
1

Road Side Unit-Assisted Learning-Based Partial
Task Offloading for Vehicular Edge Computing

System
Song Li, Member, IEEE, Weibin Sun, Qiang Ni, Senior Member, IEEE, and Yanjing Sun, Member, IEEE,

Abstract—The rapid development of vehicular networks cre-
ates diverse ultra-low latency constrained and computation-
intensive applications, which bring challenges to both commu-
nication and computation capabilities of the vehicles and their
transmission. By offloading tasks to the edge servers or vehicles
in the neighbourhood, vehicular edge computing (VEC) provides
a cost-efficient solution to this problem. However, the channel
state information and network structure in the vehicular network
varies fast because of the inherent mobility of vehicle nodes,
which brings an extra challenge to task offloading. To address
this challenge, we formulate the task offloading in vehicular
network as a multi-armed bandit (MAB) problem and propose
a novel road side unit (RSU)-assisted learning-based partial task
offloading (RALPTO) algorithm. The algorithm enables vehicle
nodes to learn the delay performance of the service provider
while offloading tasks. Specifically, the RSU could assist the
learning process by sharing the learning information among
vehicle nodes, which improves the adaptability of the algorithm to
the time-varying networks. Simulation results demonstrate that
the proposed algorithm achieves lower delay and better learning
performance compared with the benchmark algorithms.

Index Terms—Multi-armed bandit, online learning, task of-
floading, vehicular edge computing;

I. INTRODUCTION

W ITH the rapid development of wireless technologies
and vehicular networks, some resource-intensive appli-

cations such as autonomous driving, augmented reality (AR),
and video streaming emerge in the Internet of Vehicular (IoV)
[1], [2], [3]. These advanced applications make the vehic-
ular networks safer, more intelligent, and more convenient
at the expense of considerable computation, communication,
and storage resources. Although vehicles are equipped with
more and more computation and storage resources nowadays,
they still cannot guarantee the quality of service (QoS) re-
quirements of the high-level autonomous driving applications
and on-board infotainment services with ultra-low latency
constraints.

Mobile edge computing (MEC) is a paradigm that could
provide low-latency and high-reliability computing services
for devices through task offloading [4]. By applying MEC
into vehicular networks, vehicular edge computing (VEC)
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provides a promising solution to meet the requirements of
the computation-intensive and delay-sensitive applications in
the vehicular networks [5], [6]. Considering a tremendous
number of vehicles in the urban vehicular networks, many un-
derutilized vehicular resources can be contributed to vehicular
networks for computation services providing [7]. What’s more,
the edge server deployed in the road side unit (RSU) could
also provide computing and storage resources at a close range.
However, the channel state and network topologies of the VEC
network are time-varying due to the mobility of vehicle nodes.
The uncertainty of network conditions brings huge challenges
for optimal task offloading performing, such as offloading
server selection and task offloading ratio management.

Based on the condition mentioned above, the task offloading
decision can be modeled as a multi-armed bandit (MAB)
problem [8], regarding each computation service provider as
a bandit arm with different and unknown expected payoff.
The objective of the MAB problem is to select the optimal
sequence of arms to maximize the expected total reward. One
of the key issues in the MAB problem is how to balance the
trade-off between exploitation and exploration strategy. This
problem is even more complicated in the vehicular networks
since the candidate arm set changes randomly because of the
high mobility of the vehicle nodes, while the traditional MAB
problems assume each arm remains unchanged.

Motivated by the above challenge, a novel RSU-assisted
learning-based partial task offloading (RALPTO) algorithm
based on MAB theory is proposed in this paper to cope with
uncertainty caused by the highly dynamic vehicle nodes in
VEC networks. The objective of our algorithm is to minimize
the average task offloading delay over a period of time. In this
paper, motivated by the concept of Vechicle as a Resource
(VaaR) [7], we focus on task offloading among vehicles to
improve the resource utilization of the vehicular networks.
Since the workload of vehicle nodes is fluctuant, we classified
the vehicle nodes into two categories: task vehicles (TaVs) and
service vehicles (SeVs). TaVs are the vehicles that have task
offloading requirements because of its limitted computation
capability, and SeVs are the vehicles that can provide surplus
resources to execute tasks. The strategy of our algorithm is
learning while offloading, which means that TaVs can learn the
service capability of SeVs according to its historical offloading
delay performance. What’s more, RSU is used to assist the
sharing of learning information among TaVs, which improves
the efficiency of the algorithm. The main contributions of this
paper are summarized as follows:
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• We investigate a task offloading scenario in the vehicular
network, where the channel state information and network
topology change over time because of the inherent mobil-
ity of vehicle nodes. Partial task offloading is adopted in
the VEC system, which allows TaVs to offload a part of
the task to SeVs. Thus the computation is performed in
parallel on both TaVs and SeVs by partial task offloading.

