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Abstract

Output analysis for stochastic simulation has traditionally focused on obtaining statistical

summaries of time-averaged and replication-averaged performance measures. Although

providing a useful overview of expected long-run results, this focus ignores the finer be-

haviour and dynamic interactions that characterise a stochastic system, motivating an

opening for simulation analytics. Data analysis efforts directed towards the detailed event

logs of simulation sample paths can extend the analytical toolkit of simulation beyond static

summaries of long-run behaviour. This thesis contributes novel methodologies to the field

of simulation analytics. Through a careful mining of sample path data and application of

appropriate machine learning techniques, we unlock new opportunities for understanding

and improving the performance of stochastic systems.

Our first area of focus is on the real-time prediction of dynamic performance measures,

and we demonstrate a k-nearest neighbours model on the multivariate state of a simulation.

In conjunction with this, metric learning is employed to refine a system-specific distance

measure that operates between simulation states. The involvement of metric learning is

found not only to enhance prediction accuracy, but also to offer insight into the driving

factors behind a system’s stochastic performance. Our main contribution within this

approach is the adaptation of a metric learning formulation to accommodate the type of

data that is typical of simulation sample paths.

Secondly, we explore the continuous-time trajectories of simulation variables. Shapelets

are found to identify the patterns that characterise and distinguish the trajectories of

competing systems. Tailoring to the structure of discrete-event sample paths, we probe a

deeper understanding and comparison of the dynamic behaviours of stochastic simulation.
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Chapter 1

Introduction

Many systems in the physical world are driven by the interaction of random processes. To

support decision making in such systems, stochastic simulation becomes an indispensable

modelling tool. A simulation model creates a secure and cost-effective environment in which

to explore the consequences of prospective real-world actions, and as such provides vital

assistance across a range of industries, from healthcare (Brailsford, 2007) to manufacturing

(McGinnis and Rose, 2017) and supply chain logistics (Ingalls, 1998).

Our specific focus lies in the stochastic simulation of discrete-event systems. In this

modelling paradigm, events occur at distinct points in time and trigger immediate changes

to the system’s state. We use the term “simulation sample path” to refer to the multivariate

trajectory of system state variables. Alternative paradigms such as agent-based modelling

can also be understood through the evolution of a system state, and we acknowledge the

wider applicability to some of the methods developed herein. Nevertheless, our primary

motivation centres around discrete-event modelling, and each example we present belongs

to this paradigm.

For decades, the focus of research and practice in simulation analysis has centered

around the precise and efficient estimation of system performance measures. These are

typically long-run averages of output quantities, such as a mean waiting time or expected

profit. However, this habit of time-averaging overlooks the dynamic behaviour that occurs

throughout the simulation. At the same time, the accomplishments of data analytics and

1
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machine learning in today’s data-rich world suggest that deeper insights into simulation

behaviour may be obtained by directing analysis efforts towards the simulation sample

path. It is the recognition of this opportunity that inspires the field of simulation analytics

(Nelson, 2016).

We begin by establishing further motivation for the field of simulation analytics, which

underpins our efforts throughout this thesis. The contributions to this field made in the

following chapters are outlined in Section 1.2.

1.1 Motivation

Simulation analytics is the term coined by Nelson (2016) to refer to the field of opportunities

arising from the deliberate retention of sample path data. These opportunities surround

the search for deeper insights into simulation behaviour. Over finer timescales, it may be

revealed, for example, how a system responds to certain events or input behaviours, or

which conditions lead to periods of poor performance. Such capabilities have the potential

to move simulation towards a more adaptive style of system design and control, removing

the need to comprehensively anticipate and simulate scenarios ahead of time.

At its most detailed level, the sample path of a discrete-event simulation can describe

the time-stamped occurrence of every event and system state change. Traditionally, the

trajectories of simulation variables have been averaged across both time and replications,

with estimation of long-run performance the prevailing mode of output analysis. Illustrated

in Figure 1.1.1, this practice naturally masks the time-dependent, dynamic effects which

characterise the behaviour of a working system.

Simulation optimisation, for instance, constitutes a significant area of simulation ap-

plication, wherein system designs are compared based on estimations of their long-run

performance (Fu, 2015). Research efforts in this field continue to produce algorithms and

procedures which, with increasing efficiency and confidence, can identify near-optimal solu-

tions with regards to pre-specified, long-run objectives. The question of which system design
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time

replications

Y 1

Y 2

Y n

Y = 1
n

∑n
i=1 Y i

Figure 1.1.1: A traditional simulation output, Y , is typically an average of dynamic simulation
behaviour over time and replications.

is best is being routinely addressed, while the questions of why remain largely overlooked.

Simulation analytics pursues this shift of perspective. For example, can we identify the key

drivers of system performance and reveal the important factors in the system design?

The aims of simulation analytics are facilitated by the fact that data storage today is

cheap and, for most intents and purposes, unlimited. There is no reason to discard sample

path data. Moreover, the simulation context affords us complete control of the data that

we generate. Simulation data is tidy, complete, and free from measurement error, and we

can stipulate exactly the information to record. This represents a significant opportunity,

which is not yet widely exploited. Complete details of a system’s sample path provide a rich

opportunity for exploratory analysis, whilst we may also manipulate the simulation and

data generation to target specific insight goals.

The intention of simulation analytics to unlock a more comprehensive view of system

behaviour may also produce secondary benefits. Simulation has long been appreciated as a

valuable decision making tool, although gaining the confidence of human users represents

a critical facilitating step. Naturally, observing the movement of entities within a visual

simulation model can instill confidence in the model’s representation and operational fidelity.

Simulation analytics, meanwhile, aims to instill confidence and offer explainability to the

model’s results. While model verification and validation can help to encourage confidence

in model outputs (Sargent, 2010), an implicit level of trust is always required for simulation-
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informed decisions to be accepted and implemented in a real system. Reporting only the

high-level summaries of simulation output without insight into the time-dynamic process

leaves simulation with a distinctly black box feeling, and retaining trust in the simulation

model can be difficult. We argue that a foundation of trust provides a vital connection

between the model and the user, and without which the full benefits of simulation are

unobtainable. From this perspective, inspiring and developing trust should be a constant

aim throughout the simulation process, from model conception through to output analysis.

The aim of simulation analytics to deliver insights into the working behaviours of a system

may serve towards removing the layer of mystery between the computer model and its

outputs, and inspire greater confidence in the simulation process.

As an example of pre-existing work in the spirit of simulation analytics, Brady and

Yellig (2005) analysed the frequency of keyword elements relating to system entities from

a single sample path. A correlation matrix was used to reveal the extent of interactions

among system components and suggest those most critical to the system performance.

Thus, the recognition of sample path data and its possible use for system analysis is not

new. However, it is increasing (for examples, see Wu and Barton (2016); Ouyang and Nelson

(2017); Jiang et al. (2020)). Modern appreciation for big data analytics and machine learning

solutions provides simulation analytics with the encouragement to impact and transform

our understanding of simulation output.

1.2 Outline and Contributions of the Thesis

The chapters of this thesis and their contributions to the field of simulation analytics are as

follows.

Chapters 3, 4, and 5 are intended to be read as self-contained articles, with each including

background material sufficient to its understanding. Nevertheless, Chapter 2 is included

to offer additional context and relevant literature pertaining to the topics appearing in

these subsequent chapters. In particular, we discuss the emergence of simulation analytics,
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and provide overviews of the topics of distance metric learning and time series shapelets.

Chapter 2, therefore, serves as an auxiliary reference, and may indulge a deeper appreciation

and understanding of the central concepts appearing in this thesis.

Chapter 3 approaches the task of making real-time predictions of a dynamic performance

measure. We demonstrate a k-nearest neighbours (kNN) model on system state information,

establishing a non-parametric framework to extract practical insights from sample path

history. However, the question arises of how to define similarity and identify neighbours in

the context of a high-dimensional simulation state. To address this challenge, we invoke

a system-specific distance function via metric learning. This chapter acts as a proof-of-

concept for the application of metric learning for kNN on simulation sample path data. We

demonstrate the benefits that metric learning can bring to kNN predictions of simulation

performance, both in terms of improving prediction accuracy and delivering insights into

the key drivers of this performance. In supporting real-time decision-making in a live

system, the applicability of this framework alongside digital twin technology is discussed in

Section 6.2.1.

Chapter 4 extends the work of Chapter 3 by developing a metric learning method

tailored to the context of simulation data. In contrast to the typical assumptions that

underlie metric learning, the data obtained from a simulation model is inherently stochastic:

we can observe identical observations of the system state leading to different simulation

outcomes. This chapter adapts a method of probabilistic metric learning to this context. We

establish theoretical properties of the method, and demonstrate its superior performance

on simulation problems.

Chapter 5 approaches a different aspect of simulation analytics to the previous chapters.

Studying the individual trajectories of simulation outputs, we uncover insights and draw

comparisons among competing system designs based on their dynamic behaviour. This uses

the concept of shapelets, which represent locally characteristic patterns used for time series

classification. We adapt the methodology of time series shapelets to the continuous-time,
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piecewise constant trajectories typically encountered in discrete-event simulation. This

presents a versatile methodology through which we can learn about the dynamic behaviours

of different systems. An implementation of the method is supported by mathematical results,

while the proof-of-concept is established through illustrative simulation applications.

Chapter 6 concludes the thesis by providing a summary of the contributions made

throughout, and suggestions for further research in extension to the presented work.



Chapter 2

Background and Literature Review

This chapter serves as an introduction and background to the ideas presented in the subse-

quent chapters. Section 2.1 sets the foundation for the entire thesis, commencing with a brief

background in simulation modelling and arriving at the present recognition of simulation

analytics. Section 2.2 covers the subject of distance metric learning, providing context and

background relevant to Chapters 3 and 4. In Section 2.3, we provide an overview of time

series shapelets, establishing a background to the methodology presented in Chapter 5.

2.1 The Path to Simulation Analytics

The field of simulation analytics emerges out of a long history of modelling and simulation.

“Modelling” abstractly refers to the activity of creating a simplified representation of reality,

principally for the purpose of learning something of that reality (Fishwick, 2017). Whilst this

broadly describes a habitual behaviour throughout human history, the advent of computers

rapidly transformed the modelling capacity available to us, and facilitates the modern use of

computer simulation which pervades today. The power, scale, and interactivity of a modern

simulation model ensures a potent tool by which we may learn about our world and perceive

the outcomes of our decisions.

Conducting a simulation study necessarily involves several steps, including, for instance,

data collection, formulation and validation of a conceptualmodel, construction and execution

7
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of a computer program, operational validation, experimental design, and output data analysis

(Nance and Sargent, 2002). Our interest in this thesis lies predominantly in the direction of

output analysis. This section aims to chronicle the progress and directions of research in

output analysis, arriving at the recognition of simulation as a generator of dynamic sample

path data and the reasonable goals of simulation analytics.

2.1.1 Traditional Means of Output Analysis

A pervading goal of simulation modelling has been to obtain information regarding some

performance value. In stochastic models, the presence of random input components precipi-

tates random output behaviour, and simulation can only provide an estimate of the true

value of interest. In the early days of computing, stochastic simulation experiments involved

the running of multiple replications of a model with different random inputs to arrive at an

estimation of the expected value. To acknowledge the ever-present uncertainty, statistical

theory of the sample mean can equip a simulation estimate with variance characteristics

and confidence bounds (Law and Kelton, 2007).

Estimating quantities such as expected customer delays illustrates a problem that has

dominated output analysis for decades. Namely, that observations from within a single

replication are likely to be correlated, as well as being sensitive to the system’s initial

conditions. Addressing these complications, Conway (1963) presented ideas critical to

the tactical execution of simulation experiments, introducing the problem of steady-state

simulation and related considerations of sample size and variance estimation. These remain

central considerations to the evaluation of steady-state simulation output and continue

to inspire new research (Pasupathy et al., 2022). Seeking to place simulation outputs in a

statistical framework has long occupied researchers, with autoregressive time series models,

for example, being fitted to assist steady-state mean and variance estimation (Schriber and

Andrews, 1984).

Beyond its theoretical analysis, the awareness of variability in simulation output has
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influenced practice by inspiring variance reduction techniques. Established techniques

include the use of common random numbers (CRN) and control variates (Nelson and Pei,

2021). CRN, for example, refers to the practice of synchronizing the random number streams

used to simulate a system under alternative scenarios. In this way, output variance arising

from differences in the input randomness can be mitigated, and the variance of the estimated

difference between the outputs is reduced without the need for additional simulation effort.

Comparing a system under alternative scenarios represents a common objective from a

simulation study, and motivates the extensive field of simulation optimisation (Fu, 2015).

The ambition of simulation users is often, by altering some controllable decision variables,

to discover a system design which will yield good, or near-optimal performance. When

the decision variables are continuous, response surface methodology and gradient-based

methods such as stochastic approximation have proved useful to optimisation (Fu, 1994).

Alternatively, in a discrete decision space with a finite set of feasible solutions, the focus

turns to providing statistical guarantees and results of convergence towards optimality.

Ranking and selection procedures describe a popular family of methods for use when the

number of feasible solutions is small enough that reasonable simulation effort may be

allocated to each. The aim of such procedures is to identify the best solution under some

criterion, such as meeting a pre-selected probability of correct selection (Kim and Nelson,

2006).

Accounting for the variation in simulation outputs remains a key concern for simulation

optimisation procedures, and for output analysis in general. Seeking a fuller understanding

of the origins and influences of this variation has led to research into topics such as sensitivity

analysis and input uncertainty. Sensitivity analysis typically investigates the impact of

changes in model input parameters on simulation outputs (Kleijnen, 1995). This can provide

quantification to the relative influence of different inputs and assess the robustness of the

simulation model. Input uncertainty, meanwhile, refers to the inherent variability or error

in the fitted input models themselves, arising from factors in the data collection process
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such as measurement error, incomplete data, and natural variability. Input modelling errors

subsequently propagate through the simulation model and contribute variability to the

outputs. Quantifying and minimising these contributions continues to attract efforts in

simulation research (Song and Nelson, 2015; Parmar et al., 2021).

With these developments, we see output analysis moving beyond simple output esti-

mation. Interest has grown in exploring relationships through the simulation: how input

features and variability propagate through to outputs; how outputs arise from inputs. Beyond

stochastic input models, we also acknowledge the structural inputs, or decision variables,

of a system design. Simulation metamodelling comprises another active area of research

which aims to simplify and interpret the relationship of such inputs to the outputs, and

provide a computationally efficient approximation to the simulation response (Barton, 2020).

The evolution of simulation research shows a clear trend towards interpretable analysis.

We see an overarching ambition to alleviate the black box feel of the inner simulation, and

focus turns to an understanding of the how and why behind the outputs rather than simply

the what. The field of simulation analytics finds its place at this point. Before exploring

the main ambitions of simulation analytics, we turn our attention to the data generated by

discrete-event simulation which will facilitate these ambitions.

2.1.2 Dynamic Sample Path Data

A discrete-event simulation models a system as a random sequence of events occurring

at random times. Events trigger changes to the system state, whilst during the intervals

between consecutive events, the system state remains unchanged. In general, the term

system state may refer to some subset of the information generated by the simulation up

to the current time. Glynn (1989) referred to the internal state of a system and portrayed

its evolution in the mathematical framework of a stochastic process. For a more practical

intuition, Law and Kelton (2007) define the state of a system to be the “collection of variables

necessary to describe a system at a particular time, relative to the objectives of a study”. We
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find this to be a useful working definition. Keeping in mind our goal to extract interpretable

insights from simulation data, we might add to this that we imagine the system state to

comprise variables representing those components of the simulation model which represent

observable components of the real system. For example, a server in a queueing system may

be attributed with a zero-one variable indicating its fluctuating state between idle and busy,

while a queue may be assigned an integer variable reporting the number of its contents.

With this event-state view of simulation, we understand that full details of a replication

may be captured by a time-stamped trace recording the events that occur and the corre-

sponding change to the variables of the system state. The facility for this kind of output

is not missing from simulation languages. Although primarily for the purpose of error-

catching and debugging, simulation software will routinely record everything that occurs as

a simulation steps through time. The ambition of simulation analytics is to recommission

this detailed event log for the purpose of exploring and understanding system behaviour.

We refer to the detailed state information through time as a simulation sample path.

To give some intuition for its properties, we first note that since many state variables will

often be required to fully characterise a simulation model, the sample path is in general

high-dimensional. In addition, it may be highly dependent. Due to the complex interactions

among components of a simulation model, the paths of different state variables may be

highly correlated. We can also acknowledge non-stationary behaviour. Perhaps driven

by time-varying input models, the output sample path behaviour may be strongly time-

dependent.

Data storage is effectively no longer a restriction, and we can readily aim to store and

exploit sample paths from multiple replications of a system, and also from across system

alternatives. We might point out that across replications of the same system, sample paths

will be independent and identically distributed (i.i.d.). Therefore, although observations

are dependent within each replication, they are independent across separate replications.

This observation may prove useful to the application of analysis methods which require an
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assumption of i.i.d. data points. Across replications of different system alternatives, however,

the sample paths will not be identically distributed, while the use of CRN can also remove

independence. For the aim of comparison, simulation analytics can hope to uncover insights

related to these distributional differences.

In summary, discrete-event simulation can equip us with multiple time-dynamic, high

dimensional and highly dependent sample paths across different system alternatives, where

the sample paths from replications within each alternative are i.i.d. It is the recognition

of simulation analytics that this data is readily available, and brings the opportunity for

deeper insights and comparisons of simulation models. We proceed to a discussion of these

potential opportunities.

2.1.3 Objectives for Simulation Analytics

Broadly, the aim of simulation analytics is to develop a deeper understanding of simulated

systems. In practical terms, the expectation is to apply statistical and machine learning

techniques to the data contained in simulation sample paths. While the particular aims

and possibilities rightly remain open, Nelson (2016), in introducing the field of simula-

tion analytics, suggested the five general objectives which are discussed in the following

paragraphs.

The first objective relates to generating dynamic conditional statements. This includes

the task of making predictions conditional on the current state and time, an initial attempt

of which was made by Ouyang and Nelson (2017). Their aim is to estimate a probability of

the form P (h(X(t0 + t)) ∈ A |X(t0) = x0). Assuming the current time of t0, this denotes

the probability that some function, h, of the system state vector, X , at the future time,

t0 + t, will belong to the set, A, given that the current state is x0. In a queueing network,

for example, the state variable, Xi, may denote the number of customers at node i, such

that taking h(X(t)) = Xi(t) and A = (l,∞) allows a prediction of the probability that the

population of node i will exceed a threshold, l, at the future time, t0 + t.
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To estimate this probability, Ouyang and Nelson (2017) propose a two-stage modelling

approach in which the state and time aspects are treated separately. The first stage considers

fixed prediction horizons. For each horizon, a logistic regression model is fitted on basis

functions of the state vector. This requires n independent sample paths, from which the

observations of (t0,x0) are identified, and, for the prediction horizon of t0 + tj , the binary

response is defined by whether or not the event {h(X(t0 + tj)) ∈ A} occurred. This first

stage provides an estimate of the required probability at fixed prediction horizons. The

second stage then accommodates any prediction time by fitting, for a given initial state,

x0, a linear model on the logit-estimated probabilities based on basis functions of their

prediction horizons.

This approach generates a probability estimate of the general form stated above, allowing

prediction for any future time conditional on any current time and state. This is a useful

objective with clear practical value in the context of system control, and the results presented

suggest the approach to be effective for the relatively simple time-homogeneous queueing

models considered. However, the set-up of the model remains somewhat rigid in terms

of the choice of basis functions and prediction horizons, while the use of basis functions

makes interpretation difficult. Although a promising first step, the approach leaves scope

for further efforts towards dynamic predictions. We revisit this objective with our work in

Chapter 3.

The second objective proposed in Nelson (2016) is to generate dynamic distributional

statements. This might refer to characterising the distribution of some dynamically varying

output. Smith and Nelson (2015) introduced an example of work under this objective by

exploring characteristics of the virtual waiting time. This is considered as the waiting time

that a customer would experience arriving to a queueing system at the particular time,

t. Since the event of a customer arriving precisely at time t may never occur in multiple

sample paths, the waiting times of customers arriving in pre-defined time buckets are used

to estimate summary statistics of the virtual waiting time. Whilst identifying a performance
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measure of significant interest to customers, the approach taken is traditional in that the

experimental design is fixed and the performance measures are anticipated ahead of time.

The time buckets are also pre-determined, giving little flexibility to the method. Simulation

analytics can aim to move away from rigid design and support a more adaptive approach to

learning. For example, the size of time buckets might be varied dynamically to reflect the

intensity of arrivals or the similarity of observed waiting times.

Additional work under the heading of virtual statistics is demonstrated by Lin et al.

(2019). This work more naturally falls into the machine learning spirit of simulation analytics.

A k-nearest neighbours (kNN) estimator for the mean of virtual performance is proposed,

with insight provided into its asymptotic properties. As a machine learning regression

method, the kNN algorithm estimates a response value based on the mean response of the

k nearest training observations. In the context of virtual statistics, the k nearest neighbours

of the virtual waiting time at t consist of the simulated observations from the k arrivals

closest to time t.

The concept of virtual statistics identifies an important time-dependent performance

measure. While the existing work provides a useful distributional analysis, only time has

been considered as the conditional variable, leaving open a state-dependent equivalent to

virtual performance.

The third suggested objective for simulation analytics is to generate statements on

multiple time scales. This is a general capability which the simulation analytics philosophy

of retaining fully detailed sample paths can facilitate. While events and state evolution may

take place over fine-grained time increments such as seconds or minutes, an entire sample

path may span a time frame of weeks, months, or years. The ability to adapt statements

relating to the hourly, daily, or weekly behaviour of a system brings additional flexibility to

the sphere of output analysis.

The fourth objective relates to making comprehensive system comparisons. While simula-

tion has long been used to make comparisons among alternative system designs, traditional
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practice, such as in the context of simulation optimisation, has seen comparisons based on

pre-defined, time-averaged performance measures. This, of course, masks the time-dynamic

behaviour and lacks the detailed insights into how the systems will perform throughout

the simulated period. From a simulation analytics perspective, we can expect to uncover

comparative statements on the more detailed level of systems’ dynamic behaviour. Our

work in Chapter 5 falls under this objective.

The final objective suggested byNelson (2016) is to generate inverse conditional statements.

This might explore the relationship of outputs to inputs or the system state. Making inverse

predictions can help us to identify the input behaviours and system configurations which

lead to desirable output behaviour.

Across each of the objectives stated above, the overarching aim for simulation analytics

is to promote a deeper understanding of system behaviour. While the primary focus for

machine learning algorithms is often on achieving high prediction accuracy, applications to

simulation analytics may place their focus towards interpretability. Accuracy provides an

important quality measure and breeds confidence in a model, although often we will crave

the insights and human learning into simulation behaviour that come with interpretable

models.

The ambition to study and understand system behaviour through time represents a new

aspect for output analysis, and one to which the simulation analytics perspective holds

opens the door. In developing successful methods, the challenges lie in accommodating

and exploiting the unique structure of sample path data. Appropriate tools and tailored

procedures can be expected to unlock useful insights. The methodology presented in this

thesis borrows the machine learning concepts which we discuss in the remaining sections

of this chapter.
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2.2 Mahalanobis Metric Learning

Chapters 3 and 4 of this thesis refer to the task of distance metric learning, or metric learning

for short. This is a branch of machine learning which concerns the search for a distance

function to suit a particular task and data. It is often used to improve the performance of

distance-based algorithms, such as clustering and nearest neighbour classification (Kulis,

2013).

Metric learning operates in the context of some real-valued feature space, X ⊆ Rd.

Its aim is to define a pairwise distance function, d(xi,xj), that reflects and informs the

similarity of the input data vectors, xi,xj ∈ X . For example, d(xi,xj) < d(xi,xk) should

imply that xi is more similar to xj than it is to xk.

The Euclidean distance, d(xi,xj) = [(xi−xj)
⊤(xi−xj)]

1/2, represents a natural choice

of distance metric in real-valued vector spaces. The task of metric learning can then be

understood as finding a mapping, f , of the input data such that d(f(xi), f(xj)) provides

preferable distance values. This represents the view of global metric learning, since a single

mapping is applied to all data points. Alternatively, local metric learning, which learns

separate mappings over different regions of the input space, has proved beneficial when

data shows aspects of heterogeneity (see for example the extension given in Weinberger

and Saul (2009)).

Placing some control on the mapping function, f , a popular paradigm is that of Ma-

halanobis, or linear metric learning. This corresponds to finding a linear mapping of the

Euclidean input space. That is, we can express f(x) = Ax with some matrix A, and write

the Mahalanobis distance as d(Axi, Axj) = [(xi−xj)
⊤A⊤A(xi−xj)]

1/2. This is often pa-

rameterised via the symmetric, positive semidefinite (PSD) Mahalanobis matrix,M = A⊤A,

and the distance function written as

dM(xi,xj) = [(xi − xj)
⊤M(xi − xj)]

1/2.
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Our approaches in Chapters 3 and 4 fall into the category of global Mahalanobis metric

learning, and this becomes our focus for the remainder of the section.

Any linear transformation of the data can be seen as inducing a Mahalanobis metric,

and from this perspective, classical techniques such as principal component analysis (PCA,

Pearson (1901)) deserve to be mentioned. PCA finds a linear transformation that reduces

the dimension of a dataset while preserving the maximum amount of information, and is

often applied as a pre-processing step. However, PCA is an unsupervised algorithm, whereas

Mahalanobis metric learning is typically supervised. The data input, xi, carries a class label,

yi, and the task is to tune the Mahalanobis matrix,M , such that nearby points under dM are

likely to belong to the same class. This commonly involves the optimisation of an objective

function guided by the supervision brought by the training data.

This general aim of Mahalanobis metric learning has invited numerous formulations

built for various contexts, differing in key features such as their objective functions, encoding

of supervision constraints, and choice of regularisation. While a number of surveys exist to

provide systematic reviews of the metric learning literature (for example, Kulis (2013); Bellet

et al. (2014)), this section offers an overview of some notable methods via a discussion of

the common themes.

2.2.1 Supervision Sets

Since the object of our attention is a pairwise distance function, the supervision brought by

the data is commonly conveyed through pairwise relationships. These are typically collected

into the following sets:

S = {(xi,xj) : xi and xj are similar},

D = {(xi,xj) : xi and xj are dissimilar},

R = {(xi,xj,xk) : xi is more similar to xj than to xk}.
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The relationships will typically be derived from the available class labels. For example,S and

D can be populated with pairs of similarly and differently labelled instances, respectively,

while triplets (xi,xj,xk)with yi = yj ̸= yk may populateR. Manymetric learningmethods

will utilise two out of three of these sets, with the specific data and application often guiding

the choice and construction of appropriate sets, and hence methods. The weaker form of

supervision represented by these sets accommodates problems for which full class labels

are not available, and providing relative similarity relationships is often more natural in

this context. On the other hand, fully labelled data allows the possible size of R to grow

cubically with the number of data points, and in this case it may be preferable to choose a

method which only uses S and D , or else to populate R more selectively.

In general, metric learning algorithms assume the required supervision sets to be known,

and to remain fixed throughout the learning process. The relationships that they contain

are typically represented in the objective function or constraints of an optimisation problem.

2.2.2 Constrained Convex Optimisation

The family of Mahalanobis metrics can be parameterised either through the PSD matrix,M ,

or the unconstrained transformation matrix, A. Formulating the problem as an optimisation

therefore brings a choice of perspective, both of which have advantages. Optimising the

transformation matrix avoids a PSD constraint, and allows dimensionality reduction to be

directly enforced by reducing the number of rows in A. However, an objective function

which is convex in M will usually be non-convex in A. Convexity is an attractive feature for

optimisation problems, and many methods consequently learn M in a convex formulation.

