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Abstract

In this paper we aim to investigate how the complexity of a decision-task may change

an agents strategic behaviour as a result of increased cognitive fatigue. In this framework,

complexity is defined as a function of the number of outcomes in a lottery. Using Bayesian

inference techniques, we quantitatively specify and estimate adaptive toolbox models of

cognition, which we rigorously test against popular expectation based models; modified

to account for complexity aversion. We find that for the majority of the subjects, a tool-

box model performs best both in-sample, and with regards to its predictive capacity out-

of-sample, suggesting that individuals result to heuristics when the complexity of a task

overwhelms their cognitive load.
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1 Intro

In the recent years, the economic environment has witnessed a noticeable surge in complexity,

driven by a confluence of interconnected factors. Technological advancements and globaliza-

tion have expanded choices and convenience, while at the same time they have introduced

overwhelming options that demand more of the consumers’ attention and time. Mortgages,

financial products, investment decisions and cryptocurrencies, all come with a plethora of

options and features, that can exacerbate consumer decision-making, contributing to their in-

creased cognitive fatigue.

In the field of choice under risk, complexity is represented by the number of payoff out-

comes in a particular lottery. Early research on this topic has found that complexity aversion is

a common attribute in subjects’ behaviour, that is they reveal a strong preference for simple

lotteries over complex ones (lotteries with higher number of outcomes). Huck and Weizsäcker

(1999) and Sonsino et al. (2002) were among the first to provide evidence that individuals dis-

criminate heavily against complicated lotteries, such that even when the expected value was

fixed, they still prefer the lotteries with fewer outcomes even when these lotteries have a higher

variance. Moffatt et al. (2015) estimate the distribution of attitudes towards complexity, find-

ing that 50% are complexity-averse, 33% complexity-neutral, and only 17% complexity-loving.

They also find that this rate of responsiveness to complexity reduces with experience to the

extend that the average subject becomes almost complexity neutral by the end of the experi-

ment. This convergence to complexity neutrality does not necessarily mean that the subjects

no longer have a distaste for complex tasks, as it could be that they merely adopted a different

strategy to make their decision, one which meant the complexity of the task was no longer

hindering their decision process (i.e. heuristics).

From a theoretical modelling point of view, various expectation based utility models (e.g.

mean-variance, Expected Utility, Cumulative Prospect Theory) have been modified to capture
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complexity aversion. Moffatt et al. (2015) test versions of the mean-variance model, and ex-

pected utility, while Fudenberg and Puri (2022), propose a model that combines the standard

cumulative prospect theory (CPT) model with a complexity cost. This model captured prefer-

ences for lotteries with smaller number of outcomes and show that both probability weighting

and complexity costs have an important role to play in predicting these risky alternatives.

Diecidue et al. (2015) find that their results are consistent with prospect theory, but can also be

explained by a population with heterogeneous aspiration levels. On the other hand, Bernheim

and Sprenger (2020) find that PT and CPT fail rigorous tests that they design, and conclude

that there is a possibility the observed behaviour reflects a combination of standard CPT and a

form of complexity aversion linked to heuristics. While Georgalos and Nabil (2023) show that

the descriptive capacity of CPT is decreasing on the level of complexity in a dataset.

Previous research has also suggested that when decisions are more complex, individuals

may avoid making a decision altogether, they might procrastinate, but more often than not

they decide to stick with a default option or strategy (Iyengar and Lepper 2001; Thaler and

Sunstein 2009). This lead a strand of the literature to associate the distaste for complexity with

an increase in one’s cognitive load and therefore, an increase in reliance on simplified strate-

gies or heuristics (rules of thumb). Venkatraman et al. (2014) shows that when faced with

multiple-outcome gambles involving probabilities of both gains and losses, people often use

simple heuristics that maximise the overall probability of winning. Coricelli et al. (2018) find

that subjects may employ both a simplifying strategy and a compensatory strategy, provid-

ing evidence in support of a multiple-strategy approach to decision making.(Oberholzer et al.;

