

Data Set GMVsample GMVequal GMVEWMA GMVLin GMVNonlin GMVrobust GMVSparreg GMVRRW

Panel A: Portfolio Risk (monthly return variance (%2))
25FF 27.6290 25.5890 14.4220 16.7870 13.7765 14.2210 13.7870 13.7070***
48IND 26.5335 24.5754 13.8565 16.1266 13.2125 13.6635 13.2469 13.1570***
100SBM 30.7495 28.4814 16.0654 18.6949 15.4325 15.8420 15.3594 15.2400**
100SOP 31.5997 29.2671 16.4984 19.2026 15.7219 16.2686 15.7723 15.6730*
100SI 32.1107 29.7457 16.7994 19.5412 15.9980 16.5664 16.0632 15.8910***
Ind30 26.2023 24.2682 13.6804 15.9227 13.2125 13.4898 13.0783 12.9960**
Ind50 28.6714 26.5576 14.9865 17.4371 14.2987 14.7782 14.3285 14.2030**
Ind100 33.8437 31.3454 17.6700 20.5663 17.2128 17.4239 16.8924 16.7860
Ind250 37.2119 34.4657 19.4330 22.6167 18.6960 19.1624 18.5781 18.4520*
Ind500 39.4282 36.5185 20.5904 23.9637 19.7674 20.3037 19.6847 19.5510*

Panel B: Portfolio Turnover
25FF 0.291 0.017 0.320 0.057 0.049 0.062 0.028 0.020***
48IND 0.346 0.020 0.461 0.063 0.053 0.078 0.034 0.025***
100SBM 0.538 0.031 0.592 0.106 0.087 0.115 0.041 0.037***
100SOP 0.655 0.038 0.721 0.128 0.086 0.139 0.058 0.045***
100SI 0.467 0.027 0.512 0.091 0.077 0.099 0.039 0.032***
Ind30 0.335 0.020 0.368 0.066 0.047 0.055 0.031 0.023***
Ind50 0.597 0.035 0.656 0.117 0.072 0.098 0.055 0.041***
Ind100 0.844 0.049 0.928 0.165 0.097 0.139 0.064 0.058***
Ind250 0.931 0.055 1.024 0.183 0.104 0.154 0.077 0.064***
Ind500 1.033 0.060 1.136 0.202 0.162 0.171 0.085 0.071***

Panel C: Portfolio Sharpe Ratio with transaction cost (monthly)
25FF 0.197 0.255 0.223 0.209 0.276 0.267 0.281 0.289***
48IND 0.166 0.228 0.189 0.176 0.228 0.225 0.235 0.243***
100SBM 0.150 0.209 0.170 0.159 0.0210 0.204 0.215 0.220**
100SOP 0.161 0.211 0.182 0.171 0.225 0.218 0.229 0.236***
100SI 0.164 0.168 0.186 0.174 0.219 0.222 0.234 0.239
Ind30 0.213 0.305 0.241 0.226 0.297 0.288 0.311 0.312
Ind50 0.189 0.245 0.215 0.201 0.261 0.257 0.268 0.277**
Ind100 0.195 0.266 0.221 0.207 0.269 0.264 0.275 0.286***
Ind250 0.167 0.239 0.189 0.177 0.231 0.226 0.239 0.244*
Ind500 0.145 0.198 0.164 0.154 0.201 0.196 0.206 0.212**
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Table 4: Out-of-Sample Portfolio Performance (with short-sales restrictions). For
each data set, this table reports the out-of-sample monthly risk (return variances) (Panel A),
overall turnover (Panel B), and monthly sharpe ratio (Panel C) for the following eight portfo-
lios: portfolio using our RRW estimator (denoted as MVRRW); portfolio using rolling window
based shrunk sample estimate of the covariance matrix (denoted as MVsample); equally weighted
portfolio (denoted as MVequal); portfolio using EWMA based estimates of covariance matrix
(denoted as MVEWMA); portfolio using the linear shrinkage covariance estimator by Ledoit and
Wolf (2003) (denoted as MVLin); portfolio using the nonlinear shrinkage covariance estima-
tor by Ledoit and Wolf (2017) (denoted as MVNonlin); portfolio using the robust covariance
estimator, the Minimum Covariance Determinant (denoted as MVrobust); portfolio using the
mean-variance portfolio optimization technique (sparse regression) suggested by Ao, Yingying,
and Zheng (2019) (denoted as MVSparreg). We test the significance of any difference between
GMVRRW and other alternatives using the stationary bootstrap of Politis and Romano (1994).
We only report the significance between GMVRRW and the closest alternative due to the re-
stricted space. *, **, and *** indicate significant differences at the 10%, 5% and 1% levels,
respectively.