The challenge for this approach is in maintaining the PSD condition, which requires the

matrix to have only non-negative eigenvalues. This relates to the field of semidefinite pro-

gramming, in which linear programs incorporate an additional PSD matrix constraint (Boyd

and Vandenberghe, 2004). As a convex constraint, the overall convexity of the optimisation

problem is maintained.
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An initial example of Mahalanobis metric learning via semidefinite programming was

provided by Xing et al. (2002). Using Sd
+ to denote the set of d-dimensional symmetric PSD

matrices, the method takes the supervision sets, S and D , and solves the following intuitive

formulation:

min
M∈Sd+

∑
(xi,xj)∈S

d2M(xi,xj)

s.t.
∑

(xi,xj)∈D

dM(xi,xj) ≥ 1.

(2.2.1)

The optimisation of (2.2.1) used a projected gradient descent algorithm, iterating between

gradient descent steps followed by projections onto the positive semidefinite cone achieved

by setting negative eigenvalues to zero. This work paved the way for Mahalanobis metric

learning to be treated as a convex optimisation problem, and several formulations have since

emerged in this direction.

LargeMargin Nearest Neighbors (LMNN) is one of the most widely used methods to date.

LMNN was introduced by Weinberger and Saul (2009), and is motivated by an application

to kNN. The kNN algorithm for classification makes assignments based on the labels of

the k nearest training points, and thus only requires data to display clusterings of local

similarity in order to perform well. With this motivation, the constraint sets used by LMNN

are defined locally, by using the concept of k-neighbourhoods. These contain a point’s k

nearest neighbours, identified, for example, using Euclidean distance. In particular, the

LMNN constraint sets can be written as

S = {(xi,xj) : xj belongs to the k-neighbourhood of xj, and yi = yj},

R = {(xi,xj,xk) : (xi,xj) ∈ S , and yk ̸= yi}.

The goal is to solve the following optimisation:

min
M∈Sd+

(1− µ)
∑

(xi,xj)∈S

d2M(xi,xj) + µ
∑

(xi,xj ,xk)∈R

max{0, 1 + d2M(xi,xj)− d2M(xi,xk)}.
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This objective function seeks to reduce the number of differently-labelled instances within

the k-neighbourhoods of the training points. It accommodates a large number of constraints,

with pair or triplet-wise relationships in general representing a combinatorial growth on

the number of training points. LMNN handles the problem size with a purpose-built solver

based on sub-gradient descent (Shor et al., 1985). LMNN has proved an effective formulation,

and has inspired a number of related methods (for example, see Torresani and Lee (2006);

Nguyen and Guo (2008)).

Optimisation of a semidefinite program often uses projection steps to maintain the PSD

condition. This requires a full eigenvalue decomposition, the computational complexity of

which is cubic in the dimensionality of the data. Therefore, this approach does not scale

well with dimensionality, and a number of formulations have found alternative methods to

satisfy the PSD constraint while retaining the problem convexity. An early method proposed

by Schultz and Joachims (2003) uses the parameterisation ofM = M⊤
0 DM0, whereM0 is

fixed and known, and D is diagonal. This construction ensures that M remains PSD, while

avoiding an explicit constraint by optimising over the diagonal matrix, D. This scales well

with dimensionality, although sacrifices flexibility of the solution metric. It amounts to

learning a weighting on the features of the pre-specified linear transformation given by M0.

In the absence of prior knowledge, using the identity matrix forM0 will lead to a diagonal

Mahalanobis matrix which is unable to accommodate interactions among dimensions.

In another notable method known as Information-Theoretic Metric Learning (ITML),

Davis et al. (2007) avoid a PSD constraint by making use of the LogDet divergence in their

objective function. The LogDet divergence between d-dimensional square matrices, M

and M0, is defined as Dld(M,M0) = tr(MM−1
0 ) − log det(MM−1

0 ) − d. Conveniently,

Dld(M,M0) is convex in M , while choosing M0 to be PSD ensures that Dld(M,M0) is

finite if and only ifM is also PSD. In this way, the PSD condition can be easily preserved.

MinimisingDld(M,M0) is equivalent tominimising the Kullback-Leibler divergence between

two multivariate Gaussian distributions parameterised by M and M0, which reveals its
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information-theoretic interpretation. The objective of ITML is to minimise Dld(M,M0),

subject to threshold constraints on the distances in the supervision sets, S and D . The

large number of constraints are dealt with efficiently using Bregman projections (Censor

et al., 1997).

Several other methods have also made use of the LogDet divergence (see for example

Jain et al. (2008); Qi et al. (2009)). These approaches, as with that of Schultz and Joachims

(2003), have the effect of constrainingM to remain similar to an initial matrix,M0. While

this may limit the scope of the solution metric, it provides control over the learning process

and serves as a form of regularisation.

2.2.3 Regularisation

Regularisation describes a common technique in machine learning used to provide control

over a solution, and is an important element of many metric learning formulations. The

inclusion of a regularisation term can help to avoid overfitting, a common pitfall when

handling large numbers of constraints. Regularisation is also used to encourage low-rank so-

lutions. This is a common goal, since a lower-dimensional projection can aid interpretability

and allow faster computation.

A popular regularisation technique uses the squared Frobenius matrix norm, ∥M∥2F =

tr(M⊤M). This is the sum of the squared elements ofM , and it brings similar behaviour and

advantages as the l2 penalty used in ridge regression, such as strong convexity. In addition

to constraining via the matrix, M0, Schultz and Joachims (2003) also use Frobenius norm

regularisation. Recalling M = M⊤
0 DM0 with diagonal D, the formulation uses relative

distance constraints, and can be expressed as follows:

min
D
∥M⊤

0 DM0∥2F + λ
∑

(xi,xj ,xk)∈R

max{0, 1 + d2M(xi,xj)− d2M(xi,xk)}.

For further examples, Frobenius norm regularisation has also been used in an online metric
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learning algorithm (Shalev-Shwartz et al., 2004), and in a method accommodating noisy

training constraints (Huang et al., 2010).

An alternative matrix regulariser is the trace-norm, or nuclear norm (Fazel et al., 2001).

This is the sum of the singular values, and is known to be the tightest convex relaxation to the

rank function (Recht et al., 2010). For a PSD matrix, the singular values are equivalent to the

eigenvalues, the sum of which equals the matrix trace. To aid intuition, tr(M) can be viewed

as the l1 norm of the diagonal elements of M , since these are necessarily non-negative for

PSD M . This provides analogy to the l1 lasso penalty, and thus injects sparsity into the

diagonal ofM . By the construction of a PSD matrix, a zero diagonal element removes its

entire row and column, which necessarily reduces the rank. The trace function is therefore

a common choice of regulariser to target low-dimensional solution metrics.

By adding trace-norm regularisation to convex metric learning objectives, Huang et al.

(2009) suggest a general framework for sparse metric learning, several examples of which

have emerged (Jain et al., 2010; Yao et al., 2014). Adapting the trace-norm regulariser, Law

et al. (2014) introduced the idea of Fantope regularisation, which corresponds to a sum

of the d− r smallest eigenvalues. This allows the control to seek a solution with a target

rank of at most r < d. Extending this further, Huo et al. (2016) introduce the capped

trace-norm penalising only the eigenvalues which are smaller than an adaptive threshold.

These extensions aim to give greater control over the rank regularisation, by filtering out

the non-relevant information without risking the important dimensions also becoming

compressed. They provide a more stable regularisation term than the trace-norm, which

fluctuates with changes to the largest eigenvalues. However, the trace-norm, as a simple

sum of diagonal elements, is easy to apply. Regularisation on the eigenvalues, on the other

hand, requires the computational burden of an eigendecomposition within each iteration of

the optimisation.

Beyond the framework of regularisation, dimensionality reduction can be straightfor-

wardly enforced by optimising over the transformation matrix, A. Choosing A ∈ Rr×d
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ensures a metric of rank at most r < d. This approach, however, generates a low-dimensional

transformed feature space (output sparsity), as opposed to performing dimensionality re-

duction in the original feature space (input sparsity). To retain interpretability with regards

to the input features, input sparsity is often preferable in addition to output sparsity, with

regularisation on the Mahalanobis matrix, M , the most obvious solution. Nevertheless, no-

table methods exist which optimise over A. This perspective does not exploit convexity, and

thus is often applied when an objective function is already non-convex. Formulations based

on probabilistic models often generate non-convex objectives and suggest an optimisation

over A.

2.2.4 Probabilistic Models

Formulating a probabilistic model can provide a natural framework for the metric learning

objective. Initially, the classical technique of linear discriminant analysis (LDA) may be seen

through this lens (Fisher, 1936). Although not traditionally thought of as metric learning,

LDA learns a linear transformation which maximises the ratio of between-class variance to

within-class variance, and is commonly used for supervised dimensionality reduction. It

is built on the assumption that data belonging to each class are normally distributed with

equal covariance matrices. However, LDA does not require optimisation; instead, it admits a

closed-form solution involving covariance matrices and eigendecomposition.

Sitting more closely in our metric learning context, Peltonen and Kaski (2005) provide

a likelihood-based approach that attempts to generalise LDA by removing the restrictive

probabilistic assumptions around class distributions. They construct a probabilistic model for

the class value, yi, conditional on the projected data, Axi, and maximise its log-likelihood:

max
A

∑
(xi,yi)

log p̂(yi | Axi). (2.2.2)

They suggest using Gaussian kernel estimation for p̂(y | Ax). This imposes a non-parametric



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 24

probabilistic structure over the data space, allowing the restrictive assumptions of LDA to

be discarded.

An influential method known as Neighbourhood Components Analysis (NCA) was

introduced by Goldberger et al. (2004) and imposes a softmax probability over the near-

est neighbour distribution. The point, xi, identifies xj as its nearest neighbour with the

probability pij :

pij =
exp{−d2M(xi,xj)}∑
k ̸=i exp{−d2M(xi,xk)}

, pii = 0.

Under this framework, pi =
∑

j : yj=yi
pij represents the probability that xi is correctly

classified by the nearest neighbour classifier, and the objective to maximise
∑

i pi represents

a maximisation of the expected leave-one-out error rate of this classifier on the training

data. Alternatively, pi can be viewed as estimating the probability that xi belongs to class yi,

and can be seen as a special case of the kernel estimators, p̂(yi | Axi), of Peltonen and Kaski

(2005). The authors of NCA also acknowledge a log-likelihood objective function (2.2.2).

The objective functions of NCA are non-convex, and optimisation is performed over the

transformation matrix,A. Globerson and Roweis (2005) provide a related convex formulation

that uses the same probabilistic framework as NCA, known as Maximally Collapsing Metric

Learning (MCML). They introduce the target distributions, p0ij , where p
0
ij ∝ 1 if yj = yi

and 0 otherwise, and minimise the Kullback-Leibler divergence between pij and p0ij over all

training points. While receiving the benefit of convexity, the formulation of MCML uses a

particularly inflexible target distribution that is unsuited to represent class distributions

which may not be naturally unimodal.

Further extensions to NCA have been made, such as accommodating the context of noisy

labels (Wang and Tan, 2014), and adapting the objective function to reflect the expected

accuracy of the kNN classifier for any choice of k (Tarlow et al., 2013). The probabilistic frame-

work of NCA has proved popular for its natural interpretation and ease of differentiability

in A. We revisit this method with our work in Chapter 4.
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2.3 Time Series Shapelets

Chapter 5 of this thesis involves the concept of shapelets (Ye and Keogh, 2011), a technique

used for time series classification. To establish the context, we consider a time series,

Z = z1:m, consisting of the ordered real values, z1, z2, . . . , zm. We assume a temporal

ordering with equally spaced time intervals, although this is not necessary. For example,

two-dimensional shapes can be represented as time series for classification (Keogh et al.,

2006). A dataset, D = {(Z1, c1), (Z2, c2), . . . , (Zn, cn)}, contains n time series, with the

series, Zi, possessing the class label, ci ∈ C . The task of time series classification is to find a

mapping from the space of possible time series to the space of possible class values.

A well-established literature exists for univariate time series classification (for example,

see Bagnall et al. (2017)). Feature-based methods convert time series into feature vectors

to proceed with conventional classification algorithms, with features commonly including

statistical properties of the series, either globally or over short intervals (Deng et al., 2013).

Features of the frequency domain obtained using spectral methods such as the discrete

Fourier transform (Faloutsos et al., 1994) are also common. Alternatively, model-based

methods fit a generative model to each class of series, and assign new series according to

the class of model with the best fit. Under this framework, autoregressive models (Bagnall

and Janacek, 2014), hidden Markov models (Smyth, 1996), and kernel models (Chen et al.,

2013) have all been employed. These approaches rely on statistical characterisations of time

series. On the other hand, distance-based methods such as the kNN algorithm have proved

popular. Adapting this to time series that may not align exactly in time, speed, or length,

the common Euclidean distance is often replaced with an elastic measure such as dynamic

time warping (DTW, Berndt and Clifford (1994)).

Applying kNN with DTW is simple and robust, and is often used as a benchmark for

time series classification algorithms. However, it relies on shape-based similarity over the

entire series, and is hence not well suited when the shape-based characteristics of a class
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appear only locally. In practice, class-discriminating shapes are often short, and may appear

at any point along a series. This motivates the method of shapelets, introduced by Ye

and Keogh (2011). Shapelets are short subsequences extracted from a time series dataset

which maximally discriminate among classes. In this thesis, we consider shapelets extracted

from the time series of simulation sample paths, to discriminate the dynamic behaviour of

competing systems. The remainder of this section outlines the original methodology for

identifying and classifying with time series shapelets, and discusses the main extensions

and emerging directions of research.

2.3.1 Original Methodology

Given the time series dataset, D = {(Z1, c1), (Z2, c2), . . . , (Zn, cn)}, where Zi is a series of

length mi, a shapelet may be defined as S = s1:ℓ, where 2 ≤ ℓ ≤ minmi. The process of

discovering discriminative shapelets for a time series dataset involves a search over shapelet

candidates with an evaluation of their discriminative quality. This uses a measure of distance

between a shapelet and a series, with quality then defined in terms of the distance separation

of the classes in the dataset. Once discovered, optimal shapelets offer interpretation towards

the local shape characteristics of a class, and can be used for fast classification of new series.

We describe these main components of the methodology as introduced by Ye and Keogh

(2011).

Shapelet-Series Distance

The inspiration for shapelet methodology is to recognise the similarity of small common

shapes (shapelets) appearing at any point in a series. For this reason, the distance between a

shapelet and a series measures the distance of the shapelet to the most similar equal-length

segment of the series. Therefore, we begin with a definition of the distance between S = s1:ℓ

and S ′ = s′1:ℓ, two length ℓ sequences. In general, this requires a real-valued, non-negative,

and symmetric distance function, d(S, S ′). The squared Euclidean distance is the suggested
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choice:

d(S, S ′) =
ℓ∑

i=1

(si − s′i)
2. (2.3.3)

The distance between the series, Z = z1:m, and a shapelet, S = s1:ℓ, is then given by

dist(S,Z) = min
p∈{1,2,...,m−ℓ+1}

d(S, zp:p+ℓ−1). (2.3.4)

Calculating the distance of S to every possible subsequence in Z requires m − ℓ + 1

calculations. However, since dist(S,Z) is the minimum of these distances, Ye and Keogh

(2011) advocate a practical speed-up technique by the early abandoning of redundant

calculations. Recognising that the squared Euclidean distance is a sum of non-negative

values, its summation can safely be abandoned as soon as it reaches or exceeds the minimum

distance calculated so far. Empirical results suggested that this approach typically brings a

reduction by around a factor of two to the time complexity of a shapelet search.

Several subsequent papers have suggested a z-normalisation of subsequences prior to

the distance calculation (2.3.3) in order to solely reflect localised shape similarities and

remain invariant to scale and offset differences among the time series (see, for example,

Mueen et al. (2011)). The appropriateness of normalisation is largely problem dependent.

The original work of Ye and Keogh (2011) included applications to the classification of shape

outlines converted into time series using an angle-based method (Keogh et al., 2006), in

which scale and offset differences were informative, and no suggestion of normalisation was

made.

ShapeletQuality

The distance from a shapelet, S, to each time series in D generates a set of n distances,

DS = {dist(S,Z1), dist(S,Z2), . . . , dist(S,Zn)}. A measure of shapelet quality is based on

the ordering of the class values {c1, c2, . . . , cn} under this set of distances. A discriminative

shapelet should lead to strong separation of the available classes in C .
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Ye and Keogh (2011) use the concept of information gain to provide the measure of

shapelet quality. This is based on the entropy (Shannon, 1948) of the dataset before and

after splitting into two subsets via a distance threshold on DS . If D contains nc series of

class c ∈ C , its entropy is given as

H(D) = −
∑
c∈C

nc

n
log
(nc

n

)
.

The shapelet, S, and distance threshold, γ ∈ R, partition D into two subsets: Dnear =

{(Zi, ci) ∈ D : dist(S,Zi) ≤ γ} and Dfar = {(Zi, ci) ∈ D : dist(S,Zi) > γ}. The informa-

tion gain provided by S and γ on D is then defined as

I(D,S, γ) = H(D)−
(
|Dnear|

n
H(Dnear) +

|Dfar|
n

H(Dfar)

)
.

The quality of S is measured by its maximum information gain on D under all possible

distance thresholds:

IGD,S = max
γ∈R

I(D,S, γ).

To compute IGD,S requires the evaluation of I(D,S, γ) for all distinct splitting thresh-

olds, which we can understand as the unique elements ofDS\{maxDS}. This contributes a

time complexity ofO(n log n), although this is generally small in relation to the computation

of DS , which is O(nmℓ), wherem = 1/n
∑n

i=1 mi.

Given the dataset,D, the aim of a shapelet search is to find a shapelet, S, that maximises

IGD,S . Particularly for small datasets, many different shapelets may be found to maximise

this quantity. Various tie-breaking options have been considered, including favouring the

longest or the shortest shapelet. In the binary class problem, the recommended approach is

to choose the shapelet which achieves the maximum separation between the two classes,

defined by the difference between the mean distances to the series of each class.
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The Search: Candidate Generation and Entropy Pruning

Identifying an optimal shapelet for the dataset, D, involves evaluation of IGD,S for each

shapelet, S, in a set of candidates. While, in theory, there are no restrictions on S, in practice,

a finite pool of candidates is generated by extracting subsequences from the series in D.

For example, of a particular length, ℓ, we can extract n(m− ℓ+ 1) subsequences from D.

Then, considering all subsequences of permissible shapelet lengths, 2 ≤ ℓ ≤ minmi, creates

a candidate pool of size n(minmi − 1)(m −minmi/2). Calculating the set of distances,

DS , for each of these candidates leads to an overall time complexity of O(n2m4), and the

computational challenge of an exhaustive shapelet search is clear. In practice, the size

of the candidate set can be immediately reduced by restricting the range of permissible

shapelet lengths, with domain knowledge often suggesting a reasonable range within which

meaningful shapelets can be expected.

To mitigate the cost of a shapelet search, a further computation-saving technique

was identified by Ye and Keogh (2011) and referred to as admissible entropy pruning. By

alternating between adding distance values to DS and updating an upper bound for IGD,S ,

the candidate, S, can be safely abandoned (pruned) as soon as the upper bound falls

below the value achieved by the current best shapelet. The upper bound for IGD,S is

calculated by assuming the most optimistic scenario for the ordering of the remaining

distance calculations in DS , and can only decrease as the true distances become known. In

the binary class problem, the most optimistic scenario is to assume that all distances to the

remaining series of one class will lie at one extreme of the range of DS , and all distances

to the remaining series of the other class at the other extreme. In this case, there are two

configurations for the ordering of DS that we need to consider to find the upper bound.

The extra cost of maintaining this upper bound is small in comparison with the potential

speed-up brought by abandoning non-optimal shapelets and thereby avoiding expensive

distance computations. The maximum benefit from this pruning strategy is obtained by

adding distances to DS in an alternating order between the series of each class, since this
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has the potential to reduce the upper bound more quickly.

Although unable to improve on the worst-case complexity, admissible entropy pruning is

particularly effective for binary class problems, and shown to deliver practical speed-up over

an order of magnitude to the shapelet search. For multi-class problems, however, we are

faced with a combinatorial increase to the number of possible configurations of the ordering

of DS that may represent the most optimistic scenario, and the overhead for maintaining a

correct upper bound can dramatically increase.

Decision Tree Classification

Once concluded, a shapelet search allows fast classification of a new time series. A single

distance calculation between the new series and a shapelet can be informative, while nearest

neighbour methods, for example, require distance calculations to an entire training set of

time series. However, the binary framework of a single shapelet and its splitting threshold

does not properly accommodate multi-class problems, and Ye and Keogh (2011) therefore

imagine a general shapelet classifier as a decision tree (Breiman et al., 1984). The optimal

shapelet with its optimal splitting threshold create a root node, and subsequent shapelet

searches in the new subsets of the training data recursively add nodes and branches to a

tree until a chosen stopping criteria is reached.

A decision tree classifier preserves the aspect of interpretability that shapelets provide. Ye

and Keogh (2011) refer to the dictionary of shapelets used by a tree, and derive interpretations

in contexts including the shape classification of arrowheads and heraldic shields, and the

spectographs of varieties of wheat and coffee. The reported accuracy results also show

shapelet decision trees outperforming kNN classification with both Euclidean distance and

DTW.
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2.3.2 Research Directions and Extensions

Since their conception, shapelets have provided useful insights and classification accuracy

across a variety of applications, including gait analysis and motion capture (Shajina and

Sivakumar, 2012), health monitoring (Ghalwash and Obradovic, 2012; Zorko et al., 2020), and

detection of wind, wave, and seismic events (Arul and Kareem, 2021). From a methodological

point of view, the research has continued in the following directions.

Speed-up Techniques

The original brute-force algorithm for a shapelet search (Ye and Keogh, 2011) requires

O(n2m4) calculations, making it infeasible for most real applications. Although providing

significant practical speed-up, computation-saving procedures such as the early abandon of

distance calculations and admissible entropy pruning are unable to improve on the worst-

case complexity. For this reason, much of the subsequent shapelet literature has focused on

further pruning and speed-up techniques.

A further technique for candidate pruning was introduced by Mueen et al. (2011). Recog-

nising, by the triangle inequality, that dist(S ′, Z)− d(S, S ′) ≤ dist(S, Z) ≤ dist(S ′, Z) +

d(S, S ′), an upper bound for IGD,S can be found with no knowledge of DS by reusing

distance calculations from DS′ . In particular, an upper bound on I(D,S, γ) is found by

selectively moving distances in DS′ ∩ (γ − d(S, S ′), γ + d(S, S ′)) to the other side of γ if

doing so would improve the information gain, I(D,S ′, γ). Finding this upper bound for

I(D,S, γ) for each γ implies an upper bound for IGD,S , with S being pruned if this falls

below the information gain of the optimal shapelet found so far. In practice, several upper

bounds can be computed by using the cached distance calculations from several different

shapelets, S ′. Using shapelets with the lowest values of IGD,S′ gives the best chance of

candidate pruning.

Alternatively, He et al. (2012) recognise that the most discriminating shapelets tend to

be distinctive and occur infrequently throughout a dataset, and thus prune the candidate
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pool via a heuristic approach of retaining only the most infrequent shapelets. Relinquishing

the exhaustiveness of the search in this way seems to have little impact on the classification

accuracy. Karlsson et al. (2016) also prune the search space by using randomised subsets of

the training data and candidate pool in building a set of shapelet decision trees to use in a

random forest ensemble. Another notable speed-up attempt was made by Rakthanmanon

and Keogh (2013) by using symbolic piecewise aggregate approximations to the time series.

Furthermore, hardware-based optimisation has assisted the discovery of shapelets by using

parallel computing (Chang et al., 2012).

To avoid the high complexity of search-basedmethods, Grabocka et al. (2014) proposed to

learn shapelets via gradient-based optimisation of a (non-convex) classification loss function.

Differentiability of the objective is achieved by approximating the minimum function (2.3.4)

with the soft minimum:

dist(S,Z) ≈
∑m−ℓ+1

p=1 d(S, zp:p+ℓ−1) exp{αd(S, zp:p+ℓ−1)}∑m−ℓ+1
k=1 exp{αd(S, zk:k+ℓ−1)}

.

This approaches the true minimum as α→ −∞. Although introducing new decisions with

regards to hyper-parameters and shapelet initialisation, the approach is attractive for its

speed and trainability via modern optimisation frameworks. Learning over all permissible

shapelet lengths yields a runtime complexity of O(nm3 ·maxIter), where the parameter,

maxIter, is the maximum number of iterations of the gradient step used by the optimiser.

Alternative Distance andQuality Measures and Classifiers

Shapelets provide a useful concept for time series data mining. However, the methodology

for their discovery and their use for classification presents a number of decisions. Firstly,

there is a choice of distance function (2.3.3). Euclidean distance represents the popular

choice, although alternatives have also been explored. Notably, Shah et al. (2016) employed

DTW in the context of learning shapelets (Grabocka et al., 2014). This provides greater

flexibility for shapelets to identify characteristics which may be warped along the time axis,
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although comes with an added computational cost.

Shapelet discovery also requires a choice of quality measure. In the original methodology,

the use of information gain aligns well with the decision tree classifier. However, it requires

evaluation across many possible split points, contributing an overhead which increases

further with multi-class problems. Alternative shapelet quality measures that do not require

an explicit split point to be found were suggested by Hills et al. (2014). In particular, they

consider test statistics including Kruskal-Wallis (Kruskal, 1952), Mood’s Median (Mood

et al., 1974), and the analysis of variance F-statistic (Scheffe, 1999). These statistics assess

the separation of classes obtained by the distances in DS based on a rank ordering, the

average within-class separation by the median, and the ratio of between-class to within-

class variance, respectively. Upper bounds analogous to those used for admissible entropy

pruning, although not mentioned by Hills et al. (2014), may also be devised for these test

statistics. Since these statistics are independent of binary splitting, their upper bounds

would more easily extend to multi-class problems, for which the utility of admissible entropy

pruning quickly degrades.

We also come to a choice in the classification procedure. Mueen et al. (2011) extended

single shapelet classification to consider conjunctions and disjunctions of shapelets. While

rule-based decision trees maintain the interpretability of individual shapelets, the most

significant development for classification is referred to as the shapelet transform. Introduced

by Lines et al. (2012) and developed by Hills et al. (2014), this uses shapelets for a feature-

based method of time series classification. Under the shapelet transform, a time series

dataset is transformed into an n× k matrix containing the distances of each of the n time

series from each of a set of k shapelets. These distances comprise features which can be used

in conjunction with a range of standard classifiers. This perspective disconnects the process

of shapelet discovery from the classification algorithm, and so does not require a splitting

threshold in conjunction with a shapelet. Therefore, the alternative quality measures to

the information gain were suggested, with the F-statistic being preferred for its speed of
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computation and empirical classification results.

The shapelet transform introduces additional considerations. Firstly, the number of

shapelets, k, must be set in advance. Choosing k too small limits the information available

to the classifier, while setting it too large can result in overfitting. Zalewski et al. (2016)

address the choice of k as a feature selection task in its own right. Moreover, the k shapelets

with the highest quality measures are not necessarily the collective k best features for

classification. In particular, the k best shapelets often contain much similarity, which

reduces their collective value as a set of classification features. To address this, the shapelet

transform initially excludes self-similar shapelets from the k best, defined as those extracted

from the same series and having overlapping indices. However, as is the nature of shapelets,

we still expect to extract similar characteristic shapes from separate series, and thus the

collection of shapelets can still contain significant repetition. Therefore, a shapelet clustering

procedure is also proposed to subsequently remove similar shapelets. This can benefit the

classification algorithm and improve interpretability, although it introduces the risk of

discarding relevant discriminatory features.