2021) report evidence of complexity aversion, suggesting a tendency to avoid cognitive effort

as a potential explanation. Zeisberger (2022) suggest that the more complex the decision prob-

lem, the more likely it is the decision-maker will apply heuristics. Further studies have also

supported the idea that complexity induces the use of heuristics with a focus on gain and loss

probabilities (Erev et al. 2010; Payne 2005).
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While this literature hints towards the increased use of heuristics and simplification strate-

gies as a response to the increased cognitive load, this topic has not been thoroughly investi-

gated in the context of choice under complexity. This is a gap in the literature that we aspire to

bridge. In this short paper, we aim to study the effects of complexity on decision making and

whether the increased complexity, and therefore the increased cognitive fatigue, lead agents

to resort to heuristic decision making (following simple rules of thumb) rather than using

complicated expectation utility models that account for the level of complexity. The heuris-

tics literature assumes that people are equipped with a repertoire of heuristics (strategies) and

simplifying processes (rules of thumb) to solve the tasks they face in daily life. This idea has

been theoretically modelled with the aid of a cognitive toolbox, from which people might adap-

tively choose their respective strategies. Payne et al. (1993) argued that the decision makers

are equipped with a set of strategies and select among them when faced with a decision; an

approach which was later extended in Gigerenzer (2002) who models decision making as prob-

abilistic draws from a toolbox of heuristic rules. Scheibehenne et al. (2013) propose a model

of strategy selection. More specifically, they suggest a framework on how to quantitatively

specify a toolbox model of cognition, and how to rigorously test it using Bayesian inference

techniques. Using data from an experiment designed to elicit preferences towards risk and

complexity aversion, we implement the methodology suggested in Scheibehenne et al. (2013)

to estimate cognitive toolbox models. We then test these models against popular expectation

based utility models, modified to account for complexity aversion. We compare the models

based on both their in-sample and out-of-sample (predictive) capacity. We find that for the

majority of the subjects, a toolbox model of simple heuristics has better descriptive and pre-

scriptive capacity than competing compensatory models.
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2 Theoretical Framework

In this section we present the theoretical models designed to capture preferences towards com-

plexity and risk. The subjective complexity of a choice task is generally characterised in the

literature by the number of alternatives on the decision maker’s choice set, or the number of

payoff outcomes in a particular lottery (see among others Sonsino et al. 2002, Moffatt et al.

2015, Zilker et al. 2020, Fudenberg and Puri 2022). In our comparison, we include three ex-

pectation based utility models that have been developed or modified to account for this type

of complexity, as well as a cognitive toolbox of heuristics. We include the two models tested

in Moffatt et al. (2015), namely the mean-variance and the Viscusi (1989) Prospective Reference

Theory, the Simplicity Theory, a recent Cumulative Prospect Theory specification to account for

complexity, as proposed in Fudenberg and Puri (2022), and a toolbox model of simple heuristic

rules, as proposed in Scheibehenne et al. (2013) and implemented in Stahl (2018).

2.1 Mean-Variance

This model assumes that the utility function of the decision maker takes into consideration

the expected value of the lottery (mean), the variance (exposure to risk), and its complexity

(measured by the number of outcomes). The utility function for an individual i is given by:

U(p, x) = µ(p,x) − αiσ
2
(p,x) − γiC(p,x) (1)

where µ(p,x) is the expected value of the J-outcome lottery L = {p1, x1; · · · ; pJ , xJ} defined

as:
J

∑
j=1

pjxj

σ2
(p,x) is the variance of the lottery defined as:

J

∑
j=1

pj

(
xj − µ(p,x)

)2
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and C(p,x) is the measure of complexity of the lottery, operationalised as C=0 for a sure payoff,

C=1 for a simple lottery, C=2 for a complex, and C=3 for a very complex lottery. The parameter

α is closely related to the coefficient of absolute risk aversion, while γ represents the degree of

complexity aversion when γ > 0.

2.2 Prospective Reference Theory

This model assumes that the decision makers do not take the stated probabilities at face value,

but act as Bayesians, and view the prior probability of each outcome of the lottery L as 1/J.

The model follows the same specification as above but replaces the objective probabilities in

the expected value formula with transformed ones of the form:

p̃j =
δ 1

J + pj

δ + 1
, j = 1, . . . , J; J > 1 (2)

The parameter δ defines the degree of probability distortion. When δ → 0 the transformed

probabilities coincide with the objective ones. On the contrary, as δ → ∞, p̃j → 1/J.