• We propose a novel RSU-assisted learning-based partial
task offloading algorithm based on MAB theory which
enables TaVs to learn the delay performance of SeVs
while offloading tasks. The algorithm performs in a
distributed manner, with low computational complexity
and no requirements for global network state information.
To enhance the adaptability of the algorithm to the
uncertainty in vehicular network, we design a special
utility function that allows the algorithm to realize the
trade-off between exploration and exploitation strategy
according to the contextual information such as task
workload and the appearance time of SeVs. To improve
the learning efficiceny of the algorithm, we propose a
novel user cooperation scheme which allow TaVs share
the learned information among each other through RSU.

• We compare the performance of RALPTO algorithm
with the state-of-the-art learning-based task offloading
algorithms. The numerical results verify that the proposed
algorithm can achieve a significant performance improve-
ment in terms of latency reduction.

The rest of this paper is organized as follows. In Section
II, related work to this paper are discussed. In Section III,
we introduce the system model and the formulation of the
problem. The algorithm is proposed in Section IV. Simulation
results are presented in Section V and the whole paper is
concluded in Section VI.

II. RELATED WORK

By integrates the computing resources of the network edge
to provide computing services for vehicles through task of-
floading, VEC has the potential to meet the ever-growing com-
putation requirements of the advanced vehicular applications.
Thus, the task offloading problem in the vehicular network has
drawn researchers’ attention [9].

Some existing studies focus on the task offloading schemes
in VEC aiming to optimize the task delay [9] [10], system
cost/overhead [11] [12] or other utility functions [13] - [17].
The authors of [9] proposed a software-defined networking
(SDN) based load-balancing task offloading scheme to mini-
mize the processing delay of the vehicles’ computation tasks,
considering load-balancing of the vehicular edge server. Liu et
al. [10] studied the task offloading problem from a matching
perspective and propose pricing-based matching algorithms
for the task offloading to optimize the total network delay.
The authors in [11] proposed a mobility-aware task offloading
scheme to minimize the system costs, in which the offload-
ing time selection, communication, and computing resource
allocations are joint performed optimally. The problem of
vehicle-to-everything (V2X) offloading and resource allocation
in an SDN-assisted MEC network is investigated in [12] and

the optimal offloading decision, transmission power control,
subchannel assignment, and computing resource allocation
scheme is proposed. Dai et al. [13] considered task offloading
problem in a multi-user multi-server VEC system and focused
on maximizing the system utility by integrating load balancing
with offloading. Hui et al. [14] developed a game theoretic
scheme for collaborative vehicular task offloading in HetNets
and proposed a two-stage task offloading mechanism to pro-
mote the cooperation among participants with the target of
improving the task completion rate and the utilities of the
participants. Considering reduce the computation resources
for both vehicles and resource providers, the authors of [15]
proposed a hybrid intelligent optimization algorithm based on
partheno genetic algorithm which performs server selection for
tasks. The authors of [16] proposed an efficient computation
offloading strategy by using a contract theoretic approach to
enhance the utility of service provider in the vehicular net-
work. A hierarchical cloud-based VEC offloading framework
are proposed in [17] and an optimal multilevel offloading
scheme by using a Stackelberg game theoretic approach are
designed.

However, the above researches all assumed that the global
information of the vehicular network is available, which ig-
nored the influence of the high mobility of vehicle nodes on
channel state information and network topology. Thus these
algorithms are not robust in practical vehicular networks with
highly dynamic vehicle nodes. To address the challenge posed
by the uncertain vehicular networks, some researchers resort to
the method of reinforcement learning to adapt to the dynamic
environment. Zhang et al. [18] formulated the vehicular task
offloading as a mortal MAB problem and proposed an online
algorithm to optimize the node selection strategy by exploiting
the contextual information. To reduce the influence of the
mobility of vehicular servers, Liu et al. [19] proposed a
fluctuation-aware learning-based computation offloading algo-
rithm to improve the delay performance. To improve the delay
performance and service reliability of the VEC system, Wang
et al. [20] exploit the redundancy of computing resources by
introducing task replication technique. Sun et al. [21] further
proposed an adaptive learning-based task offloading algorithm
to achieve a lower delay performance, which could adapt to the
dynamic VEC environment without frequent state information
exchange.

Most of task offloading solutions above mainly focus on
binary task offloading, where the computing task is either
executed locally or offloaded to the edge server entirely. Since
many applications in the IoV can be partitioned, such as virtual
reality (VR) and AR applications [4], partial task offloading
provides an more efficient solution for these seperatable appli-
cations, in which each computing task can be partitioned into
two or more sub-tasks with some sub-tasks executed locally
and others offloaded to the edge server. Garaali et al [22]
studied the joint computation offloading and resource alloca-
tion problem in MEC networks and proposed a multi-agent
reinforcement learning solution. Tuong et al [23] investigated
a joint partial computation offloading and channel allocation
problem in a NOMA-assisted MEC network considering the
dynamic network environments with time-varying channels,
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Fig. 1. Architecture of the VEC system.

and proposed a reinforcement learning algorithm to minimized
the weighted sum of consumed energy and latency.