The shapelet transform provides a flexible framework through which the performance of

shapelet-based classification may be enhanced. Hills et al. (2014) demonstrate its application

across a variety of datasets and classification algorithms, and it has since become the widely

adopted approach. For example, Arul and Kareem (2021) build random forests on shapelet

transformed data to identify earthquake and thunderstorm events from ground motion and

wind speed measurements. Using shapelets for a data transformation prior to classifier

construction establishes them as a useful and flexible feature in time series data mining.

Multivariate Shapelets

Given the widespread presence and accessibility of multivariate time series data across

various domains, interest in the field of multivariate time series classification is growing (Ruiz

et al., 2021). This introduces an added layer of complexity, as discriminative features can
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arise from the interactions among dimensions. Moreover, it brings increased computational

requirements. Despite the persistent computational challenge of a univariate shapelet

search, its extension to the multivariate setting has been tackled by a number of authors.

We denote a multivariate time series of dimension d by Z = (Z1, Z2, . . . , Zd), where each

dimension, Zj = zj,1:m is a univariate series of lengthm.

When a classification algorithm for univariate time series is unable to handle multivariate

data, a straightforward approach to adapting it for the multivariate setting is to ensemble it

across the dimensions. In this manner, an adaptation of shapelet classification was made by

Cetin et al. (2015). Indeed, in terms of classification performance, they conclude that an

ensemble of decision trees with univariate shapelets obtained by treating the dimensions

independently outperformed attempts to discover multivariate shapelets. Similarly, the

random shapelet forest of Karlsson et al. (2016) admits multivariate series and builds a

tree-based ensemble where the dimension, training subset, and shapelet candidates are

randomised for each tree. Alternatively, a multivariate series may be converted into a

univariate representation by concatenating dimensions. Patri et al. (2015) take this approach,

and attempt to retain some interaction effects by interleaving segments extracted from each

dimension.

Although multivariate approaches that revert to univariate shapelets may offer inter-

pretable univariate patterns and insights into the importance of individual dimensions, they

are generally unable to capture interactions among the dimensions or reveal the typical

joint behaviour of the series. The earliest example of obtaining multivariate shapelets was

provided by Ghalwash and Obradovic (2012) for applications to health informatics. In this

approach, a multivariate shapelet, S = (S1, S2, . . . , Sd), is extracted over the equivalent

indices of each dimension, and its distance to a multivariate series is represented by the

vector of the independent distances in each dimension:

dist(S,Z) = (dist(S1, Z1), dist(S2, Z2), . . . , dist(Sd, Zd)) .
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To assess the shapelet quality, a distance threshold is assigned to each dimension, and the

subset membership of a series is decided by the proportion of dimensions in which the

distance threshold is exceeded, relative to a percentage parameter. For a given shapelet

and percentage parameter, the optimal set of distance thresholds is found which maximises

the information gain under this splitting criteria. This approach helps to prevent shapelet

quality from being influenced by irrelevant dimensions. However, it introduces additional

computation and parameter optimisation. Also, distances are calculated in each dimension

independently. From an interpretation perspective, this means that the discovered shapelet

may reflect the behaviours that are typical to each dimension individually and not necessarily

the typical joint behaviour, despite the shapelet candidates being extracted in parallel.

An alternative and natural approach to calculating a multivariate distance is to aggregate

the distances from each dimension by summation. Defining a single distance value between

a multivariate shapelet and a multivariate series allows the remainder of the search method

to behave identically to the univariate case, by evaluating a shapelet quality measure such as

the information gain. Bostrom and Bagnall (2017) demonstrate this approach, and consider

the distances in each dimension to be either dependent or independent. In the former case,

the best matching location of the length ℓ shapelet on the series is found with the shapelet

components remaining in parallel, whereas the latter allows independent movement in each

dimension in the same way as Ghalwash and Obradovic (2012):

dist(S,Z) =


min

p∈{1,2,...,m−ℓ+1}

d∑
j=1

d(Sj, zj,p:p+ℓ−1) for dependent dimensions,

d∑
j=1

min
p∈{1,2,...,m−ℓ+1}

d(Sj, zj,p:p+ℓ−1) for independent dimensions.

While independence offers greater flexibility and may help to mitigate the impact of irrele-

vant dimensions, the dependent paradigm may be more useful to contexts such as motion

capture and gesture recognition in which a movement may affect three spatial coordinates

simultaneously.
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When searching for dependentmultivariate shapelets using a simple distance summation,

there is a risk that the discovery of shapelets may be compromised by dimensions that

have unequal or zero relevance to the discrimination between classes. Addressing this,

Raychaudhuri et al. (2017) introduce an idea referred to as channel masking to discount

noisy channels in the framework of learning shapelets (Grabocka et al., 2014). This involves

learning positive weights to multiply the dimensions, a technique also employed by Zhang

and Sun (2022). Similarly, Kidger et al. (2020) present a generalised framework for learning

shapelets which is admissible of multivariate series and includes learned matrix parameters

to multiply a multivariate distance function. To handle the increased computational cost,

the paradigm of learning shapelets is well-suited to the multivariate extension, and recent

works have explored the utility of neural networks in this task. Medico et al. (2021) present

an architecture for learning multivariate shapelets based on embedding them as trainable

weights in a multi-layer neural network. Meanwhile, Li et al. (2021) use a convolutional

neural network to embed shapelet candidates of different lengths and dimensions into a

unified space prior to candidate clustering and pruning for a multivariate shapelet transform.

The concept of shapelets has been well received in the field of time series classifica-

tion, with numerous applications and extensions continuing to emerge. We explore their

application to simulation sample paths in Chapter 5.



Chapter 3

Metric Learning

for Simulation Analytics

The sample path generated by a stochastic simulation often exhibits significant

variability within each replication, revealing periods of good and poor perfor-

mance alike. As such, traditional summaries of aggregate performance measures

overlook the more fine-grained insights into the operational system behaviour.

In this chapter, we take a simulation analytics view of output analysis, turning

to machine learning methods to uncover key insights from the dynamic sample

path. We present a k-nearest neighbours model on system state information to

facilitate real-time predictions of a stochastic performance measure. This model

is built on the premise of a system-specific measure of similarity between obser-

vations of the state, which we inform via metric learning. An evaluation of our

approach is provided on a stochastic activity network and a wafer fabrication

facility, both of which give us confidence in the ability of metric learning to

provide interpretation and improved predictive performance.

38



CHAPTER 3. METRIC LEARNING FOR SIMULATION ANALYTICS 39

3.1 Introduction

Analysis of stochastic simulation has long been centered around the evaluation of aggregate

performance measures. This chapter is motivated by the belief that static summaries such

as these can represent a limited view of a highly dynamic and possibly non-stationary

process. Dynamic performance measures such as waiting times or congestion levels are

seen to fluctuate throughout simulated replications. Revealing the factors that drive these

fluctuations is key to a deeper understanding of the represented system. With this aim,

we propose a dual-purpose methodology for output analysis designed to support real-

time predictions, whilst simultaneously revealing insight into the key drivers of dynamic

performance.

Our work falls into the newly developing area of simulation analytics, first suggested by

Nelson (2016). In this area, simulation is regarded as a generator of dynamic sample paths,

from which data analytics and machine learning tools can glean insights into the conditional

relationships and dependencies that characterise the system behaviour. We are aided in

this approach by recent advances in data storage to enable cheap and effectively unlimited

retention of sample path data. Indeed, many commercial simulation products currently

retain a record of the events and state transitions that occur throughout a replication, albeit

primarily for the purpose of debugging. Crucially, the capability is there, and whilst we

are not dealing with the technicalities of how to post-process and store system traces, we

are considering ways to exploit the opportunity for deeper analysis that such a detailed

transaction log presents. To add further motivation and plausibility, we note that the size

of datasets generated by simulation sample paths will typically not approach the volumes

associated with big data in modern-day analytics.

To motivate the scope of our work, consider for example a doctors’ surgery seeking

to evaluate the performance of different staffing schedules. For this system, performance

indicators such as patient waiting times or staff utilisation may be used to rank alternatives
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(Brailsford, 2007). Whilst the daily averages of these indicators can allow an initial screen-

ing of solutions, they provide an incomplete picture of a system that is likely to exhibit

significant variability throughout the day. A more probing analysis may relate to the sys-

tems’ robustness to certain conditions such as a higher than usual demand for prescription

medicines. Moreover, when our simulated systems exhibit periods of poor performance, we

want to understand the cause. If we can reveal, for example, that the number of patients

awaiting a blood test constitutes a driving influence behind variable waiting times, this is a

useful insight which might suggest a more efficient allocation of resources. To enable such

analyses, we build a predictive model for a dynamic system response, the structure of which

is designed to expose the key factors which drive this response.

Specifically, our predictive model takes the form of a non-parametric k-nearest neighbour

(kNN) classifier on the system state. Our choice here is motivated by the understanding

that components of the state in a simulation model interact jointly in a way that is difficult

to capture with parametric functions. Deferring a definition of system state to the later

sections and appealing to the example above, we might include variables representing the

number of patients undergoing or awaiting different treatments, or the number of nurses on

duty. We let x ∈ X ⊂ Rd denote the system state at a given time, and construct a measure

of similarity over the space of X . Each instance x ∈ X carries with it an observed system

response, y, which we measure as a categorical variable. For example, a patient entering the

surgery in state xi experiences the waiting time yi, classed as above or below average. Our

stored sample paths provide many observations of (xi, yi), which create our training data.

Taking a kNN approach, we can classify the waiting time of a patient arriving to the system

in state x∗ according to the observed waiting time categories of the k nearest instances to

x∗ among the training data.

A key aspect of our methodology is in defining an appropriate measure of distance, or

similarity, between observations in X . For this, we delve into a rich literature on metric

learning. The process of tuning a system-specific distance function is helpful in revealing
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interactions among the state variables and their relative contributions towards the system

response. Thus, combining metric learning with kNN classification allows us to join inter-

pretability with predictive performance. This dual benefit lends optimism to the scope of our

work, which we believe extends to researchers and practitioners alike. In particular, whilst

the application of metric learning serves to highlight the performance-dictating components

and interactions within a system, the ability to make real-time predictions provides useful

support to system control, and may complement the aims of a digital twin.

The structure of the chapter is as follows. In Section 3.2 we discuss related work and

provide a background for kNN classification and metric learning. Section 3.3 presents results

to motivate and demonstrate our methodology in the context of simulation, before we

conclude with a brief summary in Section 3.4.

3.2 Background

In this section, we establish a background for our work, drawing on related work in the area

of simulation analytics and describing our proposed application of kNN. We also introduce

the field of metric learning, providing a focused review of the relevant literature.

3.2.1 Related Work in Simulation Analytics

The possibility of using simulation to inform real-time decision problems has recently begun

to draw attention. A number of papers have emerged in which simulation sample paths are

stored and used to build metamodels for making dynamic predictions. In the context of

a queueing network, Ouyang and Nelson (2017) proposed a two-stage logistic regression

modelling approach in which the state and time aspects of the sample path are treated

separately, while Jiang et al. (2020) use a logistic regression model to dynamically predict the

risk of financial portfolios. Wu and Barton (2016), meanwhile, show that Fourier analysis

can successfully detect changes in the dynamic trajectories of system state variables to
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discriminate between congested and uncongested systems.

The approaches outlined above represent attempts to model sample path behaviour

within a parametric framework. In reality, we understand simulation to be a complex

stochastic process in which the dynamic and possibly non-stationary behaviour is difficult

to capture in a parametric model. Accordingly, Lin et al. (2019) suggest a kNN approach to

provide predictions for time-dependent mean performance measures. They describe this

as “virtual performance”, and further consider the behaviour of its higher order moments

(Lin and Nelson, 2018). An example of virtual performance is given by the waiting time

of a customer in a service system conditional on arriving to the system at time t. In our

own take on virtual performance, the conditioning event relates to the state of the system;

modifying this example, we consider the waiting time of a customer conditional on arriving

to the system in state x. In the case of Lin et al. (2019), the kNN estimator of virtual

performance is one-dimensional in the sense that neighbours are determined by a single

variable: simulation time. Our own kNN model, meanwhile, takes a more comprehensive

view of ‘neighbours’, accommodating multiple predictors in an attempt to fully characterise

the state of a system. Importantly, we note that a multi-dimensional state description

is likely to contain variables which are not immediately comparable in terms of scale or

interpretation. On these grounds, we recognise that identifying neighbours based on simple

Euclidean distance, whilst effective in the one-dimensional setting of Lin et al. (2019), will

not be appropriate for us.

3.2.2 kNN Classification

A kNN classification model provides a simple rule whereby instances are classified according

to the labels of their k nearest neighbours (Hastie et al., 2009). In this chapter, we consider

a binary classification task. Our training data, {(xi, yi)}ni=1, are obtainable directly from

the stored sample paths. These observations are functions of the simulation time in a given

replication; xi ∈ Rd represents the system state at time ti, and yi ∈ {0, 1} denotes an
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associated system performance measure, which in general may be observable at a later time.

We use the term “system state” at time t to refer to some subset of the information generated

by the simulation up to time t.

Using kNN classification to classify an instance, x∗, we identify its k nearest training

instances, denoted by x∗(1), . . . ,x∗(k), and their corresponding labels, y∗(1), . . . , y∗(k). Our

classification rule is defined as a function of c ∈ [0,∞):

ŷ∗ =


1 if 1

k

∑k
i=1 y

∗(i) ≥ c,

0 if 1
k

∑k
i=1 y

∗(i) < c.

(3.2.1)

The classification threshold of c = 1/2 corresponds to a typical majority rule, although

in general we can choose c to minimise some error criterion such as the mean squared

error (MSE) on a test set, or to represent a desired trade-off between the two types of

misclassification.

A nearest neighbour classifier relies upon the assumption that instances which are

similar to one another in the input space will yield a similar classification in the output

space. Intuitively, the truth of this assumption requires that the distance measure used

to identify neighbours reflects some system-specific notions of similarity between input

instances. Selecting a relevant distance measure to use with kNN classification therefore

requires careful consideration of the problem domain. Whilst Euclidean distance is often

viewed as a default, significant advantage can be gained by using a more tailored metric

(Kulis, 2013). This leads us to the topic of metric learning, which provides a data-driven way

to automate the process of defining a suitable distance metric.

3.2.3 Mahalanobis Metric Learning

We recall our data of the form {(xi, yi)}ni=1, where xi is a d-dimensional vector of predictor

variables and yi its associated class label. The aim of metric learning is to adapt a distance
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function over the space of predictor vectors. As common in the metric learning literature,

we consider the family of Mahalanobis distance functions. These take the form

dM(xi,xj) = [(xi − xj)
⊤M(xi − xj)]

1/2, (3.2.2)

parameterised by M ∈ Sd
+, where Sd

+ denotes the set of d-dimensional symmetric positive

semidefinite matrices. This condition ensures that dM satisfies the properties of a pseu-

dometric (Bellet et al., 2014). We note here that the identity matrix,M = Id, recovers the

standard Euclidean distance.

A positive semidefinite matrix, M , always permits the decomposition, M = A⊤A. This

allows us to write the Mahalanobis distance (3.2.2) as dM (xi,xj) = [(Axi − Axj)
⊤(Axi −

Axj)]
1/2. Hence, we can understand the metric, dM , to be equivalent to the Euclidean metric

after a linear transformation of the data defined by A. This is a useful relationship which

suggests two different parameterisations for the metric learning problem. The optimisation

task can be performed with respect to the Mahalanobis matrix, M ∈ Sd
+, or the linear

transformation, A. Metric learning methods have been proposed from both perspectives,

with each offering their own advantages. Optimisation over M is generally favoured as

it leads to convex formulations which can be solved more efficiently. However, learning

the transformation matrix allows for rank constraints to be directly imposed. In general,

A ∈ Rr×d, where r ≤ d is the imposed rank of A and M . Learning a low rank matrix

brings the data into a transformed space of fewer dimensions, which offers advantages when

the original dimension, d, is large. For the purpose of simulation analytics, interpretation

may primarily be available through M , with diagonal elements in particular reflecting

the relevance of the state variable input features. However, understanding that this is

obtainable asM = A⊤A, we may readily explore formulations from either perspective. In

the experiments in this chapter, we optimise a Mahalanobis matrix,M ∈ Sd
+.

Themetric learning task is typically supervised by a collection of constraints summarising

our prior intuition about the relative distances that we wish to emerge between training
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instances. Often, this supervision comes in the form of the following sets:

S = {(xi,xj) : xi and xj should be close} (similarity constraints),

D = {(xi,xj) : xi and xj should not be close} (dissimilarity constraints),

R = {(xi,xj,xl) : xi should be closer to xj than it is to xl} (relative similarity
constraints).

In the absence of particular intuition, these sets can be derived from the class labels of

the training instances. For example, pairs of similarly labelled instances should populate S ,

while pairs of differently labelled instances can populate D . Intuitively, triplets (xi,xj,xl)

with yi = yj ̸= yl might populate the set R. Whilst these sets are assumed to be given,

their specific construction should be relevant to the data and the application at hand. The

task of selecting appropriate constraint sets is treated as a learning task itself by Wang et al.

(2012), although in general these sets are assumed to be given, and remain fixed throughout

the metric learning procedure.

In general, the task of Mahalanobis metric learning may be expressed as an optimisation

of the form minM∈Sd+ ℓ(M,S ,D ,R) + λr(M). Here, ℓ is a loss function to penalise

violations of the training constraints under the metric, dM , and r(M) describes some

regularisation on the values of M , with λ ≥ 0 the regularisation parameter. The main

distinctions among different metric learningmethods arise from their choices of loss function

and regularisation.

The earliest method for Mahalanobis metric learning is attributed to Xing et al. (2002).

The intuitive formulation seeks to minimise the sum of squared distances in S whilst

keeping the sum of distances in D above a threshold:

min
M∈Sd+

∑
(xi,xj)∈S

d2M(xi,xj) s.t.
∑

(xi,xj)∈D

dM(xi,xj) ≥ γ.

To solve this optimisation, the authors proposed a gradient based algorithm with iterative
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projections onto Sd
+ maintaining the positive semidefinite constraint. Whilst the primary

motivation for this work was an application to clustering, the method has proved useful to

many machine learning algorithms, paving the way for metric learning to be viewed as a

convex optimisation.

Following this formulation, several more tailored methods have emerged. With an

objective function inspired by the task of nearest neighbour classification, Goldberger et al.

(2004) proposed a method referred to as Neighbourhood Components Analysis (NCA). They

compute a softmax version of the probability that xi’s nearest neighbour is from the same

class, pi =
∑

j:yj=yi
exp(−d2M(xi,xj))/

∑
l ̸=i exp(−d2M(xi,xl)). Their objective function,

which is to maximise the sum of these probabilities over all training points, equates to

learning the distance metric which minimises the expected leave-one-out error rate of the

nearest neighbour classifier. To aid the gradient calculation, the optimisation was presented

in terms of the transformation matrix, A. The objective function of NCA is therefore non-

convex, making the method susceptible to finding only local maxima. However, a convex

extension to NCA was proposed by Globerson and Roweis (2005).

A second approach tailored to the task of nearest neighbour classification was provided

by the Large Margin Nearest Neighbor (LMNN) algorithm, developed by Weinberger and

Saul (2009). The construction of the constraint sets for LMNN is motivated by the fact

that success of kNN only relies on local clusterings of similarly labelled points, rather than

a global clustering. Specifically, the concept of target neighbours is introduced, which,

in the absence of prior knowledge, are defined for each training point as the k nearest

points in Euclidean distance which share the same class label. Taking ηij ∈ {0, 1} to

indicate whether xj is a target neighbour of xi, the sets S = {(xi,xj) : ηij = 1}, and

R = {(xi,xj,xl) : ηij = 1 and yl ̸= yi} are defined. The objective function of LMNN then

takes the following form:

min
M∈Sd+

(1− µ)
∑

(xi,xj)∈S

d2M(xi,xj) + µ
∑

(xi,xj ,xl)∈R

max{0, 1 + d2M(xi,xj)− d2M(xi,xl)}.
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This objective function seeks a local neighbourhood of each instance that is populated

with other instances of the same class, while those of a different class are repelled by a

‘large’ margin. The parameter, µ ∈ [0, 1], controls the trade-off between attracting target

neighbours and repelling oppositely labelled instances. A number of extensions to LMNN

have been proposed. Torresani and Lee (2006) explore kernel methods to combine LMNNwith

dimensionality reduction of the feature space, while Kedem et al. (2012) suggest extensions

to a non-linear metric.

Whilst NCA and LMNN remain perhaps the most notable contributions in the direction

of metric learning for nearest neighbour classification, many metric learning methods exist

in the wider literature, offering different perspectives on the fundamental task. We refer the

interested reader to the work of Kulis (2013) and Bellet et al. (2014) for a thorough review of

established methods.

In this chapter, we limit ourselves to considering a classification task. For this reason,

the metric learning formulation and methods discussed above apply specifically to data

in which the response variable is categorical. However, it should be recognised that kNN

represents a versatile rule that readily extends to regression problems as well (see, for

instance, Weinberger and Tesauro (2007)).

3.3 Metric Learning for Simulation

In this section, we demonstrate the proposed methodology for metric learning and kNN

classification on simulation models. Whilst many metric learning formulations exist, the

results presented here used CVXR (Fu et al., 2018), an open-source convex optimisation

solver, to employ the method of Xing et al. (2002). This early and intuitive formulation

suffices to provide proof-of-concept results which support the use of metric learning for

simulation analytics.

To specify the constraint sets, S and D , we take a local neighbourhood approach

inspired in part by LMNN. We denote byN (q)(xi) the set containing the q nearest points to
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xi in Euclidean distance. Then, for all xi, and for all xj ∈ N (q)(xi), we make the following

assignments:

(xi,xj) ∈


S if yj = yi,

D if yj ̸= yi.

As noted by Weinberger and Saul (2009), the success of kNN requires only that the

local neighbourhood of each instance be populated by others of the same classification.

Particularly in our simulation context, which allows a high-dimensional representation of

the system state, this will be relevant; a global clustering of each class may be inappropriate.

Euclidean distance provides an initial view of the local neighbourhoods of our training points.

It stands to reason that pairs of nearby points in Euclidean distance with equivalent class

labels should be encouraged to remain as neighbours. These points naturally fall close in the

predictor space and they share the same classification; we can confidently describe them

as similar. On the other hand, nearby pairs with different classifications need to be forced

apart, since they will impede the performance of our classifier. Moreover, owing to their

different classifications, we assume that there is something fundamentally dissimilar about

these pairs of instances which is not detected by Euclidean distance. By placing these pairs

in D , we aim to learn a distance metric that is sensitive to these more subtle dissimilarities.

We recall the formulation of Xing et al. (2002):

min
M∈Sd+

∑
(xi,xj)∈S

d2M(xi,xj) s.t.
∑

(xi,xj)∈D

dM(xi,xj) ≥ γ.

For the results presented in this section, we set the constraint constant to γ = |D |. In other

words, we aim to minimise the sum of squared distances in S whilst keeping the average

distance in D from falling below 1. In reality, the choice of γ > 0 is unimportant, and,

provided numerical stability of the optimisation algorithm is maintained, a different choice

results only in a scaling of the solution matrix by a constant factor. To generate the sets S
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and D , we take a local neighbourhood size of q = 20, and we evaluate the performance of

kNN classification using k = 50 nearest neighbours. Whilst these values prove sufficient

here to provide results supportive of our methodology, the optimal setting of the parameters

q and k will in practice vary across systems, and can be selected via cross-validation (Hastie

et al., 2009).

We first consider a simple motivating example to illustrate the advantages of metric learn-

ing and kNN classification in a simulation context. We then evaluate a realistic application

of our methodology on a more complex simulation of a wafer fabrication facility.

3.3.1 A Stochastic Activity Network

We consider the simple stochastic activity network represented in Figure 3.3.1. We denote the

five activity times byX1, X2, . . . , X5, modeling each as an i.i.d. random variable,Xi ∼ Exp(1)

for i = 1, 2, . . . , 5. There are three possible paths through the network, such that the total

time taken for completion is given by T = max{X1 +X4, X1 +X3 +X5, X2 +X5}. To

bring ourselves into a classification setting, we consider the binary response, Y = 1 if T > 5,

and 0 otherwise.

Given the structure of this network, we understand that the path X1 → X3 → X5,

requiring three activities, will often represent the longest path through the network and

hence define the value of Y . Of these three activity times, X1 and X5 appear in a second

path also, giving them an edge overX3 in terms of contribution towards the response. These

two alternative paths suggest that some interaction effects will also exist between X1 and

X4 and between X2 and X5; in each case, high values of both variables will encourage the

A

B

C

D
X1

X2

X3

X4

X5

Figure 3.3.1: A small stochastic activity network.
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response Y = 1.

We ran n = 10, 000 replications of the network, recording the five activity times,

X1, X2, . . . , X5, and the classification response, Y , for which the proportion of class 1

was around 16%. Knowing the exact mechanism by which the activity times generate the

response gives us an understanding against which we can evaluate the output matrix of the

metric learning. This output,M , provides a visual guide to the comparative relevance of the

five activity times towards the response, and is shown in Figure 3.3.2. When used as the

Mahalanobis distancematrix in (3.2.2), the diagonal elements inM indicate theweights given

to differences in individual variables in defining the overall distance between two instances,

whilst the off-diagonal elements additionally reflect relationships among the variables. We

see immediately from Figure 3.3.2 that the largest diagonal elements correspond to the

variables X1, X3, and X5. Thus, under the metric dM , instances with similar values of these

three variables will be deemed more similar overall, with less importance given to their

proximity in terms of X2 and X4. This reflects our understanding that X1 → X3 → X5 is

the most relevant path through the network. We can further note that the diagonal terms

for X1 and X5 are slightly higher than for X3, reflecting the additional contributions that

these two variables make towards Y .

We turn our attention to the off-diagonal terms ofM , and note that the positive semidef-

inite constraint imposes no restrictions on their sign. For the purpose of interpretation, we

define zij = xi − xj , and note from (3.2.2) that the off-diagonal element, M(k, l), appears

in the contribution of the term, 2zij(k)zij(l)M(k, l), to the squared Mahalanobis distance

between xi and xj . The magnitude of M(k, l) indicates the impact of the product term,

zij(k)zij(l), on dM(xi,xj), whilst its sign indicates the way in which these variables inter-

act. Specifically, a positive value of M(k, l) indicates that dM(xi,xj) will increase when

zij(k) and zij(l) have the same sign, and decrease otherwise, whilst the opposite is true for

negativeM(k, l). Applying this interpretation to Figure 3.3.2, we can understand the positive

off-diagonal terms in connection with the additive relationship through which the variables
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generate the response, whilst the greatest strengths are understandably attributed to the

relationships among the dominant variables, X1, X3, and X5. As such, we are encouraged

to see that the matrix obtained by metric learning aligns with our intuitive understanding

of this system. In realistic simulation models for which such intuition is less accessible,

we suggest that metric learning can be effective in revealing relationships among system

components, and their relative contributions towards driving the system performance.