2.3 Simplicity Theory

Simplicity theory, introduced in Fudenberg and Puri (2022), modifies the CPT model to ac-

count for complexity aversion by introducing a complexity cost that captures a preference for

lotteries with fewer number of outcomes. The CPT-simplicity model is defined as:

U(p, x) =
J

∑
j=1

u(xj)

[
w

(
j

∑
k=1

pk

)
− w

(
j−1

∑
k=1

pk

)]
− C(|support(p)|)

where C(x) is a three-parameter sigmoid cost function to account for complexity, specified as:

C(x) =
ι

1 + e−κ(x−ρ)
− ι

1 + e−κ(1−ρ)
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with x being the number of outcomes of a lottery, ι the height of the function, ρ the midpoint

of the rise, and κ the slope, with larger values of κ indicating a steeper slope1. The function

satisfies the condition C(1) = 0, while w(.) is the Tversky and Kahneman (1992) probability

weighting function2:

w(p) =
pγ

(pγ + (1 − p)γ)1/γ
(3)

Finally, a power (CRRA) utility function is assumed for the monetary payoffs transformation.

2.4 Cognitive Toolbox

Following Scheibehenne et al. (2013), a toolbox model can be represented by a set of different

psychological processes or strategies f , and each strategy predicts a particular course of action,

depending on the ecology of the decision environment. The outcome of this process can be

modelled with the aid of a mixture proportion parameter β, which indicates the probability of

choosing each strategy in the toolbox. For instance, for a particular toolbox TB consisting of J

strategies, each strategy f j will be selected with probability β j, with ∑J
j=1 β j = 1. For instance,

a potential toolbox with 4 strategies would be defined as:

• Pick the lottery with the highest payoff (MAXIMIN) with probability β1

• Avoid the lottery with the lowest payoff (MINIMAX) with probability β2

• Pick the lottery with the highest most likely payoff (MOST LIKELY) with probability β3

• Pick the lottery with the highest probability of the highest possible payoff (MOST PROB-

ABLE) with probability 1 − ∑3
i=1 βi

This modelling specification allows for the underlying cognitive process of strategy selection

to remain unspecified, given that the value of the parameter vector β will be estimated by

the data, providing the empirical validation of the latent strategy mix. Given this mixture

1Sigmoid functions have been extensively used in the artificial neural networks literature.
2We also tried different specifications of the probability weighting function (both one and two-parameter func-

tionals) with TK being the best performing specification.
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specification, the compound probability of choosing lottery A can be specified based on the

sum of the individual likelihoods of each f j, weighted by the mixture probability β j:

p(A|TB) =
J

∑
j=1

[β j × P(A| f j)] (4)

where P(A| f j) is the individual predicted probability of each strategy. Since the most distin-

guishable feature of a toolbox model is its adaptive nature (each individual adopts their chosen

strategies depending on the choice environment), we deviate from the standard practice of fix-

ing a pre-determined set of strategies, same for all the subjects, and allow for heterogeneity

between subjects, both in terms of size (how many strategies) and in terms of content (which

strategies). The toolbox models we investigate can accommodate a variety of heuristics (out

of a total of 10 heuristics extensively utilised in the literature3) and sizes (ranging from 2 to 5

strategies per toolbox4). We achieve so by estimating, for each subject, every potential toolbox

of size up to 5, that is formed as a combination of a subset of the available 10 heuristics. This

gives in total 627 toolbox models.

3 Data

We re-analyse the data from Moffatt et al. (2015). This dataset involves 80 subjects participating

in a 2-phase experiment, where in each phase subjects faced 27 tasks in which they were asked

to choose between two lotteries with the same expected value, but with differing degrees of

complexity and risk (phase 2 consisted of the same 27 tasks presented in a different order). The

experiment was incentivised using the random lottery incentive mechanism. The experimental

design builds on Sonsino et al. (2002) and Sitzia and Zizzo (2011) single period tasks. The

construction of the lotteries is based on the two tasks presented below. The first task involves

3We use the heuristics studied in Glöckner and Pachur (2012). In the Online Appendix there is the full list of
heuristics along with a description of the choice they prescribe.