Data Set MVsample MVequal MVEWMA MVLin MVNonlin MVrobust MVSparreg MVRRW

Panel A: Portfolio Risk (monthly return variance (%2))
25FF 14.2198 25.5890 14.4222 16.7871 14.1908 14.2208 13.7871 13.7072***
48IND 13.6554 24.5754 13.8565 16.1266 13.5321 13.6635 13.2469 13.1570**
100SBM 15.7986 28.4815 16.0653 18.6957 15.6565 15.8432 15.3601 15.2421**
100SOP 16.2541 29.2673 16.4986 19.2014 15.9892 16.2697 15.7734 15.6731**
100SI 16.5543 29.7457 16.7994 19.5412 16.2341 16.5664 16.0632 15.8910***
Ind30 13.4767 24.2692 13.6804 15.9227 13.3226 13.4898 13.0783 12.9960**
Ind50 14.7656 26.5589 14.9875 17.4373 14.5673 14.7794 14.3299 14.2030*
Ind100 17.4121 31.3461 17.6700 20.5663 17.1287 17.4239 16.8924 16.7876***
Ind250 19.1545 34.4670 19.4330 22.6167 18.8789 19.1632 18.5781 18.4520**
Ind500 20.2998 36.5165 20.5904 23.9637 19.8786 20.3067 19.6854 19.5514**

Panel B: Portfolio Turnover
25FF 0.069 0.017 0.334 0.068 0.056 0.077 0.034 0.029**
48IND 0.387 0.020 0.478 0.075 0.067 0.096 0.058 0.042**
100SBM 0.543 0.031 0.604 0.114 0.096 0.134 0.063 0.051***
100SOP 0.678 0.038 0.754 0.153 0.121 0.156 0.074 0.062**
100SI 0.473 0.027 0.533 0.104 0.098 0.113 0.066 0.058*
Ind30 0.358 0.020 0.387 0.078 0.069 0.087 0.031 0.026*
Ind50 0.613 0.035 0.672 0.134 0.092 0.103 0.075 0.062**
Ind100 0.885 0.049 0.945 0.184 0.123 0.154 0.086 0.071***
Ind250 0.989 0.055 1.067 0.206 0.134 0.167 0.092 0.079***
Ind500 1.115 0.060 1.154 0.215 0.167 0.184 0.099 0.084**

Panel C: Portfolio Sharpe Ratio with transaction cost (monthly)
25FF 0.156 0.255 0.215 0.202 0.268 0.254 0.273 0.286**
48IND 0.134 0.228 0.176 0.164 0.220 0.213 0.228 0.241***
100SBM 0.142 0.209 0.163 0.146 0.212 0.211 0.214 0.219**
100SOP 0.152 0.201 0.176 0.168 0.209 0.206 0.216 0.233***
100SI 0.160 0.168 0.179 0.170 0.220 0.213 0.225 0.236**
Ind30 0.209 0.305 0.235 0.215 0.289 0.276 0.306 0.310
Ind50 0.175 0.245 0.207 0.199 0.221 0.243 0.245 0.257**
Ind100 0.186 0.266 0.213 0.193 0.249 0.252 0.261 0.274**
Ind250 0.174 0.239 0.177 0.164 0.210 0.218 0.223 0.239**
Ind500 0.139 0.198 0.152 0.141 0.185 0.184 0.198 0.205***