According to the learning-based task offloading scheme
above, each vehicle makes task offloading desicions based on
its own learning information from the environment. In other
words, these vehicles perform reinforcement learning in a
non-cooperative manner. Different from existing reinforcement
learning based task offloading, we propose a novel RSU-
assisted learning-based partial task offloading algorithm in
this paper. A reinforcement learning method based on MAB
theory is adopted in the proposed algorithm to learn the
dynamic VEC network state information. Specifically, the
learned information is shared among TaVs with the assistance
of RSU, which improves the efficiency of the learning process.

III. SYSTEM MODEL

In this section, we will introduce the VEC system model
considered in this paper first. After that, the delay of each
partial task offloading procedure will be analyzed.

A. Network Architecture

The architecture of the VEC network considered in this pa-
per is shown in Fig. 1, which consists of multiple vehicles and
one RSU. Since the centralized task offloading management
is not practical in the VEC network with uncertain network
state information, we considered a distributed task offloading
manner which adopts vehicle-to-vehicle (V2V) offloading. In
the system model, TaVs generate tasks and offload it to nearby
SeVs for execution. Note that to be TaV or SeV depends on
the remaining resources of the vehicle, which is not fixed
during the trip. The RSU is distributed along the road and
communicates with vehicles by vehicle-to-infrastructure (V2I)
communication. In the VEC network, SeVs may switch among
different TaVs during times because of the high mobility of
the vehicles, which reduces the learning efficiency of TaVs.
To cope with this challenge, a RSU-assisted user cooperation
scheme is proposed in the system model, which allow TaVs to
share the learned information among each other. Specifically,

TABLE I
NOTATIONS USED THROUGHOUT THE PAPER

Notation Definition

t index of the time period
N (t) the candidate SeV set of TaV at time period t
ϕt index of the task at time period t
Lt size of the input data of task ϕt

Ct computation intensity of computation intensity of task ϕt

(in CPU cycles per bit)
λn,t offloading proportion of task ϕt for SeV n
ron,t achievalbe uplink transmission rate
rbn,t achievalbe downlink transmission rate
fl,t CPU frequency of TaV
fsn,t CPU frequency of SeV n at time period t
do (n, t) the transmission delay for task offloading
db (n, t) the transmission delay for result feedback
dl,c (n, t) execution delay for local computing
ds,c (n, t) execution delay for offloading sub-task computing
un,t the sum execution delay for offloading one bit offloaded

sub-task
at the offloading decision of TaV at time period t
RT the cumulated learning regret till time period T
kn,t the number of times that SeV n has been selected up to

time period t
tn the occurrence time of SeV n
vn,t the variance of the bit offloading delay of SeV n

TaVs will upload the learned information to the RSU at the
end of each time period. At the begining of next time period,
RSU will broadcast the aggregated learned information to all
TaVs in coverage.

To ensure the quality of connection between TaVs and
SeVs, TaVs select the SeVs with the same driving direction as
candidates within its communication range. The driving states
information such as driving direction and driving speed can be
exchanged through vehicular communication protocols such as
dedicated short-range communication (DSRC) standard [24].
As shown in Fig. 1, TaV1 has three candidate SeVs within its
communication range.

The notations used in this article are listed in Table I.

B. Task Execution Procedure

Since a distributed task offloading manner is adopted in
the system model, we will focus on one TaV and model the
task execution process in this subsection. There are four steps
for partial task offloading in the system model, including task
partition, task offloading, task execution, and result feedback.
The process of the partial task offloading is shown in Fig. 2.

1) Task Partition: Considering a discrete-time VEC system
where the time is divided into T discrete time periods. The set
of candidate SeVs for TaV in time period t is denoted as N (t).
Note that N (t) is time-varying and unknown in prior because
of the mobility of vehicles. TaV will select a SeV n ∈ N (t)
for task offloading at every time period. The computation task
on TaV in the time period t is denoted as ϕt = [Lt, Ct], where
Lt is the size of the input data for task ϕt (in bits), Ct denotes
the computation intensity of the task (in CPU cycles per bit).
We assume the tasks in the system model can be partitioned
into two sub-tasks at any proportion, and each sub-task can
be processed at local TaV or SeV. Denoting λn,t ∈ [0, 1] as
the offloading ratio, which means the offloading proportion of
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Fig. 2. The process of partial task offloading

task ϕt for SeV n. So the size of the sub-task for offloading
can be expressed as λn,tLt, and the size of the sub-task for
local computing is (1− λn,t)Lt.