The effectiveness of kNN classification using a learned distance metric is illustrated

in Figure 3.3.3. The receiver operating characteristic (ROC) curves (Hastie et al., 2009)

show the performance of the kNN classifier following 2-5-fold cross-validation (CV). J-K-

fold CV, consisting of J independentK-fold cross-validations, is understood to represent a

more robust procedure than traditional K-fold CV (Moss et al., 2018). Specifically in our

experiments, each CV iteration takes four fifths of the data to comprise the training set on

which the distance metric is learned, and the points in the remaining test set are classified

by finding their k nearest neighbours from the training set, with respect to the learned

distance metric. The ROC curves display the trade-off between the true positive rate and

the false positive rate as the classification threshold varies. Here, the true positive rate

(sensitivity) refers to the proportion of class 1 points correctly classified, whilst the false

X1

X2

X3

X4

X5

X1 X2 X3 X4 X5

0.25
0.50
0.75
1.00

value

Figure 3.3.2: A visualisation of the learned
matrix, M , for the stochastic activity net-
work.
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Figure 3.3.3: ROC curves for classification
on the stochastic activity network.
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positive rate (1− specificity) refers to the proportion of class 0 points incorrectly classified as

class 1. Thus, in practice, the ROC curves can be used to select the classification threshold, c,

in (3.2.1), based on a desired sensitivity-specificity trade-off. In Figure 3.3.3, the ten dashed

CV curves are averaged at each threshold to produce the solid curves. Using the same CV

partitions, we also show the ROC curves from logistic regression, a standard classification

technique.

The comparison in Figure 3.3.3 reveals the value of the kNN approach. Logistic regression

represents a parametric attempt tomodel the response as a function of the predictor variables.

However, owing to the nature of the network, measuring similarity with regards to the key

activity times proves a more successful foundation for prediction. The connected dependence

structure among the predictors in this example is not atypical of the relationships among

state variables in many simulation models.

Further, we realise that a multi-dimensional characterisation of a simulation state is

likely to include a number of variables which provide little or no contribution to the system

response. To demonstrate the capability of metric learning in handling data of this nature, we

augmented the five activity times with a further fifteen i.i.d. random variables, Xi ∼ Exp(1)

for i = 6, 7, . . . , 20. The response, Y , depends only onX1, X2, . . . , X5 in the samemanner as

before. These fifteen additional variables represent noise dimensions which have no bearing

on Y . Metric learning on this augmented data yields the matrix shown in Figure 3.3.4. We

see that metric learning is able to successfully filter out the noise dimensions and recover

the important structure among the five activity times. Figure 3.3.5 shows the ROC curves for

this example, and also shows the performance of the kNN classifier with Euclidean distance,

which is comparable to that of logistic regression.

We are encouraged to see in Figures 3.3.4 and 3.3.5 the capability of metric learning

in the presence of noise variables, both in terms of retaining interpretability and bringing

improvement to Euclidean kNN classification. This lends optimism to our proposed appli-

cation, since we recognise that irrelevant variables will be a common feature of the large
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Figure 3.3.4: The learned matrix, M , af-
ter the data from the stochastic activity
network is augmented with fifteen noise
variables.
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Figure 3.3.5: ROC curves for classification
on the noise-augmented stochastic activ-
ity network.

state descriptions of realistic simulation models. We progress now to one such model, in

which we demonstrate further the capability of metric learning and its application to kNN

classification.

3.3.2 A Wafer Fab Model

To evaluate our approach with a more realistic simulation, we employ the model of a wafer

fabrication facility (fab) described by Kayton et al. (1996). The manufacturing process of

semiconductor wafers involves several processing steps at a number of stations. Machines

with different processing capacities and unpredictable breakdown patterns present a chal-

lenge to the management of product flow through these facilities. Moreover, the layered

nature of their circuitry design requires wafers to make multiple visits to particular stations,

introducing an aspect of re-entrant flow that further complicates our view of the system.

Briefly, the simulation model is comprised of 11 stations with lognormal processing times.

Three product types are produced by the facility, each requiring a specific routing sequence

through the 11 stations. Notable stations include station 3, characterised by an unreliable

machine, and station 4, which represents the bottleneck station to which products make
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repeated visits. Together with the varying processing behaviour of the different stations,

including batch processing at stations 1 and 2, these features establish a system with a level

of complexity approaching that of typical simulation models.

On release into the system, each wafer is assigned a due date based on its expected

processing time through an empty system. Therefore, we can consider observed completion

times relative to due dates as a dynamic indicator of system performance. To describe the

system state, we take a Markovian view in assuming that all information relevant to the

future evolution of the system can be captured in the currently observable system conditions.

Namely, we focus on the current values of the 22 integer variables describing the queue size

and the number of resources in use at each station. We recognise that this state description

is incomplete, given the different product types and processing stages of individual wafers.

However, having tested numerous additional state descriptors, we find that a basic physical

view of the system state is sufficient here to provide compelling support for our methodology.

As such, our data, {(xi, yi)}ni=1, are as follows. We record the 22-dimensional system state,

xi, at the moment a wafer is released into the system, and observe its associated binary

response, yi, indicating whether this wafer was completed early or late with respect to its

due date. Our simulation model was coded using Visual Basic for Applications (VBA) in

Microsoft Excel. To aid an understanding of the data, Figure 3.3.6 shows an excerpt of the

Clock Event ID Step Station Product Queue 1 Resource 1 Queue 2 Resource 2 Queue 3 Resource 3 …

2008.383059 StationDepart 22 2 11 3 1 0 1 0 11 0 …

2008.383059 StationArrive 22 3 3 3 1 0 1 0 11 0 …

2040 Release 25 1 1 3 1 0 1 0 12 0 …

2040 StationArrive 25 1 1 3 1 0 1 0 12 0 …

2109.106176 StationDepart 25 1 1 3 0 1 1 0 12 0 …

2109.106176 StationDepart 24 1 1 1 0 1 1 0 12 0 …

2109.106176 StationArrive 25 2 11 3 0 0 1 0 12 0 …

2109.106176 StationArrive 24 2 4 1 0 0 1 0 12 0 …

2125 Release 26 1 1 1 0 0 1 0 12 0 …

2125 StationArrive 26 1 1 1 0 0 1 0 12 0 …

2150.158025 StationDepart 24 2 4 1 1 0 1 0 12 0 …

2150.158025 StationArrive 24 3 3 1 1 0 1 0 12 0 …

2179.242595 StationDepart 25 2 11 3 1 0 1 0 13 0 …

2179.242595 StationArrive 25 3 3 3 1 0 1 0 13 0 …

2179.925414 Repair ‐10 ‐10 ‐10 ‐10 1 0 1 0 14 0 …

Figure 3.3.6: An example of the trace from the wafer fab simulation, which we use to build a
state description.
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system trace information recorded by this simulation, from which we extract our system

state description. In general, rather than trying to select a parsimonious state description,

we suggest including all the observable state information that may prove relevant, and then

allowing metric learning to discover what is actually relevant.

To avoid confusing the behaviours of the different product types, our data contains only

observations from a single product type. In the results that follow, we combine observations

from multiple replications of the system, discarding a warm-up period from each to leave

us with insight into the operational steady-state behaviour. We are left with a data set of

size n = 2391, with the proportion of late responses around 72%. The simulation can be

performed with a choice of dispatching rules, relating to the order in which queueing wafers

are processed (Kayton et al., 1996). The results displayed in Figures 3.3.7 and 3.3.8 used a

Least Remaining Work rule, in which priority is given to wafers which are nearer completion.

The metric learning procedure resulted in the matrix visualised in Figure 3.3.7. The

stand-out elements in this matrix correspond to the queue sizes at stations 3 and 4, which

we recall to coincide with the unreliable machine and the system bottleneck, respectively.

The metric learning result highlights the significance of these two queue sizes in defining

the overall system performance.

Performing kNN classification on this data, with 2-5-fold CV as in the previous example,

yields the ROC curves shown in Figure 3.3.8. Compared to a Euclidean kNN classifier,

the curves reveal the benefit to classification performance that metric learning brings.

Essentially, as the size of the state space increases, we expect the benefit of metric learning

over Euclidean distance to become even more pronounced.

As a statistical learning technique, kNN is best suited to low-dimensional data (Beyer

et al., 1999). To visualise the effect of metric learning with respect to dimensionality reduction,

it is convenient to consider the transformation matrix, A, given by the decomposition,

M = A⊤A. We recall that the metric, dM , can be viewed as the Euclidean metric in the

space transformed by A. Taking the eigen-decomposition of M , the ith row of A is given
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Figure 3.3.7: A visualisation of the learned
matrix,M , for the wafer fab problem.
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Figure 3.3.8: ROC curves for kNN classifi-
cation on the wafer fab problem, compar-
ing Euclidean distance with the learned
metric.

by λ
1/2
i v⊤

i , where λi and vi denote, respectively, the ith largest eigenvalue of M and its

corresponding eigenvector. Thus, the eigenvalues of M directly impact the spread of our

data in its transformed dimensions. Figure 3.3.9 shows the eigenvalues of the original data

covariance matrix, in order of decreasing size, whilst Figure 3.3.10 shows the eigenvalues

of M . We see that metric learning in this example results in much of the variability of

the data being compressed into the first dimension. Hence, we can acknowledge the

effective dimensionality reduction brought upon our data by metric learning. Projecting

the transformed data against its first and second dimensions results in the plot shown in

Figure 3.3.11. We can see that this dominant first dimension is effective in distributing our

two response classes.

In formulations such as NCA, which directly seek a transformation of the feature space,

dimensionality reduction can be straightforwardly enforced. However, even when not

directly sought, the by-product of dimensionality reduction is almost inherent in the nature

of the metric learning task. Since a nearest neighbour rule is understood to suffer the curse

of dimensionality, and we aim to accommodate simulations with a high-dimensional state

space, the dimensionality reduction encouraged by metric learning represents an important
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aspect of our methodology; it allows us to apply kNN without the need for user-intervention

in trimming the state space.

3.4 Conclusion

In this chapter, we have presented a novel methodology in the field of simulation analytics.

The basis of our methodology, kNN classification, provides a non-parametric framework in

which to model the behaviour of a system, whilst the addition of metric learning is shown to

bring both interpretability and improved prediction performance. We have demonstrated the

merits of our approach for its intended application to simulation, showing that the typical

features of sample path data, such as interacting and irrelevant variables, are well-handled

by metric learning. Although we only present results from a single metric learning method

in this chapter, the extensive research and accomplishment in this field gives optimism

to the scope of metric learning for simulation. In short, we propose that a kNN approach

combined with metric learning can have wide-reaching benefits, as simulation users begin

to look beyond aggregate performance measures and seek a more fine-grained analysis from

their simulation models.



Chapter 4

Stochastic Neighbourhood

Components Analysis

Distance metric learning is a fundamental task in data mining, and is known to

enhance the performance of various distance-based algorithms. In this paper, we

consider stochastic training data in which repeated feature vectors can belong

to different classes. Our primary motivation for this arises from the field of

stochastic simulation. Storing the dynamic trajectory of the system state within

a simulation model can support real-time predictions of stochastic performance

measures. However, the inherent randomness within the system combined with

the recurring nature of the system state leads to data of the type considered,

on which existing methods of metric learning are known to struggle. Here,

we present a stochastic version of the popular Neighbourhood Components

Analysis. We demonstrate its behaviour using simulation examples, and reveal

improvements over Neighbourhood Components Analysis when used for nearest

neighbour classification of stochastic data.

58
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4.1 Introduction

Stochastic computer simulations are widely used modelling and decision-making tools, and

applications of machine learning to support their output analysis are becoming increasingly

common (Giabbanelli, 2019). Discrete-event simulation (DES) provides a popular paradigm,

representing the operation of a real system as a sequence of events which occur at discrete

points in time. Each event, such as a customer arrival or a machine failure, triggers a change

in a set of variables describing the system state, including for instance a queue size or a

machine status. The trajectory of state variables obtained from a DES model hides a wealth

of insight into the system behaviour, and is often referred to as the simulation sample path.

Nelson (2016) recognised modern capacity for the storage of sample path data as paving

the way for machine learning solutions, and coined the term simulation analytics. As an

accessible source of measurement-error-free data, sample paths provide a rich environment

for machine learning. However, to achieve the full potential of learning in this context, it is

necessary to account for the distinctive properties of sample path data. This presents an

opportunity for machine learning research, and in this work we take a step in this direction.

We consider the task of classifying a future system state. The ability to anticipate

stochastic behaviour provides valuable assistance to system planning and control, and

is well supported by the emergence of digital twin simulation (dos Santos et al., 2022).

Section 4.4.2 describes a manufacturing context in which product completion times are

classified as early or late at the start of a product cycle, based on simulation-generated

completion times from the nearest neighbours of the current system state. At its highest

level of detail, the system state is completely descriptive of the system at any moment in

time, and so identifying nearest neighbours on system state provides a logical basis for

predictions (Laidler et al., 2020). For this reason, we propose a method of distance metric

learning (DML) tailored to the characteristics of sample path data.

DML has been shown to improve the performance of several distance-based tasks, in-
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cluding nearest neighbour predictions (Weinberger and Saul, 2009), clustering (Xing et al.,

2002), and information retrieval (McFee and Lanckriet, 2010), with extensive research efforts

resulting in a wealth of notable formulations (Kulis, 2013). However, current DML algo-

rithms are built with an implicit assumption of having unique feature vectors for training,

an assumption which conflicts with the nature of sample path data. The typically discrete

representation and recurrent nature of the system state in a DES model provides repeated

feature vector observations, and calculating objective functions as a sum over individual

points becomes inefficient. More significantly, inherent simulation randomness results in

stochastic classifications. Repeated feature vectors belonging to different classes will often

introduce conflicting constraints when existing DML methods are applied, and can lead

to k-nearest neighbours (kNN) committing “substantial errors” (Suárez et al., 2021). In the

current work, we address this shortcoming by proposing a method which we refer to as

Stochastic Neighbourhood Components Analysis (SNCA). This is based on the Neighbour-

hood Components Analysis (NCA) of Goldberger et al. (2004), which builds a probabilistic

model of class assignment. We modify NCA to the context of repeated data points and

stochastic classifications.

Although providing a large family of problems, the simulation domain is not the begin-

ning and the end of our application. DES sample paths identify a characteristic type of data

which arises in numerous contexts. Crowdsourced datasets, for example, in which responses

are gathered from a crowd of people, can often result in multiple annotators providing

various responses to the same labelling task (Vaughan, 2017). Tasks such as sentiment

analysis or media ratings are subjective in nature and certainly result in stochastic labelling.

Beyond this, however, many real-life situations experience naturally stochastic behaviour.

Medical prognoses (Suo et al., 2018), financial forecasts (Cao and Tay, 2001), and sporting

events (Horvat and Job, 2020), for example, are often modelled with discrete features and

encounter natural variability in their observed outcomes. In summary, repeated feature

vectors and stochastic labelling characterise a large body of classification problems. While
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methods for the statistical analysis of such data exist (Hastie et al., 2009), it is unaccommo-

dated by methods of DML, and so we see a formulation tailored to this context as a useful

contribution.

The remainder of the paper is organised as follows. Section 4.2 establishes a relevant

background in simulation analytics and DML. In Section 4.3, we give a characterisation of

the data and the proposed methodology for SNCA, including attention to the theoretical

convergence of the optimal solution. We present experimental results to assess the perfor-

mance of SNCA on sample path data in Section 4.4, before the paper concludes with a brief

summary in Section 4.5.

4.2 Related Work

Numerous texts provide a comprehensive study on the subject of stochastic simulation

(Nelson and Pei, 2021; Law and Kelton, 2007). In this section, we focus attention on the

emerging topic of simulation analytics (Nelson, 2016), which provides a motivation for the

current work. We also introduce the task of DML, and present a focused review of the

existing literature.

4.2.1 Simulation Analytics

Analysis of simulation has traditionally centred around static summaries of long-run perfor-

mance, with average performance over time being prioritised above dynamic performance

through time. More recently, however, simulation analytics aims to prioritise the latter,

recognising that a far more complete picture of system behaviour can be unlocked by direct-

ing machine learning efforts to the simulation sample path. We summarise some notable

publications on this theme.

A number of papers have emerged in which sample path data are used to build meta-

models for dynamic predictions. In the context of a queueing network, Ouyang and Nelson
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(2017) proposed a two-stage logistic regression modelling approach in which the state and

time aspects of the sample path are treated separately, while Jiang et al. (2020) also use a

logistic regression model to dynamically predict the risk of financial portfolios. Morgan and

Barton (2022), meanwhile, show that Fourier analysis can successfully detect changes in the

trajectories of individual state variables to discriminate between congested and uncongested

systems. Moving to distance-based methods, Lin et al. (2019) suggest a kNN approach

to provide performance predictions based on simulation time. A first investigation of the

potential for DML in simulation analytics was provided in Laidler et al. (2020), with the

independent variable being extended to a multidimensional description of the system state.

However, a tailored DML approach was not offered, and this is instead the main contribution

of the current work.

Beyond the sphere of research, applications of machine learning in simulation are also

filtering through to practitioners. Commercial providers of simulation software, including

for example Simul81, Simio2, and AnyLogic3, have recognised its benefits and provide easy

integration with machine learning models. Crucially, the support is already in place for

research advances in simulation analytics to quickly deliver impact to simulation users.

4.2.2 Distance Metric Learning

Distance calculations among data points comprise a fundamental aspect of many machine

learning tasks, and DML is therefore treated as an important objective in its own right

(Kulis, 2013). In a fully supervised setting, real-valued, multivariate feature vectors, xi ∈ Rd,

are supplied with a class label, yi, and the goal is to adapt a pairwise distance function over

the feature vectors, such that nearby points are more likely to belong to the same class. A

common approach to DML is to learn a generalised Mahalanobis distance. Our work in this

chapter conforms to this framework, and this becomes the focus of our review.

1https://www.simul8.com
2https://www.simio.com
3https://www.anylogic.com
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Defining the squared distance betweenxi andxj as d2M (xi,xj) = (xi−xj)
⊤M(xi−xj),

the family of Mahalanobis metrics is parameterised by restricting M to the set of d × d

positive semidefinite matrices, which we denote by Sd
+. The task of learning a suitable M is

generally expressed as an optimisation problem of the following form:

min
M∈Sd+

ℓ(M,Dn) + λr(M).

Here, ℓ is a loss function relating the suitability ofM to the supervision brought by the data,

Dn = {(xi, yi)}ni=1, and r(M) describes some regularisation on the values ofM , with the

regularisation parameter, λ ≥ 0. Many formulations have been proposed, with differences

arising in their choice of loss functions and regularisation. For a comprehensive review of

established methods, refer to surveys provided by Kulis (2013), Bellet et al. (2014), and, more

recently, Li and Tian (2018). Here, we limit our discussion to the main directions of the

research, and establish a relevant background for the current work.

A common approach converts supervision into the form of similarity judgments among

tuples of training points. For instance, sets S and D are often used to contain pairs of

training points deemed to be similar and dissimilar, respectively. Under this framework, the

loss function, ℓ(M,Dn), is used to encode violations of the desired relationships under the

metric induced byM . Construction of a linear loss function leads to convex formulations

and allows the problem to be treated as a semidefinite program. The earliest example of

this is Xing et al. (2002), with the following intuitive formulation:

min
M∈Sd+

∑
(xi,xj)∈S

d2M(xi,xj) s.t.
∑

(xi,xj)∈D

dM(xi,xj) ≥ γ.

A succession of notable semidefinite programming formulations have since emerged, includ-

ing the widely used Large Margin Nearest Neighbors (LMNN, Weinberger and Saul (2009)).

Motivated by kNN, LMNN seeks local neighbourhoods of each instance to be populated

with other instances of the same class, while those of different class are repelled by a ‘large’
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margin. LMNN has been the subject of a number of extensions. Torresani and Lee (2006)

combine LMNN with dimensionality reduction of the feature space, and explore non-linear

kernel methods, while Kedem et al. (2012) suggest alternative extensions to a non-linear

metric. Further notable works, also making use of supervision sets, S and D , and offering

an information-theoretic perspective, include Bar-Hillel et al. (2003) and Davis et al. (2007).

The approach of populating supervision sets with pairwise relationships is less natural

in our context of repeated feature vectors and stochastic classifications. In particular, we

might expect the same pair to appear a number of times in both S and D , leading to

either inefficient or infeasible formulations. Instead, the stochastic nature of the class labels

leads us to prefer a probabilistic formulation, and we hence turn our attention to existing

probabilistic methods.

An influential formulation known as Neighbourhood Components Analysis (NCA, Gold-

berger et al. (2004)) proceeds to model the nearest neighbour probabilities with a softmax

normalisation over distances. A point, xi, identifies its nearest neighbour as xj with proba-

bility pij :

pij =
exp{−∥Axi − Axj∥22}∑
k ̸=i exp{−∥Axi − Axk∥22}

, pii = 0. (4.2.1)

This imposed distribution provides a continuous relaxation to the deterministic point mass

distribution on the nearest neighbour. With xi inheriting its classification from a neighbour

selected from this distribution, the quantity, pi =
∑

j : yj=yi
pij , represents the probability of

xi having the class assignment of yi. The suggested objectives are to maximise the expected

leave-one-out accuracy of the nearest neighbour classifier under this distribution, or the

log-likelihood function:

max
A

n∑
i=1

pi or max
A

n∑
i=1

log (pi) .

The optimisation of NCA is performed over an unconstrained matrix, A, which reveals a Ma-

halanobis matrix, M , via the relation A⊤A = M . Any M ∈ Sd
+ permits this decomposition,
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so a Mahalanobis metric can equivalently be viewed as a projection of Euclidean space under

a linear transformation, x → Ax. With this perspective, optimising the transformation

matrix, A, provides an alternative perspective to the task of Mahalanobis metric learning.

Dimensionality reduction can be directly sought by restricting the number of rows in A,

whilst costly projections onto Sd
+ are avoided. However, an optimisation of A often comes

at the expense of convexity: a loss function which is convex inM is typically non-convex

in A. This is no concern in the case of NCA, since the objective function is non-convex in

either parameterisation.

Underneath NCA lies a predictive model of class distributions: pi can be seen as a kernel

density estimator for the conditional probability of yi given xi (Devroye and Wagner, 1980).

The form of the softmax transformation (4.2.1) disguises a Gaussian kernel function, with

the common bandwidth parameter being absorbed into the scale of A. Weinberger and

Tesauro (2007) more explicitly present a metric learning method in this context, albeit for a

continuous target variable. In particular, kernel regression estimates for the target variable

are constructed in the same form as above, and a metric is sought to minimise the mean

squared error.

A similar probabilistic model was proposed by Peltonen and Kaski (2005), in which an

expression of the data log-likelihood is maximised by evaluating conditional class probability

estimators of a similar form as those of NCA. Indeed, the estimates introduced by NCA

establish a popular framework which has been adopted by a number of other authors, and

also provides inspiration for our own approach. Globerson and Roweis (2005) obtain a convex

objective function, while Tarlow et al. (2013) explicitly extend the NCA objective to reflect

the expected kNN accuracy for any choice of k. Further related extensions of NCA include

Wang and Tan (2014), who consider the context of noisy labels arising from measurement

error. Our own context involves true noise arising from a probabilistic labelling mechanism,

and in this direction, Yang (2020) adapts NCA to the context of probabilistic labels, in which

a full probabilistic class distribution is assumed to be known for each instance. Our own
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approach assumes no such knowledge.

The NCA framework provides a useful foundation for probabilistic metric learning,

although it falls short of addressing the repeating characteristic of our input observations.

We proceed in the next section to introduce a multinomial framework for our data setting,

and propose an NCA-inspired metric learning formulation to serve it.

4.3 Methodology

We begin by describing a data framework in which repeated feature vectors and stochastic

labelling characterise a set of classification problems. To establish a mechanism generating

observation pairs, we assume a distribution, qX,Y , over a pair of discrete random variables,

X and Y . The input variable, X , takes values from a set, X = {b1, b2, . . . , bm}, containing

a finite number of vectors in Rd, which we refer to as states, whilst Y represents a class

label drawn from a set, Y , containing at least two unordered values. Our task is to find a

pairwise distance function acting on the states in X , which in some way reflects similarity

of the conditional class distributions of Y |X . We receive supervision from a finite training

sample, Dn = {(xi, yi)}ni=1, drawn independently from qX,Y .

In many applications, the training sample will not represent the entirety of X . Whilst

we expect repeats of some states, many others may be observed only once or not at all.

Therefore, in classifying a new input, x⋆, we are not expecting to rely solely on observed

training repetitions of x⋆ and an empirical class distribution. Instead, we require a distance

metric to point us to neighbouring states which, through a similarity of class distributions,

will make good predictors. As the basis for this, we seek a model which can learn from

the more frequently attended states to extend a conditional structure for Y |X across the

whole set of X .

The discrete nature of X × Y allows us to view Dn as a multinomial sample. We

introduce a random variable, Cy
l (n) = |{i ∈ {1, 2, . . . , n} : Xi = bl, Yi = y}|, to represent

the observed frequency of the pair (bl, y) in a data sample of size n. The random vector,
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{Cy
l (n)}

y∈Y
l=1,...,m, follows a multinomial distribution with parameters n and {q(bl, y)}y∈Yl=1,...,m,

and we can represent Dn = {cyl }
y∈Y
l=1,...,m as a realisation of this random vector. Conditional

on Dn, the maximum likelihood estimates of the multinomial parameters are provided by

q̂(bl, y) = cyl /n. Using cl to represent
∑

y∈Y cyl , we also introduce marginal and conditional

data distributions with q̂(bl) = cl/n and q̂(y | bl) = cyl /cl provided cl > 0, respectively.

Although these distributions depend on Dn, we omit this to simplify the notation.

The remainder of this section is organised as follows. We introduce a probabilistic

framework for SNCA in Section 4.3.1, through which a conditional distribution of Y |X is

modelled. We present an objective function and a proposed scheme for its optimisation in

Section 4.3.2. Section 4.3.3 discusses the distinction between SNCA and NCA in the data

context described above, and Section 4.3.4 presents a convergence result relating to the

asymptotic behaviour of the optimal solution.

4.3.1 A Probabilistic Framework

In the style of NCA, we impose a probability distribution for neighbour assignment based

on a softmax function over distances. In contrast to NCA, however, this is applied over

multinomial cells as opposed to over individual xi. Under a transformation matrix, A,

a cell with X = bl identifies the cell (bh, y) as its nearest neighbour with probability

pA((bh, y) | bl):

pA((bh, y) | bl) =
cyh exp{−∥Abl − Abh∥22}∑
k ̸=l ck exp{−∥Abl − Abk∥22}

, pA((bl, y) | bl) = 0.

Again, we omit the conditioning on Dn from the notation. Assuming classifications to be

inherited from a cell selected by this distribution, the probability of classifyingX = bl as

class y is given by

pA(y | bl) =
m∑

h=1

pA((bh, y) | bl).
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This provides us with a complete conditional distribution, pAY |X , for any matrix, A, con-

structed as a weighted average over observed class distributions, q̂Y |X . That is, we can

write

pA(y | bl) =
m∑

h=1

plhq̂(y | bh),

where the weight, plh =
∑

y∈Y pA((bh, y) | bl), given to the observed class distribution of

the neighbour, bh, decreases exponentially with the distance under A of bh from bl. With

this perspective, we treat our task as an optimisation problem to find a transformation, A,

to align the model distribution, pAY |X , with the data distribution, q̂Y |X .

4.3.2 Objective Function and Optimisation

The primary NCA objective proposed by Goldberger et al. (2004) is to maximise the expected

number of correct classifications on the training data under the modelled class probability

estimates. The same intention leads us to the following objective function for SNCA:

fn(A) =
m∑
l=1

∑
y∈Y

q̂(bl, y)p
A(y | bl).