28



Table 5: Portfolio performance during “good” and “bad” periods.This table reports
the out-of-sample overall turnover and monthly sharpe ratio for the following eight portfo-
lios: portfolio using our RRW estimator (denoted as MVRRW); portfolio using rolling window
based shrunk sample estimate of the covariance matrix (denoted as MVsample); equally weighted
portfolio (denoted as MVequal); portfolio using EWMA based estimates of covariance matrix
(denoted as MVEWMA); portfolio using the linear shrinkage covariance estimator by Ledoit and
Wolf (2003) (denoted as MVLin); portfolio using the nonlinear shrinkage covariance estima-
tor by Ledoit and Wolf (2017) (denoted as MVNonlin); portfolio using the robust covariance
estimator, the Minimum Covariance Determinant (denoted as MVrobust); portfolio using the
mean-variance portfolio optimization technique (sparse regression) suggested by Ao, Yingying,
and Zheng (2019) (denoted as MVSparreg). The “good” (Panel A) and “bad” (Panel B) periods
are based on NBER business cycle classifications. We test the significance of different improve-
ment from the second best estimator to our our RRW estimator (denoted as MVRRW) between
the good and bad periods. *, **, and *** indicate significant differences at the 10%, 5% and
1% levels, respectively.

Date set MVsample MVequal MVEWMA MVLin MVNonlin MVrobust MVSparreg MVRRW

Panel A: Good period
Portfolio turnover
25FF 0.256 0.010 0.306 0.048 0.032 0.051 0.023 0.013
48IND 0.321 0.013 0.445 0.052 0.043 0.060 0.021 0.017
100SBM 0.505 0.022 0.563 0.097 0.086 0.102 0.025 0.020
100SOP 0.629 0.028 0.707 0.103 0.053 0.115 0.037 0.029
100SI 0.432 0.020 0.501 0.078 0.067 0.084 0.032 0.022
Ind30 0.307 0.015 0.342 0.054 0.033 0.043 0.027 0.017
Ind50 0.566 0.029 0.633 0.102 0.052 0.077 0.038 0.032
Ind100 0.822 0.033 0.918 0.148 0.076 0.113 0.052 0.034
Ind250 0.916 0.043 1.005 0.166 0.098 0.142 0.054 0.045
Ind500 1.007 0.049 1.105 0.199 0.097 0.160 0.071 0.052
Portfolio sharpe ratio with transaction cost

25FF 0.207 0.264 0.236 0.254 0.289 0.284 0.291 0.306
48IND 0.178 0.239 0.199 0.216 0.241 0.237 0.243 0.256
100SBM 0.165 0.209 0.191 0.228 0.225 0.221 0.227 0.234
100SOP 0.187 0.234 0.194 0.221 0.230 0.225 0.238 0.247
100SI 0.192 0.218 0.192 0.207 0.241 0.234 0.246 0.252
Ind30 0.229 0.322 0.247 0.234 0.313 0.296 0.327 0.331
Ind50 0.199 0.267 0.253 0.218 0.287 0.263 0.279 0.285
Ind100 0.209 0.279 0.264 0.219 0.280 0.271 0.284 0.293
Ind250 0.167 0.251 0.221 0.189 0.239 0.238 0.244 0.259
Ind500 0.163 0.213 0.198 0.167 0.209 0.206 0.217 0.228

Panel B: Bad period
Portfolio turnover
25FF 0.312 0.030 0.332 0.068 0.065 0.076 0.053 0.044
48IND 0.363 0.041 0.476 0.077 0.081 0.086 0.072 0.063**
100SBM 0.552 0.052 0.603 0.118 0.097 0.128 0.066 0.063***
100SOP 0.671 0.051 0.734 0.139 0.095 0.145 0.074 0.067***
100SI 0.486 0.037 0.527 0.107 0.085 0.106 0.053 0.048***
Ind30 0.349 0.032 0.379 0.078 0.061 0.064 0.051 0.044
Ind50 0.618 0.048 0.665 0.126 0.089 0.108 0.067 0.058**
Ind100 0.865 0.054 0.939 0.177 0.099 0.151 0.078 0.063***
Ind250 0.954 0.063 1.041 0.198 0.123 0.167 0.089 0.072***
Ind500 1.052 0.078 1.153 0.224 0.131 0.189 0.094 0.088***
Portfolio sharpe ratio with transaction cost

