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Summary. Detecting change-points in data is challenging because of the range of possi-
ble types of change and types of behaviour of data when there is no change. Statistically

efficient methods for detecting a change will depend on both of these features, and it can
be difficult for a practitioner to develop an appropriate detection method for their applica-

tion of interest. We show how to automatically generate new detection methods based on

training a neural network. Our approach is motivated by many existing tests for the pres-
ence of a change-point being able to be represented by a simple neural network, and thus

a neural network trained with sufficient data should have performance at least as good

as these methods. We present theory that quantifies the error rate for such an approach,
and how it depends on the amount of training data. Empirical results show that, even

with limited training data, its performance is competitive with the standard CUSUM test
for detecting a change in mean when the noise is independent and Gaussian, and can

substantially outperform it in the presence of auto-correlated or heavy-tailed noise. Our

method also shows strong results in detecting and localising changes in activity based on
accelerometer data.

Keywords: Structural breaks; Neural networks; Likelihood-free inference; Su-
pervised learning; Classification; Automatic statistician

1. Introduction

Detecting change-points in data sequences is of interest in many application areas such
as bioinformatics (Picard et al., 2005), climatology (Reeves et al., 2007), signal process-
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ing (Haynes et al., 2017) and neuroscience (Oh et al., 2005), and is seen as a key big-data
problem (National Research Council, 2013).

Over the past few decades, various methodologies of change-point detection have been
extensively studied, see Killick et al. (2012); Jandhyala et al. (2013); Fryzlewicz (2014);
Wang and Samworth (2018); Truong et al. (2020) and references therein. Most research
on change-point detection has concentrated on detecting and localising different types of
change, e.g. change in mean (Killick et al., 2012; Fryzlewicz, 2014), variance (Gao et al.,
2019; Li et al., 2015), median (Fryzlewicz, 2021) or slope (Baranowski et al., 2019; Fearnhead et al.,
2019), amongst many others.

Many change-point detection methods are based upon modelling data when there is
no change and when there is a single change, and then constructing an appropriate test
statistic to detect the presence of a change (e.g. James et al., 1987; Fearnhead and Rigaill,
2020). The form of a good test statistic will vary with our modelling assumptions and
for the type of change we wish to detect. This can lead to difficulties in practice. As we
use new models for the data, it is unlikely that there will be a change-point detection
method specifically designed for our modelling assumptions. Furthermore, developing an
appropriate method under a complex model may be challenging, while in some applica-
tions an appropriate model for the data may be unclear but we may have substantial
historical data that shows what patterns of data to expect when there is, or is not, a
change.

In these scenarios, currently a practitioner would need to choose the existing change
detection method which seems the most appropriate for the type of data they have and
the type of change they wish to detect. To obtain reliable performance, they would then
need to adapt its implementation, for example tuning the choice of threshold for detecting
a change. Often, this would involve applying the method to simulated or historical data.

To address the challenge of automatically developing new change detection methods,
this paper is motivated by the question: Can we construct new test statistics for detecting
a change based only on having labelled examples of change-points? We show that this is
indeed possible by training a neural network to classify whether or not a data set has a
change of interest. This turns change-point detection in a supervised learning problem.

A key motivation for our approach are results that show many common test statistics
for detecting changes, such as the CUSUM test for detecting a change in mean, can be
represented by simple neural networks. This means that with sufficient training data,
the test learnt by such a neural network will give performance at least as good as these
standard tests. In scenarios where a standard test, such as CUSUM, is being applied
but its modelling assumptions do not hold, we can expect the test learnt by the neural
network to outperform it.

There has been increasing recent interest in whether ideas from machine learning,
and methods for classification, can be used for change-point detection. Within com-
puter science and engineering, these include a number of methods designed for and that
show promise on specific applications (e.g. Ahmadzadeh, 2018; De Ryck et al., 2021;
Gupta et al., 2022). Within statistics, Londschien et al. (2022) and Lee et al. (2022)
consider training a classifier as a way to estimate the likelihood-ratio statistic for a
change. However these methods train the classifier in an un-supervised way on the data
being analysed, using the idea that a classifier would more easily distinguish between
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two segments of data if they are separated by a change-point. Chang et al. (2019) use
simulated data to help tune a kernel-based change detection method. Methods that use
historical, labelled data have been used to train the tuning parameters of change-point
algorithms (e.g. Hocking et al., 2015; Liehrmann et al., 2021), but we are unaware of any
previous work using such data to develop the change-point methods itself. As such, and
for simplicity, we focus on the most fundamental aspect, namely the problem of detect-
ing a single change. However, detecting and localising multiple changes is considered in
Section 6 when analysing activity data.

The method we develop has parallels with likelihood-free inference methods (Gourieroux et al.,
1993; Beaumont, 2019) in that one application of our work is to use the ability to simulate
from a model so as to circumvent the need to analytically calculate likelihoods. However,
the approach we take is very different from standard likelihood-free methods which tend
to use simulation to estimate the likelihood function itself. By comparison, we directly
target learning a function of the data that can discriminate between instances that do or
do not contain a change (though see Gutmann et al., 2018, for likelihood-free methods
based on re-casting the likelihood as a classification problem).

We now briefly introduce our notation. For any n ∈ Z
+, we define [n] := {1, . . . , n}.

We take all vectors to be column vectors unless otherwise stated. Let 1n be the all-one
vector of length n. Let 1{·} represent the indicator function. The vertical symbol | · |
represents the absolute value or cardinality of · depending on the context. For vector

x = (x1, . . . , xn)
⊤, we define its p-norm as ‖x‖p :=

(∑n
i=1 |xi|p

)1/p
, p ≥ 1; when p =∞,

define ‖x‖∞ := maxi |xi|.
The rest of this article is organised as follows: Section 2 introduces some basic concepts

of neural networks. We show that the CUSUM and other likelihood-ratio tests can be
represented by a neural network in Section 3. We present theory about the generalisation
error of neural network representations in Section 4. Section 5 shows the empirical
performance of CUSUM and its neural network representations in different scenarios. In
Section 6, we extend our methodology to multiple change-points and multiple change-
types, and analyse human activity sensing data using a deep residual neural network.
The paper ends with a discussion in Section 7. All proofs appear in the supplement.

2. Neural networks

The initial focus of our work is on the binary classification problem for whether a change-
point exists in a given time series. We will work with multilayer neural networks with
Rectified Linear Unit (ReLU) activation functions and binary output. The multilayer
neural network consists of an input layer, hidden layers and an output layer, and can be
represented by a direct acyclic graph, see Figure 1. Let L ∈ Z

+ represent the number of
hidden layers and m = (m1, . . . ,mL)

⊤ the vector of the hidden layers widths, i.e. mi is the
number of nodes in the ith hidden layer. For a neural network with L hidden layers we use
the convention that m0 = n and mL+1 = 1. For any bias vector b = (b1, b2, . . . , br)

⊤ ∈ R
r,

define the shifted activation function σb : Rr → R
r:

σb((y1, . . . , yr)
⊤) = (σ(y1 − b1), . . . , σ(yr − br))

⊤,
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Fig. 1. A neural network with 2 hidden layers and width vector m = (4, 4)

where σ(x) = max(x, 0) is the ReLU activation function. The neural network can be
mathematically represented by the composite function h : Rn → {0, 1} as

h(x) := σ∗
λWLσbL

WL−1 · · ·W1σb1
W0x, (1)

where σ∗
λ(x) = 1{x > λ}, λ > 0 and Wℓ ∈ R

mℓ+1×mℓ for ℓ ∈ {0, . . . , L} represent the
weight matrices. We define the function class HL,m to be the class of functions h(x)
with L hidden layers and width vector m.