Whilst a maximisation of fn(A) constitutes a natural objective, it does not directly target

the alignment of pAY |X with q̂Y |X . This alignment is, however, represented with a Kullback-

Leibler (KL) divergence via a log-likelihood maximisation. Obtaining the modelled joint

distribution as pA(bl, y) = pA(y | bl)q̂(bl), the multinomial likelihood and log-likelihood of

Dn can be expressed as the following functions of A, respectively:

L(A;Dn) =
n!∏

l

∏
y c

y
l !

m∏
l=1

∏
y∈Y

pA(bl, y)
cyl ,

logL(A;Dn) = log(n!) +
m∑
l=1

∑
y∈Y

cyl log(p
A(bl, y))− log(cyl !).
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Recalling that q̂(bl, y) = cyl /n, we see that a maximisation of the log-likelihood corresponds

to a maximisation of the function, gn(A), and observe the connection to a KL divergence:

gn(A) =
m∑
l=1

∑
y∈Y

q̂(bl, y) log(p
A(bl, y))

=
m∑
l=1

∑
y∈Y

q̂(bl, y) log

(
pA(bl, y)

q̂(bl, y)

)
+

m∑
l=1

∑
y∈Y

q̂(bl, y) log(q̂(bl, y))

= −DKL(q̂X,Y ∥pAX,Y )−H(q̂X,Y ),

whereH represents the Shannon entropy (Shannon, 1948). SinceH(q̂X,Y ) is independent of

A, the maximisation of gn(A) corresponds to a minimisation of the KL divergence of pAX,Y

from q̂X,Y . We have a similar interpretation in relation to the conditional distributions:

gn(A) =
m∑
l=1

∑
y∈Y

q̂(bl)q̂(y | bl) log(q̂(bl)pA(y | bl))

=
m∑
l=1

q̂(bl)
∑
y∈Y

q̂(y | bl) log pA(y | bl) +
m∑
l=1

q̂(bl) log q̂(bl)

= −Eq̂X [DKL(q̂Y |X∥pAY |X)]− Eq̂X [H(q̂Y |X)]−H(q̂X).

Therefore, maximisation of gn(A) minimises the expected KL divergence of the class condi-

tional distributions of the model from the data, under q̂X . This perspective perhaps most

convincingly aligns with our intuition for a desirable metric, whilst making use of a common

probability-based divergence measure.

The differentiability of gn(A) allows us to apply a gradient-based optimiser. Recalling

that plh =
∑

y∈Y pA((bh, y) | bl), and denoting blh = bl−bh, we have the following gradient:

∂gn(A)

∂A
= 2A

m∑
l=1

∑
y∈Y

q̂(bl, y)
∑
h̸=l

blhb
⊤
lhplh

(
1− q̂(y | bh)

pA(y | bl)

)
.

Details for deriving this expression can be found in Appendix A.1, along with a similar

expression for ∂fn(A)/∂A.
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In the metric learning literature, imposing some regularisation on the parameters of

the metric is a common and accepted practice (Kulis, 2013). In this work, we choose to

require mutual orthogonality among the rows of A. Encouraging orthogonality has recently

been recognised as an effective regularisation for metric learning (Dutta et al., 2020), and

besides leading to a smaller set of projection vectors which bear less redundancy, benefits in

mitigating the effects of class imbalance and avoiding overfitting have also been recognised

(Xie et al., 2018).

To introduce orthogonality, we propose a row-wise construction of the solution, optimis-

ing each row in the null space of the previously determined rows. Performing this null space

projection is a computationally inexpensive step, and leads to orthogonal rows of A without

the need for optimisation constraints. The proposed optimisation procedure is summarised

in Algorithm 1. We choose not to require unit length vectors, since a flexible scaling allows

the predictive relevance of the various orthogonal directions to be reflected. In practice, we

observe diminishing row norms. Correspondingly, the diminishing improvements to the

Algorithm 1 SNCA

Input: Dn = {(xi, yi)}ni=1

a⋆
1 ← argmaxa∈R1×d gn(a)

A⋆ ← a⋆
1

â⋆
1 ← a⋆

1/∥a⋆
1∥2

P ← Id − â⋆⊤
1 â⋆

1

a⋆
2 ← argmaxa∈R1×d gn

([
A⋆

aP

])
j ← 2

while gn

([
A⋆

a⋆
j

])
> gn(A

⋆) do

A⋆ ←
[
A⋆

a⋆
j

]
∈ Rj×d

â⋆
j ← a⋆

j/∥a⋆
j∥2

P ← (Id − â⋆⊤
j â⋆

j)P

a⋆
j+1 ← argmaxa∈R1×d gn

([
A⋆

aP

])
j ← j + 1

end while
Return: A⋆
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objective value suggest a natural stopping rule, bringing explicit dimensionality reduction

to the solution.

Whilst we optimise a non-convex objective function, falling into local optima remains a

concern. In the experiments presented in Section 4.4, we make multiple restarts for each

optimisation step. We choose a Latin Hypercube space-filling design using software provided

by Urquhart et al. (2020) to generate a set of initialisations.

4.3.3 Relationship to NCA

The formulations of NCA and SNCA exactly coincide when applied to training data without

repeated observations, i.e. training data for which
∑

y∈Y cyl ≤ 1 holds for all l = 1, 2, . . . ,m.

When this condition does not hold, a difference arises. Expressing both formulations as

max
A

∑
l

∑
y

q̂(bl, y) log p
A(y | bl),

the difference occurs in the model estimates of the conditional probabilities, pA(y | bl).

Whenever q̂(bl, y) > 0, these estimates are as follows:

NCA: pA(N)(y | bl) =
cyl − 1 +

∑
h̸=l c

y
h exp{−∥Abl − Abh∥22}

cl − 1 +
∑

h̸=l ch exp{−∥Abl − Abh∥22}
, (4.3.2)

SNCA: pA(S)(y | bl) =
∑

h̸=l c
y
h exp{−∥Abl − Abh∥22}∑

h̸=l ch exp{−∥Abl − Abh∥22}
. (4.3.3)

The difference between (4.3.2) and (4.3.3) stems from the inclusion and exclusion, respectively,

of a point’s repeats in the softmax construction of its neighbour distribution. Since identical

points will always have a distance of zero, the terms cyl − 1 and cl − 1 appear regardless

of A and effectively act as bias to pA(N)(y | bl). As a result, the influence of A on the

objective function of NCA is reduced. The adjustment made by SNCA is to exclude identical

neighbours from consideration in the softmax functions, which allows the SNCA objective

to solely reflect the quality of distance relationships among non-identical points.
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We also recognise inconsistencies arising in the NCA estimates. Specifically, we may

not have
∑

y∈Y pA(N)(y | bl) = 1. As n increases, the discrepancy reduces, and we can in

fact identify an asymptotically optimal solution. In particular, a solution, A, with infinite

column norms, such that non-identical points are infinitely far apart, will yield pA(N)(y |

bl) = (cyl − 1)/(cl − 1)→ q̂(y | bl) as n→∞. This identifies a non-informative solution to

which NCA becomes susceptible, under its log-likelihood objective function, as the data size

increases. This essentially represents the situation of fully overfitting to the data, a hazard

which SNCA avoids by introducing implicit leave-one-out validation during learning.

4.3.4 Convergence of Optimal Solutions

In Section 4.3.2, we understood gn(A) in relation to the observed distribution, q̂X,Y , of a

finite sample. In this section, we seek to establish convergence guarantees with respect to

the underlying true distribution, qX,Y .

The strong law of large numbers (Kolmogorov and Širjaev, 1992) ensures consistency of

q̂X,Y
a.s.→ qX,Y as n→∞, and by the continuous mapping theorem we obtain the pointwise

limits over fixed A ∈ Rd×d as n→∞ of gn(A):

gn(A)
a.s.→

m∑
l=1

∑
y∈Y

q(bl, y) log

(
q(bl)

∑
h̸=l q(bh, y) exp{−∥Abl − Abh∥22}∑
k ̸=l q(bk) exp{−∥Abl − Abk∥22}

)
.

Weuse g(A) to denote the limit of gn(A) given above, and consider the (set of) maximisers

of g(A), denoted A⋆
g, to be the true system-optimal solutions. To address the asymptotic

behaviour of a finite sample solution, Âg, we refer to a result relating to the consistency

of Sample Average Approximation (SAA) estimators (Theorem 5.3, Shapiro et al. (2021)).

Adopting the notation introduced here, the result is as follows:

Theorem 4.3.1. Suppose there exists a compact subset C ⊂ Rd×d such that:

(i) A⋆
g is nonempty and contained in C ,
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(ii) for sufficiently large n, with probability 1, Âg is nonempty and contained in C ,

(iii) g(A) is finite-valued and continuous on C , and

(iv) gn(A)
a.s.→ g(A) as n→∞, uniformly on C .

Then gn(Âg)
a.s.→ g(A⋆

g) and D(Âg, A
⋆
g)

a.s.→ 0 as n→∞.

Here, D(B,C) describes the deviation of the setB from the set C , defined asD(B,C) =

supx∈B{infx′∈C∥x− x′∥}. Central to this theorem is the assumption of a compact subset C

in which A⋆
g is contained. This excludes the possibility of infinite-valued solutions, which,

although theoretically possible, we have not encountered in practice. For simplicity, we

choose to solve an unconstrained optimisation problem, and assume that (i) and (ii) can be

satisfied.

To address condition (iii), we consider the argument of the logarithms to ensure that

g(A) is finite-valued. These arguments represent the limits of pA(bl, y) as n→∞ for all bl

and y. Whilst these naturally reside in [0, 1], we require them in the slightly stricter domain

of [a, 1], where a > 0. That is, we seek to exclude the possibility of pA(bl, y) converging to

zero when q(bl, y) > 0. This can be ensured with the following mild condition on qX,Y :

∑
h̸=l

q(bh, y) > 0 ∀bl ∈ X , y ∈ Y with q(bl, y) > 0. (4.3.4)

In other words, each class, y ∈ Y , must be observable in conjunction with at least two

states in X . Alongside the assumption that A ⊂ C , condition (4.3.4) ensures that g(A) is

finite-valued on C , and since also continuous, condition (iii) is satisfied. A justification of

the uniform convergence required by condition (iv) can be found in Appendix A.2.

Whilst we understand Âg as minimising an expected KL divergence of the class distri-

butions of the model from the data, we consider A⋆
g as relating to this expectation under

the true data-generating distribution. Theorem 4.3.1 provides a helpful assurance that as

the training sample increases and the empirical distribution, q̂X,Y , approaches its truth, our
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metric solutions should also approach their truth.

4.4 Experiments on Simulated Data

In this section, we explore the performance of SNCA using data generated by stochastic

simulation. We introduce a simple queueing model with a small and comprehensible state

space, before presenting a more realistic application in the simulation of a semiconductor

fabrication plant. Accompanying data and code used for the analysis in this section are

available on GitHub (Laidler, 2022).

4.4.1 A TandemQueueing System

Consider the simple queueing system represented in Figure 4.4.1. Two stations are arranged

in tandem, with Station I ∈ {A,B} containing sI identical servers and cI total capacity.

Customers of type k ∈ {1, 2} arrive to Station A according to a Poisson process with rate

λk, and experience service times at Station I which are exponentially distributed with rate

µIk. The parameter q is used to denote the probability of rework.

Station A
sA = 2
cA = 2

Station B
sB = 2
cB = 2

λ1

λ2

1− q

q

Figure 4.4.1: A tandem queueing system with feedback.

This two-station, two-type set-up suggests a four-dimensional system state, X =

(XA1, XA2, XB1, XB2), where XIk represents the number of type k customers at Station

I . The memoryless property of the exponential distribution makes elapsed service times

irrelevant, while setting sI = cI for I ∈ {A,B} removes queueing space from both stations

and ensures that X fully characterises the observable system state. We set sI = cI = 2 for

I ∈ {A,B}, which allows X to take 36 distinct states.
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We refer to Station I ∈ {A,B} as being blocked whenever XI1 + XI2 = cI , since

no customers can enter the station in this state. In the logic of the system, customers

completing their service in Station A will occupy space there while Station B is blocked.

More significantly, customers arriving to a blocked StationA (including those returning from

Station B) are immediately lost from the system. As such, blocking in Station A represents

a critical state for the system, and our interest in this example is in predicting the future

probability of this event based on the currently observed state. In particular, we observe the

system state,X(t), at time t, and predict whether Station A will be blocked at time t+ T .

Let

Y (t) =


1 if XA1(t+ T ) +XA2(t+ T ) = cA,

0 otherwise.

Simulating the system provides the data, Dn = {(X(ti), Y (ti))}ni=1, and we choose the

recording times such that ti+1 = ti + T in order to obtain non-overlapping observations. To

provide a roughly even distribution for Y , we simulated the system with the parameters

λ1 = λ2 = 2, µA1 = 2, µA2 = 3, µB1 = 1, µB2 = 2, and q = 0.2, and we set the prediction

horizon toT = 0.25. Choosing a smaller value of T wouldmove towards amore deterministic

problem, while a longer horizon would reduce the influence of X(t) and converge each

state’s conditional probability of Y = 1 towards the system’s long-run blocking probability

for Station A. With the specified system parameters, setting T = 0.25 provides a suitable

middle ground in which the set of system states exhibit a range of varying class probabilities.
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Metric Embeddings

On a dataset of size n = 100,000, we obtained the following SNCA solution, after 10

initialisations for each row’s optimisation:

A =


7.39 6.87 3.06 1.77

0.31 −0.71 0.25 1.01

−0.15 0.03 0.31 −0.01

 .

The transformation matrix consists of orthogonal rows representing data directions which

are informative with respect to the class distributions. These rows are appended to the

solution sequentially, and as such their relevance decreases and their magnitudes shrink,

pointing us to an appropriate lower-dimensional solution. In this example, a dominant first

dimension provides most of the projection variation, with a second and third dimension

making smaller contributions. A fourth dimension was not found to provide any further

improvements to the objective value.

We consider the first row of the solution as the most informative, and we can derive

interpretation from the magnitudes in this row acting on the original data dimensions. XA1

is deemed slightly more relevant than XA2, which we can understand since the system was

simulated with µA1 < µA2. This means that customers represented by XA1 tend to have

longer service times and so are more likely to still occupy Station A when Y is observed.

Customers in Station B can indirectly increase the risk of Station A becoming blocked,

and in the same way µB1 < µB2 leads to a first dimension to which XB1 makes a greater

contribution than XB2.

To visualise the effect of SNCA, we plot the 36 unique states projected into the solu-

tion space, showing the first two dimensions which capture the majority of the variation

(Figure 4.4.2, top). Recall that our distance metric is represented by Euclidean distance in

this transformed space. The projection plot shows the SNCA metric arranging the states
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Figure 4.4.2: Top: the 36 unique states projected in the first two dimensions of the SNCA
solution matrix. The colour of the points relates to their empirical class distribution, and
the size is proportional to their observed frequency. Bottom: the KL divergence from the
class distribution of the state (0, 0, 0, 0) to that of its kth nearest neighbour.

with regards to the similarity of their stochastic class distributions, which are depicted by

the colour scale. The state X = (0, 0, 0, 0) represents the empty system and is leftmost

in the projection plot. The lower plot explicitly lays out the states in the order of their

distance from (0, 0, 0, 0), and shows that the KL divergence of a neighbouring state’s class

distribution from that of (0, 0, 0, 0) tends to increase as the neighbour moves further away.

To allow an appropriate comparison for plotting, we obtain the following two-dimensional

NCA solution on the same dataset:

A =

341.23 234.95 317.98 −78.4

−15.27 −10.11 −14.54 3.8

 .

The projection and KL divergence plots corresponding to Figure 4.4.2 for this NCA solution
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Figure 4.4.3: The equivalent plots from Figure 4.4.2 for a two-dimensional NCA solution.
Top: the 36 unique states projected by the solution matrix. Bottom: the KL divergence from
the class distribution of the state (0, 0, 0, 0) to that of its kth nearest neighbour.

are shown in Figure 4.4.3. The comparison between Figure 4.4.2 and Figure 4.4.3 highlights

the deficiency of NCA when applied to discrete stochastic data, and the suitable corrections

made by SNCA. Without orthogonality constraints, the two rows of the NCA solution each

represent a very similar direction, and one which does not convincingly discriminate the

class distributions. The adjustment made by SNCA to exclude identical points from the

stochastic neighbour distributions, as described in Section 4.3.3, is effective as it forces the

algorithm to find good quality neighbours. NCA, on the other hand, does not have this

incentive, since identical X observations dominate the neighbour distributions and the

influence of non-identical neighbours on the objective function is diminished.

Figure 4.4.4 replicates the lower plots of Figure 4.4.2 and Figure 4.4.3, averaged with

respect to q̂X over all 36 states. Across the whole input space, SNCA has consistently

arranged states’ neighbours with broadly increasing divergence of their class distributions,
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Figure 4.4.4: The average KL divergence from a point’s class distribution to the class distribu-
tion of its kth nearest neighbour, under the SNCA and NCA embeddings. This is equivalent
to the lower plots of Figures 4.4.2 and 4.4.3 averaged with respect to q̂X over all states.

whilst NCA is less reliable in this regard. For the purpose of nearest neighbour predictions,

the closer neighbourhoods are the most relevant, and we see SNCA bringing a desirable

structure in terms of the similarity of class distributions within the closer neighbourhoods.

kNN Classification

As a further verification of metric performance, we display results of kNN classification

under the learned distance metrics. To have a clearer interpretation of k in our data context,

we consider k as the number of distinct neighbours, and include all of their repeats. In

other words, we classify an individual point, xi, by the majority class of its k nearest

neighbour states, and additionally include any states which are tied in distance with the

kth. Further, we exclude the other observations of xi’s own state from the neighbour search.

This would be the nearest neighbour state under any metric, so its inclusion does not help a

comparison across metrics. Further details of the kNN procedures used in this chapter, and

the generation of the figures, are found in Appendix A.3.

Since this example carries only a small number of distinct X values, we only show
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results for k = 1. Figure 4.4.5 concerns metrics trained on datasets of size n, and shows on

the left the leave-one-out correct classification rates on a large (n = 100,000) test dataset.

This is to approximate the expected classification accuracy on data drawn randomly from

qX,Y . As benchmarks for comparison, we include the 1NN classification rate achieved using

a Euclidean distance metric, and a 1NN classifier which omnisciently selects the optimal

neighbour, defined as the state whose class distribution has minimum KL divergence from

that of the query point. We are encouraged to see SNCA still performing well with small

training datasets, and achieving classification rates close to optimal given the level of

stochasticity in the system.

In practical problems with large input spaces, we do not expect to exhaust X in our

training sample. For this reason, we are particularly interested in classification performance

on states which are unrepresented in the metric training. Figure 4.4.5 (right) uses 6-fold

cross-validation (CV) on the 36 unique states, through which the metrics were trained on

data covering 30 states, and the classification accuracy recorded on the remaining 6. We

are encouraged to see strong 1NN classification performance by SNCA on unseen states.

For each n marked in the plots in Figure 4.4.5, the metric training was repeated with 10

independent datasets of size n, with the ribbons showing pointwise ±1.96 standard errors

Figure 4.4.5: Left : the leave-one-out 1NN correct classification rate on a dataset of size
100,000, under metrics learnt from a training set of size n. Right : the 1NN classification
performance on test states which were withheld from the metric training following 6-fold
cross-validation.
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around the average classification rate. We see much greater variability in the NCA solutions

as compared with SNCA.

The kNN performance of SNCA does not noticeably benefit by increasing the training

set beyond a size of n = 3000. We can be confident that this is enough training data and the

metric solution is not overfitted. In practice, we advise increasing the training set size for

SNCA until the classification accuracy on test data, and the interpretations of the learned

metric, appear consistent.

Execution Time

To demonstrate the computational benefit of SNCAwith discrete stochastic data, Figure 4.4.6

shows the mean execution time on a 1.6 GHz Intel Core i5 processor, for the metric training of

SNCA and NCA across the 10 training sets of size n used in Figure 4.4.5 (left),±1.96 standard

errors. The reported times include 10 initialisations for each optimisation. With the small

state space in this example, increasing the value of n does not increase the burden on SNCA.

In contrast, a pointwise metric learning method such as NCA, which involves summation

over n individual points, understandably suffers as n increases. It should be noted that

when training NCA on the dataset of size n = 100, 000 to illustrate the metric embedding in

Section 4.4.1, the pointwise formulation was not feasible. Instead, we employed a modified

algorithm in which identical points were grouped together in the calculations of the objective

Figure 4.4.6: Metric learning execution time on a training set of size n.
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function and the gradient.

4.4.2 A Wafer Fab Model

As a more realistic example for discrete stochastic data, we explore the simulation model of

a wafer fabrication facility (fab) described by Kayton et al. (1996). Wafers are released into

this system at fixed intervals and follow a sequence involving several processing steps at a

number of stations. Aspects of re-entrant flow, and machines offering different processing

capacities and unpredictable breakdown patterns complicate the management of product

flow through wafer fabs, and a simulation model becomes an indispensable tool. For this

example, we have used Simul8 software to imitate the model described by (Kayton et al.,

1996).

To create a classification problem, we consider the practical task of predicting an early

or late completion based on the system state on a wafer’s release. To restrict the feasible

state space and encourage repeated observations, we take an incomplete view of the system

state, withX containing simply the queue sizes at each of the facility’s 11 stations. The size

of X is further limited by a total capacity constraint on the system, whereby new wafers

cannot be released if the total work-in-process exceeds a threshold. The classification, Y ,

is observed as the wafer leaves the facility either before or after its due date, where the

due date is pre-assigned by a constant inflation factor on its pure processing time. In this

problem, we use a classification of Y = 0 to indicate an early or on-time wafer completion,

while Y = 1 implies a late completion. Running the simulation provides an observation,

(X, Y ), for every wafer which passes through the system. A classification model from this

simulated data can be applied on the actual wafer fab to alert planners to possible late

deliveries.

The system design yields around 21,000 feasible combinations of the 11 queue sizes,

although the distribution over this state space is highly imbalanced. Figure 4.4.7 (left)

shows a dataset projected in the first two dimensions of an SNCA solution, where size is
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proportional to the observed frequency of the states. There is a small number of commonly

visited states, while many more are observed very few times, and overall only a small

percentage of the feasible space has been represented in the sample. To aid understanding

of this plot, consider the point lying on the origin, labelled as state 1. In the original context,

this represents the system state in which all queues are empty. This is a commonly observed

state for the system. It is also a difficult state to classify; its colour indicates the Y = 1

class to have an observed proportion of around 0.55. In other words, a wafer released while

the system has empty queues is marginally more likely to be completed late than on time.

Although counter-intuitive, this is because the first station is a batch station which requires

at least two wafers to be processed simultaneously. Therefore, a wafer released when the

first queue is empty must invariably wait at least until the following wafer is released. Other

states shown by the colour scale to have lower proportions of late completions represent

states in which the first queue is non-empty.

The labelled state 2 in Figure 4.4.7 (left) represents the state in which six wafers occupy

the queue at station 3 and all other queues are empty. In the system logic, the machine

at station 3 is prone to breakdowns, which leads to the occasional build up of this station

queue. This represents a rare yet critical system condition and accounts for the branch of

lesser-observed states extending away from the main cluster. The class distributions of these

states are heavily skewed in favour of Y = 1, as wafers entering a blocked system are highly

likely to finish late. SNCA rightly identifies this third queue size as an effective indicator of

the system performance and lets this variable dominate the first projection dimension.

Of primary interest is to understand metric performance with regards to states which are

underrepresented in the training sample, since these are the states for which we are more

reliant on neighbours to make a prediction. Therefore, as a more targeted approach, we show

the kNN accuracy on the rarely seen states. In particular, we consider states observed in the

dataset with fewer than 25 repetitions. Figure 4.4.7 (right) shows the average kNN accuracy

on these states ±1.96 standard errors, after repeating the experiment with 10 simulated
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Figure 4.4.7: Left : using a dataset of size n = 18,402 from the wafer fab model, the states
are projected by the first two rows of an SNCA solution. The colour of the points relates to
their observed class proportions, and the size is proportional to their observed frequency.
Right : the kNN correct classification rate on rarely seen states.

datasets. Additional details on the generation of this plot are given in Appendix A.3.

To provide context to the kNN accuracy results, the system was simulated to give

roughly equal proportions of early and late wafers. Employing kNN on the simplified state

description used in this example provides additional predictive power, and the benefit of a

trained distance metric is evident from the comparison with Euclidean distance. Reaching

above 65% accuracy following metric learning represents a marked and useful achievement

considering the stochasticity of the system. This example is broadly representative of the

type of data we aim to cater to with SNCA, and the further performance improvement

brought over NCA is encouraging. Compared with NCA across all examples we have looked

at offering discrete stochastic data, SNCA was found to give equivalent or improved kNN

performance.

4.5 Conclusion

In this work, we proposed a method of DML which we refer to as Stochastic Neighbourhood

Components Analysis (SNCA). The aim of SNCA is to extend the reach of metric learning to

scenarios involving repeated feature vectors with stochastic labelling. This is a type of data

which is characteristic of classification problems arising from the sample paths of stochastic
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simulation. Interest in probing the dynamic behaviour of simulation is growing, and to

this purpose we demonstrated SNCA for nearest neighbour classification on sample path

data. This is a useful application for SNCA; classification models on sample path data can

translate to real-time planning and control in a live system, whilst an SNCA solution matrix

can reveal the influential drivers of a system’s stochastic behaviour. Experimental results

show SNCA to be effective, and to bring further improvement to kNN performance over

NCA when applied to this type of data.

We recognise numerous contexts to which the model of discrete stochastic data extends

itself. For example, crowdsourcing represents an increasingly attractive solution to data

generation, and will often result in an instance being assigned to various classes. Although

we focus our motivation on simulation analytics, the scope of SNCA stretches further and

we see possibility for a wider impact.



Chapter 5

Simulation Shapelets:

Comparing Characteristics

of Time-Dynamic Trajectories

Shapelets are short, interpretable patterns in temporal data which can be char-

acteristic of a class. In this chapter, we identify shapelets from the trajectories of

discrete-event simulation to indicate the characteristic dynamic behaviours of

competing system alternatives. This deviates from traditional simulation output

analysis, in which estimations of time-averaged performance measures overlook

the more fine-grained time-dynamic features that shape the evolution of a

system. We propose a shapelet methodology tailored towards simulation trajec-

tories, and provide mathematical observations to support its implementation.

To illustrate the potential of this methodology, we demonstrate its application

to three examples. In particular, we reveal disruption recovery behaviour in a

manufacturing simulation, provide a means for dynamic model validation, and

expose the typical joint behaviour of a multivariate system state. By offering

a visual characterisation of trajectories, we find that simulation shapelets can

promote a deeper understanding of the dynamic behaviour and performance of

simulated models.

86
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5.1 Introduction

A stochastic simulation is a representation of a time-dynamic process. In spite of this,

long-run average performance remains the prevailing mode of output analysis (Nelson and

Pei, 2021). Chasing precise estimations of long-run behaviour leads to dynamic simulation

outputs being averaged over both time and replications. Although an important view of

simulation performance, this neglects insights into the dynamic behaviours that characterise

a working system.

In this chapter, we present a methodology for investigating the dynamic behaviour

of stochastic simulation. We borrow the concept of shapelets (Ye and Keogh, 2011) from

the literature on time series classification. Shapelets are local segments of a series that

represent the characteristic patterns of behaviour by which we can discriminate among

classes. Applied to trajectories of simulation variables, we find that shapelets can identify the

typical dynamic features which characterise and distinguish competing system alternatives.

We use the term “trajectory” to refer to a measurable quantity in a simulation model

recorded as a continuous-time function. For example, the number-in-system in a discrete-

event queueing model constitutes an integer variable that changes value only at the time

of an arrival or departure event, and thus follows a piecewise constant trajectory. We

specifically consider piecewise constant trajectories generated by discrete-event simulation

over a finite time horizon. This affords us an enviable positionwith regards to data generation.

We possess a ready source of clean, measurement-error-free data, with control over the form

and quantity of output trajectories. Consequently, our controlled simulation environment

provides advantages to a shapelet analysis which most time series applications do not. While

our primary interest is in the benefits of shapelets to simulation, we are thus encouraged by

reciprocal benefits of simulation to shapelets.

