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ABSTRACT

The increasing volume of data streams poses significant computational challenges for detecting
changepoints online. Likelihood-based methods are effective, but their straightforward implemen-
tation becomes impractical online. We develop two online algorithms that exactly calculate the
likelihood ratio test for a single changepoint in p-dimensional data streams by leveraging fascinating
connections with computational geometry. Our first algorithm is straightforward and empirically
quasi-linear. The second is more complex but provably quasi-linear: O(n log(n)p+1) for n data
points. Through simulations, we illustrate, that they are fast and allow us to process millions of points
within a matter of minutes up to p = 5.

Keywords computational geometry, convex hull, dynamic programming, functional pruning, online changepoint
detection

1 Introduction

In recent years, many methods have been proposed for detecting one or multiple changepoints offline or online in data
streams. The reason for such a keen interest in changepoint detection methods lies in its importance for various real-
world applications, including bioinformatics [1, 2], econometrics [3, 4], medicine [5, 6, 7], climate and oceanography
[8, 9, 10, 11, 12], finance [13, 14], autonomous driving [15], entertainment [16, 17, 18], computer vision [19] or
neuroscience [20]. Whether this is online (i.e. observations are processed as they become available) or offline (i.e.
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observations are processed only once the whole data is available) the ever-increasing size of the data stream raises
computational challenges. Ideally, a changepoint procedure should be linear or quasi-linear in the size of the data and,
for online applications, should also be able to process new observations as quickly as they arrive. A common idea
for both offline and online parametric (multiple) changepoint model estimation, is to optimise a likelihood function
or calculate likelihood ratio statistics [21, 22]. From a computational perspective this optimisation can either be done
(1) heuristically using, for example, Page CUSUM [23] in an online context or Binary Segmentation and its variants
[24, 14] in an offline context, or (2) exactly using dynamic programming techniques as in the Segment Neighbourhood,
or Optimal Partitioning algorithms [22, 25]. Importantly, these later algorithms used with an appropriate penalty enjoy
good statistical properties [26, 27, 28, 29] and have shown good properties in numerous applications [30, 31].

Pruning ideas have emerged in the literature to speed these dynamic programming algorithms without sacrificing their
exactness [10, 32, 33, 34]. Two types of rules have been proposed. Inequality pruning rules, as in the PELT algorithm
[10], apply to a wide range of changepoint models but are efficient only if the number of true changepoints increases
quickly with the size of the data. Functional pruning, as in the pDPA, FPOP or FOCuS [32, 33, 34] algorithms, applies
mostly to univariate models but is efficient even when the number of true changepoints is small in comparison to the
size of the data. Interestingly, these algorithms are sequential in nature and empirically quasi-linear. This quasi-linearity
was recently proven for the online detection of a single changepoint [34]. The pDPA, FPOP, and FOCuS algorithms
rely on functionalisation of the problem, that is they consider the likelihood as a function of the last segment parameter.
A direct extension of these ideas to a higher dimension (p > 1) has proven difficult because it involves computing the
intersection and subtraction of many convex sets in Rp [35, 36].

In this paper, we study parametric online models with one changepoint, where the distributions are drawn from the
p-variate exponential family. We extend the functional problem using a linearisation argument. This extension allows us
to demonstrate a link between the functional problem and problems studied in computational geometry. In particular, we
show that the solutions of this extension correspond to identifying the supporting hyperplanes of a particular half-space
intersection problem and demonstrate that this problem further simplifies and is dual to a convex hull problem.

The paper has the following structure. Section 2 describes the maximum likelihood framework we are using. Section 3
presents the mathematical formulation of the functional pruning problem and how it is related to a half-space intersection
problem and a convex hull problem. In Section 4, the theory from Section 3 is applied to the online detection of a
single changepoint with known or unknown pre-changepoint parameter. The proposed method, called MdFOCuS, is
introduced in Subsection 4.3. In Section 4.3.2, empirical efficiency comparisons of MdFOCuS in dimension p with
p×FOCuS [34] and ocd [37] are performed on simulated data. In Section 5 we apply our methodology to track the
performances of an NBA team and discuss how our theory could accelerate the recently proposed non-parametric
e-detectors [38].

2 Maximum Likelihood Methods for Online Single Changepoint Detection

2.1 Problem set-up

We consider observations {yt}t=1,2,... in Rp′
and wish to detect the possible presence of a changepoint and estimate its

location. If there is a change, we denote the time of the change as τ . We will consider likelihood-based methods for
doing this, which involve postulating a model for the data within each segment between consecutive data points. Our
model will be that the data point yt is independent and identically distributed from a distribution with density fY (yt|θ1)
before the change and fY (yt|θ2) after the change.

At time n twice the log-likelihood for the time series {yt}t=1,...,n, in terms of the pre-changepoint parameter, θ1 in
Rp′′

, the post-changepoint parameter, θ2 in Rp′′
, and the location of a change, τ , is

ℓτ,n(θ1, θ2) = 2

(
τ∑

t=1

log fY (yt|θ1) +
n∑

t=τ+1

log fY (yt|θ2)

)
. (1)

Depending on the application one may assume that the pre-changepoint parameter θ1 is either known or unknown.
In either case, we can get the log-likelihood for a changepoint at τ by maximising this equation over the unknown
parameter, so θ2 if the pre-changepoint parameter is known or both θ1 and θ2 otherwise. In practice we do not know
the changepoint location, so we would maximize this log-likelihood over τ . We can define the maximum likelihood
estimator for τ , for the pre-changepoint parameter being either known or unknown respectively, as

τ̂(θ1) = argmax
τ

(max
θ2

ℓτ,n(θ1, θ2)) ,

τ̂(.) = argmax
τ

(max
θ1,θ2

ℓτ,n(θ1, θ2)).

2



MULTIVARIATE CHANGEPOINT DETECTION, LINKS WITH COMPUTATIONAL GEOMETRY − NOVEMBER 3, 2023

We then obtain a Generalized Likelihood Ratio (GLR) statistic [21] for a change τ by comparing with twice the
log-likelihood for a model with no change. That is 2

∑n
t=1 fY (yt|θ1) if θ1 is known and maxθ1 2

∑n
t=1 fY (yt|θ1) if it

is not.

Offline, optimising equation (1) is rather simple. Indeed assuming we have access to all the data it suffices to compute,
for every possible changepoint location from 1 to n− 1, the likelihood (which can be done efficiently using summary
statistics) and then pick the best value. Online, the problem is substantially more difficult as one needs to recompute the
maximum for every new observation. Applying the previous offline strategy for every new observation is inefficient as
it takes order n to process the nth observation. It is infeasible for an online application, where n grows unbounded, and
for this reason various heuristic strategies have been proposed (see [39] for a recent review). From a computational
perspective, we roughly identify two main types of heuristics. The first idea is to restrict the set of possible (θ1, θ2) pairs
to be discrete. The simplest case is to consider just one pair of (θ1, θ2) as in the Page CUSUM strategy [23] but one
typically considers a grid of values [37]. The second idea is to restrict the set of changepoint locations one considers.
The simplest case is arguably to consider a grid of window lengths w1, . . . , wM and at time n compute the GLR statistic
only for changes at τ = n−w1, . . . , n−wM [40, 41]. But this naturally introduces a trade-off between computational
efficiency and statistical power: the larger the grid of windows, the larger the computational overhead [39].

Recently, the FOCuS algorithm has been introduced that calculates the maximum likelihood and likelihood ratio test
exactly but with a per-iteration cost that increases only logarithmically with the amount data [34, 42] - however this
algorithm is only applicable for detecting changes in a univariate feature of a data stream. A key insight from the
FOCuS algorithm is that to maximise the likelihood one only needs to consider changes that correspond to points
on a particular convex hull. This link to geometrical features of the data is one that we leverage later in developing
algorithms for detecting changes in multivariate features.

2.2 Detection of a single change in the parameter of distribution in the exponential family

We briefly introduce our basic notations. We use 1p to denote a vector of length p in which all elements are set to one.

For any vector µ = (µ1, . . . , µp) in Rp, we define its q-norm as ||µ||q :=
(∑p

k=1 |µk|q
)1/q

, where (q > 1) in R. For
two vectors, µ1 = (µ1

1, . . . , µ
p
1) and µ2 = (µ1

2, . . . , µ
p
2) in Rp, we define their scalar product as ⟨µ1, µ2⟩ =

∑p
k=1 µ

k
1µ

k
2 .

The symbol | · | signifies the cardinality of · depending on the context.

We are now ready to describe our model. We assume that the density fY (yt|θk), for observation yt in segment
k ∈ {1, 2} which has segment-specific parameter θk, can be written in the form

fY (yt|θk) = exp

{
−1

2
[A′(r(θk))− 2⟨r(θk), s(yt)⟩+B′(s(yt))]

}
, (2)

where s and r are functions mapping respectively the observations, yt, and the parameters, θk, to Rp, A′ is some convex
function from Rp to R, and B′ from Rp to R. Defining the natural parameter ηk as ηk = r(θk), and xt as xt = s(yt)
we rewrite this density as a function of ηk and xt:

fX(xt|ηk) = exp

{
−1

2
[A′(ηk)− 2⟨ηk, xt⟩+B′(xt)]

}
. (3)

This class encompasses many common exponential family models, see Table 1 for examples of several models of
changes in the mean of p-variate data (where p = p′ = p′′) and the corresponding functions s, r, A′ and B′. Later
we will model a change in the mean (θ1) and variance (θ2) (so p′′ = 2) of a Gaussian signal in R (so p′ = 1). In this
slightly more complex case we have p′ ̸= p = 2 and we can define s, r, A′ and B′ as follows

θ = (θ1, θ2), η =

(
θ1
θ2
,− 1

2θ2

)
, s(y) = (y, y2), A′(η) =

θ21
θ2
− log(θ2), B′(x) = log(2π).

Let us denote the pre-changepoint natural parameter as η1 and the post-changepoint natural parameter by η2. We can
then define the log-likelihood of our (transformed) data x1, . . . , xt, under a model with a change at τ as

ℓτ,n(η1, η2) = −
τ∑

t=1

[A′(η1)− 2⟨xt, η1⟩+B′(xt)]−
n∑

t=τ+1

[A′(η2)− 2⟨xt, η2⟩+B′(xt)]. (4)

The log-likelihood estimator for τ , for the pre-change parameter being either known or unknown respectively, is

τ̂(η1) = argmax
τ

(max
η2

ℓτ,n(η1, η2)) ,

τ̂(.) = argmax
τ

(max
η1,η2

ℓτ,n(η1, η2)).

3
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Table 1: Modelling a change in the mean of a p-variate data with independent Gaussian (known variance), Poisson,
Binomial and Exponential errors. Examples of distributions from the natural exponential family with a parameter θ
in Rp and the corresponding forms of the functions s, r, A′ and B′. Without loss of generality the variance of the
Gaussian model is assumed to be 1 for all dimensions. The number of trials is assumed to be m for all dimensions in
the Binomial model.

Distribution η := r(θ) x := s(y) A′(η) B′(x)

Gaussian (changes in mean) θ y ||η||2 ||x||2 + log(2π)p

Poisson log θ y 2 ⟨eη,1p⟩ 2 ⟨log x!,1p⟩

Binomial log θ
1−θ y 2m⟨log(1 + eη),1p⟩ −2

〈
log

(
m
x

)
,1p

〉
Exponential −θ y −2⟨log(−η),1p⟩ 0

The GLR statistic for a change τ is obtained by comparing with
∑n

t=1[A
′(η1)− 2⟨xt, η1⟩+ B′(xt)] if η1 is known

and with maxη1

∑n
t=1[A

′(η1)− 2⟨xt, η1⟩+B′(xt)] if it is not.