25FF 0.184 0.243 0.223 0.198 0.229 0.232 0.233 0.245
48IND 0.152 0.219 0.174 0.159 0.202 0.207 0.207 0.218**
100SBM 0.137 0.203 0.163 0.154 0.203 0.201 0.206 0.217***
100SOP 0.148 0.202 0.171 0.163 0.199 0.204 0.194 0.215***
100SI 0.144 0.174 0.165 0.162 0.205 0.186 0.225 0.213***
Ind30 0.209 0.298 0.223 0.218 0.298 0.276 0.305 0.304
Ind50 0.169 0.231 0.206 0.198 0.250 0.248 0.251 0.261**
Ind100 0.181 0.255 0.213 0.199 0.259 0.252 0.268 0.276***
Ind250 0.148 0.221 0.175 0.164 0.225 0.227 0.226 0.232***
Ind500 0.132 0.184 0.157 0.148 0.198 0.192 0.201 0.205***
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Table 6: Robustness check using longer estimation window for competing methods.
For each data set, this table reports the out-of-sample overall turnover and monthly sharpe ratio
for the following eight portfolios: portfolio using our RRW estimator (denoted as GMVRRW);
portfolio using rolling window based shrunk sample estimate of the covariance matrix (denot-
ed as GMVsample); equally weighted portfolio (denoted as GMVequal); portfolio using EWMA
based estimates of covariance matrix (denoted as GMVEWMA); portfolio using the linear shrink-
age covariance estimator by Ledoit and Wolf (2003) (denoted as GMVLin); portfolio using the
nonlinear shrinkage covariance estimator by Ledoit and Wolf (2017) (denoted as GMVNonlin);
portfolio using the robust covariance estimator, the Minimum Covariance Determinant (denot-
ed as GMVrobust); portfolio using the mean-variance portfolio optimization technique (sparse
regression) suggested by Ao, Yingying, and Zheng (2019) (denoted as GMVSparreg). The RRW
estimator is formed with rolling window of M = 60, and other covariance matrix estimators are
formed with rolling window of M = 120. The transaction cost of each is calculated as 50 basis
points times monthly turnover times 12 (to annualize). We test the significance of any difference
between GMVRRW and other alternatives using the stationary bootstrap of Politis and Romano
(1994). We only report the significance between GMVRRW and the closest alternative due to
the restricted space. *, **, and *** indicate significant differences at the 10%, 5% and 1%
levels, respectively.

Date set GMVsample GMVequal GMVEWMA GMVLin GMVNonlin GMVrobust GMVSparreg GMVRRW

Panel A: Portfolio Risk (monthly return Variance (%2))
25FF 28.1230 25.4329 14.4114 16.7763 14.123 14.2202 13.7854 13.7056**
48IND 26.2431 24.4389 13.8438 16.1234 13.436 13.6621 13.2321 13.1564***
100SBM 29.5673 28.4764 16.0443 18.5348 15.567 15.8414 15.3434 15.2387**
100SOP 30.5976 29.2564 16.4765 19.2012 16.987 16.2673 15.7653 15.6654***
100SI 31.1124 29.7322 16.7761 19.5332 16.342 16.5658 16.0621 15.8876***
Ind30 25.1213 24.2543 13.6632 15.9212 13.231 13.4873 13.0776 12.9877**
Ind50 27.5543 26.5438 14.9765 17.4364 14.565 14.7764 14.3256 14.2012*
Ind100 32.7675 31.3321 17.6432 20.5543 17.098 17.4134 16.8876 16.7765***
Ind250 36.6543 34.3217 19.4221 22.6154 19.078 19.1543 18.5654 18.4435**
Ind500 38.8987 36.5097 20.5765 23.9621 19.998 20.3012 19.6783 19.5467**