Our contributions in this chapter are threefold. Firstly, we adapt a shapelet methodology

from the setting of discretely sampled time series to the setting of piecewise constant
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simulation trajectories. In doing so, we offer a general-purpose methodology for output

analysis. However, the computational demands of a shapelet search can be significant.

Therefore, our second contribution exploits the piecewise constant structure to provide

mathematical results which ease this computational aspect and simplify an implementation.

Thirdly, we provide proof-of-concept illustrations of some possible applications for simulation

shapelets. Specifically, we demonstrate the use of shapelets in identifying the differing

dynamic response to disruption experienced by a manufacturing simulation under two

design alternatives. We also show their potential for assisting operational model validation,

as well as for exploring a multivariate state process. These examples demonstrate the value

in moving an analysis beyond average performance, and the various benefits that shapelets

can bring to an understanding of simulation behaviour.

The chapter is structured as follows. Section 5.2 establishes our motivation and back-

ground, including an overview of time series shapelets. Section 5.3 describes the proposed

extension to simulation shapelets, and establishes mathematical results to facilitate its

implementation. We illustrate some potential applications in Section 5.4, showing the versa-

tility of the approach in providing insight for various purposes. The chapter concludes with

a summary in Section 5.5.

5.2 Background

This section provides context for our work. Section 5.2.1 contains a brief discussion of

simulation trajectories, while Section 5.2.2 introduces the concept of time series shapelets,

and reviews existing literature.

5.2.1 Simulation Trajectories

Discrete-event simulation describes a modelling paradigm in which the operation of a

real system is represented by a random sequence of events occurring at discrete points in
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time. The state of the system can be described by a collection of variables which undergo

instantaneous changes at event times, and otherwise remain constant. Consequently, the

trajectories of simulation state variables take the form of piecewise constant functions of

simulation time. We can also consider output variables such as waiting times or number of

completions. Figure 5.2.1 provides some examples of trajectories from the simulation of an

M/M/1 queue. From left to right, we show the number-in-system, the throughput, and the

latest sojourn time as functions of simulation time.

Over the years, time series methods have been routinely applied to dynamic simulation

output. However, the overarching purpose for such work has been for the study of steady-

state behaviour. Fishman and Kiviat (1967) introduced a spectral analysis toolbox for

simulation generated time series, with several other authors developing similar analyses

to serve specific models (Heidelberger and Welch, 1983; Lada et al., 2007). Autoregressive

models have been applied to dynamic simulation outputs to assist steady-state mean and

variance estimation (Schriber and Andrews, 1984; Yuan and Nelson, 1993). In fitting such

models, we can imagine interest in the interpretations of the autoregressive coefficients and

residual variance. However, these models rely on a weak stationarity assumption, and an

autocovariance depending only on the time lag. We consider these restrictions limiting for

the admission of general non-stationary trajectories.

Recently, Nelson (2016) highlighted the need and opportunity for output analysis to move

towards time-dependent characterisations. This prompted the emerging field of simulation

Figure 5.2.1: Examples of piecewise constant, continuous-time trajectories from a simulation
of an M/M/1 queue.
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analytics, which has since produced dynamic metamodelling for performance predictions

conditional on time or state information (Laidler et al., 2020; Lin et al., 2019). In a direct

effort to characterise dynamic simulation behaviour, Fourier analysis has been successfully

applied to the time series of queue length and number-in-system trajectories, with coefficient

magnitudes providing interpretation with regards to system congestion (Morgan and Barton,

2022). This approach provides a statistical characterisation of dynamic behaviour. Our own

approach provides a visual characterisation, while retaining the continuous-time form of

simulation trajectories. We base our approach on a methodology appearing in time series

classification, which we discuss subsequently.

5.2.2 Time Series Shapelets

Time series shapelets were introduced by Ye and Keogh (2011) as a fast (once trained) and

interpretable means of time series classification. A shapelet refers to a short subsequence

whose appearance or absence in a time series can be informative of its class. This exploits

the idea that the characteristic behaviour of a class of series tends to reveal itself over short

patterns and local variations rather than on the global structure. Furthermore, the natural

visualisation of shapelets can offer valuable interpretation. Shapelets have been shown to

provide useful insights and classification accuracy across a range of applications, including

motion capture (Shajina and Sivakumar, 2012), health monitoring data (Zorko et al., 2020),

and detection of wind, wave, and seismic events (Arul and Kareem, 2021).

To formalise the key concepts used in time series shapelets, we introduce a time series

Z = z1:m as a sequence of m real-valued variables, and similarly a shapelet S = s1:ℓ of

length ℓ ≤ m. The methodology relies on a notion of distance between a shapelet and a

series. Initially, we define a symmetric, real-valued distance function, d, between S = s1:ℓ

and S ′ = s′1:ℓ, two length ℓ sequences. The squared Euclidean distance,

d(S, S ′) =
ℓ∑

i=1

(si − s′i)
2,
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represents a common choice, although extensions such as dynamic time warping (Shah

et al., 2016) have since been used. The distance between the shapelet, S, and the series, Z ,

is then defined by the closest appearance of S along the length of Z , as measured by d:

dist(S,Z) = min
t∈{1,2,...,m−ℓ+1}

d(S, zt:t+ℓ−1).

With this distance function, we can assess the quality of a shapelet in providing class dis-

crimination. We are given a dataset, D, containing the classified time series, Z1, Z2, . . . , Zn.

Over this dataset, a shapelet, S, generates the set of distances, {dist(S, Z1), dist(S,Z2), . . . ,

dist(S,Zn)}. Therefore, together with a distance threshold, γ, S dividesD into two subsets:

Dnear = {Zi ∈ D : dist(S,Zi) ≤ γ} and Dfar = {Zi ∈ D : dist(S,Zi) > γ}. The ability

of S to discriminate classes is based on how well, for some γ, the classifications in D can

be separated between Dnear and Dfar. This is measured by information gain, which begins

with a definition of the entropy of a set of classified objects. For the time series dataset

D containing nc series of class c ∈ C and n =
∑

c∈C nc total series, the entropy of D is

defined as

H(D) = −
∑
c∈C

nc

n
log
(nc

n

)
.

After splitting D with the shapelet, S, and distance threshold, γ, this entropy becomes

Ĥ(D,S, γ) =
|Dnear|

n
H(Dnear) +

|Dfar|
n

H(Dfar),

and the information gain of this splitting strategy can be written as

I(D,S, γ) = H(D)− Ĥ(D,S, γ).

An optimal distance threshold for S on D can be defined as a value, γ⋆
S,D, such that

I(D,S, γ⋆
S,D) ≥ I(D,S, γ) for all other γ ∈ R. The goal of a shapelet search on D is to

find a shapelet, S, that maximises I(D,S, γ⋆
S,D). While in theory there are no restrictions
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on the values of S, typical practice is to extract a finite pool of candidates by considering

all subsequences of permissible length occurring in D. Assuming Zi has length mi, the

permissible shapelet lengths might be considered as I = {2, 3, . . . ,minmi}, although

typically domain knowledge can be used to reduce the size of I and expedite the search

without sacrificing meaningful shapelets.

Alternative quality measures to the information gain, such as the F-statistic and Kruskal-

Wallis and Mood’s Median tests (Hills et al., 2014), have also been explored, with claims

of faster computation and similar discrimination. However, the information theory frame-

work naturally lends itself to the original decision tree classifier implemented by Ye and

Keogh (2011). Framing the shapelet classifier as a decision tree retains the advantages

of interpretability, while readily extending the binary architecture of shapelet splitting to

multi-class problems. Beyond decision trees, however, Hills et al. (2014) proposed a shapelet

transformation by taking the distances from a series to each of a collection of shapelets as

classification features to be used in conjunction with a range of standard classifiers.

The computational demands of an exhaustive shapelet search are unfortunately pro-

hibitive for many problems, and much of the subsequent literature has focused on speed-up

techniques. Logical computation-saving steps such as an early abandon of unfruitful dis-

tance and entropy calculations were introduced (Ye and Keogh, 2011), and although unable

to improve on the worst-case complexity, bring significant speed-up in practice. Mueen

et al. (2011) introduced a further admissible pruning technique on the candidate pool based

on an application of the triangle inequality with previously cached distance computations.

However, the most significant speed-ups have been achieved by pruning via heuristic ap-

proaches (for example, see He et al. (2012)), claiming the sacrifice of exactness for speed to

have little impact on classification accuracy. Alternatively, Karlsson et al. (2016) consider

using randomised subsets of the training set and candidate pool in building a random forest

ensemble, while Rakthanmanon and Keogh (2013) reduce computation by using piecewise

aggregate approximations of the time series.
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Whilst the computational challenges surrounding shapelet methodology continue to be

addressed by other researchers, our interest lies in the application and benefits of shapelets

for an analysis of simulation trajectories.

5.3 Simulation Shapelets

The interpretability offered by shapelets is a valuable feature among methods for time series

classification. Common alternatives such as nearest neighbour methods provide no insight

into why an object is assigned to a particular class, whereas shapelets can reveal the charac-

teristic patterns by which classes are distinguished. It is this aspect of interpretability that

attracts us as we look to characterise and understand dynamic simulation behaviour, rather

than a need for classification. Our ambition is for shapelets to identify the characteristic

dynamics which vary across competing system designs.

Our scope is to consider simulation over a finite time horizon. Independent replications

of the same system provide us with multiple trajectories of constant length, representing,

in the context of shapelet methodology, a collection of series of one particular class. The

nature of simulation can lead to replications of the same system with vastly different overall

trajectories. However, we expect the underlying dynamics to consistently produce its short-

term characteristic patterns, encouraging the idea that shapelets can be well-suited to an

analysis of simulation trajectories. This section describes the proposed methodology and its

implementation.

5.3.1 Continuous-Time Series

The classical shapelet method accommodates time series sampled at discrete, regularly

spaced time points, whereas simulation generates discrete-valued series measured in con-

tinuous time. This is the main point of difference to which we adapt.

In comparable work, continuous-time simulation trajectories have been converted into



CHAPTER 5. SIMULATION SHAPELETS 94

regularly sampled series to proceed with standard time series methods (Morgan and Barton,

2022). This approach introduces the decision of sampling frequency and inevitably incurs

a loss of information. In a shapelet search, we also realise that results can be sensitive to

this decision. For example, Figure 5.3.2 (bottom) shows the distance of a shapelet to two

continuous-time trajectories from an M/M/1 queue over a range of sampling frequencies.

The ordering of the series with regards to their distance to the shapelet is seen to depend

heavily on the sampling frequency. Since shapelet selection relies on such distance orderings,

we cannot guarantee robust results with this approach. Instead, we choose to preserve sim-

ulation trajectories in their original continuous-time format, and adapt a distance function

to this context.

We denote a continuous-time simulation trajectory by y : [0, T ] → R. As a piecewise

constant function, we can write t0 = 0, tm = T , and use ti for i = 1, 2, . . . ,m − 1 to

Figure 5.3.2: Top: from a capacitated M/M/1 queueing simulation, we show two continuous-
time queue length trajectories, y1 and y2, and an example shapelet, s. We convert these into
regularly sampled series, Z1, Z2, and S, respectively, and calculate dist(S,Z) as described
in Section 5.2.2. Bottom: the ordering of the distance of the shapelet to each series is heavily
dependent on the sampling frequency.
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represent the time of the ith change of y. We have y(t) = y(ti) for ti ≤ t < ti+1. We

represent the similarly piecewise constant shapelet of length ℓ ≤ T by s : [0, ℓ]→ R.

To calculate a distance between two equal-length segments, we use the L1 distance.

That is, for s, s′ : [0, ℓ]→ R, we write

∥s− s′∥1 =
∫ ℓ

0

|s(u)− s′(u)|du.

For piecewise constant functions, this is easily calculable as a sum of rectangular areas.

Figure 5.3.3 illustrates the alteration made to the distance function as compared with the

standard time series setting. Now, we define the distance between s and y as

dist(s, y) = min
t∈[0,T−ℓ]

∥s− y([t, t+ ℓ])∥1, (5.3.1)

where we allow shifts of the time axis to align segment domains. In particular, for

Figure 5.3.3: Illustrating the proposed alteration to the distance function in moving from
the discrete-time (top) to the continuous-time (bottom) context.
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t ∈ [0, T − ℓ], we define

∥s− y([t, t+ ℓ])∥1 =
∫ t+ℓ

t

|s(u− t)− y(u)|du.

Using the shapelet-series distance function (5.3.1), the remaining methodology surrounding

the evaluation of shapelet candidates via splitting thresholds and information gain can

proceed in the same way as described in Section 5.2.2.

In selecting candidates for the shapelet search, we recognise that the continuous-time

format allows an infinite collection of shapelet candidates to be extracted from a dataset.

To restrict this, we might extract candidates beginning every τ time units along our training

trajectories, with the choice of τ being a consideration of computational budget as well

as the granularity of the trajectories. Alternatively, to remove the need for a decision,

we might extract candidates from a trajectory beginning at times at which the trajectory

changes value. However, this approach may in general lead to needlessly large candidate

sets. Therefore, we prefer the former approach of selecting τ , which allows us easy control

over the size of the candidate set.

We also prescribe a finite selection, I , of shapelet lengths, relying on intuition for the

potential shapelet interpretations in the problem context. Our choices for τ and I directly

control the size of the search, establishing a compromise between speed and quality. We

note also that our adaptations to the continuous-time context remain compatible with

existing approaches to candidate pruning (for example, see Mueen et al. (2011)).

Having outlined our methodology for continuous-time shapelets, we turn attention to

its practical implementation. Calculation of the distance between a shapelet and a series

(5.3.1) forms the workhorse of the method, so we continue with an observation towards its

efficient computation.



CHAPTER 5. SIMULATION SHAPELETS 97

5.3.2 Efficient Distance Computation

In calculating dist(s, y), we look for the segment of y with minimum L1 distance to s.

Intuitively, we are sliding the shapelet along the series to find its best matching location,

with ∥s − y([t, t + ℓ])∥1 providing a continuous function of t ∈ [0, T − ℓ] which we seek

to minimise. However, rather than requiring numerical optimisation, we notice a unique

structure to this function arising from the fact that s and y represent piecewise constant

trajectories. This decomposes ∥s− y([t, t+ ℓ])∥1 into piecewise linear segments in t, such

that its minimum must exist at a finite collection of points. Specifically, we make use of the

following result:

Theorem 5.3.1. Let y : [0, T ] → R be a piecewise constant function with change times in

the set T = {0 = t0, t1, . . . , tm = T} and s : [0, ℓ] → R with ℓ ≤ T a piecewise constant

function with change times in the set U = {0 = u0, u1, . . . , um′ = ℓ}. Let Uj = {ti − uj : i =

0, 1, . . . ,m} ∩ [0, T − ℓ] for j = 0, 1, . . . ,m′, and let V =
⋃m′

j=0 Uj .

Then ∥s− y([t, t+ ℓ])∥1 is linear in t for t ∈ [v, v′], where v, v′ ∈ V and (v, v′) ∩ V = ∅.

Proof. See Appendix B.1.

Theorem 5.3.1 states that ∥s− y([t, t+ ℓ])∥1 is a piecewise linear function of t which

can only change its slope at the times contained in the finite set, V . The consequence of

this for the calculation of dist(s, y) is that we only need to evaluate ∥s− y([t, t+ ℓ])∥1 at

points t ∈ V to find its minimum. Furthermore, calculating these distances as the sum of

individual area components, as implied in Appendix B.1, allows for early abandon pruning

as soon as the current minimum is exceeded. These observations allow substantial speed-up

of the computation of dist(s, y).

5.3.3 Location Invariance

We notice that ∥s− s′∥1 is heavily dependent on the vertical displacements of the segments,

s and s′. In particular, two segments with identical shape but separated by a vertical shift
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will yield a positive distance value, while a smaller distance may be obtained between two

segments which show vastly different shapes yet have similar vertical locations. In other

words, similarities in shape can become swamped by the location factor. Depending on the

purpose for examining simulation trajectories, however, it may be the shape rather than

the location which is of greater interest in characterising the short-term system dynamics.

For example, a queue size may show similar fluctuations regardless of its underlying level.

Traditional output analysis can summarise information about the level of a series, so our

primary aim with a shapelet analysis is to reveal dynamic characteristics of the shape.

For this reason, we look to amend the distance function (5.3.1) such that it only reflects

differences in shape.

In standard time series shapelets, z-normalisation on the individual segments is often

performed prior to the distance calculation to achieve scale and offset invariance (Cetin

et al., 2015). However, in our context, scale contains relevant information of the dynamics.

We are comparing trajectories which all measure the same simulation quantity, such that

differences in scale represent relevant dynamical differences that we need to preserve. To

remove only the location factor while retaining the original shape and scale, we optimise a

vertical displacement in conjunction with the horizontally sliding window. In other words,

we allow a shapelet free movement vertically as well as horizontally to find its best matching

location on a series. We denote the transformed shapelet by sc : [0, ℓ]→ R with c ∈ R such

that sc(t) = s(t) + c, and define the location-invariant distance between the shapelet, s,

and the series, y, to be

dĩst(s, y) = min
t∈[0,T−ℓ],c∈R

∥sc − y([t, t+ ℓ])∥1.

This modification ensures that the distance between a shapelet and a series depends only

on resemblances to the shapelet’s shape within the series. Conveniently, this contributes

only a minor computational extension to the calculations implied in Section 5.3.2. Firstly,

we retain the result of Theorem 5.3.1 which states that the starting position of the best
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matching location on the time axis can only belong to a finite set of possibilities. This arises

from the following corollary:

Corollary 5.3.2. Let y : [0, T ]→ R and s : [0, ℓ]→ R be as in Theorem 5.3.1. Let c ∈ R and

define sc : [0, ℓ]→ R such that sc(t) = s(t) + c. Let f(t) = minc∈R∥sc − y([t, t+ ℓ])∥1.

Thenmint∈[0,T−ℓ] f(t) is attained by an element of the finite setV described in Theorem 5.3.1.

Proof. Assume t⋆ /∈ V minimises f(t). Let c⋆ = argminc∈R∥sc − y([t⋆, t⋆ + ℓ])∥1. Then

∥sc⋆ − y([t⋆, t⋆ + ℓ])∥1 ≤ ∥sc − y([t, t+ ℓ])∥1 for all other t ∈ [0, T − ℓ] and c ∈ R. But by

Theorem 5.3.1, mint∈[0,T−ℓ]∥sc
⋆ − y([t, t+ ℓ])∥1 is attained by an element of V . This either

provides a contradiction, or we have that ∥sc⋆ − y([t, t+ ℓ])∥1 = ∥sc
⋆ − y([t⋆, t⋆ + ℓ])∥1 for

some t ∈ V .

Corollary 5.3.2 implies that to find dĩst(s, y), we only need to calculate ∥sc − y([t, t+

ℓ])∥1 for t ∈ V . Therefore, for a given point t ∈ V , we now address the task of finding

minc∈R∥sc − y([t, t + ℓ])∥1. We observe that the piecewise constant behaviour of s and

y allows ∥sc − y([t, t + ℓ])∥1 to be expressed as a sum of rectangular areas with known

dimensions. This regular structure allows us to write down its minimiser via the following

theorem.

Theorem 5.3.3. Let y : [0, T ]→ R, s : [0, ℓ]→ R, and sc : [0, ℓ]→ R be as in Corollary 5.3.2.

Let W t = {T ∩ (t, t + ℓ)} ∪ {U + t}, with ordered elements denoted by wt
i such that

y(wt
i)− s(wt

i − t) ≤ y(wt
i+1)− s(wt

i+1 − t) for i = 1, 2, . . . ,mt. Let

λi =


min{wt

j − wt
i : w

t
j ∈ W t, wt

j > wt
i} if wt

i ∈ W t\{t+ ℓ},

0 if wt
i = t+ ℓ,

and let k⋆ = min
{
k ∈ {1, . . . ,mt} :

∑k
i=1 λi ≥ ℓ

2

}
.

Then minc∈R∥sc − y([t, t+ ℓ])∥1 is attained by ct = y(wt
k⋆)− s(wt

k⋆ − t).

Proof. See Appendix B.2.
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In Theorem 5.3.3, {U + t} denotes the set {uj + t : uj ∈ U}. Corollary 5.3.2 and

Theorem 5.3.3 combine to provide an efficient computation procedure for dĩst(s, y): we

evaluate ∥sc − y([t, t+ ℓ])∥1 at the points (t, ct) for t ∈ V and ct as given by Theorem 5.3.3,

with early abandoning again providing further practical speed-up.

5.3.4 Multivariate Shapelets

We also consider extending the application of shapelets to multivariate simulation trajec-

tories. This would accommodate multivariate output trajectories, as well as multivariate

trajectories of the system state. Changes in state variables often represent the physical

movements of entities in a system, and the multivariate state can thus be highly correlated.

Multivariate shapelets extracted over each dimension simultaneously may provide an insight

into typical system-wide behaviours.

Bostrom and Bagnall (2017) consider options for the formulation of multivariate time

series shapelets, after extracting candidates over the same indices of each dimension. To

find the best matching location of a multivariate shapelet on a multivariate series, two

paradigms were considered: dependent shapelets, in which the shapelet components remain

in parallel, and independent shapelets, in which the components are free to move in each

dimension independently. The latter approach will not necessarily reveal the common joint

behaviour, and so we choose to explore the former paradigm.

We calculate a multivariate shapelet-series distance value by summing the distance con-

tributions from each dimension. Specifically, in our continuous-time context, we calculate the

location-invariant distance between a d-dimensional, length ℓ shapelet s = (s1, s2, . . . , sd)

and a d-dimensional, length T series y = (y1, y2, . . . , yd) as

dĩst(s,y) = min
t∈[0,T−ℓ],c∈Rd

d∑
j=1

∥scjj − yj([t, t+ ℓ])∥1. (5.3.2)

The vector, c = (c1, c2, . . . , cd), contains the independent vertical displacements in each
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dimension. Interpreting this distance function, the best matching location of s on y is

found by the shapelet components sj moving dependently with one another across time,

but independently of one another in their vertical shifts.

Calculation of dĩst(s,y) follows straightforwardly from the univariate case, by applica-

tion of the following corollary:

Corollary 5.3.4 (to Theorem 5.3.1). Let y : [0, T ]→ Rd and s : [0, ℓ]→ Rd be d-dimensional

piecewise constant functions, with ℓ ≤ T . For j = 1, 2, . . . , d, we have the univariate piece-

wise constant functions yj : [0, T ] → R and sj : [0, ℓ] → R. Let Vj be the set described in

Theorem 5.3.1 for the jth dimension. Let f(t) = minc∈Rd

∑d
j=1∥s

cj
j − yj([t, t+ ℓ])∥1.

Then mint∈[0,T−ℓ] f(t) is attained by an element of the finite set V =
⋃d

j=1 Vj .

Proof. For each j = 1, 2, . . . , d, Theorem 5.3.1 states that ∥sj − yj([t, t+ ℓ])∥1 is linear in t

for t between successive elements of Vj . Now consider successive elements v, v′ ∈ V with

(v, v′) ∩ V = ∅. Since Vj ⊆ V for all j, we must also have (v, v′) ∩ Vj = ∅, implying that

∥sj − yj([t, t+ ℓ])∥1 is linear in t for t ∈ [v, v′] for all j. Therefore,
∑d

j=1∥sj − yj([t, t+ ℓ])∥1

must also be linear in t for t ∈ [v, v′]. We conclude that
∑d

j=1∥sj − yj([t, t + ℓ])∥1 is

minimised by an element of V .

Now assume t⋆ /∈ V minimises f(t). Let c⋆ = argminc∈Rd

∑d
j=1∥s

cj
j − yj([t

⋆, t⋆ + ℓ])∥1.

Then
∑d

j=1∥s
c⋆j
j − yj([t

⋆, t⋆ + ℓ])∥1 ≤
∑d

j=1∥s
cj
j − yj([t, t+ ℓ])∥1 for all other t ∈ [0, T − ℓ]

and c = (c1, c2, . . . , cd) ∈ Rd. But we know that
∑d

j=1∥s
c⋆j
j − yj([t, t+ ℓ])∥1 is minimised by

an element of V . This either provides a contradiction, or we have that
∑d

j=1∥s
c⋆j
j − yj([t, t+

ℓ])∥1 =
∑d

j=1∥s
c⋆j
j − yj([t

⋆, t⋆ + ℓ])∥1 for some t ∈ V .

By Corollary 5.3.4 and Theorem 5.3.3, we see that the calculation of dĩst(s,y) only

requires us to evaluate
∑d

j=1∥s
cj
j − yj([t, t + ℓ])∥1 at points (t, ct) where t ∈ V and ct =

(ct1, c
t
2, . . . , c

t
d). Establishing a calculation of dĩst(s,y) allows the shapelet search to proceed

as in the univariate case, by calculating for each shapelet candidate the information gain

achieved by the optimal splitting threshold.
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In general, for variables measuring different quantities and with different scales, we

might consider applying the summation (5.3.2) with unequal weightings. We note that

this adjustment would not affect the result of Corollary 5.3.4. In the example presented

in Section 5.4.3, however, we calculate the multivariate distance using equally weighted

dimensions.

5.4 Applications of Simulation Shapelets

The proposed methodology offers insight into short-term simulation behaviour, which can

be helpful and informative for various objectives. Some exemplar applications of simulation

shapelets are illustrated in this section.

In each example, our aim is to reveal the characteristic dynamics of two alternative

systems. For this purpose, we identify shapelets as follows. We use s1 to denote a shapelet

extracted from the trajectories of system 1 that maximises the information gain, with the

added condition that the proportion of system 1 trajectories in the near subset, defined

by s1’s optimal distance threshold, γ⋆
s1,D

, must exceed the proportion in the far subset.

In particular, letting D denote the complete set of training trajectories, we write Dnear =

{yi ∈ D : dĩst(s1, yi) ≤ γ⋆
s1,D
} and Dfar = {yi ∈ D : dĩst(s1, yi) > γ⋆

s1,D
}. Then, letting

D1 ⊂ D denote the set of system 1 trajectories, we require that |D1 ∩ Dnear|/|Dnear| >

|D1 ∩ Dfar|/|Dfar|. Without this extra condition, s1 may instead identify characteristic

behaviour of system 2 which on occasion appears in a trajectory of system 1. In the same

way, we denote by s2 an optimal shapelet which is characteristic of system 2. In the event

that multiple characteristic shapelets are found that maximise the information gain, we

choose the one that maximises the margin between the two systems, which is defined as

the difference between the mean distance to system 1 trajectories and the mean distance to

system 2 trajectories. This is a tie-breaking strategy suggested by Ye and Keogh (2011).

In searching for the optimal shapelets, we generate candidates using the strategy of

appointing τ and I as described in Section 5.3.1. However, we realise that multiple shapelets
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of similar lengths extracted from similar places in a trajectory will often have large over-

laps, and therefore show similar ability to discriminate classes. On this basis, we see an

opportunity to avoid spending computation on shapelet candidates which are unlikely to be

successful. By applying the triangle inequality, Mueen et al. (2011) introduce a mathematical

strategy for candidate pruning which is based on this same idea. However, in the examples

here, we take a heuristic approach to candidate selection. We extract candidates of an initial

length, ℓ ∈ I , at spacings of τ time units along each trajectory in the training set, calculating

for each candidate the optimal information gain, and using admissible entropy pruning as

described by Ye and Keogh (2011). Whenever a new candidate, s⋆, improves the current best

information gain, we conduct a local search by extracting additional candidates from the

trajectory around the starting position of s⋆, over the full set of shapelet lengths in I . This

focuses a search to a selection of promising candidates. This approach has proved useful

in our experiments, although we leave scope for further work in the problem of effective

candidate selection. In the presented examples, ℓ was taken to be the median value from

the reported sets of I .

