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THE APPROXIMATION PROPERTY FOR LOCALLY COMPACT QUANTUM

GROUPS

MATTHEW DAWS, JACEK KRAJCZOK, AND CHRISTIAN VOIGT

Abstract. We study the Haagerup–Kraus approximation property for locally compact quan-
tum groups, generalising and unifying previous work by Kraus–Ruan and Crann. We establish
some results about how multipliers of quantum groups interact with the C∗-algebraic theory of
locally compact quantum groups. Several inheritance properties of the approximation property
are established in this setting, including passage to quantum subgroups, free products of discrete
quantum groups, and duals of double crossed products. We also discuss a relation to the weak∗

operator approximation property. For discrete quantum groups, we introduce a central variant
of the approximation property, and relate this to a version of the approximation property for

rigid C∗-tensor categories, building on work of Arano–De Laat–Wahl.
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1. Introduction

The approximation property (AP) for locally compact groups, introduced by Haagerup and
Kraus [31], can be viewed as an analogue of Grothendieck’s approximation property for Banach
spaces [27]. It belongs to a family of widely studied analytical properties like amenability, weak
amenability, and the Haagerup property. In fact, AP is a weakening of weak amenability and thus
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a very loose form of amenability. It is known that AP passes from locally compact groups to their
lattices and vice versa, and that it has better permanence properties with respect to standard
constructions like extensions and free products, in comparison to weak amenability.

It was an open problem for a long time to exhibit examples of exact groups without AP. In
the remarkable paper [47], Lafforgue and de la Salle proved that SL(3,R) fails to have AP, thus
confirming a conjecture in [31]. Building on this result, it was shown later by Haagerup, Knudby
and De Laat that a connected Lie group has AP if and only if all simple factors in its Levi
decomposition have real rank at most one [28], [29], [30].

AP has a wide range of applications. As shown by Haagerup-Kraus [31], in the case of discrete
groups there is a connection between AP and the slice map property (or equivalently, the operator
approximation property) of the associated crossed products. It was recently proven in the full
generality of locally compact groups that AP implies exactness [62] (see also [15]), which makes
it relevant to a number of problems in operator algebras. Let us also mention that AP was shown
to be equivalent to a non-commutative version of Fejér theorem [15], and used to prove results
concerning convolution operators on Lp(G) [12, 21].

Amenability, weak amenability and the Haagerup property have also been studied extensively
in the broader setting of locally compact quantum groups, see [9] for a survey. An interesting new
feature in the quantum setting is the interplay between discrete quantum groups, their Drinfeld
doubles, and the associated C∗-tensor categories [22]. In fact, the central versions of amenability,
the Haagerup property, weak amenability and central property (T) for discrete quantum groups
have been recast at the level of C∗-tensor categories [56], thus building a natural bridge to the
study of subfactors.

In the present paper we undertake a systematic study of the approximation property for locally
compact quantum groups. Kraus and Ruan introduced a version of the approximation property
for Kac algebras in [41], requiring the existence of a net in the Fourier algebra A(G) such that the

associated net of completely bounded operators on L∞(Ĝ) converges to the identity in the stable

point weak∗-topology of CBσ(L∞(Ĝ)). Crann studied this property for general locally compact
quantum groups, and showed for example that in the presence of this property, amenability is
equivalent to coamenability of the dual quantum group [14, Corollary 7.4].

Our starting point is the original work by Haagerup and Kraus. We say that a locally compact
quantum group has AP if it admits a net of elements in the Fourier algebra A(G) which converges

weak∗ to 1 in the space of left CB multipliers Ml
cb(A(G)). We show that this definition is in fact

equivalent to the definition of AP used in [41], [14], thereby verifying a conjecture in [41]. Along
the way, we obtain a useful alternative description of the weak∗-topology on the space of left CB
multipliers. We discuss carefully that working with left or right multipliers does not change the
theory, and that passing from a quantum group to its opposite or commutant preserves AP. We
also show that if quantum group has the AP exhibited by a net which is uniformly bounded in
the norm of A(G) (resp. Ml

cb(A(G))), then it is amenable (resp. weakly amenable).
We then derive a number of permanence properties of AP in analogy to the classical setting.

In particular, we show that AP passes to closed quantum subgroups of locally compact quantum
groups, and to duals of double crossed products. This includes the passage to direct products of
quantum groups as a special case. In the setting of discrete quantum groups we verify that AP is
inherited by free products and direct limits of directed systems of discrete quantum groups with
injective connecting maps. We also introduce a central version of the approximation property for
discrete quantum groups and show that it is related to a natural notion of AP for rigid C∗-tensor
categories, building on work of Arano–De Laat–Wahl [2], [3].