2) Task Offloading: After selecting a SeV n for task
offloading, TaV will split task ϕt in to two sub-tasks for local
computing and offloading respectively. Note that the process
of local computing and task offloading are conducted simul-
taneously, which can significantly reduce the task processing
delay. By denoting P as the transmission power, B as the
channel bandwidth, and hon,t as the uplink channel condition
between TaV and SeV n, the achievable uplink transmission
rate ron,t can be written as:

ron,t = B log

(
1 +

Phon,t
σ2

)
(1)

where σ2 represents the noise power. The co-channel inter-
ference is avoided since we adopt the orthogonal channel
allocation [24].

And the transmission delay for task offloading do (n, t) can
be expressed as:

do(n, t) =
λn,tLt
ron,t

(2)

3) Task Execution: Task execution consists of two parts:
local sub-task execution and offloading sub-task execution. By
denoting f lt as the CPU frequency of TaV, the execution delay
for local computing dlc (n, t) can be written as:

dlc (n, t) =
Ct (1− λn,t)Lt

f lt
(3)

Denoting the allocated CPU frequency of SeV n as fsn,t, the
execution delay for offloading sub-task execution dsc (n, t) can
be given by:

dsc (n, t) =
Ctλn,tLt
fsn,t

(4)

4) Result Feedback: The computation result of the of-
floaded sub-task will be transferred back from SeV to TaV.
Similar to the offloading process, denoting hbn,t as the down-
link channel condition between SeV n and TaV, the achievable
downlink transmission rate rbn,t can be written as:

rbn,t = B log

(
1 +

Phbn,t
σ2

)
(5)

Note that the size of the output result is much smaller
compared to the input data in most cases, denoting L

′

t as the
size of the computation result (in bits), the transmission delay
for result feedback db (n, t) can be expressed as:

db (n, t) =
L
′

t

rbn,t
(6)

Since the local computing and task offloading are executed
in parallel, the task completion delay dsum (n, t) can be
written as

dsum (n, t) = max (dlc (n, t) , doff (n, t)) (7)

where doff (n, t) = do (n, t) + dsc (n, t) + db (n, t).

C. Problem Formulation

Our goal is to minimize the average task execution delay
during T time periods by optimizing the offloading decisions
and offloading ratio. The problem can be formulated as:

P1 : min
λat,t,a1,...,aT

1

T

T∑
t=1

dsum (at, t) (8)

where optimization variable at ∈ N (t) represents the offload-
ing decision of TaV at time period t.

Intuitively, at should be the SeV with the best service
capability among the candidate SeV set N (t). To measure
the service capability of each SeV, bit offloading delay un,t
is defined, which represents the sum execution delay for
offloading one bit offloaded sub-task. un,t can be expressed
as follows:

un,t =
doff (n, t)

λn,tLt
(9)

From (9), we can observe that the value of un,t depends
on the channel condition between TaV and SeV n and the
allocating CPU frequency of SeV n. If hon,t, h

b
n,t and fsn,t are

known for TaV before offloading, it’s easy for TaV to choose
the optimal SeV according to

at = arg min
n∈N(t)

un,t (10)

However, due to the inherent mobility of vehicle nodes,
the network state information of the VEC system varies fast
across time, which is hard to model or predict. In addition,
the computation capacity offered by SeV also fluctuates over
time. To obtain the accurate network state information, TaV
needs to exchange information frequently with SeVs, causing
heavy signaling overhead. Therefore, it is hard for TaV to
make the optimal offloading decision due to the time-varying
network state information in the VEC system. To address
this challenge, we designed a novel online learning algorithm
based on MAB theory which enables TaV to learn the service
capabilities of nearby SeVs. This algorithm will be introduced
in detail in Section IV.
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IV. RSU-ASSIST LEARNING-BASED PARTIAL TASK
OFFLOADING ALGORITHM

In this section, we propose a novel online learning algorithm
based on MAB theory to reduce the task execution delay by
guiding TaV to choose the optimal SeV. The performance and
complexity of the algorithm are also analyzed in this section.

According to MAB theory, a bandit with K arms is mod-
eled, where each arm has a different and unknown expected
payoff. The goal of the MAB algorithm is to maximize the
cumulative reward. Considering each SeV as an arm of the
bandit which has unknown service capability and TaV as the
decision maker, task offloading problem in the VEC system
can be modeled as a MAB problem. However, traditional
MAB problem assumes that the arms remain unchanged over
time, while candidate SeV set is time-varying because of the
mobility of the vehicles. Thus, the traditional MAB algorithms
such as UCB1 and UCB2 can not be used to solve the task
offloading problems in the VEC system.