4Scheibehenne et al. (2013) discuss how including too many strategies can lead to the strategy sprawl problem.
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the choice between a sure win (SW) and a simple 3-outcome lottery (S3).

SW =

{
107, with probability 1 S3 =



80, with probability 0.40

100, with probability 0.30

150, with probability 0.30

Using the S3 lottery and following a particular procedure 5, it is then possible to generate a com-

plex lottery, with nine outcomes, and a very complex lottery with 27 outcomes. The new lottery

will be more complex, but at the same time safer, since it will be characterised by lower vari-

ance. On top of the SW lottery, they generated six simple, six complex and six very complex

lotteries. Using three simple lotteries, they first generated three complex and three very com-

plex lotteries. Then, using the so called safe version of the simple lotteries, which has decreased

spread of the extreme outcomes and unchanged the middle outcome, they constructed three

further complex and three very complex safe lotteries. The pairwise combinations between a

subset of these lotteries, along with the SW lottery, gives the total of the 27 tasks (see Moffatt

et al. 2015, Table 2a, pp. 152-153 for the full set of tasks). All lotteries have the same expected

value which also contributes to the complexity of the task.

4 Econometric Analysis and Results

We estimate all the models using Hierarchical Bayesian econometric techniques, which allow

for the simultaneous estimation of individual level parameters and the hyper-parameters of

the group level distributions (see Balcombe and Fraser 2015; Ferecatu and Önçüler 2016; Bail-

lon et al. 2020; Alam et al. 2022 and Gao et al. 2022 for some recent applications of Bayesian

econometrics in risky choice). We compare models both in-sample, and out-of-sample. In par-

ticular, we first compare the models in-sample, based on the value of the Bayes Factor, using

the data from phase 1 of the experiment. We then compare the models based on their out-of-

5To save on space, we briefly describe the process in the online appendix and we refer the interested reader to
the original study (Moffatt et al. 2015, p.151).
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sample predictive capacity (predicted log-likelihood) on the phase 2 tasks, using the estimates

from phase 1. To capture stochasticity in choice, we model the error structure assuming a logit

link function. The probability of choosing lottery A is given by:

p(A > B) =
exp(ϕUA(p, x)

exp(ϕUA(p, x) + exp(ϕUB(p, x)

where U(p, x) is the utility as defined in section 2, and ϕ an index of the sensitivity to differ-

ences in utility, to be estimated. The overall likelihood is a Bernoulli distribution that can be

expressed as P(D) = ∏ p(A > B)I × (1 − p(A > B))(1−I), where I is an indicator function,

taking the value 1 when the subject chose A, otherwise 0. For the toolbox model, since the

heuristics generate ordinal choice propensities (i.e. deterministic), we assume a constant-error

choice rule to capture stochastic choice in the data, where the decision maker chooses with

constant probability 1 − ε, the option that the heuristic prescribes, and with probability ε she

makes a mistake6. The overall likelihood for a given subject is therefore the product, across all

the tasks, of the weighted sum of predicted probabilities across the number of strategies in a

given toolbox.

Table 1 reports the results of the classification. The first column classifies subjects to mod-

els based on the value of the Bayes Factor, while the second column, according to the models’

predictive capacity. In-sample, the toolbox model has the best performance for 56.3% of the

subjects, followed by the mean variance (26.3%), the simplicity theory (16.3%) and only one

subject is characterised by the Prospective Reference model. A similar pattern is also observed

in our out-of-sample prediction exercise. The toolbox model is best for 60% of the subjects, fol-

lowed by the mean variance (16.3%), the Prospective Theory model (13.8%) and the Simplicity

Theory model (10%).

6This is the part P(A| f j) in Equation 4.
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Model In-sample Out-of-sample

Toolbox 45 48

% 0.563 0.600

Mean-variance 21 13

% 0.263 0.163

Prospective Reference Theory 1 11

% 0.013 0.138

Simplicity Theory 13 8

% 0.163 0.100

TOTAL 80 80

Table 1: Number of subjects for which a model is classified as best, based on the in-sample fit
(Bayes Factor) and the out-of-sample fit (predicted log-likelihood).