Let us now briefly describe more of our results and explain how the paper is organised. In Sec-
tion 2 we collect some background material on locally compact quantum groups and fix our nota-
tion. In Section 3 we review several characterisations of the space Ml

cb(A(G)) of left cb-multipliers

of the Fourier algebra A(G) and its natural predual Ql(A(G)). By definition, Ml
cb(A(G)) is a (in

general not closed) subalgebra of L∞(Ĝ), but also Ml
cb(A(G)) is isomorphic to

L1(Ĝ)
CBσ(L∞(Ĝ)),

the space of a normal left module maps on L∞(Ĝ). Any such map in
L1(Ĝ)

CBσ(L∞(Ĝ)) restricts
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to C0(Ĝ), and we provide a characterisation of the maps on C0(Ĝ) which so arise. This leads to

a description of Ql(A(G)) as quotient of the projective tensor product C0(Ĝ)⊗̂L1(Ĝ) which we
were unable to locate in the literature even for classical groups.

In Section 4 we define the Haagerup-Kraus approximation property for locally compact quantum
groups and verify that it passes to opposite and commutant quantum groups. We compare our
definition to the version of AP given by Kraus and Ruan, showing that they are equivalent. We
show that Ml

cb(A(G)) admits an involution linked to the antipode of G, and to the fact that

elements of
L1(Ĝ)

CBσ(L∞(Ĝ)) act boundedly on the Hilbert space L2(G). We finish the section

by showing that AP is independent of working with left or right multipliers.
In Section 5 we discuss the relation of AP with weak amenability and coamenability.
Section 6 is devoted to the special case of discrete quantum groups. When Γ is discrete, we

have the notion of a finitely-supported function leading to the algebra c00(Γ). It suffices to work
with c00(Γ) when considering AP, and we show further that the approximating net can be chosen
to satisfy other properties. We introduce the central approximation property for discrete quantum
groups and prove that central AP is equivalent to AP in the unimodular case. Building on the
work of Kraus-Ruan [41] and Crann [14], we show that if a locally compact quantum group G has

AP then the von Neumann algebra L∞(Ĝ) has W∗OAP. We study the relation between AP of Γ

and (strong) OAP of C(Γ̂) or W∗OAP of L∞(Γ̂). Finally, we introduce strengthenings of these
concepts which take into account also the algebra ℓ∞(Γ), and show that these are equivalent to
AP even in the non-unimodular case.

In Section 7 we establish a number of permanence properties. We show that the AP is inherited
by arbitrary closed quantum subgroups and by the duals of double crossed products. In particular,
the direct product of two quantum groups with AP also has AP. For discrete quantum groups we
investigate the passage to free products and direct unions, again showing that AP is preserved.

Finally, in Section 8 we define the approximation property for rigid C∗-tensor categories and
verify that the categorical AP is equivalent to the central AP for discrete quantum groups. This
implies in particular that the central AP is invariant under monoidal equivalence. We also relate
these properties to the AP of the Drinfeld double.

We conclude with some general remarks on notation. If A is a C∗-algebra we write M(A) for its
multiplier algebra. For a map Φ: A → A, the symbol Φ† stands for the map A ∋ a 7→ Φ(a∗)∗ ∈ A.

If ω : A → C is a linear functional we write ω for the linear functional given by ω(x) = ω(x∗).
We write ⊙ for the algebraic tensor product, ⊗ for the tensor product of Hilbert spaces or the

minimal tensor product of C∗-algebras, ⊗̌ for the injective tensor product of operator spaces and
⊗̄ for the spatial tensor product of von Neumann algebras. We denote by χ the flip map for tensor
products of algebras, and use the symbol Σ for the flip map of Hilbert spaces.

We freely use the basic theory of operator spaces, following [23], see also [53, 54] for example.
When X,Y are operator spaces, CB(X,Y ) denotes the space of completely bounded (CB) linear
maps X → Y . For dual operator spaces X,Y we write CBσ(X,Y ) for the subset of CB(X,Y )
consisting of all maps which are weak∗-weak∗-continuous. In the case X = Y we simply write
CB(X) = CB(X,X) and CBσ(X) = CBσ(X,X). If M is a von Neumann algebra, then CBσ(M)
can be equipped with the stable point-weak∗-topology: Ti −−→

i∈I
T with respect to this topology if

and only if (Ti⊗ id)x −−→
i∈I

(T ⊗ id)x in the weak∗-topology, for any separable Hilbert space H and

x ∈ M ⊗̄B(H), see [31]. Whenever we have a left N-module structure on an operator space X ,
the space of left N-module CB maps is denoted by NCB(X). Similarly, if X is a right module or
a bimodule, the corresponding spaces are denoted by CBM(X) and NCBM(X), respectively. We
denote the operator space projective tensor product by ⊗̂, and recall that (X⊗̂Y )∗ = CB(X,Y ∗)
completely isometrically. The canonical pairing between an operator space X and its dual X∗ is
denoted by 〈ω, x〉X∗,X for ω ∈ X∗, x ∈ X , or simply 〈ω, x〉 if there is no risk of confusion.

For a n.s.f. weight θ on a von Neumann algebra M, we denote the GNS Hilbert space by Hθ,
and we use the notation Nθ = {x ∈ M | θ(x∗x) < +∞}. We write Λθ : Nθ → Hθ for the GNS map.
Typically we then represent M on Hθ and identify M ⊆ B(Hθ).
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2. Preliminaries

Throughout the paper we will work in the setting of locally compact quantum groups introduced
by Kustermans and Vaes [45]. In this section we recall some fundamental constructions and results
of the theory, more information can be found in [43, 46, 68]. For background on operator algebras
and operator spaces we refer to [10, 23, 63].