In this work, we propose a RSU-assisted learning-based
partial task offloading algorithm, which allows TaVs to learn
the service capability of SeVs while offloading. Note that the
service capability is measured by the bit offloading delay un,t.
In the learning process, the variation of the SeV set will reduce
the learning efficiency. To address this problem, we propose
a novel RSU-assisted mechanism which allows TaVs to share
the service capability of SeVs they learned with the assistance
of RSU. At the end of each time period, TaVs will update the
service capability of SeV it selects and upload this information
to RSU. The updated information of SeVs will be broadcast
to all TaVs by RSU at the beginning of the next period.

At the beginning of each time period, TaV first detects
whether a new SeV appears in the SeV set. If a new SeV
appears and there is no record about its service capability in
RSU, TaV will offload a task to it once. Note that TaV knows
nothing about the new appear SeV, so the offloading ratio is
set as a predetermined value λ

′
. If TaV has the prior infor-

mation about SeV according to RSU or itself, an appropriate
offloading ratio λn,t could be calculated in the follows. Since
dlc (n, t) and doff (n, t) in P1 are monotonically increasing
and decreasing with λn,t respectively, the optimal value of
λn,t can be given when dlc (n, t) = doff (n, t). Combining
(3) and (9), the optimal task offloading proportion λn,t

∗ can
be expressed as:

λn,t
∗ =

Ct
Ct + f tl un,t−1

(11)

where un,t−1 denotes the observed average bit offloading
delay of SeV n till time period t− 1.

One of the classic problems which MAB theory focuses on
is how to balance the exploration and exploitation tradeoff in
the learning process. Exploitation means selecting the optimal
node based on known information, while exploration means
exploring the unknown nodes. The exploitation strategy may
result in missing the nodes with better benefits, while the
exploration strategy may result in unexpected losses. Consider-
ing the tradeoff between exploration and exploitation, a utility
function is defined to evaluate the service capability of each
SeV as follows:

ûn,t = un,t−1 −

√
β (1− λn,t) L̃tvn,t ln (t− tn)

kn,t−1
(12)

where parameter β denotes the weight factor, kn,t denotes the
number of times that SeV n has been selected up to time
period t, and tn records the occurrence time of SeV n. L̃t
refers to the normalized value of Lt, vn,t denotes the variance
of the bit offloading delay of SeV n. The expression of L̃t
and vn,t will be introduced later.

The first part of the utility function (12) is the empirical bit
offloading delay of SeV n, and the second part is a padding
function, which is used to balance the tradeoff between explo-
ration and exploitation. Inspired by the volatile UCB (VUCB)
algorithm [25] and UCB1-tuned algorithm [26], the size of the
normalized offloaded sub-task (1− λn,t) L̃t, SeV occurrence
time tn, the variance of bit offloading delay vn,t, and the
number of selected times of SeV n kn,t have been considered
in the padding function. To be specific, weight factor β is
used to adjust the tendency of the algorithm to exploration
strategy. The size of the normalized offloaded sub-task can also
be regarded as a weight factor of exploitation. Intuitively, if
the size of the offloaded sub-task is small, TaV could execute
exploration strategy safely without worrying about the large
delay. And if the size of the offloaded sub-task is large, TaV
should choose the exploitation strategy to reduce the risk of
large delay. The normalized L̃t can be expressed as:

L̃t =
Lt − Lmin
Lmax − Lmin

(13)

where Lmax and Lmin denote the maximum and minimum
value of the task load, respectively.

What’s more, the rest part of padding function√
vn,t ln(t−tn)

kn,t−1
encourages TaV to explore the SeVs with a

large variance of bit offloading delay and fewer times of
selection, since this means that the SeV has not been fully
explored. According to the UCB1-tuned algorithm [27], vn,t
can be expressed as:

vn,t = min

(
1

4
,

t−1∑
τ=1

1

kn,t−1
kn,τun,τ

2 − un,t−1
2

+

√
β(1− λn,t)L̃tvn,t ln(t− tn)

kn,t−1

) (14)

where uτ,n is the bit offloading delay of SeV n at time period
τ observed by TaV.

Then, TaV will choose the SeV with minimal utility function
to offload sub-task, which can be expressed as:

at = arg min
n∈N(t)

ûn,t (15)

After making the offloading decision, TaV will perform
task offloading and execution according to the offloading
decision and observe the offloading delay of SeV at upon
result feedback, and uat,t, kat,t will be updated. Finally,



6

Algorithm 1 RSU-assisted Learning-based Partial Task Of-
floading (RALPTO) Algorithm

Input: λ
′
, L̃t, f lt

Output: a1, ..., aT , λat,t
∗

1: for t=1, ..., T do
2: if New SeV n appears in N(t) then
3: if The average bit offloading delay of SeV n un,t

can be learned from RSU then
4: Record un,t according to RSU, kn,t = 1, tn =
t, calculate λ∗n,t according to (11).