Panel B: Portfolio Turnover
25FF 0.294 0.021 0.332 0.059 0.065 0.078 0.035 0.021***
48IND 0.352 0.019 0.470 0.061 0.076 0.084 0.043 0.027***
100SBM 0.541 0.034 0.597 0.112 0.089 0.125 0.043 0.039*
100SOP 0.656 0.043 0.732 0.132 0.112 0.143 0.061 0.051**
100SI 0.468 0.032 0.519 0.097 0.098 0.107 0.043 0.035*
Ind30 0.321 0.019 0.376 0.069 0.059 0.064 0.033 0.022***
Ind50 0.589 0.037 0.664 0.121 0.099 0.103 0.058 0.048**
Ind100 0.852 0.051 0.925 0.173 0.131 0.153 0.067 0.061*
Ind250 0.940 0.049 1.029 0.189 0.146 0.165 0.079 0.069***
Ind500 1.024 0.062 1.143 0.213 0.157 0.178 0.087 0.070**

Panel C: Portfolio Sharpe Ratio with transaction cost (monthly)
25FF 0.199 0.261 0.228 0.212 0.285 0.271 0.294 0.294
48IND 0.165 0.229 0.194 0.181 0.231 0.229 0.247 0.253**
100SBM 0.154 0.212 0.175 0.164 0.216 0.201 0.223 0.232**
100SOP 0.157 0.215 0.186 0.175 0.226 0.217 0.231 0.231
100SI 0.168 0.171 0.190 0.179 0.225 0.228 0.228 0.243**
Ind30 0.219 0.312 0.245 0.231 0.301 0.293 0.305 0.323***
Ind50 0.193 0.251 0.218 0.211 0.254 0.248 0.274 0.289**
Ind100 0.199 0.272 0.230 0.210 0.267 0.253 0.286 0.271***
Ind250 0.161 0.244 0.195 0.184 0.225 0.219 0.241 0.253***
Ind500 0.143 0.206 0.171 0.163 0.210 0.208 0.212 0.221***
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Table 7: Robustness test using weekly returns. For each data set, this table reports
the out-of-sample overall turnover and monthly sharpe ratio for the following eight portfo-
lios: portfolio using our RRW estimator (denoted as MVRRW); portfolio using rolling window
based shrunk sample estimate of the covariance matrix (denoted as MVsample); equally weighted
portfolio (denoted as MVequal); portfolio using EWMA based estimates of covariance matrix
(denoted as MVEWMA); portfolio using the linear shrinkage covariance estimator by Ledoit and
Wolf (2003) (denoted as MVLin); portfolio using the nonlinear shrinkage covariance estima-
tor by Ledoit and Wolf (2017) (denoted as MVNonlin); portfolio using the robust covariance
estimator, the Minimum Covariance Determinant (denoted as MVrobust); portfolio using the
mean-variance portfolio optimization technique (sparse regression) suggested by Ao, Yingying,
and Zheng (2019) (denoted as MVSparreg). The transaction cost of each is calculated as 50 basis
points times weekly turnover times 52 (to annualize). We test the significance of any difference
between GMVRRW and other alternatives using the stationary bootstrap of Politis and Romano
(1994). We only report the significance between GMVRRW and the closest alternative due to
the restricted space. *, **, and *** indicate significant differences at the 10%, 5% and 1%
levels, respectively.

Date set MVsample MVequal MVEWMA MVLin MVNonlin MVrobust MVSparreg MVRRW

Panel A: Portfolio Risk (monthly return Variance (%2))
25FF 28.2345 25.4432 14.4214 16.7787 14.187 14.2214 13.7867 13.7043***
48IND 26.2543 24.4397 13.8564 16.1256 13.546 13.6654 13.2332 13.1555***
100SBM 29.5786 28.4851 16.0567 18.5353 15.678 15.8423 15.3456 15.2371**
100SOP 30.5981 29.2654 16.4897 19.2022 16.121 16.2689 15.7653 15.6662***
100SI 31.1235 29.7434 16.7878 19.5345 16.342 16.5665 16.0632 15.8889***
Ind30 25.1245 24.2665 13.6786 15.9232 13.231 13.4868 13.0787 12.9881**
Ind50 27.5567 26.5546 14.9897 17.4378 14.564 14.7753 14.3264 14.2023***
Ind100 32.7675 31.3431 17.6554 20.5554 17.223 17.4123 16.8889 16.7779***
Ind250 36.6654 34.3342 19.4234 22.6165 19.025 19.1554 18.5644 18.4441***
Ind500 38.9074 36.5123 20.5776 23.9785 20.128 20.3023 19.6772 19.5475***