The output layer in (1) employs the shifted heaviside function σ∗
λ(x) which is used

for binary classification as the final activation function. This is helpful for understand-
ing the Vapnik–Chervonenkis (VC) dimension (see, e.g. Shalev-Shwartz and Ben-David,
2014, Definition 6.5) of the neural network function class (Bartlett et al., 2019). In Theo-
rem 4.3, the VC dimension of HL,m controls the generalisation error of the network under
the assumption that we can obtain the true empirical risk minimiser. However, depending
on the purpose, other output functions are possible such as the least-squares loss in non-
parametric regression with deep neural networks (Schmidt-Hieber, 2020; Jiao et al., 2022)
or truncated cross-entropy loss in multi-category classification (Bos and Schmidt-Hieber,
2022).

3. CUSUM test and its generalisations are neural networks

3.1. Change in mean
We initially consider the case of a single change-point τ ∈ [n− 1] in the model

X = µ+ ξ, (2)

where µ = (µ1, . . . , µn)
⊤ := (µL1{i ≤ τ}+ µR1{i > τ})i∈[n] ∈ R

n and µL, µR are the

signal before and after the change-point; ξ ∼ Nn(0, In). The CUSUM test is widely
used to detect mean changes in a univariate data. For the observation x, the CUSUM
transformation C : Rn → R

n−1 is defined as C(x) := (v⊤
1 x, . . . ,v

⊤
n−1x)

⊤, where vi :=(√
n−i
in 1i,−

√
i

(n−i)n1n−i

)⊤
for i ∈ [n − 1]. Here, for each i ∈ [n − 1], (v⊤

i x)
2 is the log

likelihood-ratio statistic for testing a change at time i against the null of no change (e.g.
Baranowski et al., 2019). For a given threshold λ > 0, the classical CUSUM test for a
change in the mean of the data is defined as

hCUSUM
λ (x) = 1{‖C(x)‖∞ > λ}.
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The following lemma shows that hCUSUM
λ (x) can be represented as a neural network.

Lemma 3.1. For any λ > 0, we have hCUSUM
λ (x) ∈ H1,2n−2.

The fact that the widely-used CUSUM statistic can be viewed as a simple neural
network has far-reaching consequences: this means that given enough training data, a
neural network architecture that permits the CUSUM test as its special case cannot
do worse than CUSUM in classifying change-point versus no-change-point signals. This
serves as the main motivation for our work, and a prelude to our next results.

3.2. Beyond CUSUM: other likelihood-ratio tests

We can generalise the simple change in mean model to allow for different types of change
or for non-independent noise. Many such change-point models can be expressed as a
change in regression problem, with the model for data given a change at τ being of the
form

X = Zβ + cτφ+ Γξ, (3)

where for some p ≥ 1, Z is an n× p matrix of covariates for the model with no change,
cτ is an n× 1 vector of covariates specific to the change at τ , and the parameters β and
φ are, respectively, a p× 1 vector and a scalar. The noise is defined in terms of an n×n
matrix Γ and an n× 1 vector of independent standard normal random variables, ξ.

For example, the change in mean problem has p = 1, with Z a column vector of
ones, and cτ being a vector whose first τ entries are zeros, and the remaining entries
are ones. In this formulation β is the pre-change mean, and φ is the size of the change.
The change in slope problem (Fearnhead et al., 2019) has p = 2 with the columns of Z
being a vector of ones, and a vector whose ith entry is i; and cτ has ith entry that is
max{0, i − τ}. In this formulation β defines the pre-change linear mean, and φ the size
of the change in slope. Choosing Γ to be proportional to the identity matrix gives a
model with independent, identically distributed noise; but other choices would allow for
auto-correlation.

The following result is a generalisation of Lemma 3.1, which shows that the likelihood-
ratio test for (3) can be represented by our neural network.

Lemma 3.2. Consider the change-point model (3) with a possible change at τ ∈ [n−1].
Assume further that Γ is invertible. Then there is an h∗ ∈ H1,2n−2 equivalent to the
likelihood-ratio test for testing φ = 0 against φ 6= 0.

Importantly, this result shows that for this much wider class of change-point models, we
can replicate the likelihood-ratio test for change using a simple neural network.

4. Generalisation error of neural-network change-point classifiers

In Section 3, we showed that CUSUM and generalised CUSUM could be represented by
a neural network. Therefore, with an infinite amount of training data, a trained neural
network classifier that included CUSUM, or generalised CUSUM, as a special case would
perform no worse than it on unseen data. In this section, we provide generalisation
bounds for a neural network classifier for the change-in-mean problem, given a finite
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amount of training data. En route to this main result, stated in Theorem 4.3, we provide
generalisation bounds for the CUSUM test, in which the threshold has been chosen on a
finite training data set.

We write P (n, τ, µL, µR) for the distribution of the multivariate normal random vec-
tor X ∼ Nn(µ, In) where µ := (µL1{i ≤ τ}+ µR1{i > τ})i∈[n]. Define η := τ/n.
Lemma 4.1 and Corollary 4.1 control the misclassification error of the CUSUM test.

Lemma 4.1. Fix ε ∈ (0, 1). Suppose X ∼ P (n, τ, µL, µR) for some τ ∈ Z
+ and

µL, µR ∈ R.

(a) If µL = µR, then P
{
‖C(X)‖∞ >

√
2 log(n/ε)

}
≤ ε.

(b) If |µL − µR|
√

η(1− η) >
√

8 log(n/ε)/n, then P
{
‖C(X)‖∞ ≤

√
2 log(n/ε)

}
≤ ε.

For any B > 0, define

Θ(B) :=
{
(τ, µL, µR) ∈ [n− 1]× R× R : |µL − µR|

√
τ(n− τ)/n ∈ {0} ∪ (B,∞)

}
.

Here, |µL − µR|
√

τ(n− τ)/n = |µL − µR|
√

η(1− η) can be interpreted as the signal-
to-noise ratio of the mean change problem. Thus, Θ(B) is the parameter space of data
distributions where there is either no change, or a single change-point in mean whose
signal-to-noise ratio is at least B. The following corollary controls the misclassification
risk of a CUSUM statistics based classifier:

Corollary 4.1. Fix B > 0. Let π0 be any prior distribution on Θ(B), then draw
(τ, µL, µR) ∼ π0 and X ∼ P (n, τ, µL, µR), and define Y = 1{µL 6= µR}. For λ = B

√
n/2,

the test hCUSUM
λ satisfies

P(hCUSUM
λ (X) 6= Y ) ≤ ne−nB2/8.

Theorem 4.2 below, which is based on Bartlett et al. (2019, Theorem 7) and Mohri et al.
(2012, Corollary 3.4), shows that the empirical risk minimiser in the neural network
class H1,2n−2 has good generalisation properties over the class of change-point problems

parameterised by Θ(B). Given training data (X(1), Y (1)), . . . , (X(N), Y (N)) and any
h : Rn → {0, 1}, we define the empirical risk of h as

LN (h) :=
1

N

N∑

i=1

1{Y (i) 6= h(X(i))}.