5: else at = n, λn,t = λ
′
, offload the task to SeV at

and calculate un,t according to (9), kn,t = 1, tn = t.
6: end if
7: end if
8: if (at == 0) then
9: Calculate λn,t∗ for each candidate SeV n ∈ N (t)

according to (11).
10: Calculate the utility function of each candidate

SeV n ∈ N(t) according to (12).
11: Choose the optimal SeV at according to (15) and

perform task offloading decision.
12: Calculate the bit offloading delay uat,t according

to (9).
13: end if
14: Update uat,t ←

uat,t−1kat,t−1+uat,t

kat,t−1+1 .
15: Update kat,t ← kat,t−1 + 1.
16: Upload uat,t to RSU .
17: end for

the updated uat,t will be uploaded to RSU. The proposed
RALPTO algorithm is shown in Algorithm 1.

The outline of Algorithm 1 is summarized as follows:
1) At the beginning of each time period, each TaV first

calculates the optimal task offloading proportion according to
the observed average offloading delay of each candidate SeV.
Next, the service capability of each candidate SeV is derived
and the optimal SeV with the best service capability is selected
to perform task offloading. Then the bit offloading delay of the
selected SeV is then calculated (line 8-line 12).

2) Specifically, if a new SeV appears in the candidate SeV
set, TaV first requests its observed average offloading delay
from RSU. If there is no record of the new SeV in RSU,
TaV will choose the new SeV to perform offloading and the
offloading ratio is set as a predetermined value (line 2-line 7).

3) At last, the service capability and the selected times of
the selected SeV are updated and uploaded to RSU (line 14-
line 16).

V. PERFORMANCE ANALYSIS

We further analyze the complexity and performance of the
RALPTO algorithm in this section. In the proposed RALPTO
algorithm, the computational complexity of computing the
optimal offloading ratio λn,t

∗ and utility function ûn,t of all
SeV in Line 9 and Line 10 is both O (N), where N = |N (t) |
is the size of the SeV set at time period t. The decision-
making requires O (1) computational complexity. Therefore,

the total complexity of the RALPTO algorithm can be derived
as O (TN).

To analyze the performance of the proposed RALPTO
algorithm, we adopt the learning regret of task execution delay
as the performance metric, which is widely used in MAB
theory [28]. Then, the theoretical derivation will prove that the
proposed algorithm has a sublinear performance compared to
the globally optimal policy.

Learning regret denotes the delay loss between the proposed
algorithm and the global optimal policy, which reflects how
close the decision made by the algorithm is to the optimal
solution. For theoretical analysis, we defined an epoch as the
interval during which SeV sets remain identical. Assumes
there are B epochs during T time periods, and we denote
Nb as the SeV set of the bth epoch. The first and last time
period of bth epoch is denoted as tb and tb

′
. Let un = E [un,t]

denote the mean bit offloading delay of SeV n and a∗b =
arg minn∈N(t) un denote the index of the optimal SeV at bth
epoch with the optimal bit offloading delay µ∗b , the cumulated
learning regret till time period T can be expressed as

RT =

B∑
b=1

E

 t
′
b∑

t=tb

xt (un,t − µ∗b)

 (16)

where xt denotes the size of offloaded sub-task to SeV n at
time period t. Note that xt varies across the time in practical,
for simplicity, we assume the task load remains identical. The
research in [21] proves that the conclusion still holds without
this assumption.

Denote ∆n,b = un,t−µ∗b as the learning regret that caused
by choosing SeV n ∈ Nb , RT can be further expressed as

RT =

B∑
b=1

E

xt ∑
n 6=a∗b

kn,t∆n,b


= xt∆n,b

B∑
b=1

E

∑
n 6=a∗b

kn,t

 (17)

Lemma 1: The upper bound of the learning regret of the
proposed RALPTO algorithm in a given time horizon T can
be expressed as:

RT ≤ xt
B∑
b=1

∑
n 6=a∗b

(
8 ln (T )

∆n,b
+

(
1 +

π2

3

)
∆n,b

) (18)

Proof : See Appendix A.
Lemma 1 shows that the learning regret of our proposed

RALPTO algorithm is governed by O(lnT ), which achieves
sublinear deviation compared to the optimal solution.

VI. SIMULATION RESULTS

In this section, numerical simulation experiments are per-
formed in synthetic scenario using MATLAB to verify the
performance of the proposed RALPTO algorithm. In the
simulation 3 TaVs and 30 SeVs are considered and the distance
between SeVs and TaVs is randomly distributed within 50m
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TABLE II
PARAMETERS TABLE

Parameter Value
Transmission power P 0.1W

Noise power σ2 10−13W
Channel bandwidth B 10MHz

Computation intensity of task Ct 103 cycles/bit
Weight factor β 0.2

Fixed offloading ratio λ
′

0.5
Maximum CPU frequency of SeV fs

max 5GHz
Maximum CPU frequency of TaV f l

max 3GHz
Communication range of TaV 50m

and changes randomly from -5 m to 5 m in each period. One
RSU is deployed to broadcast the service capability of SeVs
to TaVs. In the simulation, the wireless transmission can be
modeled as hon,t = hbn,t = A0l

−ϕ, where A0 = −17.8dB,
l denotes the distance between the sender and receiver, and
ϕ denotes the path loss factor, which randomly distributed
from [2, 4] [28]. The data size of the input task Lt uniformly
distributed within [5, 8] Mbits. The remaining parameters are
listed in Table II. Noticed that the CPU frequency of SeV is
randomly distributed from 20% to 50% of the maximum value.