By definition, a locally compact quantum group G is given by a von Neumann algebra L∞(G)
together with a normal unital ⋆-homomorphism ∆G : L∞(G) → L∞(G)⊗̄L∞(G) called comultipli-
cation, satisfying (∆G⊗ id)∆G = (id⊗∆G)∆G, and left resp. right Haar integrals ϕ and ψ. These
are normal, semifinite, faithful (n.s.f.) weights on L∞(G) satisfying certain invariance conditions
with respect to ∆G. In general, the von Neumann algebra L∞(G) is non-commutative and will not
be an algebra of function on a measure space. Following this notational convention, the predual
of L∞(G) is denoted by L1(G) and the GNS Hilbert space of ϕ is denoted by L2(G).

Every locally compact group G can be seen as a locally compact quantum group G by taking
L∞(G) = L∞(G), the algebra of classes of measurable, bounded functions on G, and letting ∆G

be the pullback of multiplication in G. The weights ϕ, ψ are given by integration with respect to
left (right) Haar measure in this case.

Out of the axioms, one can construct a number of additional objects associated to a locally

compact quantum groupG. First of all, there is the Kac-Takesaki operator WG ∈ L∞(G)⊗̄L∞(Ĝ),
which is a unitary operator on L2(G)⊗ L2(G) defined via

((ω ⊗ id)WG∗)Λϕ(x) = Λϕ((ω ⊗ id)∆G(x)) (ω ∈ L1(G), x ∈ Nϕ).

It implements the comultiplication via ∆G(x) = WG∗(1⊗ x)WG for x ∈ L∞(G). Tomita-Takesaki

theory yields two groups of modular automorphisms (σϕt )t∈R, (σ
ψ
t )t∈R and modular conjugations

Jϕ, Jψ associated with the weights ϕ, ψ, respectively [63]. The left and right Haar integrals are
linked by the modular element δG, which is a strictly positive, self-adjoint operator affiliated with
L∞(G).

In the theory of quantum groups, the role of the inverse operation is played by two maps: the
antipode SG and the unitary antipode RG. The antipode is in general an unbounded (densely
defined) map on L∞(G) such that

(id⊗ ω)WG ∈ Dom(SG) and SG((id ⊗ ω)WG) = (id⊗ ω)WG∗ (ω ∈ L1(Ĝ)).

The unitary antipode, on the other hand, is a bounded, normal, ⋆-preserving, antimultiplicative
map on L∞(G) satisfying ∆GRG = χ(RG ⊗ RG)∆G. These maps are linked via SG = RGτ

G
−i/2 =

τG−i/2RG, where (τ
G
t )t∈R is the group of scaling automorphisms of L∞(G). The left and right Haar

integrals are unique up to a scalar, and we shall fix normalisations such that ϕ = ψ ◦RG.
With any locally compact quantum groupG one can associate the dual locally compact quantum

group Ĝ in such a way that the correspondence between G and Ĝ extends Pontryagin duality.

Furthermore, the Hilbert spaces L2(G),L2(Ĝ) can be identified in a canonical way, and the Kac-

Takesaki operators of G and Ĝ are linked via WĜ = χ(WG∗). If there is no risk of confusion we

will simply write ∆ for ∆G, ∆̂ for ∆
Ĝ
, and similarly R,S, R̂, Ŝ for the (unitary) antipode of G or

Ĝ. Using the canonical identification of L2(G) and L2(Ĝ) one obtains a number of useful formulae.

Let us mention in particular that the right regular representation VG ∈ L∞(Ĝ)′⊗̄L∞(G) is given
by VG = (Jϕ̂ ⊗ Jϕ̂)χ(W

G)∗(Jϕ̂ ⊗ Jϕ̂).
We will also work with the weak∗-dense C∗-subalgebra C0(G) ⊆ L∞(G). It is defined as

the norm-closure of the space {(id ⊗ ω)WG |ω ∈ L1(Ĝ)}. After restriction, the comultiplication
becomes a non-degenerate ⋆-homomorphism C0(G) → M(C0(G) ⊗ C0(G)). Similarly one defines

C0(Ĝ), and then WG ∈ M(C0(G) ⊗ C0(Ĝ)). Using the comultiplication of L∞(G), we define
a Banach algebra structure on L1(G) via ω ⋆ ν = (ω ⊗ ν)∆G for ω, ν ∈ L1(G). As L∞(G) is
the dual of L1(G), we have a canonical L1(G)-bimodule structure on L∞(G), which is given by
ω ⋆ x = (id ⊗ ω)∆G(x) and x ⋆ ω = (ω ⊗ id)∆G(x). Treating L1(G) as the predual of the von
Neumann algebra L∞(G) gives, as usual, an L∞(G)-bimodule structure on L1(G) defined via
xω = ω(·x), ωx = ω(x ·) for x ∈ L∞(G), ω ∈ L1(G).
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Let us introduce the map λG : L1(G) → C0(Ĝ) by λG(ω) = (ω ⊗ id)WG, and similarly for Ĝ.