We use the 0-1 empirical loss for ease of theoretical discussion as without the 0-1 loss, it
is impossible to use the VC dimension to bound the generalisation error in Theorems 4.2
and 4.3. But we also remark that in practice we use the cross-entropy loss during training
since its smoothness facilitates back-propagation updates of network weights.

Theorem 4.2. Fix B > 0 and let π0 be any prior distribution on Θ(B). We draw
(τ, µL, µR) ∼ π0, X ∼ P (n, τ, µL, µR), and set Y = 1{µL 6= µR}. Suppose that

the training data (X(1), Y (1)), . . . , (X(N), Y (N)) are independent copies of (X, Y ) and
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hERM := argminh∈H1,2n−2
LN (h) is the empirical risk minimiser. There exists a univer-

sal constant C > 0 such that for any δ ∈ (0, 1), (4) holds with probability 1− δ.

P(hERM(X) 6= Y ) ≤ ne−nB2/8 + C

√
n2 log(n) log(N) + log(1/δ)

N
. (4)

The misclassification error in (4) is bounded by two terms. The first term represents the
misclassification error of CUSUM test, see Corollary 4.1, and the second term depends on
the complexity of the neural-network class measured in its VC dimension. Theorem 4.2
suggests that for training sample size N ≫ n2 log n, a well-trained single-hidden-layer
neural network with 2n − 2 hidden nodes would have comparable performance to that
of the CUSUM test. However, as we will see in Section 5, in practice, a much smaller
training sample size N is needed for the neural network to be competitive in the change-
point detection task. This is because the 2n−2 hidden layer nodes in the neural network
representation of hCUSUM

λ encode the components of the CUSUM transformation (±v⊤
t x :

t ∈ [n− 1]), which are highly correlated.
By suitably pruning the hidden layer nodes, we can show that a single-hidden-layer

neural network with O(log n) hidden nodes is able to represent a modified version of
the CUSUM test with essentially the same misclassification error. More precisely, let
Q := ⌊log2(n/2)⌋ and write T0 := {2q : 0 ≤ q ≤ Q} ∪ {n− 2q : 0 ≤ q ≤ Q}. We can then
define

hCUSUM∗

λ∗
(X) = 1

{
max
t∈T0

|v⊤
t X | > λ∗

}
.

By the same argument as in Lemma 3.1, we can show that hCUSUM∗

λ∗
∈ H1,4⌊log2(n)⌋

for any
λ∗ > 0. The following Theorem shows that high classification accuracy can be achieved
under a weaker training sample size condition compared to Theorem 4.2.

Theorem 4.3. Fix B > 0 and let the training data (X(1), Y (1)), . . . , (X(N), Y (N)) be
generated as in Theorem 4.2. Let hERM := argminh∈HL,m

LN (h) be the empirical risk

minimiser for a neural network with L ≥ 1 layers and m = (m1, . . . ,mL)
⊤ hidden layer

widths. If m1 ≥ 4⌊log2(n)⌋ and mrmr+1 = O(n log n) for all r ∈ [L−1], then there exists
a universal constant C > 0 such that for any δ ∈ (0, 1), (5) holds with probability 1− δ.

P(hERM(X) 6= Y ) ≤ 2⌊log2(n)⌋e−nB2/24 + C

√
L2n log2(Ln) log(N) + log(1/δ)

N
. (5)

Theorem 4.3 generalises the single hidden layer neural network representation in The-
orem 4.2 to multiple hidden layers. In practice, multiple hidden layers help keep the
misclassification error rate low even when N is small, see the numerical study in Sec-
tion 5. Theorems 4.2 and 4.3 are examples of how to derive generalisation errors of
a neural network-based classifier in the change-point detection task. The same work-
flow can be employed in other types of changes, provided that suitable representation
results of likelihood-based tests in terms of neural networks (e.g. Lemma 3.2) can be
obtained. In a general result of this type, the generalisation error of the neural network
will again be bounded by a sum of the error of the likelihood-based classifier together
with a term originating from the VC-dimension bound of the complexity of the neural
network architecture.
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5. Numerical study

We now investigate empirically our approach of learning a change-point detection method
by training a neural network. Motivated by the results from the previous section we will
consider fitting a neural network with a single layer and consider how varying the number
of hidden layers and the amount of training data affects performance. We will compare to
a test based on the CUSUM statistic, both for scenarios where the noise is independent
and Gaussian, and for scenarios where there is auto-correlation or heavy-tailed noise.
The CUSUM test can be sensitive to the choice of threshold, particularly when we do
not have independent Gaussian noise, so we tune its threshold based on training data.

When training the neural network, we first standardise the data onto [0, 1], i.e. x̃i =
((xij − xmin

i )/(xmax
i − xmin

i ))j∈[n] where xmax
i := maxj xij , x

min
i := minj xij . This makes

the neural network procedure invariant to either adding a constant to the data or scaling
the data by a constant, which are natural properties to require. We train the neural
network by minimising the cross-entropy loss on the training data. We run training
for 200 epochs with a batch size of 32 and a learning rate of 0.001 using the Adam
optimiser (Kingma and Ba, 2014). These hyperparameters are chosen based on a training
dataset with cross-validation, more details can be found in Section 2 of the supplementary
material.

We generate our data as follows. Given a sequence of length n, we draw τ ∼
Unif{2, . . . , n− 2}, set µL = 0 and draw µR|τ ∼ Unif([−1.5b,−0.5b]∪ [0.5b, 1.5b]), where

b :=
√

8n log(20n)
τ(n−τ) is chosen in line with Lemma 4.1 to ensure a good range of signal-

to-noise ratios. We then generate x1 = (µL1{t≤τ} + µR1{t>τ} + εt)t∈[n], with the noise
(εt)t∈[n] following an AR(1) model with possibly time-varying autocorrelation εt|ρt = ξ1
for t = 1 and ρtεt−1 + ξt for t ≥ 2, where (ξt)t∈[n] are independent, possibly heavy-tailed
noise. The autocorrelations ρt and innovations ξt are from one of the three scenarios:

S1: n = 100, N ∈ {100, 200, . . . , 700}, ρt ∈ {0, 0.7} and ξt ∼ N(0, 1).
S2: n = 100, N ∈ {100, 200, . . . , 1000}, ρt ∼ Unif([0, 1]) and ξt ∼ N(0, 2).
S3: n = 100, N ∈ {100, 200, . . . , 1000}, ρt = 0 and ξt ∼ Cauchy(0, 0.3).