Each example demonstrates the value in looking beyond a simulation’s long-run average

performance to its dynamic behaviour. Section 5.4.1 shows the effectiveness of shapelets

in targeting a comparison of a manufacturing system’s dynamic response to disruption

under two design alternatives. In this example, while the long-run average behaviour of

the target performance indicator is similar across the two alternatives, shapelets reveal

that the observed behaviour while operating is significantly different. Section 5.4.2 uses a

simple tandem queueing simulation to demonstrate the potential for shapelets to assist

operational model validation. Assuming the availability of trajectories from a real-world

system, we look for shapelets to assess the capability of two simulation models in mimicking

the real system’s dynamic behaviour. Using the same simulation, Section 5.4.3 explores

the possibility for multivariate shapelets to provide insights into the joint behaviour of

system state trajectories. Again, we find a deeper comparison and understanding of system
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behaviour provided by the dynamic characteristics.

The simulation models behind these examples were implemented in Simul8. In running

replications of competing systems, we use the established practice of common random

numbers (Nelson and Pei, 2021), which ensures that replications of each system experience

similar random input behaviour. This highlights an aspect of simulation control which can

be helpful towards a shapelet analysis. By minimising the differences of input randomness

affecting the trajectories of each system, we expect the characteristic differences that

shapelets identify to more reliably reflect the underlying dynamics of system behaviours.

The computational complexity of the shapelet search depends on several factors, in-

cluding the number of training trajectories, their length, T , the shapelet length, ℓ, and the

parameters, τ and |I|. In the multivariate case, the dimension, d, also becomes relevant. We

report these values for each example, and provide an indication of the shapelet search times,

performed using a 1.6 GHz Intel Core i5 processor.

The simulation data and code used for the analyses and presentation of figures in this

section is made available through a GitHub repository (Laidler, 2023).

5.4.1 Dynamic Response to System Disruption

Systems in the supply chain and manufacturing sectors often experience disruption as

a result of unexpected shortages or breakdowns of unreliable components. A system’s

resilience and recovery from such events is an important consideration, and reactive decisions

and schedules are often sought to mitigate their impact (Mehta and Uzsoy, 1999). While

traditional summary measures may capture long-term impacts, we expect the practical

repercussions of a disruption to appear in a system’s temporary dynamic behaviour. In this

example, we look at the dynamic throughput sequence of a manufacturing system, and

exploit shapelets to reveal the short-term impacts of machine failures.

Kayton et al. (1996) introduced a simplified model of a wafer fabrication facility (fab),

in which semiconductor wafers undergo various processing steps at a number of stations.
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Their simulation experiment explored the effects of machine breakdowns and dispatching

rules on time-averaged performance measures such as the average work-in-process and the

bottleneck utilisation. Dispatching rules refer to the rules for priority ordering by which

queueing jobs are sequenced to work centers. Borrowing the wafer fab model of Kayton

et al. (1996), our intention is for shapelets to compare the impact of machine failures on the

system’s dynamic throughput under different dispatching rules.

We consider the rules Least Remaining Work (LRW) andMost Remaining Work (MRW),

which prioritise wafers at each station according to the number of their remaining processing

steps. LRW is commonly used to accelerate throughput and system de-congestion, while

MRW can target specific performance goals such as minimising the maximum lateness

(Kaban et al., 2012). We simulated week-long replications featuring machine breakdowns,

with the LRW and MRW dispatching rules yielding 95% confidence intervals for the weekly

average throughput of [84.1, 84.4] and [82.1, 82.9], respectively. The similarity of these

long-run statistics suggests we may find value in a more detailed dynamic comparison.

In the original work of Kayton et al. (1996), a machine which is visited once and early in

the processing sequence of each wafer is suggested to have low reliability. To specifically

uncover the breakdown and recovery behaviour, we consider imposing a fixed structure

to the breakdowns of this machine. Specifically, we inject a breakdown lasting for a fixed

duration of 16 hours at a set time in each replication. This promotes consistency among

the trajectories; it ensures that each trajectory displays a breakdown and recovery period

of similar proportions and at a similar time. In this way, we can isolate the breakdown

effect and focus the shapelet search accordingly. This demonstrates an advantage that the

simulation context provides. To uncover specific behaviour surrounding a known system

event, our control over the simulation translates to control over the trajectories and allows

us to manipulate a simulation and shapelet search to target the desired insights.

We take 100 training replications of the system under each dispatching rule. To generate

the candidate pool for a shapelet search, the consistent structure surrounding breakdown



CHAPTER 5. SIMULATION SHAPELETS 106

times allows us to shrink the window for the start times of candidate shapelets. We extracted

candidates every τ = 2 hours from within a suitable range over which the breakdown effects

begin to show in each replication. To allow the shapelets to display breakdown and recovery

behaviour considering a breakdown length of 16 hours, we searched for shapelets with

lengths of I = {40, 45, 50} (hours). Each shapelet search lasted approximately 30 minutes.

The optimal shapelets discovered are shown in Figure 5.4.4 (left). Since the shapelets are

location-invariant (see Section 5.3.3), we in fact plot s(t)−minu s(u). This ensures that s1 and

s2 can easily display on the same axes. The shapelets suggest distinctly different dynamic

behaviour resulting from machine breakdowns. The shapelet, s1, which is characteristic

of systems operating the LRW rule, shows relatively brief disruptions to the throughput

sequence. In contrast, s2 represents the system under the MRW rule and shows a lengthy

period without any throughput. However, once s2 resumes throughput, its rate is very

quickly recovered. We realise that the MRW rule restrains throughput, with the volume of

jobs nearing completion accumulating until the completion process can resume. This results

in a longer period of throughput starvation following system disruption, whereas the LRW

rule prioritises re-establishing the throughput at the expense of a more gradual recovery of

its rate.

The scatter plots show the distance of each trajectory to each shapelet, and reveal strong

Figure 5.4.4: Comparing the impact of machine breakdowns on throughput behaviour for
systems operating under the LRW and MRW dispatching rules. The characteristic shapelets
are shown on the left. The scatter plots show the distribution of the 200 training trajectories
(middle) and 2000 testing trajectories (right) with regards to their distances from the two
shapelets.
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separation. A set of 1000 unseen test replications of each system were used for the right

hand scatter plot. These follow the same behaviour as the training replications, giving us

confidence that the discovered shapelets are reliably characteristic of the two dispatching

rules and not merely a result of overfitting to the training trajectories.

As stated, targeting specific behaviour allows us to impose structure to the simulation

and focus our shapelet search accordingly. To test the power of shapelets without such

structure, perhaps to uncover insights in the absence of prior knowledge or expectations, we

repeat the experiment with random breakdown behaviour. We use distributions for the mean

time to failure and mean time to repair as implied by Kayton et al. (1996), such that that

replications contain breakdowns at random times and of random durations. The average

breakdown duration is now 30 hours as opposed to a fixed 16 hours. Some replications

contain no breakdown. However, we retain some consistency across the corresponding

replications of each dispatching rule by simulating with common random numbers. As

such, the differences across the dispatching rules remain in the impact and recovery of

breakdowns rather than in the breakdowns themselves.

Figure 5.4.5 shows the results from the unstructured simulation. Without the computa-

tional benefits of a targeted shapelet search, we used τ = 10 and I = {70, 75, 80, 85, 90}

(hours), and each search lasted approximately 60 minutes. Despite the inconsistent break-

down behaviour across replications, the shapelets still manage to separate the systems by

their dispatching rule. Breakdowns under the MRW rule are again seen to produce the most

Figure 5.4.5: Repeating the results shown in Figure 5.4.4 using trajectories in which break-
downs occur randomly and with random recovery durations.
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disruption to throughput. The scatter plots show a number of replications with large dis-

tances to each shapelet, mainly identifying the replications in which a complete breakdown

and recovery period was not observed. Revealing the characteristic behaviour surrounding

breakdown impact from replications without any targeted structure gives us confidence

in the ability of shapelet methodology to discover hidden and unexpected insights into

dynamic simulation behaviour.

5.4.2 Dynamic Model Validation

Operational validation is an important aspect of simulationmodelling. For effective decisions

to be taken in a real system based on the output of a simulation model, it is important for

these outputs to bear sufficient resemblance to those of the real system. Operational model

validation often amounts to a statistical or graphical comparison between the distributional

properties of output variables, such as comparing histograms of waiting times, or conducting

hypothesis tests around their means (Sargent et al., 2016). Thus, model validation is often

restricted to the level of output summaries and grouped behaviours.

Shapelets may provide an additional aspect to model validation by discerning differences

in the dynamic behaviour of simulation trajectories. In a related context, the emergence

of digital twins has increased interest in bringing model validation into an online setting.

Digital twins are models which aim to synchronise with a live system, thus providing

support for real-time monitoring and control. As such, validating digital twins requires an

online validation of the model behaviour in comparison to dynamic data received from the

real system. Hua et al. (2022) provide an overview of opportunities and challenges in the

validation of digital twins. Crucially, interest is growing in performing model validation via

dynamic behaviour, and this is an area to which shapelets may be applicable.

To construct an example, we consider the three-station tandem queue depicted in

Figure 5.4.6. Station I contains kI identical servers, and we set kI = 1 for I ∈ {A,B,C}.

Each station admits infinite queueing space and generates exponential service times with
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Figure 5.4.6: Left : a diagram of a tandem queue. Right : the arrival rates, λ(t), of the true
system and the two models. These repeat with period t = 10.

rate µ = 0.6. We simulate customer arrivals following a Poisson process, and let the true

system have the smooth arrival rate function, λ(t) = (sin(2πt/10) + 1)/2. In a real system,

λ(t) would be unknown, and therefore might be modelled using a piecewise constant rate

function estimated from data. Two options for modelling λ(t) with piecewise constant

segments are chosen, and shown in Figure 5.4.6. Model 1 uses only two constant levels,

rounding λ(t) to the nearest integer, while model 2 uses three levels, rounding to the nearest

0.5.

We consider model validation for the dynamic number-in-system behaviour, using

replications of length T = 60 minutes after discarding a warm-up period of length 20

minutes. From 10,000 replications, the mean number-in-system for the true system is found

to be 8.28. Model 1 gives a 95% confidence interval for the mean number-in-system to be

[8.38, 8.52], while for model 2 this confidence interval is [8.24, 8.39]. Based on this long-run

behaviour, both models would be deemed operationally valid to within 0.25 customers. We

look for a shapelet analysis to go beyond this and discern if there exist differences in the

dynamic behaviour. Intuitively, we should struggle to find characteristic dynamics that

distinguish a good model from the true system.

Figure 5.4.7 compares model 1 with the true system. We took 200 training replications of
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Figure 5.4.7: Comparing the dynamic number-in-system behaviour of the true system with
model 1. The characteristic shapelets are shown in the top left. Gaussian distributions
(bottom right) are fitted to the collection of testing trajectories (bottom left).

both the model and the true system, and searched for shapelets from the number-in-system

trajectories using τ = 2 and I = Z ∩ [8, 12] (minutes), each search lasting around 2.5

hours. The optimal shapelets are shown in the top left of Figure 5.4.7. The shapelet, s1, is

characteristic of the true system, and depicts a stable behaviour with arrivals and exits both

occurring intermittently. On the other hand, s2 is characteristic of model 1, and shows a

long period of no arrivals followed by a sudden burst. The scatter plot in the bottom left

of Figure 5.4.7 shows the distances of the trajectories from 5000 test replications of both

the true system and the model to each of the shapelets. We see significant overlap, yet

definite inclinations of the true system and the model to display behaviours closer to s1 and

s2, respectively.

Fitting Gaussian distributions to the clouds of points in the test scatter plot results in the

contours shown in the bottom right of Figure 5.4.7. To quantify the results of the shapelet

analysis for model validation, we might consider the classification accuracy. An ideal model

may generate indistinguishable behaviour from the true system and yield a classification

accuracy of 0.5. Classifying the test trajectories based on their distances to s1 and s2 and



CHAPTER 5. SIMULATION SHAPELETS 111

the probability densities of the fitted distributions yielded a classification accuracy of 0.61.

Figure 5.4.8 shows the equivalent plots comparing model 2 with the true system. The

discovered shapelets are less distinct from one another, while the scatter plot of test repli-

cations does not clearly show a disposition of either system towards either shapelet. The

classification accuracy was found to be 0.51. The greater separation in the training scatter

plot as compared to the testing scatter plot suggests that the discovered shapelets may result

from overfitting to the training trajectories rather than being more broadly characteristic

of the two systems. A comparison between the scatter plots of the training and testing

replications is useful to indicate whether the identified shapelets are reliably characteristic

of the system behaviour, or merely overfitted to the training replications. In practice, we

might search for shapelets using an increasing number of training replications until the

distributions of each class displayed in each scatter plot appear equivalent.

In summary, our shapelet analysis identified different characteristic behaviour of the

number-in-system trajectories between the true system and model 1, but not between the

true system and model 2. We conclude that model 2 is a more valid model of the true system.

Figure 5.4.8: Shapelets are not able to discriminate between the dynamic number-in-system
behaviours of the true system and model 2.
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Referring to the model approximations shown in Figure 5.4.6, this is the conclusion we

should expect. Shapelets appear able to present a comparison between systems’ dynamic

behaviours, and may represent a viable avenue for online model validation.

5.4.3 Multivariate Shapelets of the System State

To test the potential for multivariate shapelets in simulation, we remain with the tandem

queueing model used in Section 5.4.2. We simulate Poisson arrivals with the true arrival

rate function, λ(t), seen in Figure 5.4.6, and exponential service times with rate µ = 0.6 at

each station. Suppose that we now have a total capacity for four servers, and consider two

system alternatives:

1. system 1: kA = 1, kB = 2, kC = 1,

2. system 2: kA = 1, kB = 1, kC = 2.

We again use replications of length T = 60 minutes after discarding a warm-up period

of length 20 minutes. Both systems yield an overall mean number-in-system of 2.29. The

number-in-system trajectories themselves also show similar behaviour, and so we go further

by breaking this down into the separate stations. We consider a three-dimensional system

state y(t) = (yA(t), yB(t), yC(t)), where yI(t) represents the number of customers in station

I at time t (queueing and in service).

Initially, we performed a univariate shapelet search in the three dimensions of y(t)

individually. We used 100 training replications of each system, and searched for shapelets

using τ = 2 and I = {10, 11, 12} (minutes). Each search lasted around 30 minutes. The

resulting shapelets are displayed in Figure 5.4.9, where sIj denotes the shapelet in the

dimension yI that is characteristic of system j. Common random numbers ensured identical

trajectories of yA(t) across the replications of both systems, causing a shapelet search in

this dimension to be futile. The differences emerge in the trajectories of yB(t) and yC(t),

and as we might expect, system 1 is characterised by greater stability of yB and volatility of
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Figure 5.4.9: Independently finding univariate shapelets in the three dimensions of y(t).

yC , while the reverse is true of system 2. The bottleneck at station C in system 1 appears

more significant than the bottleneck at station B in system 2. The scatter plots show the

distributions of 1000 test trajectories of each system with respect to their distances from sI1

and sI2. The ability to discriminate the systems increases the further downstream we move.

We also performed amultivariate shapelet search, using the summation distance function

(5.3.2). For this, we used τ = 10, and each search lasted around 60 minutes. The results are

shown in Figure 5.4.10, where s1 is characteristic of system 1 behaviour, and s2 of system

2. Retaining the multidimensional shapelet shows the dimensions moving concurrently.

For example, we see that as yA decreases, yB increases, and as yB decreases, yC increases,

reflecting themovement of customers through the system. We receive similar interpretations

regarding the shifting of the bottleneck station between the two systems. Further, the

multivariate shapelets support the conclusion of a more severe bottleneck at station C in

system 1 than at station B in system 2. This may be understood from the differing server

capacities at their preceding stations. At times when λ(t) exceeds the service rate of µ = 0.6,

the departure rate from these preceding stations will be governed by their number of servers.

As such, we expect a greater workload on stationC in system 1 than on stationB in system 2.
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Figure 5.4.10: Finding multivariate shapelets reveals the typical joint behaviour of the station
capacities for each system.

The scatter plot of test trajectories shows good separation of the two systems.

In the simple example presented here, the known server allocations represent the obvious

difference between systems 1 and 2, and the multivariate shapelets identify the behaviours

that match our expectations for the dynamic effect of this difference on the station pop-

ulations. However, the differences among systems may not always be so clear, and the

results in this simple case give us confidence that a multivariate shapelet search can extract

meaningful and unanticipated behaviour when competing systems feature more nuanced

differences. In summary, we see promise in the application of multivariate shapelets to a

simulation state process, and potential for developing a more tailored methodology for this

purpose.

5.5 Conclusion

We present a methodology for simulation output analysis which places focus on local

characteristics of the underlying system dynamics. This methodology is based on the

use of shapelets, which describe locally interpretable patterns capable of discriminating

among time series classes. Applied to simulation trajectories, shapelets provide a means of

characterising dynamic behaviour and performing deeper comparisons across competing

system alternatives. Comparison across systems represents a common objective in the use

of simulation, and when alternatives exhibit similar long-run performance, we conceive

value in making deeper comparisons on the basis of dynamic behaviour.



CHAPTER 5. SIMULATION SHAPELETS 115

To propose a shapelet methodology adapted to the structure of simulation trajectories,

we present a reframing of the original discrete-time setting to the context of continuous-time

functions. We also propose a natural approach to achieving location invariance, such that we

solely represent the local shape dynamics appearing in the trajectories. These adaptations

introduce theory through which the piecewise constant construction of simulation trajec-

tories lends convenient structure to the shapelet-series distance function and relieves the

computational aspect of its minimisation. Through this, we establish an efficient and practi-

cal methodology for piecewise constant shapelet discovery, and demonstrate its promise

in application to simulation problems. For example, we see effective results in uncovering

dynamic behaviour of interest, alongside potential applications to dynamic model validation

and furthering an understanding of the dynamic behaviour of a multivariate system state.

Although the computational complexity of a shapelet search poses a challenge for many

real-scale problems, the progress and focus of ongoing research in addressing this aspect

gives practical encouragement to the proof-of-concept provided here. Additionally, the

control over data generation afforded to us by simulation should not be ignored. Targeting

specific behaviour and employing control procedures such as common random numbers

allow us to focus a search and improve our training set to the task of meaningful shapelet

extractions.

Simulation trajectories provide a rich environment for analysis, and a shapelet-based

methodology shows potential to provide valuable insight into the often overlooked dynamics

of system behaviour. An increasing demand for machine learning solutions and data-driven

insights across system operations gives us confidence in the scope and impact of this

approach.



Chapter 6

Conclusion

This thesis has developed methodology to encourage a deeper analysis and understanding

of stochastic simulation models. Responding to the call for simulation analytics, we have

looked to exploit the opportunities provided by the data-rich, time-dynamic record of the

simulation sample path. The main implications of the work, and the particular methodolog-

ical contributions of the preceding chapters are summarised in Section 6.1. Limitations of

the presented work are acknowledged and potential developments suggested in Section 6.2,

before we conclude the thesis with some closing remarks.

6.1 Summary of Contributions

Our first contribution was to propose an application of k-nearest neighbours (kNN) in

Chapter 3. This provides a framework for making dynamic predictions conditional on a

system state. With this, we can reveal critical system conditions, and provide support to

system control by anticipating poor performance in a live system. Making use of historical

simulation allows a fast, data-driven approach to real-time prediction, rather than spending

further simulation on a model initialised from the current system state. Additionally, the use

of metric learning in this context is able to provide interpretations as to the driving factors

of system performance, as well as enhancing the kNN prediction accuracy. Understanding

the relevant components of the state can be useful for purposes of system design and

116
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improvement.

In Chapter 4, we developed this methodology further by proposing a metric learning

method tailored to the particular structure of sample path data. We refer to this method

as Stochastic Neighbourhood Components Analysis (SNCA). Recognising that existing

methods of metric learning are ill-suited to accommodating the repeated state vectors

and stochastic classifications which are typical of simulation problems, SNCA adapts a

probabilistic model of metric learning to this setting. Catering to a type of data which is not

uncommon in real-world applications, we recognise the potential contribution of SNCA to

extend beyond the sphere of simulation.

A general-purpose methodology for simulation trajectory analysis was contributed in

Chapter 5. Borrowing the concept of shapelets from time series classification, we tailored a

shapelet-based approach to the continuous-time, piecewise constant trajectories that arise

as the dynamic output of discrete-event simulation. The discovery of simulation shapelets

allows a visualisation of the patterns that characterise and distinguish the dynamic behaviour

of competing system alternatives. To support the methodology, we provided mathematical

results to suggest an efficient implementation procedure, and demonstrated its useful

application in various simulation contexts.

We proceed in this chapter by considering the possible further development of these

methodologies.

6.2 Prospective Use and Developments

Our primary objective throughout this thesis has been to use sample path data to gain

insights into a system’s dynamic behaviour. The feasibility and success of this objective

is naturally reliant on an underlying assumption that the simulation model accurately

imitates this dynamic behaviour. Therefore, our aims perhaps call for a new avenue of

model validation. Traditionally focused on average outputs, we find it necessary that model

validation also considers the dynamic behaviour of the simulation. This should become
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an important aspect of model development, and appeals to the potential application of

simulation shapelets demonstrated in Section 5.4.2.

The remainder of this section offers a discussion on the applicability of the specific

methodologies introduced, and their possible extensions. Section 6.2.1 discusses the use

of the kNN model on simulation states, which was introduced in Chapter 3. While an

adaptation of metric learning to the simulation context was presented in Chapter 4, we

discuss potential further adaptations in Section 6.2.2. Chapter 5 presented methodology

for simulation shapelets, and we discuss possible extensions in method and application in

Section 6.2.3.

6.2.1 kNN on Simulation State

Chapter 3 introduced the idea of a kNN model on simulation states, with metric learning

providing an interpretable distance function. An aim of this methodology is to allow real-time

prediction of a system’s dynamic performance, which can be a useful aid to system control.

For this purpose, the emergence of digital twins provides convincing support. A digital

twin aligns a simulation model with live data from a real-world system, and can therefore

provide the current simulation state in the digital format required by the prediction model.

We see this as a potential context in which the kNN methodology may be implemented.

Real-time prediction for system control, via repeated forward simulation from the present

state, currently exists as an aim and advantage of digital twins. However, in addition to the

interpretability benefits of the metric learning, using a kNN classification model can provide

faster results than expending simulation in the digital twin. The predictions obtained via

forward simulation can nevertheless provide a useful accuracy benchmark for the kNN

model. Therefore, we recognise digital twins as providing a useful environment for both the

training and implementation of the kNN methodology.

In the practical use of this methodology, we encounter decisions regarding the level

of detail included in the system state. Beginning at the building of the simulation model
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itself, decisions arise after which certain features of the physical system will be represented

and certain others ignored. This defines the available complexity of the simulation state

description used by the kNN model. We can then choose to take a subset of these variables

into the model. Although these practical considerations have not been our focus, we can

acknowledge various trade-offs relevant to the computational aspect. The more state

variables included in the kNN model, the more data points (which typically translates to

more simulation replications) will be needed to sufficiently cover the state space. A larger

state space brings increased computational demands to the metric learning optimisation.

Conversely, including fewer state variables, although risking the loss of useful information

and potentially sacrificing prediction accuracy, enables state repetitions to be observed

with greater frequency among fewer data points, which reduces computation times and

accentuates the advantage provided by SNCA over alternative methods of metric learning.

In our experiments, we generally constructed the state description used by the kNN model

from aspects of the simulation state representing observable components of the real system.

If the dimension of this is prohibitively large, some initial reduction via existing feature

selection algorithms may be helpful.

To place in perspective the performance of the proposed methodology for kNN with

metric learning, some assessment of its achieved predictive capability in the context of

the stochastic response would be helpful. We reiterate that a digital twin environment

would allow the kNN prediction accuracy to be compared with that obtained by repeated

forward simulation. This would represent the optimal benchmark for prediction accuracy,

reflecting the inherent stochasticity in the response. Additionally, a fuller comparison with

the performance of alternative machine learning prediction algorithms would also provide

valuable context.

We now direct our focus towards potential extensions to the metric learning formulation,

which constitutes a significant component of the kNN methodology.
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6.2.2 Metric Learning for Simulation

Simulation is an inherently time-dependent process. Non-stationary input models naturally

precipitate non-stationary outputs. Moreover, we expect relationships among system state

variables and dynamic outputs to also exhibit non-stationarity. For example, when service

rates increase, a high queue size becomes less detrimental to a customer’s waiting time.

The kNN and metric learning methodology in Chapters 3 and 4 does not address this; the

similarity between system state observations was defined without consideration of the

simulation time at which the observations were recorded. In the notation of Chapter 4, we

recognise that the data-generating distribution, q(x, y), may in fact vary with time, and as

such, a single metric may not be globally optimal. We begin in this section by considering

various approaches to accommodating non-stationarity in the metric learning.

Initially, wemight simply include time as an additional dimension of the state description.

However, this would be a naive approach, with a linear Mahalanobis metric unable to reflect

the possible periodic nature of the time effect. In models for which the non-stationary

characteristics are well-understood, for example with input behaviours repeating over an

hourly or daily cycle, then an appropriate periodic conversion of the time variable may

prove sufficient. In general, however, simulation models induce non-stationarity of unknown

characteristics. In addition to the time variable, we can envisage other state variables

also having potentially non-linear relationships with performance. For example, a queue

length being very low or very high might in different ways lead to high costs. Therefore,

an exploration of non-linear metric learning for simulation problems may prove a useful

exercise in a wider sense.

A common approach to non-linear metric learning is through a kernelisation of lin-

ear methods. To understand this approach, we recognise that the Mahalanobis met-

ric framework may sometimes be represented in terms of the inner products, x⊤
i xj , be-

tween data points. For example, the Euclidean distance can be written as ∥xi − xj∥2 =

[x⊤
i xi − 2x⊤

i xj + x⊤
j xj]

1/2. Inner products can then be replaced with a kernel function,
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κ(xi,xj) = ϕ(xi)
⊤ϕ(xj), using a non-linear function, ϕ. Applying Mahalanobis met-

ric learning with such a kernel function corresponds to learning a distance of the form

∥Aϕ(xi) − Aϕ(xj)∥2. In other words, we learn a linear transformation in the space of

ϕ. However, we only need to access the inner products through κ, thereby avoiding the

computational cost of working in the potentially high dimensional space of ϕ. As an example

of this approach, Torresani and Lee (2006) propose a kernalised version of the Large Margin

Nearest Neighbors method (Weinberger and Saul, 2009).

Kernelisation is a technique used more widely throughout machine learning to represent

non-linear feature spaces. For example, it is often applied in conjunction with support vector

machines, with common choices of kernel function including the polynomial, Gaussian, and

radial basis function (RBF) kernels (Hastie et al., 2009). For our purpose, we might look for a

periodic kernel function, such as introduced by MacKay et al. (1998).

While kernelisation has the potential to improve the metric learning performance on

highly non-linear problems, it can alternatively lead to overfitting. Depending on the

levels of non-stationarity and non-linearity present, it may not be helpful as a general

approach to simulation problems. Inmost cases, we expect a linear relationship between state

variables and performance to provide an appropriate fit. Therefore, rather than attempting

to generalise every relationship with non-linearity, we might consider a gentler approach of

isolating the time variable, and using the idea of local metric learning.

Local metric learning trains separate metrics to operate over separate regions of the input

space. To accommodate non-stationary simulation behaviour, we might look to partition the

state data according to the value of the time variable, and learn a collection of Mahalanobis

matrices. In the practical application of classifying a new state observation, we have the

advantage of knowing its time value, and hence knowing which metric and training subset

to use. In typical applications of local metric learning, the region of a new test point is

not assumed to be known, and distances are computed to all training points, using the

appropriate metrics. Weinberger and Saul (2008) consider two options for constructing
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regions; using class labels, or using an unsupervised clustering approach, while Frome

et al. (2007) take the extreme approach of learning a separate distance for each training

point. In general, the regions used for local metric learning are assumed to be pre-defined.