Using this we define the Fourier algebra of G as A(G) = λ
Ĝ
(L1(Ĝ)). One can check that λ

Ĝ

is multiplicative, so that A(G) is a dense subalgebra of C0(Ĝ). As λ
Ĝ
is also injective, we can

define an operator space structure on A(G) by imposing the condition that λ
Ĝ
: L1(Ĝ) → A(G) is

completely isometric.
In the text, we will use certain subspaces of L1(G), which consist of functionals having nice

additional properties. Firstly, let us introduce

L1
♯ (G) = {ω ∈ L1(G) | ∃θ∈L1(G) λG(ω)

∗ = λG(θ)}
= {ω ∈ L1(G) | ∃θ∈L1(G) ∀x∈Dom(SG) ω(SG(x)) = θ(x)}.

(2.1)

For a given ω ∈ L1
♯ (G), the functional θ is characterised uniquely by any of the properties in (2.1),

hence we can write θ = ω♯. The mapping ω 7→ ω♯, and the restriction of the multiplication from
L1(G), turn L1

♯ (G) into a ⋆-algebra. The second subspace we will use is

(2.2) J = {ω ∈ L1(G) | ∃M>0 ∀x∈Nϕ
|ω(x∗)| ≤M‖Λϕ(x)‖}.

This subspace appears in the construction of the left Haar integral ϕ̂ for Ĝ. Indeed, for ω ∈ J
we have

λG(ω) ∈ Nϕ̂ and ∀x∈Nϕ
〈Λϕ(x) |Λϕ̂(λG(ω))〉 = ω(x∗).

In a couple of places we will need the following result, which says that there are “a lot” of
functionals with desirable properties.

Lemma 2.1. The subspace

J0 = {ω ∈ J ∩ L1
♯ (G) |ω, ω♯ ∈ J ∩ L1

♯ (G) and f : R ∋ t 7→ (ωδitG ) ◦ τGt ∈ L1(G)

extends to an entire function with ∀z∈C f(z) ∈ J ∩ L1
♯ (G)}

is dense in L1(G), and λG(J0) forms a σ-sot∗ × ‖ · ‖ core for Λϕ̂.

Proof. Our approach is standard, compare for example [38, Lemma 14.5] for a similar result.
Therefore we only give a sketch of the argument.

According to [46, Proposition 2.6], the space J ♯ = {ω ∈ J ∩ L1
♯ (G) |ω♯ ∈ J } is dense in

L1(G) and λG(J ♯) is a σ-sot∗ × ‖ · ‖ core of Λϕ̂. Let us introduce three mollifier operations: for
n ∈ N let

Mϕ
n : L1(G) ∋ ω 7→

√
n
π

∫

R

e−nt
2

ω ◦ σϕt dt ∈ L1(G),

M τ
n : L1(G) ∋ ω 7→

√
n
π

∫

R

e−ns
2

ω ◦ τGs ds ∈ L1(G),

M δ
n : L1(G) ∋ ω 7→

√
n
π

∫

R

e−np
2

ωδipG dp ∈ L1(G).

Next, let ωn = M τ
n ◦Mϕ

n ◦M δ
n(ω) and set J00 = span{ωn |n ∈ N, ω ∈ J ♯}. It suffices to show

that J00 is dense in L1(G), that J00 ⊆ J0, and that λG(J00) forms a σ-sot∗ × ‖ · ‖ core for
Λϕ̂.
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Choose n ∈ N, ω ∈ J ♯, x ∈ Nϕ, y ∈ Dom(SG). It is elementary to check that ωn ∈ J ∩ L1
♯ (G)

and R ∋ t 7→ (ωnδ
it
G ) ◦ τGt ∈ L1(G) extends to an entire function with the desired property. Since

|ωn(x∗)| = |ωn(x)| = (nπ )
3/2

∣∣
∫

R3

e−n(t
2+s2+p2)ω(δipG σ

ϕ
t ◦ τGs (x)) dt ds dp

∣∣

= (nπ )
3/2

∣∣ω
(∫

R3

e−n(t
2+s2+p2)δipG σ

ϕ
t ◦ τGs (x) dt ds dp

)∣∣

≤ (nπ )
3/2‖Λϕ̂(λG(ω))‖

∥∥Λϕ
(∫

R3

e−n(t
2+s2+p2)σϕt ◦ τGs (x∗)δ−ipG dt ds dp

)∥∥

= (nπ )
3/2‖Λϕ̂(λG(ω))‖

∥∥Jϕ∇1/2
ϕ Λϕ

(∫

R3

e−n(t
2+s2+p2)δipG σ

ϕ
t ◦ τGs (x) dt ds dp

)∥∥

= (nπ )
3/2‖Λϕ̂(λG(ω))‖

∥∥Λϕ
(∫

R3

e−n((t+i/2)
2+s2+p2)ν

p/2
G δipG σ

ϕ
t ◦ τGs (x) dt ds dp

)∥∥

≤ (nπ )
3/2‖Λϕ̂(λG(ω))‖

(∫

R3

|e−n((t+i/2)2+s2+p2)|νp/2−s/2G dt ds dp
)
‖Λϕ(x)‖,

where νG is the scaling constant of G, we have ωn ∈ J . Here we used σϕt (δ
ip
G ) = νitpG δip and