The above procedure is then repeated N/2 times to generate independent sequences
x1, . . . ,xN/2 with a single change, and the associated labels are (y1, . . . , yN/2)

⊤ = 1N/2.
We then repeat the process another N/2 times with µR = µL to generate sequences
without changes xN/2+1, . . . ,xN with (yN/2+1, . . . , yN )⊤ = 0N/2. The data with and
without change (xi, yi)i∈[N ] are combined and randomly shuffled to form the training
data. The test data are generated in a similar way, with a sample size Ntest = 30000
and the slight modification that µR|τ ∼ Unif([−1.75b,−0.25b] ∪ [0.25b, 1.75b]) when a
change occurs. This modification allows the test set to have changes with signal-to-noise
ratios outside the range covered by the training set. We compare the performance of
the CUSUM test with the threshold cross-validated on the training data with neural
networks from four function classes: H1,m(1) ,H1,m(2) , H5,m(1)15

and H10,m(1)110
where

m(1) = 4⌊log2(n)⌋ and m(2) = 2n − 2 respectively (cf. Theorem 4.3 and Lemma 3.1).
Figure 2 shows the test misclassification error rate (MER) of the four procedures in the
three scenarios S1, S2 and S3. We observe that when data are generated with independent
Gaussian noise (Figure 2(a)), the trained neural network with m(1) and m(2) single hidden
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Fig. 2. Plot of the test set MER, computed on a test set of size Ntest = 30000, against training

sample size N for detecting the existence of a change-point on data series of length n = 100.
We compare the performance of the CUSUM test and neural networks from four function

classes: H1,m(1) ,H1,m(2) , H5,m(1)15
and H10,m(1)110

where m(1) = 4⌊log2(n)⌋ and m(2) = 2n− 2

respectively under scenarios S1, S2 and S3 described in Section 5.

layer nodes attain very similar test MER compared to the CUSUM test, which is optimal
in this setting. This is in line with our Theorem 4.3. More interestingly, when noise
has either autocorrelation (Figure 2(b, c)) or heavy-tailed distribution (Figure 2(d)),
trained neural networks with (L,m): (1,m(1)), (1,m(2)), (5,m(1)

15) and (10,m(1)
110)

outperform the CUSUM test, even after we have optimised the threshold choice of the
latter. Furthermore, given the width vector of neural network in Theorem 4.3, increasing
L can significantly reduce the average MER when N ≤ 200 (Figure 2). This leads us to
develop more complex neural network architecture with finite training data for detecting
multiple changes and multiple change types in Section 6.

6. Detecting multiple changes and multiple change types – case study

From the previous section, we see that single and multiple hidden layer neural net-
works can represent CUSUM or generalised CUSUM tests and may perform better than
likelihood-based test statistics when the model is misspecified. This prompted us to
seek a general network architecture that can detect, and even classify, multiple types of
change. Motivated by the similarities between signal processing and image recognition,
we employed a deep convolutional neural network (CNN) (Yamashita et al., 2018) to
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learn the various features of multiple change-types. However, stacking more CNN layers
cannot guarantee a better network because of vanishing gradients in training (He et al.,
2016). Therefore, we adopted the residual block structure (He et al., 2016) for our neu-
ral network architecture. After experimenting with various architectures with different
numbers of residual blocks and fully connected layers on synthetic data, we arrived at
a network architecture with 21 residual blocks followed by a number of fully connected
layers. Figure 3 shows an overview of the architecture of the final general-purpose deep
neural network for change-point detection. The precise architecture and training method-

ology of this network N̂N can be found in Section 3 of the supplement.
We demonstrate the power of our general purpose change-point detection network in

a numerical study. We train the network on N = 3000 instances of data sequences gener-
ated from a mixture of no change-point in mean or variance, change in mean only, change
in variance only, no-change in a non-zero slope and change in slope only, and compare
its classification performance on a test set of size 30000 against that of oracle likelihood-
based tests (where we pre-specify whether we are testing for change in mean, variance or
slope) and adaptive likelihood-based tests (where we combine likelihood based tests using
the Bayesian Information Criterion). Details of the data-generating mechanism and tests
can be found in Section 2 of the supplementary material. The classification accuracy of
the three approaches in weak and strong signal-to-noise ratio settings are reported in
Table 1. We see that the neural network-based approach achieves higher classification
accuracy than the adaptive likelihood based method. We would not expect the neural
network to outperform the oracle likelihood-based tests as it has no knowledge of the
exact change-type of each time series.

Fig. 3. Architecture of our general-purpose change-point detection neural network. The left

column shows the standard layers of neural network with input size (d, n), d may represent
the number of transformations or channels; We use 21 residual blocks and one global average

pooling in the middle column; The right column includes 5 dense layers with nodes in bracket
and output layer. More details of neural network architecture appear in supplementary material.

We now consider an application to detecting different types of change. The HASC
(Human Activity Sensing Consortium) project data contain motion sensor measurements
during a sequence of human activities, including “stay”, “walk”, “jog”, “skip”, “stair up”
and “stair down”. Complex changes in sensor signals occur during transition from one
activity to the next (see Figure 4). We have 28 labels in HASC data, see Section 3 of
the supplement. To agree with the dimension of the output, we drop two dense layers

http://hasc.jp/hc2011/index-en.html
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Table 1. Test classification accuracy of oracle likelihood-ratio based

method (LRoracle), adaptive likelihood ratio method (LRadapt) and our resid-
ual neural network (ResNet) classifier for setups with weak and strong

signal-to-noise ratios (SNR). Data are generated as a mixture of no change-
point in mean or variance (Class 1), change in mean only (Class 2), change

in variance only (Class 3), no-change in a non-zero slope (Class 4), change

in slope only (Class 5). We report the recalls for each class and the accu-
racy in the last row.

Weak SNR Strong SNR

LRoracle LRadapt ResNet LRoracle LRadapt ResNet
Class 1 0.9780 0.9548 0.8428 0.9749 0.9559 0.9551
Class 2 0.8278 0.8021 0.8012 1.0000 0.6496 0.9498
Class 3 0.7998 0.7973 1.0000 0.9789 0.9779 1.0000
Class 4 0.9953 0.9431 0.8813 0.9964 0.9431 0.9358
Class 5 0.8534 0.8362 0.8752 0.9841 0.9750 0.9548

Accuracy 0.8909 0.8667 0.8801 0.9869 0.9003 0.9591

“Dense(10)” and “Dense(20)” in Figure 3. The resulting network can be effectively applied
for change-point detection in sensory signals of human activities, and can achieve high
accuracy in single change-point classification tasks (Figure S5 of supplementary material).

Finally, we remark that our neural network-based change-point detector can be utilised
to detect multiple change-points. We employ an idea similar to that of MOSUM (Eichinger and Kirch,
2018), where we apply the trained neural network to consecutive moving windows of
bandwidth n = 700, which ensures there is at most one-change in each moving window.
Then, we obtain a sequence of predicted change-types. The change-point location can
be estimated from the endpoints of maximal contiguous windows in which the neural
network classifies to yield no change. Algorithm 1 shows the pseudocode of change-point

detection given the trained neural network N̂N and unseen data Xnew with size (d, n∗)
where n∗ is the length of sequential data and d may represent the number of transfor-

mations or channels. We apply Algorithm 1 with our trained network N̂N on the HASC

data. In this application, the output of N̂N was relabelled to {0, 1} to represent absence
or presence of change detected, i.e. we relabel the pure activity labels such as “walk”,
“stay”, etc as 0, meaning no-change and relabel transition labels such as “walk→stay”,
“Stair up→walk”, etc as 1. Figure 5 illustrates the result of multiple change-point detec-
tion in HASC data which provides evidence that the trained neural network can detect
both the multiple change-types and multiple change-points.