For any fixed η1 and any η2 the addition of
∑n

t=1 [A
′(η2)− 2⟨xt, η2⟩+B′(xt)] to (4) does not change the arg-

maximiser: argmaxτ ℓτ,n(η1, η2). Moreover, this addition eliminates the dependence on n. Hence when searching for
the maximum likelihood change we can redefine ℓτ,n(η1, η2) as follows:

ℓτ (η1, η2) = τ [A′(η2)−A′(η1)]− 2

〈
τ∑

t=1

xt, η2 − η1

〉
, (5)

and be sure that the optimal change optimises ℓτ (η1, η2) at least for a pair (η1, η2). For all subsequent proofs, it will
suffice to study the special case where η1 is known. Our results for the unknown case (on τ̂(.) in Theorem 5) are derived
as a by-product: considering all possible η1 simultaneously. Considering η1 to be fixed we thus introduce the following
definitions:

µ = η2 − η1, A(µ) = A′(µ+ η1)−A′(η1),

and rewrite the function ℓτ (η1, η2) as a function of µ:

ℓτ (µ) = τA(µ)− 2

〈
τ∑

t=1

xt, µ

〉
. (6)

3 Linear Relaxation of the Functional Pruning Problem

3.1 Mathematical Formulation

Functional pruning ideas give the potential of an efficient approach to recursively calculate the GLR statistic for a
change at time n+ 1 given calculations at time n [34]. The idea is to restrict the set of possible changepoints prior to
n+ 1 that we need consider. Working out which changepoint locations we need to consider is obtained by viewing the
GLR statistic as a function of the post-changepoint parameter µ, and finding the set of changepoint locations which
contribute to this, i.e. for which the GLR statistic is maximum for some value of µ.

In more details, at step n of a functional pruning algorithm, we consider a list of possible changepoints τ of the data
from x1, x2 . . . to xn. Each changepoint is represented by a function fτ of the last segment parameter µ and a set of µ
values for which it is maximising the likelihood: Setτ = {µ|∀τ ′ ̸= τ, fτ (µ) > fτ ′(µ)}. To proceed to the next data
point n+ 1 the update is informally done as follows.

1. We include in the list of segmentations the one with a last-change at n which is represented by a constant
function fn.

2. We compare all other functions to this new function and accordingly restrict the set of µ for which they are
optimal. That is we compute the intersection Setτ ← Setτ ∩ {µ|fτ (µ) > fn(µ)} for all τ < n, and the
intersection Setn ← ∩τ{µ|fn(µ) > fτ (µ)}.

3. We discard all changepoints whose set Setτ is empty.
4. We add the likelihood of the last data point n+ 1 to all functions fτ .

4
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The left column of Figure 1 provides a graphical representation of these steps. The pruning of the third step is valid
because whatever the data points after n+1 might be these functions (or equivalently changepoints) can never maximize
the log-likelihood. Formally, we now consider a set T indexing functions fτ such that

fτ (µ) = aτA(µ)− 2⟨µ, bτ ⟩+ cτ , (7)

where aτ , cτ are in R, and bτ is in Rp and A is a convex function from DA, a subset of Rp. We define Im(A) as the
image of function A. The idea is that at the current step of a functional pruning algorithm we are storing functions of
the last segment parameter, here denoted by µ. Function fτ corresponds to the log-likelihood for a segmentation with a
change at τ and with parameter µ. This function will depend on µ through the log-likelihood contribution of the data in
this segment, which will impact all the coefficients and the maximum log-likelihood for data in earlier segments. The
functional form of fτ will depend on the specific likelihood model. As an example, for detecting change in the mean of
Gaussian data with η1 = 0, we would have A(µ) = ||µ||2, with Im(A) = R+ and DA = Rp.

We then define
FT (µ) = max

τ∈T
{fτ (µ)} ,

and, as informally stated, our goal is to recover all the indices τ maximising FT for at least one value of µ. Formally,
we define:

FT = {τ |∃µ ∈ DA ⊂ Rp,∀τ ′ ∈ T with τ ′ ̸= τ : fτ (µ) > fτ ′(µ)}. (8)

Remark 1. Index set FT is defined using a strict inequality. As function A is strictly convex, (and assuming that for all
τ ̸= τ ′ we cannot have simultaneously aτ = aτ ′ , bτ = bτ ′ and cτ = cτ ′) equality can be obtained only over a set of
zero measure, consequently this case can be ignored.

3.2 Linearisation of the Functional Pruning Problem

The size of the set FT depends on the nature of the function A. In essence, to consider any possible function A, we
introduce a new parameter λ to replace A(µ). This way we get a problem that does not depend on the form of A and, as
we will see, is easier to solve, albeit at the cost of an additional dimension. To be specific, for any function µ 7→ fτ (µ)
we associate an (augmented) function (λ, µ) 7→ gτ (λ, µ) defined as:

gτ (λ, µ) = aτλ− 2⟨µ, bτ ⟩+ cτ .

As for the fτ , we define the maximum GT (λ, µ) as

GT (λ, µ) = max
τ∈T
{gτ (λ, µ)}.

Again our goal will be to recover the index τ strictly maximising GT :

GT = {τ |∃(λ, µ) ∈ Im(A)×DA,∀j ∈ T with j ̸= i : gτ (λ, µ) > gτ ′(λ, µ)}.

In the previous definition, the parameter λ is constrained to be in the image of the function A. The values attained
by fτ are also attained by gτ on a parametric curve of the (λ, µ) space given by equation λ = A(µ), so that
fτ (µ) = gτ (A(µ), µ). This trivially leads to the following result that the set of τ strictly maximising GT must contain
the set strictly maximising FT .

Theorem 1. FT ⊆ GT .

Without any further assumptions on the function A, the set GT could be much larger than FT . The following theorem
demonstrates that equality holds for strictly convex power functions.

Theorem 2. If for all τ ∈ T , cτ = 0 and A(µ) = ∥µ∥q with q > 1, then FT = GT .

The proof of this Theorem can be found in Appendix A.1.

Remark 2. In particular with q = 2 we get the Gaussian loss function with η1 = 0. Assuming η1 = 0 is not restrictive
because if η1 is not 0 we can consider the translated data (xt − η1).
Remark 3. A more general approach with milder conditions for function A is proposed in Appendix B. One sufficient
condition consists of the strong convexity of function A with A(0) = 0.

5
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3.3 Half-space intersections and functional pruning

All gτ functions are linear in (λ, µ). Considering yet another variable κ we can associate to every gτ a function hτ and
a half-space Hτ of Rp+2:

Hτ = {κ, λ, µ | hτ (κ, λ, µ) = aτλ− 2⟨bτ , µ⟩+ cτ − κ ≤ 0}.

From here we straightforwardly get that our linearised functional problem is included in a half-space intersection
problem. This result is formalised in the following theorem.

Theorem 3. If τ is in GT then

1. there exists (κ, λ, µ) such that hτ (κ, λ, µ) = 0 and for all τ ′ ̸= τ , hτ ′(κ, λ, µ) < 0;

2. the hyperplane defined by hτ (κ, λ, µ) = 0 is a supporting hyperplane of the set ∩τHτ .

Remark 4. The set ∩τHτ defines an unbounded polyhedron as taking any κ ≥ maxτ{cτ}, λ = 0, and µ = 0 we solve
all inequalities.

In Figure 1 we illustrate our linearised functional problem for the special case where, for all τ in T , cτ = 0.

Computing the intersection of |T | half-spaces is a well-studied problem in computational geometry. It is closely related
to the convex hull problem by projective duality [43] and several algorithms have been proposed (see for example
[44, 45, 46, 47, 48, 49]). See [50] for a recent short introduction to this topic.

3.4 Projective-duality

In this section we study the special case where for all τ in T cτ = 0. The following theorem states that in this case the
half-space intersection problem in dimension p+ 2 is dual to a convex hull problem in dimension p+ 1.

Theorem 4. If for all τ in T , cτ = 0, then τ being in GT is equivalent to the point (aτ , bτ ) in Rp+1 being a vertex of
the convex hull of {(aτ , bτ )}τ∈T .

The proof can be found in Appendix A.2.

We illustrate the points on the convex hull of Theorem 4 for p = 1 and p = 2 in Figure 2. As will be seen in Section
4 this is relevant for the online detection of a single changepoint (see also equation (6)). Importantly, computing the
convex hull of |T | points is a well-studied problem in computational geometry. Over the years many algorithms have
been developed [51, 52, 48, 53, 54, 55, 56]. In the rest of this paper we will only use the QuickHull algorithm of
[48] and its implementation in the qhull library http://www.qhull.org/. The QuickHull algorithm works in any
dimension and is reasonably fast for our application up to p = 5.

4 On The Detection of a Single Changepoint Online

4.1 From Functional Description to Convex Hull

We now apply the results of Section 3 to the problem of detecting a single changepoint described in Section 2.2, to
develop an efficient online algorithm. To do this, it is helpful to define a one to one mapping P between any changepoint
τ and a point in dimension p+ 1

P (τ) =

(
τ,

τ∑
t=1

xt

)
.

The following theorem, based on Theorem 4 essentially states that the changepoint maximising the likelihood (4) for
some value η1 and η2 corresponds to a points on a particular convex hull.

Theorem 5. Assume the log-likelihood, ℓτ,n(η1, η2) of a change at τ in {1, . . . , n− 1} can be written as in equation
(4). Then, for any η1 taking τ̂ = τ̂(η1) or τ̂ = τ̂(.) we have that P (τ̂) is on the convex hull of {P (τ)}τ∈{1,...,n−1}.

The proof of this theorem can be found in Appendix A.3.

Note that Theorem 5 is coherent with the notion of pruning as in the FOCuS algorithm [34]. If P (τ) is strictly inside
the hull (i.e. not on the boundary of the hull {P (τ)}τ∈{1,...,n−1}) at time n, then it is certainly inside the hull at any
future time n′ ≥ n (i.e. not on the boundary of the hull {P (τ)}τ∈{1,...,n′−1}). Thus based on Theorem 5 the likelihood
associated with the change at time τ will never be optimal after time n.

6
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(b) Iteration n = 4

Figure 1: Example of the functional pruning problem and linearised functional problem over times: fi and
proj{maxi{fi(µ)}} functions (left); gi and proj{maxi{gi(µ, λ)}} functions( middle); the level surfaces of hi func-
tions, where each surface is for a fixed κ value (right) for changepoint candidates i ∈ T . We simulate time series
{xt}t=1,2,.. ∼ N (0, 1) and consider two time-steps, n = 3 and n = 4. We define the coefficients ai as i, bi as

∑i
t=1 xt

and ci as zero. Note that the change i = 2 associated with quadratics f2 and surface g2 is pruned at n = 4.

From a computational perspective, Theorem 5 is useful only if the set of points on the convex hull is significantly
smaller than n. In the following subsections, we will prove using [57] that, under natural assumptions, the number of
vertices of the convex hull of {P (τ)}τ∈{1,...,n−1} is of order 2(log n)p/p!. This shows that for sufficiently large n the
number of candidate changepoints one need to store to optimise the likelihood (or the likelihood ratio test) is much
smaller than n.

4.2 Bound on The Number of Changepoint Candidates

In this subsection using the recent paper [57], we provide the expected number of faces and vertices of the convex
hull {P (τ)}τ∈{1,...,n−1}, assuming that the components of xτ , xdτ (with d = 1, . . . , p), are independent and identically
distributed with a continuous distribution. In turn, using Theorem 4 this gives us an upper bound on the expected number
of changepoints that can maximise the likelihood function (4) for some value of η1 and η2. From a computational
perspective, this bound will be useful to derive guarantees on the computational complexity of the procedure (see
Algorithm 1 and 3).
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Figure 2: Plot of S(i) =
∑i

t=1 xt as a function of i (dark blue) and the convex hull of {(ai = i, bi = S(i))}i∈{1,...,n−1}
(dashed blue line) for dimensions p = 1 and 2 . The vertices of the convex hull τ ∈ T are marked in red. We simulated
time series {xt}t∈{1,...,n} with n = 51 data points (without changepoints, xt ∼ Np(0, Ip) i.i.d).