Given the performance of the toolbox model, we next focus on the size and the content of

each toolbox. Figures 1 and 2, illustrate the distribution of the different sized toolboxes, both

in and out-of-sample. In both cases, the majority of the subjects (who is classified as toolbox

decision makers) uses 4 or 5 heuristics, while very few use only 2. This size is in line with

previous results in the literature (see Makridakis and Winkler 1983; Ashton and Ashton 1985;

He et al. 2022). There seems to be a slight drop in the size of toolboxes, out-of-sample, which

could be the effect of learning and increased familiarity with the task.
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Figure 1: Frequency of toolbox sizes (in-sample).

Figure 2: Frequency of toolbox sizes (out-of-sample).

Regarding the content of these toolboxes, Figures 3 and 4 illustrate the distribution of
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heuristics across all toolboxes, in and out-of-sample, respectively. Three heuristics outper-

formed all others, both in and out-of-sample as they were present in the majority of the tool-

boxes, namely, the Minimax (MINI), the Least Likely (LL) and the Equal Weight (EW). Sim-

ilarly, the three worst performing heuristics, both in and out-of-sample were the Maximax

(MAXI), the Equiprobable (EQUI) and the Most Likely (ML). Given the nature of these heuris-

tics, it is easy to infer that subjects tend to resort to strategies that they will protect them from

the worst case scenario (i.e. worst outcome), while avoid strategies that would expose them

to higher levels of complexity. When we compare in and out-of-sample differences, there are

two points worth mentioning: (1) we find strong evidence in favour of the Priority Heuristic

(PRIO), in-sample, a heuristic that has received much attention in the literature because of its

capacity to explain risky choice, and (2) the performance of PRIO falls massively in the out-of-

sample prediction, which can be seen as an indicator a change in the strategy set that subjects

adopt to tackle similar tasks. The PRIO is a lexicographic strategy that requires several rounds

of reason comparing payoffs and probabilities and is therefore more cognitively demanding

compared to simpler heuristics. This may be a potential explanation of the drop of complexity

averse and seeking subjects that Moffatt et al. (2015) find in the phase 2 data.
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Figure 3: Frequency of heuristics (in-sample).

Figure 4: Frequency of heuristics (out-of-sample).
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5 Conclusion

Our analysis highlights the importance of accounting for complexity when deciding on which

explanatory model to adopt to describe individual behaviour. We have shown that with overly

complex tasks comes increased cognitive fatigue in decision-making; a characteristic which

heightens one’s reliance on simple rules of thumb to make decisions. This results in an adap-

tive toolbox of heuristics outperforming other expectation based models of decision-making,

even when complexity aversion is captured within these competing parametric models. We

provide a means of efficiently estimating structural models of decision-making, including a

toolbox model, in-sample via the use of Bayesian Hierarchical modelling, and illustrate the

robustness of these results in their alignment with our out-of-sample prediction results.

Ironically, analysing strategic processes and preferences in the face of increased complexity

is a complex matter in itself, and it is easy to neglect vital attributes of complexity. Whilst most

studies use the number of alternatives in a choice set as the key metric, we would urge fu-

ture research to consider the works of Diecidue et al. (2015), Huck and Weizsäcker (1999) and

Georgalos and Nabil (2023) who discuss how the formatting of probabilities and outcomes, the

distribution moments (e.g. variance and mean) and other factors may well fall into the com-

plexity function. The latter design a metric as a benchmark to determine a data sets complexity

levels.

