
6: A ‘Quiet-Day’ model of absorption

3: Shortwave Fadeout Models (Solar Flares) 

1: Introduction
The Optimised D-Region Absorption Model (ODRAM)[1,2]

(Fig. 1) provides global nowcasts and forecasts of HF (3-30
MHz) radio wave absorption in the ionosphere. This
results from ionisation by solar flares, magnetospheric
electron precipitation (in auroral regions), and Solar
Energetic Particles (SEP) in the polar cap. Parameters of
ODRAM are optimised in near real time by assimilating
satellite measurements, geomagnetic index estimates, and
direct measurements of absorption made by riometers at
high latitudes.

This poster describes enhancements to the individual
model components and some results of model validation.
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Fig. 1. ODRAM model data flow. PCA = Polar Cap 
Absorption, SWF = shortwave fadeout, AA = 
Auroral absorption.

The real-time Auroral Absorption (AA) model in ODRAM
can be selected as either the of Foppiano & Bradley
model[11] (an ITU-R standard for HF communications) or a
new empirical model parameterised by geomagnetic
latitude, magnetic local time (MLT) and a driver
parameter – a geomagnetic index or a proxy derived from
solar wind and interplanetary magnetic field
measurements time-shifted to the bow shock nose[12].
The new models are developed from CNA recorded on 13
NORSTAR riometers, eight SGO riometers, and the KIL
(Kilpisjärvi, Finland) riometer (Fig. 2), recorded
throughout Solar Cycle 23. Periods of geomagnetic
sudden commencements, SEP events, solar flares, and
radio interference were excluded.

The HF radio absorption models described above (and
riometer measurements) indicate only the increase in
absorption compared to a quiet day. To this must be added a
small component of absorption due to diurnal and seasonal
changes in the D-region chemistry, temperature, and solar
illumination. We used a background 3-d model of D and E-
region electron density called FIRI [14] determined from
Faraday rotation measurements on sounding rockets,
parameterised by the F10.7 solar activity index. These were
combined with neutral density and temperature profiles from
the NRL MSIS 2.0 model to determine the complex refractive
index (using Appleton’s equation) and hence the absorption
rate. Fig. 9 presents an example of quiet-day absorption
predictions for 21 December. Deviative absorption is not
included in this model due to its dependence on radio ray
path trajectory and critical plasma frequencies (relative to 𝑓𝑓).

Fig. 2. Riometers from four institutions in GloRiA.
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Table 1. GloRiA participants

Riometers measure 30 MHz cosmic noise
absorption (CNA) in the ionosphere by
reference to a “Quiet Day Curve” recorded
in a recent period of low space weather
activity. They comprise a horizontal crossed-
dipole antenna, narrowband receiver, and
calibration noise source.
The GloRiA collaboration aims to resolve
issues around data sharing, licensing,
common data formats and processing, and
intercalibration of riometers.

Shortwave Fadeout (SWF) describes HF radio wave absorption due to photoionisation of the D-region
ionosphere during solar flares. It correlates closely with the 0.1–0.8nm solar X-ray flux (𝐹𝐹𝑥𝑥) with a lag of 1–10
minutes[3] and depends on solar-zenith angle, χ. ODRAM initially adopted the SWF model 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 used in the
NOAA D-RAP product[4,5]
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Fig. 3. Six models vs. measured CNA at 30 MHz for 
solar flare times in Solar Cycle 23. 

Model (dB) MPE (%) MPE (%)
CNA >1dB

PE PE 
CNA  
>1dB

𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

= 0.5 10 log𝐹𝐹𝑥𝑥 + 65 cos0.75 𝜒𝜒 /𝑓𝑓
1.5

-70 -85 -0.357 -3.345

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 12,080 𝐹𝐹𝑥𝑥 cos𝜒𝜒 +1.2 +59 -1.670 -6.936

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹 = 4370 103𝐹𝐹𝑥𝑥 cos 𝜒𝜒 /𝑓𝑓2 +28.3 -6.5 0.526 0.372

𝐴𝐴𝐷𝐷𝐹𝐹𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅1 = 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 𝐹𝐹𝑥𝑥 cos𝜒𝜒 𝟎𝟎.𝟖𝟖𝟒𝟒 -54 -31 0.440 -0.032

𝐴𝐴𝐷𝐷𝐹𝐹𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅2 = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟖𝟖 𝐹𝐹𝑥𝑥 cos𝜒𝜒 +10.1 -19.7 0.565 0.189

𝐴𝐴𝐷𝐷𝐹𝐹𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅3 = 𝟗𝟗𝟗𝟗.𝟒𝟒 𝐹𝐹𝑥𝑥 cos𝜒𝜒 𝟎𝟎.𝟓𝟓𝟎𝟎𝟏𝟏 +30.5 -20.5 0.620 0.267

Table 2: Parameters, Mean percentage errors (MPE), 
and Prediction Efficiency (PE) for six SWF models. 𝐹𝐹𝑥𝑥 is 
in Wm-2

. f is the radio frequency (MHz) (30 MHz where 
not stated). Coefficients in bold were determined by 
regression. 

Fig. 4. Correlation between Kilpisjärvi CNA and 
solar-wind-magnetosphere coupling functions and 
geomagnetic indices. 
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Table 2 (col. 1) defines 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , a new model, 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
by Fiori et al. (2022)[6] based on 87 flares in the
Solar Cycle 24, and an early model 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹 by Sato,
(1975)[7] based on 15 flare events. All models are
based on riometer observations of CNA.