To apply the result of [57] we need to prove that the random walk {P (τ)}τ∈{1,...,n−1} = {(τ,
∑τ

t=1 xt)}τ∈{1,...,n−1}
satisfies two properties, (Ex) and (GP ) defined below.

• (Ex) For any permutation σ of the set {1, . . . , n− 1}, we have the distributional equality

{(1, xτ )}τ∈{1,...,n−1}
D
= {(1, xτ ′)}τ ′∈σ

• (GP ) Any p+ 1 vectors of the form (τ,
∑τ

t=1 xt) are almost surely linearly independent.

Lemma 1. Assuming that all xdτ are independent and identically distributed with a continuous distribution, the
properties (Ex) and (GP ) of [57] are satisfied.

The proof of this lemma can be found in Appendix A.4.

We can now state the expected number of faces and vertices of the convex hull of {P (τ)}τ∈{1,...,n−1}.

Theorem 6. Assuming all xdτ (with d = 1, . . . , p) are independent and identically distributed with a continuous
distribution, then the expected number of faces (denoted as Up

n) and vertices (denoted as V p
n ) of the convex hull of

{P (τ)}τ∈{1,...,n−1} are the following:

E(Up
n) =

2p!

(n− 1)!

[
n

p+ 1

]
, E(V p

n ) =
2

(n− 1)!

∞∑
l=0

[
n

p+ 1− 2l

]
,

where
[
n
m

]
are the Stirling numbers of the first kind [58].

Proof. Based on Lemma 1 properties (Ex) and (GP ) hold and we can apply formula (2) from [57] on the expected
values of Up

n and V p
n .

Corollary 1. We have the following equivalents for the expected numbers of faces Up
n and vertices V p

n :

E(Up
n) ∼ 2 (log(n))

p
, E(Vn) ∼

2

p!
(log(n))

p
, n→∞.

The proof of Corollary 1 follows from Remark 1.4 of [57]. The theorem and corollary provide an expected upper limit
on the number of points, or candidate locations for changepoints, that need to be evaluated to compute the CUSUM
likelihood ratio test (4) exactly without resorting to approximations. Although this limit increases as O(log(n)p) and
thus as a power of p, it is not overly restrictive. In some online applications, we often encounter situations where
n >> p, making an exact implementation feasible. In the following empirical evaluations, we will evaluate scenarios
up to 5 dimensions.

8



MULTIVARIATE CHANGEPOINT DETECTION, LINKS WITH COMPUTATIONAL GEOMETRY − NOVEMBER 3, 2023

Remark 5. Theorem 6 gives the expectation for i.i.d observations. One might wonder what happens if there is a
changepoint in the distribution at i < n. Note that the points on the hull {P (τ)}τ∈{1,...,n−1} are necessarily on the hull
of {P (τ)}τ∈{1,...,i} or on the hull of {P (τ)}τ∈{i+1,...,n−1}. Thus applying the theorem on all points from 1 to i and
from i+ 1 to n− 1 we expect at most E(V p

i+1) + E(V p
n−i) ≤ 2E(V p

n ) points on the hull. Thus if there is a changepoint
(and assuming we haven’t stop because the GLR statistics is lower than the specified threshold) the expected number of
candidate changepoints is still in O(log(n)p).

4.2.1 Empirical validation of the bound

We empirically tested the validity of Theorem 6. We use the Gaussian distribution as an example of a distribution
with continuous density and independent dimensions. To be specific, for p from 1 to 5, we simulated time series x1:n,
with xt ∼ Np(0, Ip) i.i.d. We varied the time series length from 210 + 1(≈ 103) to 223 + 1(≈ 8× 106) and simulated
100 data sets for each length. We used the QuickHull algorithm [48] implemented in the R package geometry [59] to
evaluate the number of faces and vertices of the convex hull of {P ((τ)}τ∈{1,...,n−1}. It can be seen in Figure 3 that the
observed number of faces and vertices are close to their theoretical expectations (from Theorem 6). Additional details
on the calculations of the Stirling numbers are provided in Appendix C.

The proof of Theorem 6 depends on the fact that the distribution is continuous. We thus empirically tested the robustness
of the expectations to this assumption by considering time series drawn with a discrete i.i.d Poisson distribution. The
results closely resemble the Gaussian case and details can be found in Appendix E.3.

4.3 A simple online algorithm

In this section we propose an algorithm to compute the GLR statistics at every time step n for a known and unknown
η1. In both cases, based on Theorem 5 we only need to consider the changepoints τ such that P (τ) is on the hull of
{P (τ)}τ∈{1,...,n−1} .

Let us call Tn the set of index τ such that P (τ) = (τ,
∑τ

t=1 xt) is on the convex hull of all {P (τ)}τ∈{1,...,n−1}.
Restating Theorem 4, the changepoint τ̂ maximising the likelihood (4) (i.e τ̂(η1) if η1 is known or τ̂(.) if it is not) is in
Tn. Hence, computationally speaking, at step n we only need to compute the likelihood (and likelihood ratio statistics)
of changepoints τ in Tn. Furthermore, as already explained after Theorem 5 we can prune all τ that are not in Tn as
they will never be in Tn′ for any n′ ≥ n.

Computing the convex hull from scratch at every-time step n is inefficient: it would require at least O(n) operations
and lead to an overall complexity at least quadratic in the number of data points. Ideally, we would like to update the
hull using an efficient online or dynamic convex hull algorithm as the one in [60]. There exists implementations of such
an algorithm in dimension p = 2 [61] and p = 3 [62] However, out of simplicity, here we rely on an iterative use of the
offline QuickHull algorithm [48] that also works for larger dimensions and is available in the geometry R package [59].

In details, for any n′ > n we have Tn′ ⊂ Tn ∪ {n, . . . , n′ − 1}. Therefore if we already computed Tn, with QuickHull,
when we compute Tn′ we need not restart from scratch but simply apply QuickHull to the points P (τ) with τ in
Tn ∪ {n, . . . , n′ − 1}. A first idea would be to apply the QuickHull algorithm at every time step n, n+ 1, . . ., that is
compute Tn as the hull of all P (τ) with τ in Tn−1 ∪ {n}. However, as seen in Figure 10, when computing the hull too
often, the overhead of QuickHull significantly slows the overall algorithm, even in low dimensions.

In practice, we discovered that running the QuickHull algorithm intermittently, rather than at every iteration, resulted in
faster run times. Specifically, we maintain a set of linearly increasing indices, denoted as T ′

n, and only periodically
execute QuickHull to reconstruct the true Tn. More precisely, to decide when to run QuickHull we update a maximum
size variable for T ′

n (denoted maxSize). Then, at step n+ 1

• either the size of T ′
n, |T ′

n|, is smaller than maxSize in that case we set T ′
n+1 to T ′

n ∪ {n},
• or it is larger and in that case we compute T ′

n+1 as the convex hull of all P (τ) with τ in T ′
n ∪ {n}.

In the later case we also update maxSize to maxSize = ⌊α|T ′
n+1| + β⌋, with α ≥ 1 and β ≥ 0. It is important to

note that, in this way, we always retain a few more possible changepoints than necessary: Tn+1 ⊆ T ′
n+1.

Remark 6. Taking β = 1 and α = 1, we run the QuickHull algorithm at every time-step. Increasing the value of α
allows to run it less often at the cost of having a longer list of indices T ′

n. In Figure 10 we considered different value for
α with β = 1 and found that a value of α = 2 gives good practical performances (see Appendix E.1).

A formal description of our procedure, called MdFOCuS if η1 is unknown and MdFOCuS0 if it is, is available in
Algorithm 1.

9



MULTIVARIATE CHANGEPOINT DETECTION, LINKS WITH COMPUTATIONAL GEOMETRY − NOVEMBER 3, 2023

Algorithm 1 MdFOCuS(0) algorithm

1: Input 1: p-variate independent time series {xt}t=1,2,...

2: Input 2: threshold thrs and η1 if known pre-change parameter
3: Input 3: pruning index maxSize > P + 1, the parameters α ≥ 1, β ≥ 0.
4: Output: stopping time n and maximum likelihood change : τ̂(.) or τ̂(η1)
5: likelihoodRatio← −∞, T ← ∅, n← 0
6: while (likelihoodRatio < thrs) do
7: n← n+ 1
8: T ← T ∪ {n− 1}
9: maxLikelihood← maxτ∈T {maxη1,η2

lτ,n(η1, η2)} ▷ η1 is fixed in MdFOCuS0
10: likelihoodRatio← maxLikelihood−maxη1,η2

ln,n(η1, η2) ▷ η1 is fixed in MdFOCuS0
11: if (|T | > maxSize) then
12: T ← QUICKHULL({P (τ)}τ∈T ) ▷ Returns the index on the hull of all P (τ).
13: maxSize← ⌊α|T |+ β⌋
14: end if
15: end while
16: return n and likelihoodRatio

The only difference between MdFOCuS and MdFOCuS0 variants are in the calculation of the likelihood (line 9 and
10). Therefore the two variants store the same number of candidate changepoints and have the same time and memory
complexity.

We give a link to an implementation of Algorithm 1 for a change in the mean of p-dimensional Gaussian signal in
about a hundred lines of R code in the Supplementary Material. Our code is based on the convhulln function of the
geometry R package [59] and for p = 3 it is able to process in 2 minutes n = 5×105 data points on an Intel(R) Xeon(R)
Gold 6252 CPU @ 2.10GHz processor choosing α = 2 and β = 1. As will be seen in Section 4.3.1 and Figure 4 its
implementation in R/C++ is even faster. Note that such a run time is comparable to that of the ocd package [37] as for
the same simulated data and on the same processor, ocd executes on average in 3 minutes and 18 seconds.

Algorithm 1 is exact and empirically fast but to the best of our efforts, it is not trivial, to derive its worst or expected
time complexity. In Appendix F we propose a modified algorithm, updating the set Tn (line 11 to 14) in a deterministic
manner and prove that it is quasi-linear on average, with an O(n log(n)p+1) complexity, under the assumption that
the convex hull algorithm we are using is at worst quadratic. Empirically, this algorithm is harder to implement and
slower than Algorithm 1 (see Figure 15 in Appendix F). The assumption on the quadratic complexity of the convex hull
algorithm is valid for QUICKHULL up to dimension p = 2 [48, 63] and using the algorithm of [64] up to dimension
p = 3.

4.3.1 Additional Empirical Evaluations

We implemented Algorithm 1 for a change in the mean of multi-dimensional Gaussian signal (see Table 1) in R/C++
using the qhull library (see link in the Supplementary Material). We evaluated its running time. We simulated data as
in the empirical validation of Theorem 6 on the expected number of faces and vertices for dimension p = 1 to p = 5.
The average run times as a function of n are presented in log-scale in Figure 4. As expected, it is faster than our R
implementation: for example for p = 3 it process in 2 minutes n = 106 rather than 5× 105. Note also that the run times
for a known or unknown η1 are almost identical. Finally, we made a simple linear regression to model the logarithm of
the run time as a function of log(n). The estimated slope coefficients are reported in Figure 4 and are all smaller than
1.25.

4.3.2 Simulation Study

We evaluate empirical performances of the R implementation of MdFOCuS on synthetic data (a link to the code is
available in the Supplementary Material). Specifically, we analyse 3-dimensional time series under the Gaussian change-
in-mean setting. We consider the two scenarios of pre-change mean known and unknown. For each experiment, we
report results aggregated from 300 data sets. A similar study on 5-dimensional time series can be found in Appendix E.2.