Finally we would urge future studies to expand decision-tasks beyond binary lotteries,

as research has suggested the impact of complexity on risk taking is largely dependent on

the decision format (Oberholzer et al.; 2021). Before we jump to conclusions on complexity’s

effect on risky decision-making, we must ensure that numerous tasks of varying contexts and

characteristics are examined, as it may be that the nature of certain tasks lead people to specific

solutions.
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Appendix A Tasks

This Appendix briefly describes the procedure Moffatt et al. (2015) are using to generate the

lotteries for their experiment. Consider the following lottery Sα:

S3 =



80, with probability 0.40

100, with probability 0.30

150, with probability 0.30

This simple lottery with 3 outcomes, can generate a complex lottery with 9 outcomes, and a

very complex lottery with 9 outcomes. In vector form, this lottery can be written as Sα =

(p, x) =
(
(p1 p2 p3)′, (x1, x2, x3)′)

)
. A complex lottery Cα can be generated from Sα using the

formula:

Cα =

(
vec(pp′); vec

(
1
2

xi′3 +
1
2

i3x′
))

where i3 is a vector of size 3 consisting of ones and vec(A) is the function that transforms a

n × n matrix A into a n2 × 1 (column) vector consisting of the elements of A. This lottery is

equivalent to playing Sα twice and using the arithmetic mean outcome from the two plays as

the outcome.

Applying this to the above lottery, we get:

vec(p × p′) =


0.16 0.12 0.12

0.12 0.09 0.09

0.12 0.09 0.09

 =

[
0.16 0.12 0.12 0.12 0.09 0.09 0.12 0.09 0.09

]

and vec(pp′ generates a vector of size eleven with the element of the p × p′ matrix. Then, for

the payoffs:

vec
(

1
2

xi′3 +
1
2

i3x′
)
=

[
80 90 115 90 100 125 115 125 150

]
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which gives the lottery

C3 =



80, with probability 0.16

90, with probability 0.24

100, with probability 0.09

115, with probability 0.24

125, with probability 0.18

150, with probability 0.09

S3 =



80, with probability 0.40

100, with probability 0.30

150, with probability 0.30

Using a similar procedure, it is possible to create a very complex lottery with 27 outcomes. For

the full set of tasks please see Moffatt et al. (2015, Table 2a, pp. 152-153).
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Appendix B List of Heuristics

Table 2: Table of heuristics

Heuristic Description
1. Priority Heuristic

(PRIO)
Go through reasons in the order of: minimum gain, probability of
minimum gain, and maximum gain. Stop examination if the mini-
mum gains differs by 1/10 (or more) of the maximum gain; other-
wise, stop examination if probabilities differ by 1/10 (or more) of
the probability scale. Choose the gamble with the more attractive
gain (probability).

2. Equiprobable
(EQUI)

Calculate the arithmetic mean of all outcomes for each gamble.
Choose the gamble with the highest mean.

3. Equal-weight
(EQW)

Calculate the sum of all outcomes for each gamble. Choose the
gamble with the highest sum.

4. Better than aver-
age (BTA)

Calculate the grand average of all outcomes from all gambles. For
each gamble, count the number of outcomes equal to or above the
grand average. Then choose the gamble with the highest number
of such outcomes.

5. Probable (PROB) Categorize probabilities as probable (i.e., ≥ 1/2 for a two-outcome
gamble, ≥ 1/3 for a three-outcome gamble, etc.) or improba-
ble. Cancel improbable outcomes. Then calculate the arithmetic
mean of the probable outcomes for each gamble. Finally, choose
the gamble with the highest mean.

6. Minimax (MINI) Choose the gamble with highest minimum outcome.
7. Maximin (MAXI) Choose the gamble with the highest outcome.
8. Lexicographic

(LEX)
Determine the most likely outcome of each gamble and choose
the gamble with the better outcome. If both outcomes are equal,
determine the second most likely outcome of each gamble, and
choose the gamble with the better (second most likely) outcome.
Proceed until a decision is reached.

9. Least likely (LL) Identify each gamble’s worst outcome. Then choose the gamble
with the lowest probability of the worst outcome.

10. Most likely (ML) Identify each gamble’s most likely outcome. Then choose the gam-
ble with the highest, most likely outcome.

Heuristics are from Thorngate (1980) and Payne et al. (1993), later used in Brandstätter et al.
(2006) and Glöckner and Pachur (2012).

21


	WP011.pdf
	Intro
	Theoretical Framework
	Mean-Variance
	Prospective Reference Theory
	Simplicity Theory
	Cognitive Toolbox

	Data
	Econometric Analysis and Results
	Conclusion
	Appendix Tasks
	Appendix List of Heuristics