We assessed these models using a database of all
126 X-class flares in Solar Cycle 23, with CNA from
riometers in the NORSTAR and SGO arrays and the
KIL riometer at Kilpisjärvi, Finland (KIL) (Fig. 2).
Times of SEP events, night-time, and radio
interference (CNA < 0.1 dB) were excluded, as
were riometers in the principal region of auroral
absorption (62°-68° invariant latitude).

Plots of modelled vs. measured CNA during flares
are presented in Fig. 3a-c for 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 and
𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹 respectively. The mean percentage error
(MPE) and Prediction Efficiency (PE) of each
model is presented in Table 1, including values for
a subset of CNA values > 1dB which characterise
model performance during strong SWF events.
The 𝑨𝑨𝑫𝑫𝑫𝑫𝑨𝑨𝑫𝑫 SWF model has a strong negative
bias, which has been noted in the recent
literature[8,6,9,10]. The 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 model has a positive
bias at high values of CNA (>1dB) but is relatively
unbiased overall. 𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 is the only one of the
three published models with a positive PE and
has only a small negative bias for CNA > 1dB.

Three further models, (𝐴𝐴𝐷𝐷𝐹𝐹𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅 1,2,3 in Table 2,
and d,e,f in Fig. 3) were developed and optimised
by regression to our Solar Cycle 23
measurements. Parameterisation by 𝐹𝐹𝑥𝑥 rather
than 𝐹𝐹𝑥𝑥 has a better physically justification (Sato,
1975[7]) and results in improved model
performance. Optimising the exponent on the
cosχ term provides marginal improvement to PE,
but worsens the MPE.

In conclusion, we would recommend Sato’s model
as it combines high PE with low MPE for large
CNA values, which are of greatest operational
importance.

Fig. 9. Modelled quiet-day 30-MHz absorption 
(dB/km) at 12 GMT on 21 Dec., a) along 2°W 
meridian and b) height-integrated over the 
globe. F10.7 = 75. 

Fig. 4 shows the correlation between the CNA at KIL and 21 solar-wind-magnetosphere coupling functions
(defined in Newell et al. [13]) and four geomagnetic indices for 1-h ranges of MLT. Four of the best performing
driver parameters (Kp, AE, Newell et al.’s[13] recommended solar-wind – magnetosphere coupling function 𝑑𝑑𝜙𝜙𝑀𝑀𝑀𝑀

𝑑𝑑𝑆𝑆
,

and the solar wind speed, 𝑣𝑣) have been developed into empirical models for ODRAM.
Kp = 5 to 6

0 3 6 9 12 15 18 21 24

MLT (h)

58

60

62

64

66

68

70

72

74

C
G

 la
tit

ud
e 

(°
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
m  (dB)

Fig. 6. Median AA vs. (MLT, 
geomagnetic latitude) for 5≤Kp<6 

Fig. 5. Median AA at the KIL 
riometer vs. (MLT, Kp). 
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We found that averaging solar wind
coupling functions over a 1-h period
was optimal. An example of the
median AA at KIL vs. (MLT, Kp) is
shown in Fig. 5. We combined data
from multiple riometers in 2°
geomagnetic latitude bins (from 58°
to 76°N) to produce 3-d lookup tables
of the probabilities of exceeding 0.5
and 1 dB absorption, and the median
auroral absorption, an example of
which is shown in Fig 6. for Kp = 5 – 6.

Real-time riometer data may be used in ODRAM to optimise
coefficients of the PCA model[1,2], which can vary with changes in
polar D-region composition, temperature, the hardness of the
proton spectrum, or the rigidity cutoff boundary location. We have
run tests for the active space weather period 4 – 16 September
2017, in which there were two SEP events, a succession of M and X-
class flares, and a geomagnetic storm. The flux of > 10 MeV protons
for the period is shown in Fig. 7.

We present one example in which ODRAM optimised PCA model
coefficients md and mn (the ratios of CNA to the square-root of
proton flux above an energy threshold in the day and night
respectively). Error metrics presented in Fig. 8 show that
assimilating

Fig. 7. Solar (>10 MeV) proton flux for 
Sep 2017. (Flare times indicated)

Fig. 8. Performance metrics for four ODRAM simulations at 10 test riometer locations (in order of increasing 
geomagnetic latitude). a) RMSE, b) Bias. 
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No optimisation

mn, md optimisation. tchar = 6h. 10 riometers.

mn, md optimisation. tchar = 6h. talo riometer only

mn, md optimisation. tchar = 24h. talo riometer only

data from ten independent riometers (PGEO, JYV, ROV, IVA, FCHU, YKC, IQA, INU, CLY, and TALO)
improved RMS error in 7/10 test riometers and improved bias in 8/10 test riometers. However, optimising with
a single polar-cap riometer (TALO) can often reduce performance.

Other tests indicated that while including riometers from auroral latitudes aids the optimisation of the rigidity
cutoff latitude boundary, they can bias the PCA model coefficients md and mn. Ideally, a polar-cap riometer
should be included simultaneously for both the dayside and night ionospheres, but this is impractical under
solstice conditions when all riometers are in the same (northern) hemisphere.

• The Shortwave Fadeout (solar flare) model of HF radio absorption (currently the NOAA DRAP model) should
be replaced by that of Sato (1975) [7].

• For a data-driven Auroral Absorption model, the driver parameters AE, Kp, Newell et al.’s 2007 coupling
function or solar wind speed correlate best with 30 MHz absorption measurements in Solar Cycle 23.

• Moderate improvements to Polar Cap Absorption model performance are achieved when assimilating
contemporary riometer measurements (CNA). However, issues of poor calibration and auroral absorption
contamination need careful consideration.

• A climatological ‘quiet-day’ absorption model has been implemented to account for diurnal and seasonal
variations in HF radio wave absorption.
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