We compare performances of MdFOCuS with the high-dimensional online changepoint detection method ocd from [37],
and a naive multivariate implementation of FOCuS, obtained by running FOCuS independently for each dimension and
both summing and taking the maximum of the resulting traces (see Section 6 of [34]).
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Figure 3: The number of faces (left) and vertices (right) of the
convex hull of {P (τ)}τ∈{1...,n−1} for dimension 1 ≤ p ≤ 5. We
simulated 100 i.i.d. Gaussian dataNp(0, Ip) for n from (210 + 1)
to (223 + 1). Dashed lines correspond to the expected number
of faces (left) and vertices (right) presented in Theorem 6. We
consider a maximum running time of 10 minutes for the QuickHull
algorithm. This is why some results for p = 3, 4 and 5 for large
signals are missing.
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Figure 4: Run times in seconds of MdFOCuS with
known (dashed line) and unknown(full line) pre-
change parameter η1, both with α = 2 and β = 1,
in dimension p = 1, . . . , 5 using time series x1:n
(without change, xt ∼ N (0, Ip) i.i.d). Run times
are averaged over 100 data sets. We considered
a maximum running time of 3 minutes (horizon-
tal dotted black line) for the algorithms. That is
why we do not report run times for p = 3, 4 and 5
for large signals. We report here the slope of the
curves estimated using a simple linear regression:
for known η1: ≈ 1.04 (p = 1), ≈ 1.16 (p = 2),
≈ 1.22 (p = 3), ≈ 1.24 (p = 4) and ≈ 1.14
(p = 5); for unknown η1: ≈ 1.05 (p = 1), ≈ 1.16
(p = 2), ≈ 1.23 (p = 3), ≈ 1.24 (p = 4) and
≈ 1.14 (p = 5).

Thresholds were selected under a Monte-Carlo simulation to achieve an average run length of 5× 103 observations, in
line with the empirical evaluation studies of both of [34, 37]. For a change at t = 500, we check performances for a
range of different change magnitudes and affecting a different numbers of time series. In order to compare performances
across different sparsity regimes, changes in the affected time series were normalized in such a way that the change
direction lies in the p-dimensional sphere, e.g. (||η1 − η2||22 = δ), where δ is the overall change magnitude and η1, η2
are respectively the pre- and post-change mean.

Starting with the pre-change mean known scenario, in Tables 2 and 3 we report respectively the average detection delay
and the standard deviation of the detection delay over various magnitudes and for different change densities. With
FOCuS0, MdFOCuS0 and ocd (oracle) we indicate the respective algorithms with oracle pre-changepoint parameter
η1 = 0.

Compared to other algorithms, MdFOCuS0 tends to achieve smaller detection delays in those cases where the change
affects all the time series, in particular over changes of low magnitude. In addition, MdFOCuS0 tends to have more
consistent performances across different sparsity regimes within the same change magnitudes, as in general it shows
lower variance in the estimates of the standard deviation of the detection delays.

As above, we report in Tables 4 and 5 the average and standard deviation of the detection delay in the pre-change mean
unknown scenario. In addition to the methods that naturally extend to the pre-change mean unknown case (FOCuS and
MdFOCuS), we consider ocd and FOCuS0 with pre-change mean η1 known and estimated from a probation period of
500 observations. These observations are not from the test set, and were considered as an additional training set. We
denote these two algorithms as FOCuS0 (est) and ocd (est).

We observe similar results to the pre-change mean known case, where MdFOCuS outperforms competitor methods over
the dense cases in terms of detection delay, and shows lower variability across the various estimates across most of the
change magnitudes.
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Table 2: Average detection delay in the pre-change mean known scenario with 3-dimensional time series for a change
at time t = 500. Best results per row are highlighted in bold.

magnitude δ density FOCuS0 MdFOCuS0 ocd (oracle)
0.25 1 250.30 272.48 230.63
0.25 2 264.31 266.93 254.48
0.25 3 281.10 272.61 292.61
0.50 1 69.56 73.18 59.64
0.50 2 74.59 69.85 66.27
0.50 3 77.71 71.80 72.62
1.00 1 18.68 19.81 18.95
1.00 2 20.84 19.59 20.32
1.00 3 22.18 19.98 21.84

Table 3: Standard deviation of the detection delay in the pre-change mean known scenario with 3-dimensional time
series for a change at time t = 500. Best results per row are highlighted in bold.

magnitude δ FOCuS0 MdFOCuS0 ocd(oracle)
0.25 4.57 1.05 23.45
0.50 0.83 1.54 3.36
1.00 0.79 0.31 0.99

Table 4: Average detection delay in the pre-change mean unknown scenario with 3-dimensional time series for a change
at time t = 500. Best results per row are highlighted in bold.

magnitude δ density FOCuS FOCuS0 (est) MdFOCuS ocd (est)
0.50 1 81.67 84.57 85.83 74.26
0.50 2 92.07 99.32 85.01 84.57
0.50 3 96.08 106.51 86.88 91.48
1.00 1 19.89 22.34 20.51 22.18
1.00 2 22.38 25.67 20.41 23.51
1.00 3 23.28 28.31 20.30 24.71
2.00 1 5.53 6.22 5.78 7.04
2.00 2 6.19 7.41 5.76 7.39
2.00 3 6.48 8.00 5.78 7.50

Table 5: Standard deviation of the detection delay in the pre-change mean unknown scenario with 3-dimensional time
series for a change at time t = 500. Best results per row are highlighted in bold.

magnitude δ FOCuS FOCuS0 (est) MdFOCuS ocd (est))
0.50 4.18 4.56 1.24 3.49
1.00 0.51 0.80 0.52 0.61
2.00 0.24 0.40 0.02 0.10

5 Application on NBA Plus-Minus

In this section, we illustrate our methodology to detect a change in the Cleveland Cavaliers (an NBA team) Plus-Minus
score from season 2010-11 to 2017-18. This example was proposed in [38]. We use this example for two reasons. First,
it highlights that our computational framework is also applicable to CUSUM Exponential baseline e-detectors proposed
in [38] which in essence are a non parametric generalization of generalized likelihood ratio rules. Second, it illustrates
how modelling not only the signal’s mean but also its variance can simplify the calibration of the detection threshold,
without necessarily resorting to a non-parametric approach.

We recovered the Plus-Minus score using the nbastatR package [65] available on GitHub https://github.com/
abresler/nbastatR. The Cavaliers Plus-Minus is represented in Figure 5. This score represents how well the
Cavaliers fared against their opponent. In this subsection, we assume that we are observing these matches one after the
other and we are interested in detecting a changepoint online.

As detailed in [38] it is nontrivial to fit this problem into commonly used parametric sequential changepoint detection
procedures for two main reasons. First, it is not easy to choose a parametric model to fit the score. In particular we
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Figure 5: Plus-Minus score of the Cavaliers from season 2010-11 to season 2017-18 as a bar plot. Losses are in light
blue and wins are in dark blue. Ends of seasons are represented with vertical dashed lines and seasons are shown on the
bottom with grey arrows.

would like to take into account that we have integer-valued data, and we expect some form of dependency. Second,
assuming we have chosen a model or likelihood function, calibrating the threshold to detect a changepoint is not trivial.
A small change in the distribution we use as a reference can substantially change the threshold and as a consequence
increase the detection time or lead to false detections. E-detectors of [38], are an interesting non-parametric solution to
these two problems assuming some knowledge of the pre-change distribution.

5.1 Convex hull for CUSUM e-detectors

Following equations (27) of [38] and considering an exponential baseline increment as in their equation (41) we can
write their update of the e-detector CUSUM statistics for a given λ as

MCU
n (λ) = exp (λs(xn)− ψ(λ)v(xn))max{MCU

n−1(λ), 1},

where λ is in a subset of R, s and v are real-valued functions, and ψ is a finite and strictly convex function. Taking the
log and considering all possible changepoints prior to n we recover with induction that

log(MCU
n (λ)) = max

τ<n

{
n∑

t=τ+1

(λs(xt)− ψ(λ)v(xt))

}
.

Subtracting
∑n

t=1(s(xt)λ− ψ(λ)v(xt)), we recover our functional pruning framework of equation (7) taking for any
changepoint at τ < n, aτ =

∑τ
t=1 v(xt), 2bτ =

∑τ
t=1 s(xt), and cτ = 0. Applying Theorem 4 and its proof we get

that the changepoint optimising the e-detector CUSUM score for a given λ value corresponds to a vertex on the convex
hull of the following points in R2: (

τ∑
t=1

v(xt),
1

2

τ∑
t=1

s(xt)

)
τ<n

. (9)

As argued in [38] it makes sense to consider a mixture of e-detectors, that is different λ values. For computational
reasons [38] considered a finite number of values. In practise, this number is determined using their computeBaseLine
function that is detailed in their appendix B in Algorithm 3.

We will now compare the baseline numbers of two e-detectors for Plus-Minus score to the number of points on the
hull of (9). [38] considered two e-detector models. In the first, that we call Winning rate, they model the winning rate
and consider, see their equation (64), for the exponential increment v(xt) = 1 and s(xt) = 1xt>0 − p0, where 1 is the
indicator function and p0 is taken to be 0.49 in the numerical application. With the function computeBaseLine they
report selecting 69 λ values. In their second e-detector model, that we call Plus-Minus, they analyse the Plus-Minus
score more directly. The score is first normalized between 0 and 1 as follows x′t = (xt + 80)/160. Then they define
s(x′) = (x′/m− 1) and v(x) = (x′/m− 1)2, where m is chosen to be 0.494 in the numerical application. With the
computeBaseLine function they report selecting 190 λ values. For both e-detectors we computed the number of points
in the convex hull for n between 10 and n = 640 (the last match of season 2017-18) and obtained for Winning Rate at
most 16 and for Plus-Minus at most 18 points. Therefore out of the, respectively, 69 and 190 candidates suggested by
computeBaseLine many are redundant as they correspond to the same changepoint.
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5.2 A parametric approach to the Plus-Minus score

Considering a change in the mean of Gaussian model to fit the Plus-Minus score of the Cavaliers seems rather naive, as
it does not take into account the discrete nature of the data and possible dependencies. In this context we argue that it is
also not clear how one could get a valid estimation of the pre-changepoint parameter. Finally, as argued in [38] and
shown a bit later calibrating the threshold to detect a changepoint is not trivial. Roughly speaking the threshold depends
on the choice of the null distribution and this largely affect the position at which a change is detected. Here as a robust
parametric solution to these problems we consider a change in the mean and variance of a univariate Gaussian signal
with unknown pre-changepoint parameters.

For a change in mean and variance using our convex hull framework equation (7) and following its natural parametrisa-
tion presented in Section 2.2 we need to keep track of the vertices on the hull of a 3-dimensional set of points(

τ,

τ∑
t=1

xt,

τ∑
t=1

x2t

)
τ<n

. (10)

As we will see this second model, although still parametric, is much more robust to the choice of the null distribution.

Interestingly, this mean and variance model is invariant to shift and scaling. Based on that, we see that all the points
on the convex hull of the Plus-Minus e-detector are on the hull of the change in mean and variance model. Indeed for
this second e-detector the raw Plus-Minus score was normalized as follow x′t = (xt + 80)/160 and then s and v were
chosen to be s(x′) = (x′/m− 1) and v(x′) = s(x′)2). Therefore all changepoints tested by the Plus-Minus e-detector
will also be tested by our mean and variance model.

As the data is discrete it is not unlikely that two consecutive scores are exactly equal (this happens 19 times out of 639
in the Plus-Minus score of the Cavaliers from 2010 to 2018). In fact we also observed 2 stretches of 3 equal scores.
For such stretches the estimated variance would be 0 and the likelihood would blow up to infinity. To get around this
problem we considered a minimum value for the variance. We computed the per season variance of all NBA teams
from season 2003-2004 to season 2018-2019 and observed a minimum of 97.02, a maximum of 247.38 and a mean of
170.68. Hence, we argue that setting a minimum variance of 1 (which is roughly a hundred times smaller) should not
hamper our ability to detect changes, while also limiting the impact of small segments with equal values.