ϕ ◦ τs = ν−sG ϕ. It is automatic that ωn ∈ L1
♯ (G). Indeed,

ωn(SG(y)) = ωn(SG(y)) =
√

n
π

∫

R

e−ns
2

Mϕ
n ◦M δ

n(ω)(τ
G
s ◦RG ◦ τG−i/2(y)) ds

=
(√

n
π

∫

R

e−n(s+i/2)
2

Mϕ
n ◦M δ

n(ω) ◦ τGs ◦RG ds
)
(y).

The above calculation shows also that ωn
♯ =

√
n
π

∫
R
e−n(s+i/2)

2

Mϕ
n ◦M δ

n(ω)◦τGs ◦RG ds. Moreover

we have ωn
♯ ∈ J , which is a consequence of the following calculation:

|ωn♯(x∗)| = (nπ )
3/2

∣∣
∫

R3

e−n(t
2+(s+i/2)2+p2)ω

(
δipG σ

ϕ
t ◦ τGs ◦RG(x

∗)
)
dt ds dp

∣∣

≤ (nπ )
3/2‖Λϕ̂(λG(ω))‖

∥∥Λϕ
(∫

R3

e−n(t
2+(s−i/2)2+p2)σϕt ◦ τGs ◦RG(x)δ

−ip
G dt ds dp

)∥∥

= (nπ )
3/2‖Λϕ̂(λG(ω))‖

∥∥Λψ
(∫

R3

e−n(t
2+(s−i/2)2+(p+i/2)2)σϕt ◦ τGs ◦RG(x)δ

ip
G dt ds dp

)∥∥

= (nπ )
3/2‖Λϕ̂(λG(ω))‖

∥∥Λψ
(∫

R3

e−n(t
2+(s−i/2)2+(p+i/2)2)δ−itG σψt ◦ τGs ◦RG(x)δ

i(t+p)
G dt ds dp

)∥∥

=(nπ )
3/2‖Λϕ̂(λG(ω))‖

∥∥Jψ∇1/2
ψ Λψ

(∫

R3

e−n(t
2+(s+i/2)2+(p−i/2)2)δ

−i(t+p)
G σψt ◦ τGs ◦RG(x

∗)δitG dt ds dp
)∥∥

=(nπ )
3/2‖Λϕ̂(λG(ω))‖

∥∥Λψ
(∫

R3

e−n((t+i/2)
2+(s+i/2)2+(p−i/2)2)ν−p/2G δ

−i(t+p)
G σψt ◦τGs ◦RG(x

∗)δitG dt ds dp
)∥∥

≤ (nπ )
3/2‖Λϕ̂(λG(ω))‖

∫

R3

|e−n((t+i/2)2+(s+i/2)2+(p−i/2)2)|νs/2−t/2−p/2G ‖Λψ(RG(x
∗))‖ dt ds dp

= (nπ )
3/2‖Λϕ̂(λG(ω))‖

(∫

R3

|e−n((t+i/2)2+(s+i/2)2+(p−i/2)2)|νs/2−t/2−p/2G dt ds dp
)
‖Λϕ(x)‖,

where we used Λϕ(z) = Λψ(zδ
1/2
G ) for sufficiently good operators z, σψt = Ad(δitG ) ◦ σϕt , ψ ◦ τGs =

ν−sG ψ and σψt (δ
ip
G ) = νitpG δipG . We are left to argue that J00 is dense and that λG(J00) is a

sot∗ × ‖ · ‖ core for Λϕ̂. It follows from

ωn −−−−→
n→∞

ω, Λϕ̂(λG(ωn)) −−−−→
n→∞

Λϕ̂(λG(ω))

for ω ∈ J ♯. The first claim is standard (see e.g. [42, Proposition 2.25] where a similar method
is used), the second one can be seen as follows: first, observe that for t, s, p ∈ R we have using

(σϕt ⊗ id)WG = (id ⊗ τ Ĝ−t)(W
G)(1 ⊗ δit

Ĝ
) (see equation (4.5)) and (τGs ⊗ τ Ĝs )W

G = WG that
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(τG−t ⊗ σϕ̂−t)W
G = (δitG ⊗ 1)WG and

λG((ωδ
ip
G ) ◦ τGs ◦ σϕt ) = ((ωδipG ) ◦ τGs ⊗ id)

(
(id⊗ τ Ĝ−t)(W

G)(1⊗ δit
Ĝ
)
)

= (ω ⊗ τ Ĝ−t−s)
(
(δipG ⊗ 1)WG

)
δit
Ĝ
= (ω ◦ τG−p ⊗ τ Ĝ−t−s ◦ σϕ̂−p)(WG

)
δit
Ĝ

= (ω ⊗ τ Ĝp−t−s ◦ σϕ̂−p)(WG
)
δit
Ĝ
= τ Ĝp−t−s ◦ σϕ̂−p(λG(ω))δitĜ .