7. Discussion

Reliable testing for change-points and estimating their locations, especially in the pres-
ence of multiple change-points, other heterogeneities or untidy data, is typically a diffi-
cult problem for the applied statistician: they need to understand what type of change is
sought, be able to characterise it mathematically, find a satisfactory stochastic model for
the data, formulate the appropriate statistic, and fine-tune its parameters. This makes
for a long workflow, with scope for errors at its every stage.
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Algorithm 1: Algorithm for change-point localisation

Input: new data Xnew ∈ R
d×n∗

, a trained classifier N̂N : Rd×n → {0, 1} and
pre-specified γ ∈ Z

+ to be the threshold of length of consecutive zeros. γ is
chosen based on the training dataset, more detail appears in Section 3 of the
supplementary material.

1 for i = 1, 2, . . . , n∗ − n+ 1 do

2 x∗ ← Xnew[ : , i : (i+ n− 1)];

3 Li ← N̂N(x∗);

4 end

5 Let (s1, e1), . . . , (sν , eν) be all pairs satisfying ej − sj ≥ γ, Li = 0 for all i ∈ [sj , ej] and
Lsj−1 = Lej+1 = 1 (where L0 = Ln∗

−n+2 := 1).;

6 τLj ← min(ej + n, sj+1), τ
U
j ← max(ej + n, sj+1) for j ∈ [ν].;

Output: Interval estimators of change-points {[τLj , τUj ] : j ∈ [ν]} and associated point

estimators {⌊(τLj + τUj )/2⌋ : j ∈ ν}
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0 500 1000 1500 2000 2500 3000 3500−4
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0z
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Fig. 4. The sequence of accelerometer data in x, y and z axes. From left to right, there are

4 activities: “stair down”, “stay”, “stair up” and “walk”, their change-points are 990,1691,2733

respectively marked by black solid lines. The grey rectangles represent the group of “no-change”
with labels: “stair down”, “stair up” and “walk”; The red rectangles represent the group of “one-

change” with labels: “stair down→stay”, “stay→stair up” and “stair up→walk”.

In this paper, we showed how a carefully constructed statistical learning framework
could automatically take over some of those tasks, and perform many of them ‘in one go’
when provided with examples of labelled data. This turned the change-point detection
problem into a supervised learning problem, and meant that the task of learning the
appropriate test statistic and fine-tuning its parameters was left to the ‘machine’ rather
than the human user.

The crucial question was that of choosing an appropriate statistical learning frame-
work. The key factor behind our choice of neural networks was the discovery that the
traditionally-used likelihood-ratio-based change-point detection statistics could be viewed
as simple neural networks, which (together with bounds on generalisation errors beyond
the training set) enabled us to formulate and prove the corresponding learning theory.
However, there are a plethora of other excellent predictive frameworks, such as XGBoost,
LightGBM or Random Forests (Chen and Guestrin, 2016; Ke et al., 2017; Breiman, 2001)
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Fig. 5. Change-point detection of HASC data. The red vertical lines represent the underlying

change-points, the blue vertical lines represent the estimated change-points. More results of

multiple change-point detection can be found in Section 3 of supplementary material.

and it would be of interest to establish whether and why they could or could not provide
a viable alternative to neural nets here. Furthermore, if we view the neural network as
emulating the likelihood-ratio test statistic, in that it will create test statistics for each
possible location of a change and then amalgamate these into a single test, then we know
that test statistics for nearby changes will often be similar. This suggests that imposing
some smoothness on the weights of the neural network may be beneficial.

A further challenge is to develop methods that can adapt easily to input data of
different sizes, without having to train a different neural network for each input size. For
changes in the structure of the mean of the data, it may be possible to use ideas from
functional data analysis so that we pre-process the data, with some form of smoothing
or imputation, to produce input data of the correct length.

If historical labelled examples of change-points, perhaps provided by subject-matter
experts (who are not necessarily statisticians) are not available, one question of interest
is whether simulation can be used to obtain such labelled examples artificially, based on
(say) a single dataset of interest. Such simulated examples would need to come in two
flavours: one batch ‘likely containing no change-points’ and the other containing some
artificially induced ones. How to simulate reliably in this way is an important problem,
which this paper does not solve. Indeed, we can envisage situations in which simulating
in this way may be easier than solving the original unsupervised change-point problem
involving the single dataset at hand, with the bulk of the difficulty left to the ‘machine’
at the learning stage when provided with the simulated data.

For situations where there is no historical data, but there are statistical models, one
can obtain training data by simulation from the model. In this case, training a neural
network to detect a change has similarities with likelihood-free inference methods in that
it replaces analytic calculations associated with a model by the ability to simulate from
the model. It is of interest whether ideas from that area of statistics can be used here.

The main focus of our work was on testing for change-points, and we treated location
estimation only superficially, via the heuristics of testing-based estimation in Section 6.
One question of interest here is whether and how these heuristics can be made more
rigorous: equipped with a test only, in the unsupervised change-point detection context,
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this is the main idea behind the MOSUM approach (Eichinger and Kirch, 2018). In
addition to this approach, how else can a neural network, however complex, be trained
to estimate locations? In our view, these questions merit further work; in particular, we
are interested in whether it is possible to employ the widely used one-hot encoding for
the purpose of location estimation.

Finally, this paper focused on scenarios with a single change-point. While we offered
heuristics for dealing with multiple change-points in our HASC case study of Section 6,
this issue merits further study. Breaking up multiple change-point problems into sin-
gle change-point problems is an established device in the change-point literature, see
e.g. Baranowski et al. (2019); Anastasiou et al. (2022) and it would be of interest to
examine their benefits in the supervised context.

Availability of data

The data underlying this article are available in http://hasc.jp/hc2011/index-en.html or
GitHub repository: AutoCPD.
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(2022), hereafter referred to as the main text. We present proofs of our main lemmas and theorems.
Various technical details, results of numerical study and real data analysis are also listed here.

1. Proofs

1.1. The proof of Lemma 3.1
Define W0 := (v1, . . . ,vn−1,−v1, . . . ,−vn−1)

⊤ and W1 := 12n−2, b1 := λ12n−2 and b2 := 0. Then
h(x) := σ∗

b2
W1σb1

W0x ∈ H1,2n−2 can be rewritten as

h(x) = 1

{n−1
∑

i=1

{

(v⊤
i x− λ)+ + (−v⊤

i x− λ)+
}

> b2

}

= 1{‖C(x)‖∞ > λ} = hCUSUM
λ (x),

as desired.

1.2. The Proof of Lemma 3.2
As Γ is invertible, (3) in main text is equivalent to

Γ
−1X = Γ

−1Zβ + Γ
−1cτφ+ ξ.

Write X̃ = Γ
−1X , Z̃ = Γ

−1Z and c̃τ = Γ
−1cτ . If c̃τ lies in the column span of Z̃, then the model

with a change at τ is equivalent to the model with no change, and the likelihood-ratio test statistic
will be 0. Otherwise we can assume, without loss of generality that c̃τ is orthogonal to each column of
Z̃: if this is not the case we can construct an equivalent model where we replace c̃τ with its projection
to the space that is orthogonal to the column span of Z̃.