In Figure 6 we represent the CUSUM statistics for the change in mean and change in mean and variance model.
Although the scales are quite different, the two statistics have very similar trends and importantly both seems to increase
around season 2013-14 (starting at match number 312 represented by a vertical dotted line). Although both models
reconstruct the same changepoint, we will see in the next subsection that the mean-variance model shows less variability
in terms of detection delay, achieving faster detections once a threshold is set to achieve a fixed run length.
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Figure 6: CUSUM statistics for the mean model for the mean and variance model. The dotted line corresponds to the
beginning of season 2014-15 and match number 312.

Interestingly, at any time-point after 320 (8th match of season 2014-15) the maximum likelihood changepoint is always
279 (5th of February 2014) for both models (mean and, mean and variance). Furthermore, the convex hull for the
mean and variance model (in equation (10)) - and hence the mean model and Plus-Minus e-detector (recall that all
changepoints tested by the Plus-Minus e-detector are tested by the mean and variance model) - no longer contains
vertex 312 after time n = 320 (8th match of season 2014-15).
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Match 279 was played on the 5th of February 2014, well before the beginning of season 2014-15 in October 2014.
At first this might come as a surprise. But, it indeed seems that the mean Plus-Minus score increased after the 6th
of February 2014 (average score of −6.28 before compared to 1.12 after and significant t-test p-values of 0.01584).
See also the zoom on the Plus-Minus score over season 2013-14 and 2014-15 in Figure 7. Also, as discussed on the
wikipedia web page of David Griffin [66] “On February 6, 2014, he was named the acting general manager for the
Cavaliers” and David Griffin, was the one “to signed LeBron James back” for season 2014-15.
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Figure 7: Plus-Minus score of the Cavaliers from season 2013-14 to 2014-15 as a bar plot. Losses are in light blue and
wins are in dark blue. Ends of seasons are represented with vertical dashed lines (grey) and seasons are shown on the
bottom with grey arrows.

5.2.1 Simulating NBA Plus-Minus scores without changepoint

Based on Figure 6 it is clear that for a particular range of the threshold both the mean and mean and variance model
with unknown pre-changepoint parameter can detect a changepoint after the beginning of season 2014-15. To calibrate
this threshold one typically need a simulation model without a changepoint. Here, we will set the CUSUM threshold
such that under our null simulation over 1000 matches we would detect a change only in 5% of the cases.

Our idea here is not to precisely model the Plus-Minus score of the Cavaliers but rather explore a few natural optimistic
and pessimistic options to model it and check how this affects the threshold of the two models and in turns the time at
which they detect the change.

The Plus-Minus score is integer-valued. A straightforward, albeit maybe simple, choice would be to consider the
difference of two independent Poisson distributions. This is the so-called Skellam distribution. It has two parameters
(the mean of the first and second Poisson λ1 and λ2). We simulated data using values of λ1 = λ2 both equal to 95,
105, and 115. We considered mean values around 100 as the points per team of an NBA match from season 1999-00 to
season 2021-22 range from 93.40 to 112.09 with a mean of 101.07.

A slightly more complex choice is to consider the difference of two independent Negative Binomial distributions with
equal scale parameters, r1 and r2. As for the Poisson we considered λ1 = λ2, which were set to 95, 105, and 115,
along with scale parameters r1 = r2 at values of 500, 100, 50, and 10. This makes a total of 12 combinations.

A data-driven way to model the Plus-Minus score without changepoint is to re-sample past games. We did this sampling
uniformly at random past matches of the Cavaliers from season 1999-2000 to 2009-2010 or uniformly at random past
matches of any NBA team from season 1999-2000 to 2009-2010. Finally, following the argument of [38] and noting
that the Plus-Minus score is never larger than 80 we simulated integer valued score uniformly at random between −80
and 80.

In the Poisson and Negative Binomial based model, we could further model dependencies in the data. To do this we
varied the mean of the first Poisson (or Negative Binomial) over time. We considered two scenarios. In the first we
added to the mean an auto-regressive process of order 1 and coefficient 0.6 multiplied by either 1, 2, 4 and 8. In the
second we added a sin waves with a period of 20 matches multiplied by either 1, 2, 4 or 8. We present in Figure 8 two
simulated score profiles.

Figure 9a represent the various thresholds (in log-scale) we get for our two models, mean and mean and variance. The
corresponding detection times are represented in Figure 9b.
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(a) Using AR(1) with AR parameter 0.6 (multiplied by 8)
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(b) Using sin waves with a period of 20 matches (multiplied by 8)

Figure 8: Two Plus-Minus score simulation examples based on the Negative Binomial model with a mean of 115 and
scale parameter of 50 using two dependency scenarios.

It can be noted that the threshold is much more variable for the changepoint in mean model and this translates to a much
more variable detection time. To be specific for the mean model, the change is detected at the earliest at match 330
(the 5th of December 2014), but in 21.7% of the cases the threshold is so high that the changepoint is never detected
(reported in the histogram as a detection at 1000). For the mean and variance model, the change is always detected at
the earliest at match 339 (the 23rd of December 2014) and at the latest at match 368 (the 20th of February 2015). In
fact in 94.2% of the simulation models the change is detected before with the mean and variance model.

Based on this numerical application we argue that being able to run efficiently a bi-parametric model online can be
beneficial even if the model (Gaussian here) does not properly fit the nature (discrete here) of the data.

0

20

40

60

80

102 103 104 105

Frequency

V
al

ue
 o

f t
re

sh
ol

d

Model type Mean Mean and variance

Histogram (in log−scale)

(a) Threshold

0

20

40

60

400 600 800 1000
Value of time detection

F
re

qu
en

cy

Model type Mean Mean and variance

Histogram

(b) Detection time (1000 = not detected)

Figure 9: Threshold and Detection time obtained for the mean and mean and variance model.

6 Discussion

In this paper we establish a connection between the detection of a single changepoint and a convex hull problem
in dimension p + 1. Assuming independence of all observations and dimensions and a continuous distribution we
demonstrate using the recent probabilistic paper [57] that the expected number of faces and vertices of the convex hull
is of order 2(log(n))p and 2(log(n))p/p!, respectively, where n is the number of data points.

Based on this, we derive a simple yet efficient algorithm, MdFOCuS, that allows maximising the CUSUM statistics
over all possible window sizes. MdFOCuS generalises the FOCuS algorithm [34] to the multivariate case. We show that
MdFOCuS is empirically fast for up to p = 5 and allows to process more than 105 data points in a matter of minutes.
We also show using simulation that MdFOCuS is statistically competitive in particular when the change affects all
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dimensions. Finally, in Appendix F, we also present a variant of MdFOCuS, which although empirically slower, has a
run time which is provably quasi-linear, O(n log(n)p+1).

A few improvements to the computational complexity of the procedure could be made to allow the procedure to scale
to higher dimensions and longer sequences. The most computationally expensive components of the procedure are
respectively the QuickHull algorithm, for pruning the list of indices, and the maximisation step. We mentioned already
how further research could go towards a sequential update of the boundary of the convex hull of our points, to improve
on the O(T ) complexity of QuickHull. The idea would be to employ information from the hull at the previous iteration,
evaluate inclusion of the most-recent point, and update the faces of neighbouring vertex consequently.

Recently, [67] offered a solution to improve on the maximisation step. Instead of looking at the maxima of all indices to
calculate the test statistic, the authors exploit a bound on the maxima of the differences of contiguous indices. The main
idea is that the overall maximum, our test statistics, is bounded by the sum of those maxima of the differences. If this
sum does not pass the threshold there is no need to compute the likelihood ratio-statistics for all unpruned changepoints.
Fast sequential updates of the sum of the maxima of the difference exists, effectively rendering the univariate algorithm
constant per iteration [67]. Whilst this bound translates exactly to the multivariate case, it is easily much larger than
the threshold, given that we need to store and sum a large amount of indices even in dimension 2. A less conservative
bound could be object of future study to improve on the maximisation step in higher dimensions.

To conclude, our mathematical argument is valid for a large collection of parametric online single changepoint models
with distributions taken from the exponential family. We also show in Appendix D that there is a connection between
multiple changepoint models and the half-space intersection problem of Theorem 3. Furthermore we show in Section 5
that Theorem 5 could be beneficial to speed the calculation of the non-parametric e-detectors. Finally, note that no
assumptions are made on the set of indices T in equation (7) and for example our theory also applies to changepoint
models with observations on a tree rather than a chain [68]. For all these reasons we argue that this connection between
changepoints and convex hull (or half-space intersection) sheds light on the geometric nature of the changepoint
detection problem and is a promising line for future research.

Supplementary Material

The implementation of the MdFOCuS algorithm, the Plus-Minus score data, the computer code for the simulation study,
and the applications discussed in this article can be found in the following GitHub repositories:

• https://github.com/guillemr/Focused/tree/main is a link to the R implementation of the MdFOCuS
algorithm and R code for simulation studies.

• https://github.com/lpishchagina/focus is a link to the R/C++ implementation of the MdFOCuS
algorithm.

• https://github.com/lpishchagina/dyadicMdFOCuS is a link to the R/C++ implementation of the Md-
FOCuS algorithm with dyadic update. It is a different repository from the MdFOCuS algorithm because
the dyadic version is interesting mostly from a theoretical perspective to bound the expected complexity but
empirically much slower than MdFOCuS;

• https://github.com/abresler/nbastatR is the R package [65] we used to recover The Plus-Minus
score data.
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A Proofs

A.1 The proof of Theorem 2

Proof. Consider that τ is in GT . By definition, there exists (λ0, µ0) ∈ Im(A) × DA = R+ × Rp such that for all
τ ′ ̸= τ in T we have: gτ (λ0, µ0) > gτ ′(λ0, µ0). Using condition cτ = cτ ′ = 0 and multiplying by α > 0 we get by
linearity

gτ (αλ0, αµ0) = αgτ (λ0, µ0) > αgτ ′(λ0, µ0) = gτ ′(αλ0, αµ0).

Therefore, the optimally of index τ is true on the half-line {α(λ0, µ0), α > 0}. Note that we can exclude the cases
∥µ0∥ = 0 or λ0 = 0 as, by a continuity argument, the optimal set for index τ in GT (if non empty) is an open set.

We now search for α0 ∈ (0,+∞) such that for any index τ ′′ ∈ T , gτ ′′(α0λ0, α0µ0) = fτ ′′(α0µ0). If such α0 exists,
we have

aτ ′′α0λ0 − 2⟨α0µ0, bτ ′′⟩ = aτ ′′∥α0µ0∥q − 2⟨α0µ0, bτ ′′⟩ ,

leading to solution α0 =
λ

1
q−1
0

∥µ0∥ q
q−1

. α0 is well defined as we excluded ∥µ0∥ = 0 and λ0 = 0. Further note that the result
is still true for aτ = 0 or aτ ′ = 0.

A.2 The proof of Theorem 4

Proof. Consider any τ in GT . Using Theorem 3 we have that hτ (κ, λ, µ) = 0 and for all τ ′ ̸= τ hτ ′(κ, λ, µ) < 0. It
can not be that λ = 0 and µ = 0 as in that case hτ (κ, 0, 0) = 0 and then κ = 0, and hτ ′(κ, 0, 0) = 0 contradicting
hτ ′(κ, λ, µ) < 0.

Now we have the following equivalence:

1. ∃κ, λ, µ, with (λ, µ) ̸= 0 such that hτ (κ, λ, µ) = 0 and ∀τ ′ ̸= τ hτ ′(κ, λ, µ) < 0.

2. ∃κ, λ, µ, with (λ, µ) ̸= 0 such that ⟨(aτ , bτ ), (λ,−2µ)⟩ = κ and ∀τ ′ ̸= τ ⟨(aτ ′ , bτ ′), (λ,−2µ)⟩ < κ.

3. (aτ , bτ ) is on the convex hull {(aτ , bτ )}τ∈T .