Hence

Λϕ̂(λG(ωn)) = (nπ )
3/2

∫

R3

e−n(t
2+s2+p2)Λϕ̂(λG((ωδ

ip
G ) ◦ τGs ◦ σϕt )) dt ds dp

= (nπ )
3/2

∫

R3

e−n(t
2+s2+p2)Λϕ̂

(
τ Ĝp−t−s ◦ σϕ̂−p(λG(ω))δitĜ

)
dt ds dp

= (nπ )
3/2

∫

R3

e−n(t
2+s2+p2)ν

s/2−p/2
Ĝ

Jϕ̂δ
−it
Ĝ
Jϕ̂P

i(p−t−s)∇−ip
ϕ̂ Λϕ̂(λG(ω)) dt ds dp,

where P is the self-dual operator implementing the scaling group via P itΛϕ(x) = ν
t/2
G Λϕ(τ

G
t (x)).

Convergence Λϕ̂(λG(ωn)) −−−−→
n→∞

Λϕ̂(λG(ω)) follows now using a standard argument. �

3. Completely bounded multipliers

Unless stated otherwise, in this section G is an arbitrary locally compact quantum group.

3.1. Definitions and fundamental facts. We start by discussing the notions of (left/right)
centralisers and multipliers. In the main part of the text we will focus on the left version of these
objects – this is simply a matter of choice, compare Proposition 4.14.

Following [33], we say that a linear map T : L1(Ĝ) → L1(Ĝ) is a left (respectively, right)
centraliser if

T (ω ⋆ ω′) = T (ω) ⋆ ω′ (
respectively T (ω ⋆ ω′) = ω ⋆ T (ω′)

)
(ω, ω′ ∈ L1(Ĝ)).

We denote by Clcb(L
1(Ĝ)) the space of completely bounded left centralisers. Together with the

completely bounded norm and composition as product, Clcb(L
1(Ĝ)) becomes a Banach algebra.

Similarly, Crcb(L
1(Ĝ)) stands for the space of completely bounded right centralisers, where now it is

natural to use the opposite composition as product. We equip these spaces with an operator space

structure by requiring that the embeddings Clcb(L
1(Ĝ)), Crcb(L

1(Ĝ)) →֒ CB(L1(Ĝ)) are completely
isometric; both then become completely contractive Banach algebras.

An operator b ∈ L∞(G) is said to be a completely bounded left multiplier if bA(G) ⊆ A(G) and
the associated map

Θl(b)∗ : L1(Ĝ) → L1(Ĝ) satisfying bλ̂(ω) = λ̂(Θl(b)∗(ω)) (ω ∈ L1(Ĝ))

is completely bounded. As λ̂ is injective, this definition makes sense. We follow here the notation

of [13]; sometimes the notation ml
b = Θl(b)∗ is used instead. As λ̂ is multiplicative, for any

b ∈ Ml
cb(A(G)) we have that Θl(b)∗ ∈ Clcb(L

1(Ĝ)). We write Θl(b) = (Θl(b)∗)∗, and denote the

space of CB left multipliers by Ml
cb(A(G)). Any Fourier algebra element λ̂(ω) ∈ A(G) is a CB

left multiplier with Θl(λ̂(ω))∗ ∈ CB(L1(Ĝ)) being the left multiplication by ω and Θl(λ̂(ω)) =

(ω ⊗ id)∆̂. Moreover, it holds that Ml
cb(A(G)) ⊆ M(C0(G)), see [17, Theorem 4.2].

Conversely, if T ∈ Clcb(L
1(Ĝ)) is a left centraliser, then its Banach space dual T ∗ is a normal

CB map on L∞(Ĝ) which is a left L1(Ĝ)-module homomorphism, i.e. T ∗ ∈ L1(Ĝ)CB
σ(L∞(Ĝ)).

Then, by [34, Corollary 4.4], there exists a unique CB left multiplier b ∈ Ml
cb(A(G)) satisfying

Θl(b) = T ∗, that is, Θl(b)∗ = T . These constructions are mutually inverse, and so the map Θl(·)∗ :

Ml
cb(A(G)) → Clcb(L

1(Ĝ)) is bijective. We define the operator space structure on Ml
cb(A(G)) so

that these spaces become completely isometric.

The above notions have right counterparts. Recalling that VĜ ∈ L∞(G)′⊗̄L∞(Ĝ) is the right

Kac-Takesaki operator, let us introduce the map ρ̂ : L1(Ĝ) ∋ ω 7→ (id ⊗ ω)VĜ ∈ L∞(G)′. Its

image ρ̂(L1(Ĝ)) should be thought of as a right analogue of the Fourier algebra A(G) = λ̂(L1(Ĝ)).
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An operator b′ ∈ L∞(G)′ is called a completely bounded right multiplier if ρ̂(L1(Ĝ))b′ ∈ ρ̂(L1(Ĝ))

and the associated map Θr(b′)∗ : L1(Ĝ) → L1(Ĝ) is CB. Similarly as in the left version, we write

Θr(b′) ∈ CBσ
L1(Ĝ)

(L∞(Ĝ)) for (Θr(b′)∗)∗ and Mr
cb(ρ̂(L

1(Ĝ))) for the space of CB right multipliers.