As ξ is a vector of independent standard normal random variables, the likelihood-ratio statistic for
a change at τ against no change is a monotone function of the reduction in the residual sum of squares
of the model with a change at τ . The residual sum of squares of the no change model is

X̃
⊤
X̃ − X̃

⊤
Z̃(Z̃

⊤
Z̃)−1Z̃

⊤
X̃.
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The residual sum of squares for the model with a change at τ is

X̃
⊤
X̃−X̃

⊤
[Z̃, c̃τ ]([Z̃, c̃τ ]

⊤[Z̃, c̃τ ])
−1[Z̃, c̃τ ]

⊤X̃ = X̃
⊤
X̃−X̃

⊤
Z̃(Z̃

⊤
Z̃)−1Z̃

⊤
X̃−X̃

⊤
c̃τ (c̃

⊤
τ c̃τ )

−1c̃⊤τ X̃ .

Thus, the reduction in residual sum of square of the model with the change at τ over the no change
model is

X̃
⊤
c̃τ (c̃

⊤
τ c̃τ )

−1c̃⊤τ X̃ =





1
√

c̃⊤τ c̃τ

c̃⊤τ X̃





2

Thus if we define

vτ =
1

√

c̃⊤τ c̃τ

c̃τΓ
−1,

then the likelihood-ratio test statistic is a monotone function of |vτX|. This is true for all τ so the
likelihood-ratio test is equivalent to

max
τ∈[n−1]

|vτX| > λ,

for some λ. This is of a similar form to the standard CUSUM test, except that the form of vτ is
different. Thus, by the same argument as for Lemma 3.1 in main text, we can replicate this test with
h(x) ∈ H1,2n−2, but with different weights to represent the different form for vτ .

1.3. The Proof of Lemma 4.1

Proof. (a) For each i ∈ [n− 1], since ‖vi‖2 = 1, we have v⊤
i X ∼ N(0, 1). Hence, by the Gaussian

tail bound and a union bound,

P

{

‖C(X)‖∞ > t
}

≤
n−1
∑

i=1

P

(∣

∣

∣v
⊤
i X

∣

∣

∣ > t
)

≤ n exp(−t2/2).

The result follows by taking t =
√

2 log(n/ε).
(b) We write X = µ + Z, where Z ∼ Nn(0, In). Since the CUSUM transformation is linear, we

have C(X) = C(µ) + C(Z). By part (a) there is an event Ω with probability at least 1 − ε on which

‖C(Z)‖∞ ≤
√

2 log(n/ε). Moreover, we have ‖C(µ)‖∞ = |v⊤
τ µ| = |µL − µR|

√

nη(1− η). Hence on Ω,
we have by the triangle inequality that

‖C(X)‖∞ ≥ ‖C(µ)‖∞ − ‖C(Z)‖∞ ≥ |µL − µR|
√

nη(1− η)−
√

2 log(n/ε) >
√

2 log(n/ε),

as desired.

1.4. The Proof of Corollary 4.1

Proof. From Lemma 4.1 in main text with ε = ne−nB2/8, we have

P(hCUSUM
λ (X) 6= Y | τ, µL, µR) ≤ ne−nB2/8,

and the desired result follows by integrating over π0.

1.5. Auxiliary Lemma

Lemma 1.1. Define T ′ := {t0 ∈ Z
+ : |t0 − τ | ≤ min(τ, n − τ)/2}, for any t0 ∈ T ′, we have

min
t0∈T ′

|v⊤
t0µ| ≥

√
3

3
|µL − µR|

√

nη(1− η).
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Proof. For simplicity, let ∆ := |µL − µR|, we can compute the CUSUM test statistics ai = |v⊤
i µ|

as:

ai =







∆(1− η)
√

ni
n−i 1 ≤ i ≤ τ

∆η

√

n(n−i)
i τ < i ≤ n− 1

(1)

It is easy to verified that aτ := maxi(ai) = ∆
√

nη(1− η) when i = τ . Next, we only discuss the case
of 1 ≤ τ ≤ ⌊n/2⌋ as one can obtain the same result when ⌈n/2⌉ ≤ τ ≤ n by the similar discussion.

When 1 ≤ τ ≤ ⌊n/2⌋, |t0 − τ | ≤ min(τ, n − τ)/2 implies that tl ≤ t0 ≤ tu where tl := ⌈τ/2⌉, tu :=
⌊3τ/2⌋. Because ai is an increasing function of i on [1, τ ] and a decreasing function of i on [τ +1, n−1]
respectively, the minimum of at0 , tl ≤ t0 ≤ tu happens at either tl or tu. Hence, we have

atl ≥ aτ/2 = aτ

√

n− τ

2n− τ

atu ≥ a3τ/2 = aτ

√

2n − 3τ

3(n− τ)

Define f(x) :=
√

n−x
2n−x and g(x) :=

√

2n−3x
3(n−x) . We notice that f(x) and g(x) are both decreasing

functions of x ∈ [1, n], therefore f(⌊n/2⌋) ≥ f(n/2) =
√
3/3 and g(⌊n/2⌋) ≥ g(n/2) =

√
3/3 as

desired.

1.6. The Proof of Theorem 4.2
Proof. Given any L ≥ 1 and m = (m1, . . . ,mL)

⊤, let m0 := n and mL+1 := 1 and set W ∗ =
∑L+1

r=1 mr−1mr. Let d := VCdim(HL,m), then by Bartlett et al. (2019, Theorem 7), we have d =
O(LW ∗ log(W ∗)). Thus, by Mohri et al. (2012, Corollary 3.4), for some universal constant C > 0, we
have with probability at least 1− δ that

P(hERM(X) 6= Y ) ≤ min
h∈HL,m

P(h(X) 6= Y ) +

√

8d log(2eN/d) + 8 log(4/δ)

N
. (2)

Here, we have L = 1, m = 2n − 2, W ∗ = O(n2), so d = O(n2 log(n)). In addition, since hCUSUM
λ ∈

H1,2n−2, we have minh∈HL,m
≤ P(hCUSUM

λ (X) 6= Y ) ≤ ne−nB2/8. Substituting these bounds into (2)
we arrive at the desired result.

1.7. The Proof of Theorem 4.3
The following lemma, gives the mis-classification for the generalised CUSUM test where we only test
for changes on a grid of O(log n) values.

Lemma 1.2. Fix ε ∈ (0, 1) and suppose that X ∼ P (n, τ, µL, µR) for some τ ∈ [n−1] and µL, µR ∈
R.

(a) If µL = µR, then

P

{

max
t∈T0

|v⊤
t X| >

√

2 log(|T0|/ε)
}

≤ ε.

(b) If |µL − µR|
√

η(1 − η) >
√

24 log(|T0|/ε)/n, then we have

P

{

max
t∈T0

|v⊤
t X| ≤

√

2 log(|T0|/ε)
}

≤ ε.

Proof. (a) For each i ∈ [n− 1], since ‖vi‖2 = 1, we have v⊤
i X ∼ N(0, 1). Hence, by the Gaussian

tail bound and a union bound,

P

{

max
i∈T0

|v⊤
i X| > t

}

≤
∑

i∈T0

P

(∣

∣

∣
v⊤
i X

∣

∣

∣
> t

)

≤ |T0| exp(−t2/2).
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The result follows by taking t =
√

2 log(|T0|/ε).
(b) There exists some t0 ∈ T0 such that |t0 − τ | ≤ min{τ, n − τ}/2. By Lemma 1.1, we have

|v⊤
t0EX | ≥

√
3

3
‖C(EX)‖∞ ≥

√
3

3
|µL − µR|

√

nη(1− η) ≥ 2
√

2 log(|T0|/ε).