To go from (2) to (3) we note that a point is a part of the convex hull if there is a hyperplane (defined by a non-zero vector
and a constant) going through this point and such that all other points are strictly on one side of the hyperplane.

A.3 The proof of Theorem 5

Proof. Starting from equation (4), we get to equation (6) as described in section 2.2 and we recover our functional
pruning problem of equation (8) as described in Section 3.1, taking T = {1, . . . n− 1}, aτ = τ , bτ =

∑τ
t=1 xt and

cτ = 0. Thus applying Theorem 4, and then Theorem 1 we get the desired result for τ̂(η1).

The index maximising the likelihood and its value do depend on η1, however the set of points we need to build
the convex hull does not depend on the value of η1. Considering η1 = argmaxη1

(
maxη2 ℓτ̂(.),n(η1, η2)

)
we have

τ̂(.) = τ̂(η1) and we recover the desired result for τ̂(.).

A.4 The proof of Lemma 1

Proof. In the case where all xdτ are independent and identically distributed, the property (Ex) holds. To show that
property (GP ) holds, consider time n ≥ p+2 and choose any indices τ1, . . . , τp+1 such that 0 < τ1 < · · · < τp+1 < n.
We define the following variables for d = 1, . . . , p+ 1:

Sd =

(
τd,

τd∑
t=1

xt

)
∈ Rp+1 , Md = Sd − Sd−1 , with S0 = 0 .

It can be observed that Sd =
∑

k≤dMk for any d = 1, . . . , p+ 1. Therefore, the linear independence of S1, . . . , Sp+1

is equivalent to the linear independence of M1, . . . ,Mp+1. We denote the matrix of size (p+ 1)× (p+ 1) where its
d-th column is Md as M . Consider its transpose matrix MT . Its first column-vector is filled with integers between 1
and n− 1. Linear algebra shows that proving linear independence for column vectors in M or in MT is equivalent.
The last p column vectors in MT are drawn independently with a continuous density and thus are almost surely linearly
independent, spanning a hyperplane of dimension p. The probability that a point in Rp+1, the first column vector of
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MT , is in this span is 0. In conclusion, for any given n, there are finitely many matrices M to consider, and their
probabilities satisfy (GP ), ensuring that property (GP ) holds.

B Index Set Equality

The equality FT = GT can be proved with weaker conditions on A than those of Theorem 2. This equality has a
simple geometric interpretation: to be true, any half-line in Im(A) × DA has to intersect the manifold defined by
{(A(µ), µ), µ ∈ DA}.
Theorem 7. If for all τ ∈ T , cτ = 0 and A is continuous defined on a cone with Im(A) = R+ such that A(0) = 0,
∇A(0) = 0 and lim∥µ∥→∞

A(µ)
∥µ∥ = +∞ we have FT = GT .

Proof. Consider τ in GT . For all τ ′ ̸= τ , the inverse image of the open set (0,+∞) by linear functions gτ − gτ ′ is a
non-empty intersection of half-spaces. Moreover, there exists (λ0, µ0) ∈ Im(A)×DA such that for all τ ′ ̸= τ in T
we have: gτ (λ0, µ0) > gτ ′(λ0, µ0). Using condition cτ = cτ ′ = 0 and α > 0 we get by linearity

gτ (αλ0, αµ0) = αgτ (λ0, µ0) > αgτ ′(λ0, µ0) = gτ ′(αλ0, αµ0).

Therefore, as all points of the half-line {α(λ0, µ0), α > 0} belong to this set, it shows that index τ is optimal on an
open polyhedral cone.

Suppose that for the considered (λ0, µ0), there exists α0 > 0 such that λ0 = A(α0µ0)
α0

then α0µ0 is a value in the
cone DA verifying all the constraints fτ (α0µ0) > fτ ′(α0µ0), so that τ also belongs to FT . In geometric terms,
this means that any half-line in the polyhedral cone associated with index τ intersects the manifold defined by
{(A(µ), µ), µ ∈ DA}.
It remains to prove that the proposed assumptions over A are sufficient to find such an alpha proving the set equality. We
consider the same half-line {α(λ0, µ0), α > 0}. By linear approximation in 0, we have A(ϵ) = A(0) + ⟨ϵ,∇A(0)⟩+
o(∥ϵ∥) = o(∥ϵ∥) and locally, we get A(αµ0) = o(∥αµ0∥) < αλ0 for small α. Notice that as Im(A) = R+

and the cone is open, we have λ0 > 0 and can choose ∥µ0∥ > 0. The half-line is therefore above the manifold
("(αλ0, αµ0) > (A(αµ0), αµ0)").

Using condition limα→∞
A(αµ0)
∥αµ0∥ = +∞, continuity of A and previous local result A(αµ0)

∥αµ0∥ = o(1) for small α, it shows

that there exists α0 such that A(α0µ0)
∥α0µ0∥ = λ0

∥µ0∥ (as λ0

∥µ0∥ > 0). Thus (α0λ0, α0µ0) = (A(α0µ0), α0µ0) which leads to
fτ (α0µ0) > fτ ′(α0µ0) and index τ is in FT .

C Stirling numbers of the first kind in terms of the harmonic series

To obtain numerical values of Up
n and V p

n of the convex hull of {P (τ)}τ∈{1,...,n−1} for 1 ≤ p ≤ 5 we need to know

the expressions of
[
n
m

]
for m = 0, . . . , 6. As shown in [58], the general formula for the Stirling numbers of the first

kind in terms of the harmonic series is [
n
m

]
=

(n− 1)!

(m− 1)!
ω(n,m− 1) . (11)

The ω-sequence is defined recursively by

ω(n,m) = 1m=0 +

m−1∑
k=0

(1−m)kσk+1ω(n,m− 1− k) ,

where σk+1 =
∑n−1

i=1
1

ik+1 is the partial sums of the harmonic series
{

1
ik+1

}
i=1,2,...

and (1−m)k are the Pochhammer
symbols. Applying the formula (11) for m = 0, . . . , 6, we get[

n
0

]
= 1 ,

[
n
1

]
= (n− 1)! ,

[
n
2

]
= (n− 1)!σ1 ,

[
n
3

]
=

(n− 1)!

2
(σ2

1 − σ2) ,
[
n
4

]
= (n− 1)!

(
σ3
1

6
− σ1σ2

2
+
σ3
3

)
,
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[
n
5

]
= (n− 1)!

(
σ4
1

24
− σ2

1σ2
4

+
σ1σ3
3

+
σ2
2

8
− σ4

4

)
,[

n
6

]
= (n− 1)!

(
σ5
1

120
− σ3

1σ2
12

+
σ2
1σ3
6

+
σ1σ

2
2

8
− σ1σ4

4
− σ2σ3

6
+
σ5
5

)
.

D Detection of multiple changes in the parameter of a distribution in the exponential family

We define the setMK
n of all possible segmentations in K changepoints of time series {yt}t=1,...,n as:

MK
n = {τ = (τ0, τ1, . . . , τK , τK+1) ∈ NK+2|0 = τ0 < τ1 < · · · < τK < τK+1 = n}.

For any segmentation τ in MK
n we define its size as |τ | = K. We denoteM∞

n as the set of all possible segmentations
of {yt}t=1,...,n:

M∞
n =

⋃
K

MK
n , (12)

and take the convention that M∞−1
n =M∞

n .

From a statistical perspective given a subset of all segmentationsMK
n for K in N ∪ {∞} it makes sense to recover the

segmentation maximising a penalised likelihood of our (transformed as in Section 2.2) data {xt}t=1,...,n:

CK
n = max

τ∈MK
n


|τ |+1∑
k=1

max
ηk

 τk∑
t=τk−1+1

2 log(fX(xt|ηk))− β

 , (13)

where β is a penalty value in R+.

The previous equation, encompasses two common multiple changepoints strategies. In the first, that we call Segment
Neighbourhood (SN) [22] the user is given a maximum number of changepoints Kmax and solve equation (13) for all
K ≤ Kmax (setting β to 0). In a second step all these solutions are compared using an appropriate model selection
criteria such as [28, 69] to select the number of changepoints. In the second strategy, that we call Optimal Partitioning
(OP) [25] the position and number of changepoints are estimated in one go solving (13) for K = ∞ and picking
an appropriate value for β such as 2σ̂2 log(n) in a Gaussian setting with p = 1 [70] where σ̂2 is an estimate of the
Gaussian variance.

Finding the maximum of (13) in either case can be done using dynamic programming. For any segmentation τ with
|τ | > 1, observe that the first |τ | terms in the previous sum are by definition smaller than CK−1

τ|τ|
. Hence, we only need

to consider the position of the last changepoint and we recover the update rule of the SN [22] and OP [25] algorithms:

CK
t = max

i<t

{
CK−1

i +max
η

[
t∑

s=i+1

2 log(fX(xs|η))− β

]}
. (14)

With this recursion solved for increasing t, and, in the case of SN, increasing K.

Directly solving this recursion has a computational cost that is quadratic in n. This has led to pruning ideas that speed
up the computation whilst still solving the maximisation problem exactly. The idea of these pruning rules is that at any
time t we need only consider a subset of possible changepoint locations. The most efficient pruning rules are based on
so-called functional pruning (as in the pDPA or FPOP algorithms [32, 33]). The idea is to consider the best segmentation
of the data to time t as a function of the parameter of the final segment. For each value of this parameter there will
be an optimal position of the most recent changepoint prior to t, and at the next iteration we need only consider these
positions and t for the possible position of the most recent changepoint prior to t+ 1. Implementing this algorithm
requires calculating regions of the parameter space which are optimal for each value of the most recent changepoint.
When p = 1 this is straightforward as we are manipulating intervals, but for p > 1 this becomes challenging, and
often computationally prohibitive, as it involves computing the intersection and subtraction of many convex sets in Rp

[35, 36].

D.1 Connection between the Detection of Multiple changepoints and the half-space intersection problem

In Section 4, we established that the maximum likelihood estimator of a single changepoint problem corresponds to
a vertex on the hull of a particular set of points.This result is primarily based on Theorem 4, which follows from the
Half-space Intersection Theorem 3.
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Figure 10: Run time of MdFOCuS0 as a function of α for p-variate time series with n = 105 data points in dimension
p = 1, 2 and 3. We simulated 100 i.i.d. Gaussian data Np(0, Ip) and report the average run time.

In the following theorem, we establish that the last changepoint of the maximum likelihood segmentation (see equation
(13)) of a multiple changepoint problem corresponds to a supporting hyperplane of a particular half-space intersection
problem defined as in Theorem 3.

Theorem 8. The last changepoint ı̂ of the segmentation τ̂ maximising the likelihood (13) is such that Hı̂ is a supporting
hyperplane of ∩iHi where i is in {1, . . . , n− 1} and Hi is defined as the hyperplane

Hi = {κ, λ, µ | hi(κ, λ, µ) = aiλ− 2⟨bi, µ⟩+ ci − κ ≤ 0},

with ai = i, bi =
∑i

t=1 xt and ci = CK−1
i −

∑i
t=1B

′(xt).

Proof. We start from equation (13). There is a value η̂ for which τ̂ is optimal. Now if we subtract∑n
t=1

{
2 log(fX(xt|η)) − β

}
, η̂ is still optimal for η = η̂. Now applying Theorem 3 and restricting our atten-

tion to the last changepoint as explain for equation (7) we get the desired result.

Contrary to the single changepoint case, we do not propose an algorithm based on this connection. Nonetheless, in a
manner similar to the MdFOCuS algorithm, we think one could restrict the set of last changepoints to consider in the
standard SN or OP algorithm using the output of an half-space intersection algorithm.