The performance of the proposed RALPTO is validated by
comparing with the following benchmark algorithms:

1) UCB [27]. UCB chooses SeV to perform task offloading
based on the expected offloading delay and upper confidence
index. The padding function in UCB is

√
β ln t
kt−1,n

, which does
not consider the impact of the size of input task and changeable
SeV set.

2) VUCB [29]. VUCB is similar to UCB, except that the
padding function in VUCB is

√
β ln(t−tn)
kt−1,n

, which take the
impact of the dynamic SeV set into consideration.

3) Genie-aided policy. According to Genie-aided policy,
each TaV knows the accurate network state information and
makes optimal offloading decisions according to (10) in every
time period. Note that genie-aided policy provides the lower
bound of delay performance among all reinforcement learning-
based algorithms.

4) Random policy. In random policy, each TaV randomly
selects a SeV for task offloading in each time period.

5) Full offloading RALPTO. Full offloading RALPTO is
a special case of the RALPTO algorithm which adopts binary
task offloading policy instead of partial task offloading policy.
In the other word, in the full offloading RALPTO algorithm,
TaV will offload the whole task to the selected SeV.

6) No RSU-assisted RALPTO. No RSU-assisted RALPTO
is another special case of RALPTO algorithm, in which there
are no information exchanges among each TaVs. TaVs store
the service capability of SeV locally.

The average delay of each algorithm is shown in Fig. 3.
It can be observed that the proposed RALPTO algorithm
outperforms UCB, VUCB and random algorithms. This is
due to the partial task offloading and RSU-assist mechanism
adopted in RALPTO improve the adaptability of TaVs to the
time-varying VEC environment. Both UCB and VUCB out-
perform random algorithms, indicating that MAB algorithms
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Fig. 3. Average delay of RALPTO algorithm and benchmarks

can effectively adapt to dynamic VEC network environments.
The average delay of UCB and VUCB during the initialization
phase is relatively high since the exploration dominates the
learning process at the beginning. In addition, the VUCB has
lower delay than the UCB, demonstrating that considering the
impact of dynamic SeV sets in VEC networks is beneficial for
improving algorithm performance.

0 200 400 600 800 1000
0

50

100

150

200

250

Time period t

 L
e

a
rn

in
g

 r
e

g
re

t

 

 

RALPTO(proposed)

VUCB

Random

UCB

Fig. 4. Learning regret of RALPTO algorithm and benchmarks

The average learning regret of each algorithm is shown
in Fig. 4, from which we can observe that the proposed
RALPTO algorithm decreases the learning regret by 85% from
VUCB. Moreover, the learning regret of RALPTO increases
sub-linearly with time period t, which indicates that the
proposed algorithm can asymptotically converge to the optimal
policy. The learning regret of UCB and VUCB is close, both
significantly lower than the random algorithm. The learning
regret performance of VUCB is slightly better than that of
UCB, which is consistent with the result in Fig. 3.

Fig. 5 presents the ratio of optimal selections of each
algorithm, which is the proportion of the number of times
each algorithm makes the best decision to the total number
of decisions. We can observe that the RALPTO algorithm has
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Fig. 5. Ratio of optimal selections of RALPTO algorithm and benchmarks

the best performance compared to the other benchmark algo-
rithms. Noticed that due to the highly dynamic environment in
the simulation, the ratio of optimal selection of all algorithms
did not exceed 50%. Combining the analysis of Fig. 3 and
Fig. 4, it can be concluded that the RALPTO algorithms still
have good performance with less than 45% of the ratio of
optimal selection, because suboptimal solutions are obtained
which are not far from the best decision. The ratio of optimal
selection of VUCB and UCB reach 40% and 35% at around
1000 time periods respectively, and that of random algorithm
achieves slightly above 15%.

Fig. 6 evaluates the impact of partial task offloading and
RSU-assist mechanism on the delay performance. To explore
the impact of these mechanisms on the adaptability of the algo-
rithm to the dynamic environment, we compared the RALPTO
algorithm with the Full offloading RALPTO algorithm and No
RSU-assisted RALPTO algorithm in Fig. 6. We can observe
that the Full offloading RALPTO algorithm has a larger delay
compared with the other algorithms, illustrating that partial
task offloading can significantly reduce the task execution
delay. This is due to the fact that the partial task offloading
can make use of the local computation capacity of TaV, and
the task can be executed by TaV and SeV in parallel. Noticed
that the RALPTO algorithm outperforms the No RSU-assist
RALPTO algorithm since the beginning of each epoch, which
illustrates that the RSU-assist mechanism is helpful to improve
the performance of the RALPTO algorithm in the dynamic
vehicular environment.