Any CB right centraliser T ∈ Crcb(L
1(Ĝ)) is associated to a unique CB right multiplier b′ ∈

Mr
cb(ρ̂(L

1(Ĝ))) via T = Θr(b′)∗ and this assignment is bijective. We similarly define an operator

space structure on Mr
cb(ρ̂(L

1(Ĝ))) to make it completely isometric with Crcb(L
1(Ĝ)).

We will write e.g. ‖b‖cb = ‖Θl(b)‖cb for b ∈ Ml
cb(A(G)). Observe that bλ̂(ω) = λ̂(Θl(b)∗(ω))

for each ω ∈ L1(Ĝ) if and only if (1 ⊗ b)WĜ = (Θl(b) ⊗ id)(WĜ), and from this, it follows that

‖b‖ ≤ ‖b‖cb. Similarly we have ‖b′‖ ≤ ‖b′‖cb for b′ ∈ Mr
cb(ρ̂(L

1(Ĝ))).

As a consequence of the above discussion, we have a commutative diagram

(3.1) Clcb(L
1(Ĝ))

∼= // Ml
cb(A(G))

%%▲
▲▲

▲▲
▲▲

▲▲
▲

L∞(G)

L1(Ĝ)

OO

∼= // A(G)

OO

99rrrrrrrrrr

The two diagonal maps to L∞(G) are the canonical inclusions, as is the map A(G) → Ml
cb(A(G)),

while the vertical map L1(Ĝ) → Clcb(L
1(Ĝ)) is given by left multiplication. A simple calculation

shows that this diagram indeed commutes. We obtain an immediate corollary: the map L1(Ĝ) →
Clcb(L

1(Ĝ)) is injective, equivalently, if ω ∈ L1(Ĝ) with ω ⋆ ω′ = 0 for all ω′ ∈ L1(Ĝ), then ω = 0.
There is a canonical way of moving between left and right CB multipliers using the extension

of the unitary antipode R̂ of Ĝ. Recall that it is implemented via R̂ = Jϕ(·)∗Jϕ, and let us denote

its canonical extension to a bounded linear map on B(L2(G)) by R̂∼ = Jϕ(·)∗Jϕ. The following
result will be used in Proposition 4.14 to show that it does not matter if we use left CB multipliers,
or right CB multipliers, when we introduce the approximation property (AP), see Definition 4.1
below.

Lemma 3.1. For ω ∈ L1(Ĝ) we have ρ̂(ω) = R̂∼(λ̂(ω ◦ R̂)). Furthermore, R̂∼(Ml
cb(A(G))) =

Mr
cb(ρ̂(L

1(Ĝ))) and for a ∈ Ml
cb(A(G)) we have Θr(R̂∼(a)) = R̂ ◦Θl(a) ◦ R̂.

Proof. Recall that VĜ = (Jϕ ⊗ Jϕ)χ(W
Ĝ)∗(Jϕ ⊗ Jϕ), see [46, Proposition 2.15]. It follows that

(3.2) ρ̂(ω) = (id⊗ ω)VĜ = R̂∼((id⊗ ω ◦ R̂)(χ(WĜ))
)
= R̂∼((ω ◦ R̂⊗ id)(WĜ)

)
= R̂∼(λ̂(ω ◦ R̂)).

Next, take a ∈ Ml
cb(A(G)) and ω ∈ L1(Ĝ). We have R̂∼(a) = Jϕa

∗Jϕ ∈ L∞(G)′, so by (3.2),

ρ̂(ω)R̂∼(a) = R̂∼(λ̂(ω ◦ R̂))R̂∼(a) = R̂∼(aλ̂(ω ◦ R̂))
= R̂∼(λ̂(Θl(a)∗(ω ◦ R̂))

)
= ρ̂

(
Θl(a)∗(ω ◦ R̂) ◦ R̂

)
.

Hence R̂∼(a) ∈ Mr
cb(a) with Θr(R̂∼(a)) = R̂ ◦ Θl(a) ◦ R̂; this map is indeed CB, compare

Lemma 4.8. We have shown that R̂∼(Ml
cb(A(G))) ⊆ Mr

cb(ρ̂(L
1(Ĝ))); the converse inclusion is

analogous. �

We finish by recording a known result for which we have not found a convenient reference.

Lemma 3.2. Let b ∈ Ml
cb(A(G)). There is β ∈ C with Θl(b)(1) = β1.

Proof. It suffices to show that for T ∈ L1(Ĝ)CB
σ(L∞(Ĝ)) there is β with T (1) = β1. By definition,

∆ ◦ T = (T ⊗ id)∆ and so ∆(T (1)) = T (1)⊗ 1. By [18, Theorem 2.1] (and references therein) it
follows that T (1) ∈ C1, as required. �
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3.2. Predual. Since the inclusion Ml
cb(A(G)) →֒ L∞(G) is bounded (actually, contractive), we

can consider the restriction of the Banach space adjoint of this map, giving a map αl : L1(G) →
Ml
cb(A(G))∗. Let us define the space Ql(A(G)) as the closure of the image of αl, so that

Ql(A(G)) = αl(L1(G)) ⊆ Ml
cb(A(G))∗.