E Additional Empirical evaluation of the MdFOCuS algorithm

E.1 Run time as a function of a slope parameter

Now we consider the empirical run times of the MdFOCuS algorithm with a known pre-change parameter η1 as
a function of a slope parameter α. Using the implementation of Algorithm 1 for a change in the mean of multi-
dimensional Gaussian signal (see Table 1) in R/C++ using the qhull library (see link in the Supplementary Material)
we studied how the α parameter affects its running time. To do this, we generate 100 time series with n = 105

data points (without changepoints, and xt ∼ Np(0, Ip) i.i.d) in dimension p = 1, 2 and 3. In Figure 10 we re-
port the average run time as a function of α for MdFOCuS0 (that is for a known value of η1) and values of α in{
1 + {2i}i∈{−4,...,0}, 3, {2j}j∈{2,...,7}

}
. The value of maxSize was always initialised to p+ 2 and β always set to 1.

We observe a minimum run time for α in [2, 4]. As a consequence in the rest of the simulations we always set α to 2.

E.2 Numerical study on 5-dimensional sequences

We replicate the simulation study of Section 4.3.2 for 5-dimensional time series. The results are presented in Tables 6-9.

E.3 Multidimensional Poisson Model

We simulated time series with a Poisson distribution : x1:n (xt ∼ P(1p), t = 1, . . . , n). We varied p and n as in Section
4.2.
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Table 6: Average detection delay in the pre-change mean known scenario with 5-dimensional time series for a change at
time t = 500. Best results per row are highlighted in bold.

magnitude density FOCuS0 MdFOCuS0 ocd (ora)
0.25 1 265.62 319.50 241.83
0.25 2 286.83 307.84 280.51
0.25 3 301.59 304.99 307.18
0.25 4 262.60 244.98 271.74
0.25 5 314.72 295.74 332.29
0.50 1 75.81 86.82 68.02
0.50 2 83.73 86.70 75.64
0.50 3 91.83 87.44 83.18
0.50 4 78.70 67.85 73.73
0.50 5 95.41 83.90 88.23
1.00 1 20.57 23.49 21.99
1.00 2 23.01 22.99 23.59
1.00 3 25.02 22.93 25.02
1.00 4 22.48 18.65 20.99
1.00 5 26.83 22.78 25.70

Table 7: Standard deviation of the detection delay in the pre-change mean known scenario with 5-dimensional time
series for a change at time t = 500. Best results per row are highlighted in bold.

magnitude δ FOCuS0 MdFOCuS0 ocd(oracle)
0.25 10.28 8.85 23.61
0.50 4.00 2.73 4.20
1.00 0.92 0.40 0.99

Table 8: Average detection delay in the pre-change mean unknown scenario with 5-dimensional time series for a change
at time t = 500. Best results per row are highlighted in bold.

magnitude δ density FOCuS FOCuS0 (est) MdFOCuS ocd (est)
0.50 1 89.30 108.70 105.47 95.37
0.50 2 104.86 125.42 105.22 102.48
0.50 3 114.19 141.38 102.65 110.18
0.50 4 97.32 130.23 79.75 88.44
0.50 5 123.96 158.55 104.24 106.33
1.00 1 21.69 28.22 24.12 28.12
1.00 2 24.59 33.16 24.02 28.94
1.00 3 27.26 37.23 24.09 29.51
1.00 4 24.59 35.73 19.83 23.72
1.00 5 29.76 42.84 24.31 29.11
2.00 1 5.95 7.67 6.63 7.96
2.00 2 6.87 9.30 6.72 8.07
2.00 3 7.40 10.31 6.67 8.00
2.00 4 6.93 9.80 5.60 6.57
2.00 5 8.31 11.82 6.72 8.05

Table 9: Standard deviation of the detection delay in the pre-change mean unknown scenario with 5-dimensional time
series for a change at time t = 500. Best results per row are highlighted in bold.

magnitude δ FOCuS FOCuS0 (est) MdFOCuS ocd (est))
0.50 8.44 8.26 7.02 4.32
1.00 1.23 2.04 0.32 0.85
2.00 0.28 0.50 0.14 0.18
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E.3.1 Empirical validation of the bound

Using the same procedure as in Section 4.2, we evaluate the number of faces and vertices of the convex hull
{P (τ)}τ∈{1...,n−1}. The results are presented in Figure 11. We note that the results are similar to the Gaussian
case (see Figure 3).

E.3.2 Empirical run times of the algorithm as a function of dimension

Using the same procedure as in Section 4.3.1 we evaluate the run times of MdFOCuS0 and MdFOCuS for Poisson
distribution. The results are presented in Figure 12. We note that the results are similar to the Gaussian case (see Figure
4).
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Figure 11: The number of faces (left) and vertices (right) of the
convex hull built from the set of points {P (i)}i∈{1...,n−1} for
dimension 1 ≤ p ≤ 5. We simulated 100 i.i.d. p-variate Poisson
data P(1p) for each n from (211 + 1) to (223 + 1). Dashed lines
correspond to the expected number of faces (left) and vertices
(right) presented in Theorem 6. We consider a maximum running
time of 10 minutes for the Quickhull algorithm. That is why we
don’t have data points for p = 3, 4 and 5 for large signals.
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Figure 12: Run times in seconds of MdFOCuS with
known (dashed line) and unknown(full line) pre-
change parameter η1, both with α = 2, β = 1 and
maxSize = 14, in dimension p = 1, . . . , 5 using
time series x1:n (without change, xt ∼ P(1p) i.i.d).
Run times are averaged over 100 data sets. We
considered a maximum running time of 3 minutes
(horizontal dotted black line) for the algorithms.
That is why we do not report run times for p = 3, 4
and 5 for large signals. We report here the slope of
the curve obtained using a simple linear regression:
for known η1: ≈ 1.05 (p = 1), ≈ 1.16 (p = 2),
≈ 1.24 (p = 3), ≈ 1.26 (p = 4) and ≈ 1.16
(p = 5); for unknown η1: ≈ 1.06 (p = 1), ≈ 1.18
(p = 2), ≈ 1.26 (p = 3), ≈ 1.29 (p = 4) and
≈ 1.19 (p = 5).

F Dyadic MdFOCuS : an algorithm with a quasi-linear expected complexity

In this appendix we present an algorithm for online changepoint detection. In essence, as in the MdFOCuS algorithm of
the main text, it maintains a set of points that is slightly larger than the set of points on the hull. It does so applying the
QuickHull (or any convex hull) algorithm on successive and non-overlapping deterministic chunks of the points. This
deterministic choice of chunks is likely sub-optimal but it allows for a precise quantification of the expected complexity
of the algorithm under the assumption of Theorem 6 (or Corollary 1) and under the assumption that the convex hull
algorithm is at worst quadratic. To be specific we obtain a O(n log(n)p+1) bound on the expected time complexity.

The algorithm we propose (as the one of the main text) considers at least all points on the hull to maximise the likelihood
for every new data point. For a fixed p following, Theorem 6 and its corollary the number of points on the hull at step
i is in Ω((log(i))p). To recover a lower bound on the complexity, we first sum overall i ≤ n, and then consider only
i ≥ n/2 to recover that the overall number of points we will consider is in Ω(n/2(log(n/2))p) and thus Ω(n(log(n))p).
Relative to that our algorithm loose just one log(n) term, we thus argue our bound is relatively tight.
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The assumption on the quadratic complexity is true for QuickHull in dimension 2 and 3 (so for p ≤ 2) [48, 63] and
using the algorithm of Chazelle [64] it is also true in dimension 4 (so for p ≤ 3). Still following Chazelle this is no
longer true for any dimension strictly larger than 4 and therefore p > 3.

We begin by two preliminary results. The first is a crude bound on the expectation of the square of the number of points
on the convex hull of n points (that is (V p

n )
2 following the notation of Section 4.2) under the assumptions of Theorem 6.

The second result bounds the expected complexity of computing the hull of 2n points if we already know the points on
the hull of the first n points and the last n points. In all that follows we will assume the two following assumptions.
Assumption 1. In any dimension p ≥ 1, there are positive constants c1 and c2 for which the expected number of
vertices, E[V p

n ], can be bounded as follows:

E[V p
n ] ≤ c1 log(n)p + c2.

This is true under the conditions of Corollary 1.
Assumption 2. We assume that the convex hull algorithm we are using is at worst quadratic in time and assume there
exist two positive constants c3 and c4 such that for n points the time complexity is Time(n) ≤ c3n2 + c4.

We now state our bound on the expectation of the square of the number of points on the hull V p
n .

Lemma 2.
E[(V p

n )
2] ≤ c1n log(n)p + c2n. (15)

Proof. V p
n is bounded by 0 and n− 1. It follows that

E[(V p
n )

2] =

n∑
i=0

P(V p
n = i)i2 ≤ n

n∑
i=0

P(V p
n = i)i ≤ nE[V p

n ] ≤ c1n log(n)p + c2n. (16)

We get the last inequality with Assumption 1.

We now state our bound on the complexity of merging the hull of two successive chunks.
Lemma 3. Consider we have 2n data points. Assume we knowW1 the index of the points on the hull of {P (τ)}1≤τ≤n

andW2 the index of the points on the hull of {P (τ)}n+1≤τ≤2n. Under the condition of Corollary 1 and Assumption 2
computing the index of the points on the hull of {P (τ)}1≤τ≤2n can be done in less than 4c1c3n(log n)

p + 4c2c3n+ c4
time.

Proof. We will compute those points as the points on the hull of {P (τ)}τ∈W1∪W2
. By Assumption 2 the time

complexity of processing these |W1|+ |W2| points is

Time (|W1|+ |W2|) ≤ c3 (|W1|+ |W2|)2 + c4 ≤ 2c3
(
|W1|2 + |W2|2

)
+ c4.

Now taking the expectation and noting that under the assumption of Corollary 1 the distribution of |W1| is the same as
the distribution of |W2| we get

E (Time (|W1|+ |W2|)) ≤ 4c3E
(
|W1|2

)
+ c4.

Using (15) we get that the expected complexity is

E (Time (|W1|+ |W2|)) ≤ 4c1c3n(log n)
p + 4c2c3n+ c4. (17)

F.1 Dyadic algorithm for MdFOCuS

F.1.1 Set of candidates

Recall that at time n we would ideally only store the vertices on the hull of {P (τ)}τ<n. In the following algorithm
we store the vertices on the hull of chunks of the form {k2q + 1, . . . , (k + 1)2q} for all q ≥ qmin. To be specific, we
consider the base 2 description of n : n =

∑⌊log2(n)⌋
q=0 nq2

q,with nq = 0 or 1, and define for q in {0, . . . , ⌊log2(n−1)⌋}
the subset Uq

n of {1, . . . , n− 1} as

Uq
n = {τ |

⌊log2(n−1)⌋∑
q′=q+1

(n− 1)q′2
q′ < τ ≤

⌊log2(n−1)⌋∑
q′=q

(n− 1)q′2
q′},
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Table 10: A few Uq
n sets.

n q = 4 q = 3 q = 2 q = 1 q = 0
31 {1, . . . 16} {17, . . . 24} {25, . . . 28} {29, 30} ∅
30 {1, . . . 16} {17, . . . 24} {25, . . . 28} ∅ {29}
29 {1, . . . 16} {17, . . . 24} {25, . . . 28} ∅ ∅
28 {1, . . . 16} {17, . . . 24} ∅ {25, 26} {27}
27 {1, . . . 16} {17, . . . 24} ∅ {25, 26} ∅
26 {1, . . . 16} {17, . . . 24} ∅ ∅ {25}
25 {1, . . . 16} {17, . . . 24} ∅ ∅ ∅
24 {1, . . . 16} ∅ {17, . . . 20} {21, 22} {23}
23 {1, . . . 16} ∅ {17, . . . 20} {21, 22} ∅
22 {1, . . . 16} ∅ {17, . . . 20} ∅ {21}
21 {1, . . . 16} ∅ {17, . . . 20} ∅ ∅
20 {1, . . . 16} ∅ ∅ {17, 18} {19}

with the convention that for q = ⌊log2(n− 1)⌋ the sum
∑⌊log2(n−1)⌋

q′=q+1 (n− 1)q′2
q′ is equal to 0.