Fig. 7 presents the impact of the weight factor β on the
learning regret, which represents the tendency of the RALPTO
algorithm to the exploration strategy. We can observe that
during the first 180 periods, the performance of β = 0
and β = 0.2 are very close. Then, the learning regret of
β = 0 increases rapidly over the rest of 800 time periods.
The learning regret of RALPTO with β = 1 is slightly lower
than that with β = 0 after 200 time periods. The regrets of
RALPTO with β = 2 and β = 0.1 are very close and is
slightly higher than that with β = 0.2. Since β = 0 means
the algorithm adopts a pure exploitation strategy, thus the
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nism
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algorithm may stick into a sub-optimal solution for a long
time and cause an increase of long-term learning regret when
β = 0. In addition, according to Fig. 7, the learning regret is
lowest when β = 0.2 under our settings.

VII. CONCLUSION

In this paper, we proposed a novel RSU-assisted learning-
based task offloading algorithm (RALPTO) for the task of-
floading problem in the VEC network to minimize the aver-
age offloading delay. In the proposed algorithm, partial task
offloading greatly reduces the task execution delay by parallel
computing, which makes full use of the local computing
resources. The utility function can effectively realize the
trade-off between exploitation and exploration strategy, which
enhances the adaptability of the algorithm to the dynamic
vehicular network. What’s more, the TaVs can share the
learning information with the assist of RSU, which further
improves the efficiency of the algorithm. Simulation results
have shown its advantages over existing algorithms. For further
research, the task offloading problem considering both vehicles
and RSUs as computation servers in the VEC network can be
further investigated as an open issue.
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APPENDIX A
PROOF OF LEMMA 1

From (17) we know that RT is mainly determined by
E [kn,t]. For any predicate ζ, we define {ζ} = 1 if the
predicate is true and {ζ} = 0 if the predicate is false. Let
l be an arbitrary positive integer, we have:

kn,t ≤ 1 +

T∑
t=2

{at = n}

≤ l +

T∑
t=2

{at = n, kn,t−1 ≥ l}

≤ l +

T∑
t=2

{un,t−1 − In,t−1 ≤ ut−1
∗ − It−1

∗, kn,t−1≥l}

≤ l +

T∑
t=2

{
min
l<sn<t

un,sn − In,sn ≤ max
0<s<t

us
∗ − Is

}

≤ l +

∞∑
t=1

t−1∑
s=1

t−1∑
sn=l

{un,sn − In,sn ≤ us∗ − Is}

(19)

where In,t−1 denotes the padding function of ûn,t−1.
Intuitively, if SeV n is chosen in time period t, ûn,t ≤ û∗t

must holds, which is also revealed in the above formula

un,sn − In,sn ≤ us∗ − Is (20)

Equation (20) holds only when at least one of the following
three inequalities are true:

un − u∗<2In,sn (21)

u∗ + In,sn ≤ un∗ (22)

un + In,sn ≤ un (23)

Denote β = 2, from (21) we can obtain:

kn,t−1 ≤
8 ln (t− tn)

∆n
2 (24)

where ∆n = un − u∗.
Denote l =

[
8 ln(t−tn)

∆n
2

]
, where [x] means rounding down

to x. ∀sn>l in (21), we can obtain that

un − u∗ − 2In,sn ≥ un − u∗ −∆n = 0 (25)

Thus it is proven that (21) is false. According to Chernoff-
Hoeffding inequality [30], we can obtain the probability that
(22) and (23) hold:

P (un
∗ − u∗ ≤ In,sn) ≤ e−4 ln(t−tn) (26)

P (un − un ≥ In,sn) ≤ e−4 ln(t−tn) (27)

Thus,

E (kT,n) ≤
[

8 ln (t− tn)

∆n
2

]
+

∞∑
t=1

t−1∑
s=1

t−1∑
sn=l

{

P (un
∗ − u∗ ≤ In,sn) + P (un − un ≥ In,sn)}

≤ 8 ln (T )

∆n
2 +

∞∑
t=1

t−1∑
s=1

t−1∑
sn=

[
8 ln(T )

∆n2

]
{

2t−4
}

≤ 8 ln (T )

∆n
2 +

∞∑
t=1

t−1∑
s=1

t−1∑
sn=1

{
2t−4

}
≤ 8 ln (T )

∆n
2 + 1 +

π2

3
(28)

Combining (28) into (17), the Lemma 1 is proved.
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