Consequently, by the triangle inequality and result from part (a), we have with probability at least
1− ε that

max
t∈T0

|v⊤
t X| ≥ |v⊤

t0X| ≥ |v⊤
t0EX| − |v⊤

t0(X − EX)| ≥
√

2 log(|T0|/ε),

as desired.

Using the above lemma we have the following result.

Corollary 1.1. Fix B > 0. Let π0 be any prior distribution on Θ(B), then draw (τ, µL, µR) ∼ π0,

X ∼ P (n, τ, µL, µR), and define Y = 1{µL 6= µR}. Then for λ∗ = B
√

n/12, the test hCUSUM∗

λ∗ satisfies

P(hCUSUM∗

λ∗ (X) 6= Y ) ≤ 2⌊log2(n)⌋e−nB2/24.

Proof. Setting ε = |T0|e−nB2/24 in Lemma 1.2, we have for any (τ, µL, µR) ∈ Θ(B) that

P(hCUSUM∗

λ∗ (X) 6= 1{µL 6= µR}) ≤ |T0|e−nB2/24.

The result then follows by integrating over π0 and the fact that |T0| = 2⌊log2(n)⌋.
Proof (Proof of Theorem 4.3). We follow the proof of Theorem 4.2 up to (2). From the

conditions of the theorem, we have W ∗ = O(Ln log n). Moreover, we have hCUSUM∗

λ∗ ∈ H1,4⌊log2(n)⌋
⊆

HL,m. Thus,

P(hERM(X) 6= Y ) ≤ P(hCUSUM∗

λ∗ (X) 6= Y ) + C

√

L2n log n log(Ln) log(N) + log(1/δ)

N

≤ 2⌊log2(n)⌋e−nB2/24 + C

√

L2n log2(Ln) log(N) + log(1/δ)

N

as desired.

2. Simulation for Multiple Change-types

In this section, we illustrate the numerical study for one-change-point but with multiple change-types:
change in mean, change in slope and change in variance.

The data set with change/no-change in mean is generated from P (n, τ, µL, µR). We employ the
model of change in slope from Fearnhead et al. (2019), namely

xt = ft + ξt =

{

φ0 + φ1t+ ξt if 1 ≤ t ≤ τ

φ0 + (φ1 − φ2)τ + φ2t+ ξt τ + 1 ≤ t ≤ n,
(3)

where φ0, φ1 and φ2 are parameters that can guarantee the continuity of two pieces of linear function
at time t = τ . We use the following model to generate the data set with change in variance.

yt =

{

µ+ εt εt ∼ N(0, σ2
1), if t ≤ τ

µ+ εt εt ∼ N(0, σ2
2), otherwise

where σ2
1 , σ

2
2 are the variances of two Gaussian distributions. τ is the change-point in variance. When

σ2
1 = σ2

2 , there is no-change in model. The labels of no change-point, change in mean only, change in
variance only, no-change in variance and change in slope only are 0, 1, 2, 3, 4 respectively. For each
label, we randomly generate Nsub time series. In each replication of Nsub, we update these parameters:
τ, µL, µR, σ1, σ2, α1, φ1, φ2. To avoid the boundary effect, we randomly choose τ from the discrete
uniform distribution U(n′ + 1, n − n′) in each replication, where 1 ≤ n′ < ⌊n/2⌋, n′ ∈ N. The other
parameters are generated as follows:
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Table S1. The parameters for weak and strong signal-
to-noise ratio (SNR).

Chang in mean µl µu µdl µdu

Weak SNR -5 5 0.25 0.5

Strong SNR -5 5 0.8 1.2

Chang in variance σl σu σdl σdu

Weak SNR 0.3 0.7 0.12 0.25

Strong SNR 0.3 0.7 0.2 0.4

Change in slope φl φu φdl φdu

Weak SNR -0.025 0.025 0.005 0.012

Strong SNR -0.025 0.025 0.01 0.03

• µL, µR ∼ U(µl, µu) and µdl ≤ |µL − µR| ≤ µdu, where µl, µu are the lower and upper bounds of
µL, µR. µdl, µdu are the lower and upper bounds of |µL − µR|.

• σ1, σ2 ∼ U(σl, σu) and σdl ≤ |σ1 − σ2| ≤ σdu, where σl, σu are the lower and upper bounds of
σ1, σ2. σdl, σdu are the lower and upper bounds of |σ1 − σ2|.

• φ1, φ2 ∼ U(φl, φu) and φdl ≤ |φ1 − φ2| ≤ φdu, where φl, φu are the lower and upper bounds of
φ1, φ2. φdl, φdu are the lower and upper bounds of |φ1 − φ2|.

Besides, we let µ = 20, φ0 = 0 and the noise follows normal distribution with mean 0. For flexibility,
we let the noise variance of change in mean and slope be 0.49 and 0.25 respectively. Both Scenarios 1
and 2 use the neural network architecture displayed in Figure 3 of main text.

Benchmark. Aminikhanghahi and Cook (2017) reviewed the methodologies for change-point de-
tection in different types. To be simple, we employ the Pruned Exact Linear Time (PELT) (Killick et al.,
2012) and Narrowest-Over-Threshold (NOT) (Baranowski et al., 2019) algorithms to detect the change
in mean, slope and variance respectively. These two algorithms are available in R packages: not
and changepoint. The oracle likelihood based tests LRoracle means that we pre-specified whether we
are testing for change in mean, variance or slope. For the construction of adaptive likelihood-ratio
based test LRadapt, we first separately apply PELT and NOT algorithms to each time series, then we
can compute 3 values of Bayesian information criterion (BIC) for each change-type based on the results
of change-point detection. Lastly, the corresponding label of minimum of BIC values is treated as the
predicted label.

Scenario 1: Weak SNR. Let n = 400, Nsub = 600 and n′ = 40. The data is generated by the
parameters settings in Table S1. We use the model architecture in Figure 3 of main text to train the
classifier. The learning rate is 0.001, the batch size is 32, filter size in convolution layer is 16, the kernel
size is (4, 30), the epoch size is 400. The transformations are (x, x2, log(x2), tanh(x)). We also use the
inverse time decay technique to dynamically reduce the learning rate. The result which is displayed
in Table 1 of main text shows that the test accuracy of LRoracle, LRadapt and ResNet based on 30000
test data sets are 0.8909, 0.8667 and 0.8801 respectively.

Scenario 2: Strong SNR. The parameters for generating strong-signal data are listed in Table S1.
The other hyperparameters are same as in Scenario 1. the test accuracy of LRoracle, LRadapt and ResNet
based on 30000 test data sets are 0.9869, 0.9003 and 0.9591 respectively.. We can see that the neural
network-based approach achieves higher classification accuracy than the adaptive likelihood based
method.

https://CRAN.R-project.org/package=not
https://CRAN.R-project.org/package=changepoint
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3. Real Data Analysis

The HASC (Human Activity Sensing Consortium) project aims at understanding the human activities
based on the sensor data. This data includes 6 human activities: “stay”, “walk”, “jog”, “skip”, “stair up”
and “stair down”. Each activity lasts at least 10 seconds, the sampling frequency is 100 Hz.