We provide a few examples of these sets for n = 20 to n = 31 in Table 10. It can be observed that often Uq
n differs

from Uq
n+1 only for small values of q.

Now note that for any qmin ≤ ⌊log2(n− 1)⌋
⌊log2(n−1)⌋⋃

q=qmin

Uq
n ∪ {τ |

⌊log2(n−1)⌋∑
q′=qmin

(n− 1)q′2
q′ < τ ≤ n− 1},

is a partition of {1, . . . , n− 1}. The right-side set of this partition has at most 2qmin elements. We use this partition to
update the set of candidates. To be specific our algorithm maintains

Tn =

⌊log2(n−1)⌋⋃
q=qmin

Wq
n ∪

{P (τ)| ⌊log2(n−1)⌋∑
q′=qmin

(n− 1)q′2
q′ < τ ≤ n− 1}

 ,

with Wq
n = HULL

(
{P (τ)}τ∈Uq

n

)
. Note that Tn contains all the points (or index of the points) on the hull of

{P (τ)}τ∈{1,...,n−1}.

In the next paragraphs we bound the expected number of points in Tn and then explain how we compute Tn+1 from Tn.
Lemma 4. For a fixed qmin, under Assumption 1 we have

E(|Tn|) ≤ 2c1(log n)
p+1 + 2c2 log n+ 2qmin . (18)

Proof. For a fixed qmin using Assumption 1 for all Uq
n we get that

E(|Tn|) ≤
⌊log2(n−1)⌋∑

q=qmin

(c1(log 2
q)p + c2) + 2qmin

≤
⌊log2(n−1)⌋∑

q=qmin

(c1(log n)
p + c2) + 2qmin

≤ 2c1(log n)
p+1 + 2c2 log n+ 2qmin .

We get the last inequality using the fact that we sum over at most log2(n) terms and 1/ log(2) ≤ 2.

F.1.2 Updating the set of candidates

To compute Tn+1 from scratch we need to apply the hull algorithm on all Uq
n+1 for q ≥ qmin. Assuming we already

computed Tn computing Tn+1 is a bit easier. This is because it is often the case that Uq
n+1 = Uq

n. Therefore we directly
get the indices of the point on the hull of Uq

n+1 as Uq
n ∩ Tn because

Wq
n = HULL

(
{P (τ)}τ∈Uq

n

)
= Uq

n ∩ Tn .

Algorithm 2 formalise this idea and iteratively merge chunks of size 2q to take advantage of Lemma 3.
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Algorithm 2 Update of the set of candidates

1: Input : n and T = Tn
2: T ← T ∪ {n}
3: q ← qmin

4: while remainder(n/2q) = 0 do
5: T ′ ← {τ ∈ T |τ > n− 2q}
6: T ′′ ← QUICKHULL({P (τ)}τ∈T ′)
7: T ← T \ (T ′ \ T ′′) ▷ discard vertices in T ′ not in T ′′

8: q ← q + 1
9: end while

10: return T = Tn+1

Remark 7. In Algorithm 2 we assume that if the set of points {P (τ)}τ∈T ′ doesn’t define a proper volume in dimension
p + 1 then the output of QUICKHULL({P (τ)}τ∈T ′) is simply T ′. If we choose qmin such that 2qmin is larger than
p+ 2 this is unlikely to happen for data drawn from distribution with a continuous density.

We now continue with an informal description of Algorithm 2. Looking at line 4 when we include a new data point
n+ 1 two cases can happen.

• n is not a multiple of 2qmin . In that case for all q ≥ qmin we have Uq
n+1 = Uq

n. We just need to add n as a
possible changepoint to Tn to recover Tn+1. This was done at line 2.

• n is a multiple of 2qmin . In that case for some q ≥ qmin we have that Uq
n+1 is different from Uq

n. We therefore
need to update the set of points using the hull algorithm.

For the later case let us define qn ≥ qmin as the largest integer such that 2qn divides n. Before we explain the update of
line 5, 6 and 7 note the following facts.

• In base 2, n ends with a one followed by qn zeros. In other words nqn = 1 and for all q < qn nq = 0. Thus
all Uq

n+1 with q < qn should be empty and Uqn
n+1 is not.

• In base 2, n − 1 ends with a zero followed by qn ones. In other words (n− 1)qn = 0 and for all q < qn

(n− 1)q = 1. Thus all Uq
n with q < qn are not empty.

• We know the index of the points on the hull for all set of indices Uq
n with q < qn:

Wq
n = HULL

(
{P (τ)}τ∈Uq

n

)
= Uq

n ∩ Tn.

• Finally, Uqn
n+1 = (∪qmin≤q<qnUq

n) ∪ {τ |n− 2qmin < τ ≤ n}.

Our goal is to get the point (or indices of these points) on the hull of P (τ) for τ in Uqn
n+1. To exploit the merging bound

of (17) Algorithm 2 iteratively apply the hull algorithm on larger and larger chunks of the data trimming the points that
are not on the hull. In the while loop, from line 4 to 9, of Algorithm 2 we can distinguish two cases.

1. For q = qmin on line 5 and 6 the algorithm applies the hull algorithm on the 2q right-most points:
HULL({P (τ)}n−2q<τ≤n). It then discards on line 7 all indices larger than n − 2q that are not on this
hull.

2. If qmin < q ≤ qn on line 5 and 6 the algorithm applies the hull algorithm on indices that are larger than n−2q.
In essence it is applying the hull algorithm on the points computed during the previous while step (indices
larger than n−2q−1 and in T ) with those ofWq

n = HULL
(
{P (τ)}τ∈Uq

n

)
= Uq

n∩Tn (indices between n−2q

and n− 2q−1, and in T ). A bit more formally, callingW ′q
n+1 the ouput of line 6 (T ′′) at step q of the while

loop, we are mergingWq
n andW ′q−1

n+1 as follows:

W ′q
n+1 = HULL

(
{P (τ)}τ∈Wq

n∪W′q−1
n+1

)
.

On line 7 the algorithm is discarding all indices larger than n− 2q that are not on this hullW ′q
n+1.

Proceeding in such a way at each step we merge the points on the hull of two successive chunks of size 2q−1 to
recover the point on the hull of a chunk of size 2q . Figure 13 is a schematic representation of these successive fusions
(applications of the hull algorithm).
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Figure 13: Schematic representation of the while loop of Algorithm 2 for qn being the largest q such that 2q divides
n. First applying the hull algorithm on {n− 2qmin + 1, . . . , n} (on the right) following the red arrow we iteratively
aggregate the result with the hull of points in Uq

n to recover the point on the hull of Uqn
n+1 (on the left). In such a way we

effectively retrieve Tn+1 as all Uq
n+1 are empty for q < qn.

Example 1. In this paragraph we explain how the algorithm proceeds for n = 24 and qmin = 2. In base 2,
n − 1 = 10111. Therefore (see the definition of set Tn) we already computed the points on the hull of P (τ) for
τ in U4

24 = {1, . . . 16} and τ in U2
24 = {17, . . . , 20}, and additionally we store all indices τ larger than 24 − 22 :

{21, 22, 23}. When we include a new observation n+ 1 = 25, we need to include a possible change at n = 24 and
here is what we do with the while loop (starting with q = 2):

• for q = 2 : we run Quickhull on points with indices strictly larger than 20 : {21, 22, 23, 24};

• for q = 3 : to recover U3
25 we run Quickhull on points with indices strictly larger than 16 that is the points

obtain in the previous step (q = 2) union those of the hull of U2
24 (that were computed for n+ 1 = 21 as the

point on the hull of U2
21).

• for q = 4 : we stop as the remainder of 24/24 is not 0.

We now give the time expected time complexity of the algorithm.

Lemma 5. Under the assumption of Corollary 1 and Assumption 2, the expected time complexity of Algorithm 2 is

E (Time(Algorithm 2)) = O
(
n log(n)p+1

)
. (19)

Proof. Considering all time steps up to n+ 1 the algorithm used the QuickHull algorithm on all successive (and non
overlapping) chunks of size 2q for q larger than qmin and smaller than ⌊log2(n)⌋.
For the smallest scale, n′ = 2qmin , we have n/2qmin chunks and run QuickHull on all points. Using Assumption 2, the
worst time per chunk is less than c3(2qmin)2 + c4, and summing overall chunks we get nc32qmin + nc4

2qmin
operations.

So the smallest scale is in O(n).
We will now successively consider all larger scales n′ = 2q for qmin < q ≤ ⌊log2(n)⌋. Note that the hull of a chunk
of size n′ = 2q is obtained combining the hulls of two smaller chunks of size 2q−1. For any such chunk we can thus
exploit Lemma 3 and equation (17) with |W1| = |W2| = n′/2 = 2q−1 and we get

E (Time(|W1|+ |W2|)) ≤ 4c1c32
q−1(log 2q−1)p + 4c2c32

q−1 + c4 .

Multiplying by n/2q to consider all chunks of size 2q we get that the time to process scale 2q is

E (Time(“Scale 2q”)) ≤ n

2q
(
4c1c32

q−1(log 2q−1)p + 4c2c32
q−1 + c4

)
≤ 4c1c3

n

2
(log 2q−1)p + 4c2c3

n

2
+ c4

n

2q

≤ 4c1c3
n

2
(log n)p + 4c2c3

n

2
+ c4

n

2q
.

So scale 2q is in O(n log(n)p). Multiplying by log2(n) to consider all scales we get the desired result.
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F.1.3 MdFOCuS with dyadic update

The MdFOCuS Algorithm implementing this update of the set of candidates is presented in Algorithm 3. Combining
Lemma 4 and 5 we get an overall expected complexity in O(n log(n)p+1) complexity.

Algorithm 3 MdFOCuS(0) Dyadic algorithm

1: Input 1: p-variate independent time series {xt}t=1,2,...

2: Input 2: threshold thrs and η1 if known pre-change parameter
3: Input 3: qmin min power 2 scale at which we run QuickHull
4: Output: stopping time n and maximum likelihood change : τ̂(.) or τ̂(η1)
5: likelihoodRatio← −∞, T ← ∅, n← 0
6: while (likelihoodRatio < thrs) do
7: n← n+ 1
8: T ← T ∪ {n− 1}
9: maxLikelihood← maxτ∈T {maxη1,η2 lτ,n(η1, η2)} ▷ η1 is fixed in MdFOCuS0

10: likelihoodRatio← maxLikelihood−maxη1,η2
ln,n(η1, η2) ▷ η1 is fixed in MdFOCuS0

11: q ← qmin

12: while remainder(n−1
2q ) = 0 do

13: T ′ ← {τ ∈ T |τ > n− 2q}
14: T ′′ ← QUICKHULL({P (τ)}τ∈T ′)
15: T ← T \ (T ′ \ T ′′) ▷ discard vertices in T ′ not in T ′′

16: q ← q + 1
17: end while
18: end while
19: return n and likelihoodRatio

We implemented Algorithm 3 also for a change in the mean of multi-dimensional Gaussian signal (see Table 1) in
R/C++ using the qhull library (see link in the Supplementary Material).

We evaluate the empirical run times of Algorithm 3 with various values of qmin using the profiles of Appendix E.1. In
Figure 14 we report the average run time as a function of the dyadic parameter qmin for MdFOCuS0 with dyadic update
(that is for a known value of η1) and values of qmin in 3, . . . , 12. We observe a minimum run time for qmin in 6 for
p = 1, in 7 for p = 2 and in 8 for p = 3. As a consequence in the rest of the simulations we always set qmin to p+ 5.

Using the simulation framework of Section 4.3.1 we evaluated the run times of MdFOCuS0 with dyadic update for
dimension p = 1 to p = 3 and compared it with run times of MdFOCuS. The average run times are presented in Figure
15. Dyadic MdFOCuS0 is slower than MdFOCuS0, about 2 times slower.
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