Panel B: Portfolio Turnover
25FF 0.298 0.028 0.345 0.063 0.075 0.089 0.046 0.024***
48IND 0.345 0.021 0.488 0.072 0.087 0.092 0.051 0.032***
100SBM 0.543 0.029 0.601 0.106 0.138 0.144 0.054 0.041**
100SOP 0.667 0.047 0.756 0.145 0.143 0.156 0.072 0.055***
100SI 0.472 0.054 0.523 0.104 0.103 0.114 0.053 0.032***
Ind30 0.322 0.032 0.386 0.077 0.065 0.076 0.031 0.020***
Ind50 0.594 0.055 0.681 0.134 0.106 0.112 0.055 0.049**
Ind100 0.848 0.065 0.944 0.186 0.144 0.165 0.072 0.071
Ind250 0.946 0.051 1.032 0.192 0.168 0.173 0.083 0.065***
Ind500 1.038 0.069 1.156 0.233 0.177 0.189 0.089 0.072**

Panel C: Portfolio Sharpe Ratio with transaction cost (monthly)
25FF 0.194 0.263 0.229 0.224 0.287 0.272 0.299 0.301
48IND 0.163 0.234 0.195 0.198 0.244 0.231 0.251 0.267***
100SBM 0.156 0.221 0.176 0.153 0.226 0.214 0.232 0.245***
100SOP 0.158 0.210 0.183 0.186 0.229 0.213 0.236 0.242**
100SI 0.172 0.178 0.191 0.183 0.231 0.232 0.234 0.241**
Ind30 0.223 0.320 0.248 0.244 0.305 0.298 0.316 0.324**
Ind50 0.198 0.262 0.219 0.226 0.269 0.251 0.279 0.290***
Ind100 0.204 0.288 0.233 0.234 0.276 0.259 0.292 0.292
Ind250 0.167 0.251 0.198 0.196 0.231 0.223 0.245 0.255***
Ind500 0.146 0.213 0.175 0.165 0.215 0.216 0.218 0.224***
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Figure 1: A graphical comparison between the standard and regularized ”rolling
window” approach. The top panel shows the estimation procedure of standard rolling window
approach and the bottom panel shows the estimation procedure of the regularized rolling window
approach.

Figure 2: Plot of how maxij(ΣRRW,t − St) and minij(ΣRRW,t − St) vary as a function of time.

According to Eq. 6 the RRW estimator should always maintain maxij(|[Σ̂RRW,t − Ŝt]ij |) ≤ λ.
Note how the difference tends to increase before or around recession period, these are periods
where jumps in the portfolio position (and estimated covariance) are likely to occur, see Figs.
3 for comparison.
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Figure 3: Surface plots of the portfolio optimization objective function over business cycles.
The optimum portfolio lies at the minimiser of these objective functions and the corresponding
portfolio allocation solution for first asset (that is, w1) is indicated in the lower panels by the
solid line v.s w1 produced by minimizing w′Σw without transaction cost (the dashed line). We
set estimation window length M = 12 and λ = 40 to allow comparison with Figs. 2. The grey
overlaid bands (in the lower panes) denote recession periods. Note: we here use the notation
‖w‖2∆t

:= (w − w+
t )>∆t(w − w+

t ).

Figure 4: Top: Estimated Total Market Volatility (
∑N

i=1 Σ̂ii) for both the standard rolling win-
dow (dashed), and regularised rolling window (solid). Bottom: Transaction costs as measured
via portfolio weights ‖wt − wt−1‖1. Note: In this case, we set M = 12 and λ = 40 to highlight
the changes in variance which can occur in periods of recession.
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