3.1. Data Cleaning

The HASC offers sequential data where there are multiple change-types and multiple change-points,
see Figure 4 in main text. Hence, we can not directly feed them into our deep convolutional residual
neural network. The training data fed into our neural network requires fixed length n and either
one changs-point or no change-point existence in each time serie. Next, we describe how to obtain
this kind of training data from HASC sequential data. In general, Let x = (x1, x2, . . . , xd)

⊤, d ≥ 1
be the d-channel vector. Define X := (xt1 ,xt2 , . . . ,xtn∗ ) as a realization of d-variate time series
where xtj , j = 1, 2, . . . , n∗ are the observations of x at n∗ consecutive time stamps t1, t2, . . . , tn∗ . Let

X i, i = 1, 2, . . . , N∗ represent the observation from the i-th subject. τ i := (τi,1, τi,2, . . . , τi,K)⊤,K ∈
Z
+, τi,k ∈ [2, n∗ − 1], 1 ≤ k ≤ K with convention τi,0 = 0 and τi,K+1 = n∗ represents the change-

points of the i-th observation which are well-labelled in the sequential data sets. Furthermore, define
n := mini∈[N∗]mink∈[K+1](τi,k − τi,k−1). In practice, we require that n is not too small, this can be
achieved by controlling the sampling frequency in experiment, see HASC data. We randomly choose
q sub-segments with length n from Xi like the gray dash rectangles in Figure 4 of main text. By the
definition of n, there is at most one change-point in each sub-segment. Meanwhile, we assign the label
to each sub-segment according to the type and existence of change-point. After that, we stack all the
sub-segments to form a tensor X with dimensions of (N∗q, d, n). The label vector is denoted as Y with
length N∗q. To guarantee that there is at most one change-point in each segment, we set the length
of segment n = 700. Let q = 15, as the change-points are well labelled, it is easy to draw 15 segments
without any change-point, i.e., the segments with labels: “stay”, “walk”, “jog”, “skip”, “stair up” and
“stair down”. Next, we randomly draw 15 segments (the red rectangles in Figure 4 of main text) for
each transition point.

3.2. Transformation

Section 3 in main text suggests that changes in the mean/signal may be captured by feeding the raw
data directly. For other type of change, we recommend appropriate transformations before training
the model depending on the interest of change-type. For instance, if we are interested in changes in
the second order structure, we suggest using the square transformation; for change in auto-correlation
with order p we could input the cross-products of data up to a p-lag. In multiple change-types, we
allow applying several transformations to the data in data pre-processing step. The mixture of raw
data and transformed data is treated as the training data.

We employ the square transformation here. All the segments are mapped onto scale [−1, 1] after the
transformation. The frequency of training labels are list in Figure S2. Finally, the shapes of training
and test data sets are (4875, 6, 700) and (1035, 6, 700) respectively.

3.3. Network Architecture

We propose a general deep convolutional residual neural network architecture to identify the multiple
change-types based on the residual block technique (He et al., 2016). There are two reasons to explain
why we choose residual block as the skeleton frame.

• The problem of vanishing gradients (Bengio et al., 1994; Glorot and Bengio, 2010). As the
number of convolution layers goes significantly deep, some layer weights might vanish in back-
propagation which hinders the convergence. Residual block can solve this issue by the so-called
“shortcut connection”, see the flow chart in Figure 3 of main text.
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• Degradation. He et al. (2016) has pointed out that when the number of convolution layers in-
creases significantly, the accuracy might get saturated and degrade quickly. This phenomenon is
reported and verified in He and Sun (2014) and He et al. (2016).

There are 21 residual blocks in our deep neural network, each residual block contains 2 convolutional
layers. Like the suggestion in Ioffe and Szegedy (2015) and He et al. (2016), each convolution layer
is followed by one Batch Normalization (BN) layer and one ReLU layer. Besides, there exist 5 fully-
connected convolution layers right after the residual blocks, see the third column of Figure 3 in main
text. For example, Dense(50) means that the dense layer has 50 nodes and is connected to a dropout
layer with dropout rate 0.3. To further prevent the effect of overfitting, we also implement the L2

regularization in each fully-connected layer (Ng, 2004). As the number of labels in HASC is 28,
see Figure S1, we drop the dense layers “Dense(20)” and “Dense(10)” in Figure 3 of main text. The
output layer has size (28, 1).

We remark two discussable issues here. (a) For other problems, the number of residual blocks,
dense layers and the hyperparameters may vary depending on the complexity of the problem. In ??
of main text, the architecture of neural network for both synthetic data and real data has 21 residual
blocks considering the trade-off between time complexity and model complexity. Like the suggestion
in He et al. (2016), one can also add more residual blocks into the architecture to improve the accuracy
of classification. (b) In practice, we would not have enough training data; but there would be potential
ways to overcome this via either using Data Argumentation or increasing q. In some extreme cases
that we only mainly have data with no-change, we can artificially add changes into such data in line
with the type of change we want to detect.

3.4. Training and Detection

Fig. S1. Label Dictionary

Fig. S2. Label Frequency

There are 7 persons observations in this dataset. The first 6 persons sequential data are treated
as the training dataset, we use the last person’s data to validate the trained classifier. Each person
performs each of 6 activities: “stay”, “walk”, “jog”, “skip”, “stair up” and “stair down” at least 10 seconds.
The transition point between two consecutive activities can be treated as the change-point. Therefore,
there are 30 possible types of change-point. The total number of labels is 36 (6 activities and 30 possible
transitions). However, we only found 28 different types of label in this real dataset, see Figure S1.
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Fig. S3. The Accuracy Curves

The initial learning rate is 0.001, the epoch size is 400. Batch size is 16, the dropout rate is 0.3, the
filter size is 16 and the kernel size is (3, 25). Furthermore, we also use 20% of the training dataset to
validate the classifier during training step.

Figure S3 shows the accuracy curves of training and validation. After 150 epochs, both solid and
dash curves approximate to 1. The test accuracy is 0.9623, see the confusion matrix in Figure S4. These
results show that our neural network classifier performs well both in the training and test datasets.

Next, we apply the trained classifier to 3 repeated sequential datasets of Person 7 to detect the
change-points. The first sequential dataset has shape (3, 10743). First, we extract the n-length sliding
windows with stride 1 as the input dataset. The input size becomes (9883, 6, 700). Second, we use
Algorithm 1 to detect the change-points where we relabel the activity label as “no-change” label and
transition label as “one-change” label respectively. The γ in Algorithm 1 is chosen by training data:
Firstly, we applied the trained neural network to original sequential dataset of 6 persons; Secondly,
choose γ using a grid search algorithm such that the mean absolute distance between true change-points
and predicted change-points is minimal. Figures S5 and S6 show the results of multiple change-point
detection for other 2 sequential data sets from the 7-th person.
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Fig. S4. Confusion Matrix of Real Test Dataset
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Fig. S5. Change-point Detection of Real Dataset for Person 7 (2nd sequence). The red line at 4476 is the true
change-point, the blue line on its right is the estimator. The difference between them is caused by the similarity

of “Walk” and “StairUp”.
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Fig. S6. Change-point Detection of Real Dataset for Person 7 (3rd sequence). The red vertical lines represent
the underlying change-points, the blue vertical lines represent the estimated change-points.
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