With non-stationary simulation behaviour of unknown characteristics, the discovery of an

appropriate time-partitioning may become a learning task of its own.

Learning a separate distance function to apply to data over different time periods seems

a natural approach to accommodating non-stationarity. We may, however, expect a core

similarity to exist across each of the metrics. This motivates the topic of multi-task metric

learning, in which the metrics across each region may share some composition, and thus

the separate tasks can inform one another. For example, Parameswaran and Weinberger

(2010) define the Mahalanobis matrix for the ith task to take the formM0 +Mi. With this

construction, we may interpret M0 as representing the general system-wide behaviours,

while Mi collects the more subtle differences to the interactions specific to a particular

time period. Alternatively, the separate matrices can be encouraged to remain similar via

regularisation with the common matrix, M0 (for example, see Yang et al. (2013)). In this

case, M0 might be initially learned by global metric learning over the state variables. As

an example from the perspective of learning transformation matrices (as is our approach

for SNCA), Yang et al. (2011) use the decomposition AiA0, where A0 ∈ Rr×d embeds each

task into a common subspace of dimension r < d, and Ai ∈ Rr×r describes a task-specific

transformation.

Apart from separating offline metric learning tasks via a partitioning of the time variable,

we also acknowledge the setting of online metric learning. In this framework, new training

instances allow continual updates to the optimal distance metric. The first example of this

was provided by Shalev-Shwartz et al. (2004), in which, at each step, the metric is updated

via an orthogonal projection to satisfy a new pairwise constraint, followed by a second

projection to return to the positive semidefinite cone. Extending this approach, Jin et al.

(2009) present a trade-off between satisfying the new constraint and remaining close to
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the previous metric, allowing flexibility as to the extent of influence of new observations.

An online approach to metric learning for simulation would particularly suit a digital twin

environment. Digital twins are simulation models which aim to synchronise with live data

from a real system, and are becoming increasingly popular for real-time monitoring and

system control (dos Santos et al., 2022). These are practical scenarios to which the metric

learning and kNN methodology for simulation are ideally suited.

Accommodation of non-stationary behaviour seems a desirable extension for metric

learning in the simulation context. In addition to this, wemight also consider accommodating

continuous performance variables. Metric learning for a regression response has received

little attention beyond the initial work of Weinberger and Tesauro (2007). In the framework

of SNCA, we may in the simplest case construct q̂(y | bl) as the mean response from the

observations of bl (provided that cl > 0), and use a suitable objective function such as

minimising the mean squared error to the model estimates, pA(y | bl).

Simulation performance measures, such as costs and waiting times, are often naturally

continuous-valued variables. However, their precise values may largely be a reflection of

simulation noise, and we do not necessarily lose relevant information by discretising to a

classification response. Furthermore, a discrete output more naturally aligns with system

control objectives. Therefore, while an extension of SNCA to the regression context may be

theoretically straightforward, it may not necessarily be advantageous in a practical sense.

6.2.3 Simulation Shapelets

The shapelet approach developed in Chapter 5 provides a versatile methodology for the

analysis of dynamic simulation trajectories. This can be variously applied depending on

purpose, and we demonstrated examples in which comparisons of trajectories from two

competing systems were made. An alternative application which we have not shown is

to provide a comparison between ‘good’ and ‘bad’ trajectories of the same system, as

defined by some overall performance value. Replications of a system can often exhibit vastly
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different performance, and shapelets may be able to reveal the characteristic behaviours

which distinguish this phenomenon. This might assist an understanding of the inherent

variability of a system, and the conditions and short-term patterns of behaviour that define

its performance.

Continuing on the side of application, the use of shapelets for dynamic model validation,

as illustrated in Section 5.4.2, would benefit from a more rigorous framework. Quantifying

the validity of a model based on classification accuracy suggests that we should make an

effort to construct the most accurate classifier possible. With this aim, the idea of performing

a shapelet transform and applying alternative classifiers on a collection of distance features,

as proposed by Hills et al. (2014), seems sensible.

To understand the contribution of shapelets in the context of existing methodology, we

might also explore a comparison with previous work. Simulation shapelets target a visual

interpretation of dynamic behaviour for which we have not found directly comparable alter-

natives. However, simulation trajectories are analysed by Morgan and Barton (2022) from a

statistical perspective of their Fourier transformations, and a comparison of interpretations

with this approach may be possible and useful.

In terms of methodology, extensions to time series shapelets have progressed in a number

of directions, which were outlined in Section 2.3.2. We can imagine the progression of

simulation shapelets in similar directions. Importantly, we note that our main motivation for

simulation shapelets is towards interpretation rather than classification. For this reason, we

do not require a decision tree classifier, which makes the use of the information gain quality

measure non-essential. Computing the optimal information gain requires its evaluation

over n− 1 possible splitting thresholds. Speed-up in the shapelet search could therefore be

attained by using an alternative measure which is independent of a splitting threshold, such

as the F-statistic suggested by Hills et al. (2014).
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6.3 Closing Remarks

This thesis has presented methodology to unlock deeper insights and comparisons of the

dynamic behaviour of stochastic simulation models. We have proposed a kNN view of

simulation states to allow predictions of a dynamic performance measure, and tailored a

method of metric learning to apply to this context. We have also developed methodology

for a shapelet analysis of simulation trajectories.

We target a more nuanced understanding of simulation behaviour, providing fine-grained

insights from the dynamic sample path and facilitating real-time predictions. More broadly,

our contributions indicate the rich opportunities contained in sample path data. The constant

progression of machine learning and data analytics has the potential to significantly expand

our understanding of simulated systems. The perspective of simulation analytics presents

an open field of opportunities, and it is hoped that the ideas developed in this thesis, at the

very least, may serve to inspire further efforts in this emerging field.



Appendix A

Appendix to Chapter 4

A.1 Gradient Derivations

We derive the gradient expression for ∂gn(A)/∂A given in Section 4.3.2, along with a similar

expression for ∂fn(A)/∂A. We let blh denote bl − bh. Recalling

pA((bh, y)|bl) =
cyh exp{−∥Ablh∥22}∑
k ̸=l ck exp{−∥Ablk∥22}

, pA((bl, y)|bl) = 0,

plh =
∑
y∈Y

pA((bh, y)|bl),

and using that d∥Ax∥22/dA = 2Axx⊤, we have

∂pA((bh, y)|bl)
∂A

=

−2Ablhb⊤lhc
y
h exp{−∥Ablh∥22}

∑
k ̸=l ck exp{−∥Ablk∥22}

− cyh exp{−∥Ablh∥22}
∑

k ̸=l−2Ablkb⊤lkck exp{−∥Ablk∥22}(∑
k ̸=l ck exp{−∥Ablk∥22}

)2
= 2A

{
−blhb⊤lhpA((bh, y)|bl) + pA((bh, y)|bl)

∑
k ̸=l

blkb
⊤
lkplk

}

= 2A

{
pA((bh, y)|bl)

((∑
k ̸=l

blkb
⊤
lkplk

)
− blhb

⊤
lh

)}
.

126
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Therefore, making use of the identity, pA((bh, y)|bl) = plhq̂(y|bh),

∂
∑

h p
A((bh, y)|bl)
∂A

= 2A
∑
h̸=l

{
pA((bh, y)|bl)

((∑
k ̸=l

blkb
⊤
lkplk

)
− blhb

⊤
lh

)}

= 2A

{
pA(y|bl)

∑
k ̸=l

blkb
⊤
lkplk −

∑
h̸=l

blhb
⊤
lhplhq̂(y|bh)

}

= 2A
∑
h̸=l

blhb
⊤
lhplh(p

A(y|bl)− q̂(y|bh)).

Now the gradient expression can be reached as follows:

gn(A) =
m∑
l=1

∑
y∈Y

q̂(bl, y) log

(
q̂(bl)

∑
h

pA((bh, y)|bl)

)
,

∂gn(A)

∂A
= 2A

m∑
l=1

∑
y∈Y

q̂(bl, y)
q̂(bl)

∑
h̸=l blhb

⊤
lhplh(p

A(y|bl)− q̂(y|bh))
q̂(bl)

∑
h p

A((bh, y)|bl)

= 2A
m∑
l=1

∑
y∈Y

q̂(bl, y)

∑
h̸=l blhb

⊤
lhplh(p

A(y|bl)− q̂(y|bh))
pA(y|bl)

= 2A
m∑
l=1

∑
y∈Y

q̂(bl, y)
∑
h̸=l

blhb
⊤
lhplh

(
1− q̂(y|bh)

pA(y|bl)

)
.

Similarly, we have

fn(A) =
m∑
l=1

∑
y∈Y

q̂(bl, y)
∑
h

pA((bh, y)|bl),

∂fn(A)

∂A
= 2A

m∑
l=1

∑
y∈Y

q̂(bl, y)
∑
h̸=l

blhb
⊤
lhplh(p

A(y|bl)− q̂(y|bh)).

A.2 Proof of Uniform Convergence in Theorem 4.3.1

Theorem 4.3.1. Suppose there exists a compact subset C ⊂ Rd×d such that:

(i) A⋆
g is nonempty and contained in C ,

(ii) for sufficiently large n, with probability 1, Âg is nonempty and contained in C ,
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(iii) g(A) is finite-valued and continuous on C , and

(iv) gn(A)
a.s.→ g(A) as n→∞, uniformly on C .

Then gn(Âg)
a.s.→ g(A⋆

g) and D(Âg, A
⋆
g)

a.s.→ 0 as n→∞.

Letting blh denote bl − bh, we establish the uniform convergence of

gn(A)
a.s.→

m∑
l=1

∑
y∈Y

q(bl, y) log

(
q(bl)

∑
h̸=l q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

)
, (A.2.1)

as required by condition (iv) of Theorem 4.3.1. Recall that

gn(A) =
m∑
l=1

∑
y∈Y

q̂(bl, y) log p
A(bl, y)

=
m∑
l=1

∑
y∈Y

q̂(bl, y) log

(
q̂(bl)

∑
h̸=l q̂(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q̂(bk) exp{−∥Ablk∥22}

)
.

We begin by establishing the convergence of

pA((bh, y)|bl) =
q̂(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q̂(bk) exp{−∥Ablk∥22}

→ q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

. (A.2.2)

We assume that the following condition holds for some δ > 0:

q(bl) > δ ∀l = 1, 2, . . . ,m. (A.2.3)

We have that q̂(bh, y)
a.s.→ q(bh, y) and q̂(bh)

a.s.→ q(bh) ∀h, y as n → ∞. This can be

expressed in the following way:

Let ϵ > 0. Then ∃N s.t. ∀h ∈ {1, 2, . . . ,m} and ∀y ∈ {0, 1}, with probability 1 ∀n > N ,

|q̂(bh, y)− q(bh, y)| <
ϵδ2

m+ ϵδ
, (note that

ϵδ2

m+ ϵδ
<

ϵδ2

m
< ϵ)

|q̂(bh)− q(bh)| <
ϵδ2

m+ ϵδ
.
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To target the convergence of (A.2.2), consider the absolute difference when n > N :

∣∣∣∣∣ q̂(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q̂(bk) exp{−∥Ablk∥22}

− q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

∣∣∣∣∣
=

∣∣∣∣∣∣
exp{−∥Ablh∥22}

[∑
k ̸=l exp{−∥Ablk∥22}(q̂(bh, y)q(bk)− q(bh, y)q̂(bk))

]
(∑

k ̸=l q(bk) exp{−∥Ablk∥22}
)(∑

k ̸=l q̂(bk) exp{−∥Ablk∥22}
)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

exp {−∥Ablh∥22 + ∥Ablrl∥22} ·[∑
k ̸=l exp {−∥Ablk∥22 + ∥Ablrl∥22} (q̂(bh, y)q(bk)− q(bh, y)q̂(bk))

]
(∑

k ̸=l q(bk) exp {−∥Ablk∥22 + ∥Ablrl∥22}
)(∑

k ̸=l q̂(bk) exp {−∥Ablk∥22 + ∥Ablrl∥22}
)
∣∣∣∣∣∣∣∣∣∣

where rl = argmin
k ̸=l
∥Ablk∥22

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

exp {−∥Ablh∥22 + ∥Ablrl∥22} ·[∑
k ̸=l exp {−∥Ablk∥22 + ∥Ablrl∥22} (q̂(bh, y)q(bk)− q(bh, y)q̂(bk))

]
(
q(brl) +

∑
k ̸=l,rl

q(bk) exp {−∥Ablk∥22 + ∥Ablrl∥22}
)
·(

q̂(brl) +
∑

k ̸=l,rl
q̂(bk) exp {−∥Ablk∥22 + ∥Ablrl∥22}

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
Every exponential term is ≤ 0. The summations in the denominator are > 0.

Therefore,

≤
∣∣∣∣1 ·

∑
k ̸=l 1 · (q̂(bh, y)q(bk)− q(bh, y)q̂(bk))

q(brl)q̂(brl)

∣∣∣∣
≤
∑

k ̸=l |q̂(bh, y)q(bk)− q(bh, y)q̂(bk)|
q(brl)q̂(brl)

=

∑
k ̸=l |(q̂(bh, y)− q(bh, y))q(bk) + q(bh, y)(q(bk)− q̂(bk))|

q(brl)q̂(brl)

≤
∑

k ̸=l q(bk)|q̂(bh, y)− q(bh, y)|+ q(bh, y)|q(bk)− q̂(bk)|
q(brl)q̂(brl)

≤

(
ϵδ2

m+ϵδ

)∑
k ̸=l(q(bk) + q(bh, y))

q(brl)q̂(brl)

≤

(
ϵδ2

m+ϵδ

)
m

δ
(
δ − ϵδ2

m+ϵδ

) (
note that

ϵδ2

m+ ϵδ
< δ

)
(A.2.4)

=
ϵδ2m

δ2(m+ ϵδ)− ϵδ3

=ϵ
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This shows that the convergence (A.2.2) holds uniformly over A. (Note that rl depends on

A, but the condition (A.2.3) ensures that the bound (A.2.4) holds for all rl, i.e. for all A.)

To establish the uniform convergence of (A.2.1), we need to give attention to the logarithm

function. Following the uniform convergence of (A.2.2), simple results regarding the sums

and products of convergent sequences ensure that the argument of the logarithms in gn(A)

converge uniformly. We also note that the logarithm is a uniformly continuous function on

[a,∞), a > 0 (a bounded derivative implies uniform continuity). Combining these two facts

provides uniform convergence of the logarithms:

Let ϵ > 0. Then ∃ ξ > 0 s.t. for every x, y ∈ [a,∞) with |x − y| < ξ, we have that

| log(x) − log(y)| < ϵ (uniform continuity of the logarithm on [a,∞), a > 0). Using this

ξ, ∃ N s.t.
∣∣pA(bl, y) − q(bl)

∑
h ̸=l q(bh,y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

∣∣ < ξ ∀n > N,∀A (uniform conver-

gence of the argument of the logarithms in gn(A)). Provided that pA(bl, y) ∈ [a,∞) and

q(bl)
∑

h ̸=l q(bh,y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

∈ [a,∞), this gives

∣∣∣∣∣log(pA(bl, y))− log

(
q(bl)

∑
h̸=l q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

)∣∣∣∣∣ < ϵ ∀n > N, ∀A

=⇒ log(pA(bl, y))→ log

(
q(bl)

∑
h̸=l q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

)
uniformly over A.

Therefore, the logarithms in gn(A) will preserve uniform convergence as long as their

arguments ∈ [a,∞). The condition given by (4.3.4) in Section 4.3.4 ensures that this holds.

With this, we establish the uniform convergence of (A.2.1).

A.3 kNN Procedures

To assess the practical performance of the distance metrics considered in Chapter 4, we

performed kNN classification in which k refers to the number of unique, non-identical

neighbours and includes all of their repeats. Algorithm 2 outlines the procedure that was

followed. We use Dtest to denote the set of query points which cover the subset of states,
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Algorithm 2 kNN

Input: Xtest,Xtrain ⊆ X ,
Dtest = {cyl (test)}

y∈Y
l : bl∈Xtest

,
Dtrain = {cyl (train)}

y∈Y
l : bl∈Xtrain

,
A,
k < |Xtrain|

1: count← 0
2: for bl ∈ Xtest do
3: N k

l ← argminbh∈Xtrain\{bl}∥Abl − Abh∥2
4: while |N k

l | < k do
5: N k

l ← N k
l ∪ {argminbh∈Xtrain\({bl}∪N k

l )∥Abl − Abh∥2}
6: end while
7: ŷ ← argmaxy∈Y{

∑
bh∈N k

l
cyh(train)}

8: count← count + cŷl (test)
9: end for

Return: Accuracy← count/
∑

bl∈Xtest

∑
y∈Y cyl (test)

Xtest. For the state bl ∈ Xtest, we use c
y
l (test) to denote the frequency of the pair (bl, y) in

Dtest. Similarly,Dtrain, Xtrain, and c
y
l (train) relate to the set of training points. The following

figures in Chapter 4 are specifically constructed from Algorithm 2 as follows:

1. Figure 4.4.5 (left): The metrics are trained on a dataset, Dn, where n is shown on the x-

axis. For each metric, the leave-one-out 1NN accuracy is calculated on a fixed dataset,

D100,000. That is, Algorithm 2 is applied with Xtest = Xtrain = X and Dtest = Dtrain =

D100,000. For each n marked on the x-axis, we repeat the process for 10 independent

datasets of Dn, with the average classification accuracy and ±1.96 standard errors

plotted.

2. Figure 4.4.5 (right): We begin with a dataset, Dn, where n is shown on the x-axis, and

perform 6-fold CV on the 36 states in X . For each fold, |Xtest| = 6 and |Xtrain| = 30,

and the metrics are trained on the dataset constructed as {cyl ∈ Dn | bl ∈ Xtrain}. The

1NN accuracy results are again obtained from a fixed dataset D100,000. We construct

Dtest = {cyl ∈ D100,000 | bl ∈ Xtest}, and Dtrain = {cyl ∈ D100,000 | bl ∈ Xtrain}.

We plot the average 1NN accuracy and ±1.96 standard errors over the 6 folds and

after repeating the metric training over 10 independent datasets of Dn. The specific
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partitioning of the CV folds remained consistent throughout to create a fair comparison

over n.

3. Figure 4.4.7 (right): 10 datasets ofD18,402 = {cyl }
y∈Y
l : bl∈X were used. For each dataset, the

metric and kNN training states were taken to be those with at least 25 observations,

and those with fewer than 25 observations made up the test states. Specifically,

Xtrain = {bl ∈ X | cl ≥ 25}, Xtest = {bl ∈ X | cl < 25},Dtrain = {cyl ∈ D18,402 | cl ≥

25}, and Dtest = {cyl ∈ D18,402 | cl < 25}. From the 10 repetitions, the plot shows the

average kNN accuracy and ±1.96 standard errors over a range of k.



Appendix B

Appendix to Chapter 5

B.1 Proof of Theorem 5.3.1

Theorem 5.3.1. Let y : [0, T ] → R be a piecewise constant function with change times in

the set T = {0 = t0, t1, . . . , tm = T} and s : [0, ℓ] → R with ℓ ≤ T a piecewise constant

function with change times in the set U = {0 = u0, u1, . . . , um′ = ℓ}. Let Uj = {ti − uj : i =

0, 1, . . . ,m} ∩ [0, T − ℓ] for j = 0, 1, . . . ,m′, and let V =
⋃m′

j=0 Uj .

Then ∥s− y([t, t+ ℓ])∥1 is linear in t for t ∈ [v, v′], where v, v′ ∈ V and (v, v′) ∩ V = ∅.

Proof. We consider the piecewise constant segments of s.

For j = 0, 1, . . . ,m′ − 1, we have s(t) = s(uj) for uj ≤ t < uj+1. Let Vj = Uj ∪ Uj+1 ∪

{0, T − ℓ}, and consider two points, x, x′ ∈ [0, T − ℓ], such that (x, x′) ∩ Vj = ∅. We can

write x+ δ = x′, with δ > 0. For a graphical understanding, Vj contains the shapelet shifts

such that an endpoint of the (j + 1)th segment of s coincides with a change time of y.

Consider ∥s(uj)− y([x+uj, x+uj+1])∥1 =
∫ x+uj+1

x+uj
|s(uj)− y(t)|dt. This is the distance

between the (j + 1)th component of s when shifted by x and the corresponding portion of

y. Since y is piecewise constant, this can be expressed as a sum of rectangular areas. The

endpoints along the time axis of these rectangles are represented in the following set:

{x+ uj} ∪ {T ∩ (x+ uj, x+ uj+1)} ∪ {x+ uj+1}. (B.1.1)

133
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Figure B.1.1: A labelled example illustrating the notation used throughput this proof.

Figure B.1.1 provides a graphical illustration.

Similarly, consider ∥s(uj) − y([x + h + uj, x + h + uj+1])∥1 for 0 < h ≤ δ, with the

corresponding set of endpoints:

{x+ h+ uj} ∪ {T ∩ (x+ h+ uj, x+ h+ uj+1)} ∪ {x+ h+ uj+1}. (B.1.2)

We can show that (x+ uj, x+ h+ uj) ∩ T = ∅. This follows from a simple contradiction:

Assume that ti ∈ (x+uj, x+h+uj)∩T . Then we can write ti = x+uj + ϵ, with

0 < ϵ < h. Therefore ti−uj = x+ϵ ∈ (x, x′). This ensures that ti−uj ∈ [0, T−ℓ],

and since ti ∈ T , we must have ti − uj ∈ Uj . Therefore we have ti − uj ∈ Vj and

also ti − uj ∈ (x, x′), but this is a contradiction since (x, x′) ∩ Vj = ∅.

Similarly, we have that (x+ uj+1, x+ h+ uj+1) ∩ T = ∅. This follow the same logic:

Assume that ti ∈ (x+uj+1, x+h+uj+1)∩T . Then we can write ti = x+uj+1+ϵ,

with 0 < ϵ < h. Therefore ti − uj+1 = x + ϵ ∈ (x, x′). This ensures that

ti−uj+1 ∈ [0, T − ℓ], and since ti ∈ T , we must have ti−uj+1 ∈ Uj+1. Therefore

we have ti − uj+1 ∈ Vj and also ti − uj+1 ∈ (x, x′), but this is a contradiction

since (x, x′) ∩ Vj = ∅.
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Therefore, we see that {T ∩ (x+ uj, x+ uj+1)} = {T ∩ (x+ h+ uj, x+ h+ uj+1)}.

Comparing (B.1.1) and (B.1.2), this means that, in the graphical representation as a sum of

rectangular areas, ∥s(uj)−y([x+uj, x+uj+1])∥1 and ∥s(uj)−y([x+h+uj, x+h+uj+1])∥1

can only differ in the widths of the first and last rectangles. Specifically, we have

∥s(uj)− y([x+ h+ uj, x+ h+ uj+1])∥1 = ∥s(uj)− y([x+ uj, x+ uj+1])∥1
−(x+h+ uj − (x+ uj))|s(uj)− y(x+ uj)|

+(x+h+ uj+1 − (x+ uj+1))|s(uj)− y(x+ uj+1)|

= ∥s(uj)− y([x+ uj, x+ uj+1])∥1
+h(|s(uj)− y(x+ uj+1)| − |s(uj)− y(x+ uj)|).

Therefore, since x < x+ h ≤ x′, we see that ∥s(uj)− y([t+ uj, t+ uj+1])∥1 is linear in t

for t ∈ [x, x′].

Now, we can write

∥s− y([t, t+ ℓ])∥1 =
m′−1∑
j=0

∥s(uj)− y([t+ uj, t+ uj+1])∥1.

Note that V =
⋃m′

j=0 Vj , and so Vj ⊆ V for each j = 0, 1, . . . ,m′ − 1. This means that

for any pair of successive elements v, v′ ∈ V with (v, v′) ∩ V = ∅, we must also have

(v, v′) ∩ Vj = ∅ for each j. Therefore, the component ∥s(uj) − y([t + uj, t + uj+1])∥1 is

linear in t for t ∈ [v, v′] for each j, and we see that ∥s− y([t, t+ ℓ])∥1, as a sum of these

linear components, is also linear in t for t ∈ [v, v′].

B.2 Proof of Theorem 5.3.3

Theorem 5.3.3. Let y : [0, T ]→ R, s : [0, ℓ]→ R, and sc : [0, ℓ]→ R be as in Corollary 5.3.2.

Let W t = {T ∩ (t, t + ℓ)} ∪ {U + t}, with ordered elements denoted by wt
i such that
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y(wt
i)− s(wt

i − t) ≤ y(wt
i+1)− s(wt

i+1 − t) for i = 1, 2, . . . ,mt. Let

λi =


min{wt

j − wt
i : w

t
j ∈ W t, wt

j > wt
i} if wt

i ∈ W t\{t+ ℓ},

0 if wt
i = t+ ℓ,

and let k⋆ = min
{
k ∈ {1, . . . ,mt} :

∑k
i=1 λi ≥ ℓ

2

}
.

Then minc∈R∥sc − y([t, t+ ℓ])∥1 is attained by ct = y(wt
k⋆)− s(wt

k⋆ − t).

Proof. Wt contains the relevant time points required to express ∥sc−y([t, t+ ℓ])∥1 as a sum

of rectangular area components. The set, {λi}mt
i=1, comprise the widths of these components.

Note that the index, i, orders the time points inW t by their series value minus their shapelet

value, and the widths, λi, are ordered equivalently. Figure B.2.2 provides an example for

illustration.

We can express

∥sc − y([t, t+ ℓ])∥1 =
mt∑
i=1

λi|s(wt
i − t) + c− y(wt

i)|.

Figure B.2.2: A labelled example illustrating the notation used throughput this proof.
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We have

∂∥sc − y([t, t+ ℓ])∥1
∂c

=
mt∑
i=1

λisign(c− (y(wt
i)− s(wt

i − t)))

for c ̸= y(wt
i)− s(wt

i − t), i = 1, 2, . . . ,mt.

Therefore, for c ∈ (y(wt
k)− s(wt

k − t), y(wt
k+1)− s(wt

k+1 − t)), we can write

∂∥sc − y([t, t+ ℓ])∥1
∂c

=
k∑

i=1

λi −
mt∑

i=k+1

λi,

which implies

∂∥sc − y([t, t+ ℓ])∥1
∂c


< 0 if

∑k
i=1 λi <

∑mt

i=k+1 λi

≥ 0 if
∑k

i=1 λi ≥
∑mt

i=k+1 λi.

We note that since {λi}mt
i=1 represent the widths of a partition of [t, t + ℓ], we have∑mt

i=1 λi = ℓ. Therefore, for k⋆ = min
{
k ∈ {1, 2, . . . ,mt} :

∑k
i=1 λi ≥ ℓ

2

}
, we have

∂∥sc − y([t, t+ ℓ])∥1
∂c

< 0 for c ∈ (y(wt
k⋆−1)− s(wt

k⋆−1 − t), y(wt
k⋆)− s(wt

k⋆ − t)),

∂∥sc − y([t, t+ ℓ])∥1
∂c

≥ 0 for c ∈ (y(wt
k⋆)− s(wt

k⋆ − t), y(wt
k⋆+1)− s(wt

k⋆+1 − t)).

More generally, we will have

∂∥sc − y([t, t+ ℓ])∥1
∂c

< 0 for c < y(wt
k⋆)− s(wt

k⋆ − t),

∂∥sc − y([t, t+ ℓ])∥1
∂c

≥ 0 for c > y(wt
k⋆)− s(wt

k⋆ − t).

This implies that ∥sc − y([t, t+ ℓ])∥1 is minimised at ct = y(wt
k⋆)− s(wt

k⋆ − t).
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