According to [33, Theorem 3.4], the space Ql(A(G)) is a predual of Ml
cb(A(G)), i.e. we have

Ql(A(G))∗ ∼= Ml
cb(A(G))

completely isometrically. Whenever we speak about the weak∗-topology on Ml
cb(A(G)) we will

have in mind this particular choice of predual.

Similarly, we can restrict functionals in L1(G′) to Mr
cb(ρ̂(L

1(Ĝ))), and after taking the closure

obtain the predual Qr(ρ̂(L1(Ĝ))) ⊆ Mr
cb(ρ̂(L

1(Ĝ)))∗. From now on, we will restrict our discussion
to the “left” setting.

Proposition 3.3. Ml
cb(A(G)) is a dual Banach algebra, that is, the multiplication of Ml

cb(A(G))
is separately weak∗-continuous.

Proof. We turn Ml
cb(A(G))∗ into a Ml

cb(A(G))-bimodule in the usual way. Let a, b ∈ Ml
cb(A(G)) ⊆

L∞(G) and f ∈ L1(G). Writing 〈·, ·〉 for the pairing between Ml
cb(A(G) and Ql(A(G)), or between

L∞(G) and L1(G), we have

〈ab, αl(f)〉 = 〈ab, f〉 = 〈a, bf〉 = 〈a, αl(bf)〉
= 〈b, fa〉 = 〈b, αl(fa)〉.

This calculation shows that b · αl(f) = αl(bf) and αl(f) · a = αl(fa), so by continuity, it follows

that Ql(A(G)) is a closed submodule of Ml
cb(A(G))∗. It is now standard, see [59, Proposition 1.2]

for example, that the product is separately weak∗-continuous in Ml
cb(A(G)). �

Our next goal is to obtain a characterisation of functionals in Ql(A(G)). We will do this by

obtaining an alternative description of the weak∗-topology on Ml
cb(A(G)). In the process, we also

discuss CB maps on the C∗-algebra C0(Ĝ) which are associated to left centralisers.

To start, we observe that the adjoint T ∗ of a CB left centraliser T ∈ Clcb(L
1(Ĝ)) restricts to a

CB map on C0(Ĝ). Indeed, we can write T ∗ = Θl(a) for some a ∈ Ml
cb(A(G)) and then the claim

follows from the equality (1 ⊗ a)WĜ = (T ∗ ⊗ id)WĜ and density of A(Ĝ) in C0(Ĝ). We seek a

characterisation of which CB maps on C0(Ĝ) occur in this way as restrictions of duals to left CB

centralisers, in terms of a property similar to the characterisationClcb(L
1(Ĝ)) ∼=

L1(Ĝ)
CBσ(L∞(Ĝ)).

In the following statement, recall that (C0(Ĝ), ∆̂) is bisimplifiable, and so elements of the form

∆̂(a)(1⊗ b), for a, b ∈ C0(Ĝ), form a linearly dense subset of C0(Ĝ)⊗C0(Ĝ). Hence the left-hand-

side of (3.3) is contained in L∞(Ĝ) ⊗ C0(Ĝ) ⊆ L∞(Ĝ)⊗̄L∞(Ĝ), while the right-hand-side is in

L∞(Ĝ)⊗̄L∞(Ĝ). We also recall that, by Kaplansky density, L1(Ĝ) is (completely) isometrically a

subspace of C0(Ĝ)∗.

Lemma 3.4. Let L ∈ CB(C0(Ĝ),L∞(Ĝ)) be such that

(3.3) (L ⊗ id)(∆̂(a)(1⊗ b)) = ∆̂(L(a))(1⊗ b) (a, b ∈ C0(Ĝ)).

Embedding L1(Ĝ) into the duals of L∞(Ĝ) and C0(Ĝ) in the usual way, we have that L∗ maps

L1(Ĝ) to itself, and the resulting restriction T ∈ CB(L1(Ĝ)) is a left centraliser. Furthermore

T ∗ ∈ CB(L∞(Ĝ)) restricts to L, so consequently L ∈ CB(C0(Ĝ)).
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Proof. As L1(Ĝ) is an essential C0(Ĝ)-module, by Cohen–Hewitt factorisation, given ω2 ∈ L1(Ĝ)

there are ω3 ∈ L1(Ĝ) and b ∈ C0(Ĝ) with ω2 = bω3. Then, for ω1 ∈ L1(Ĝ) and a ∈ C0(Ĝ) we have

〈L∗(ω1 ⋆ ω2), a〉C0(Ĝ)∗,C0(Ĝ) = 〈∆̂(L(a)), ω1 ⊗ ω2〉L∞(Ĝ)⊗̄L∞(Ĝ),L1(Ĝ)⊗̂L1(Ĝ)

= 〈∆̂(L(a))(1 ⊗ b), ω1 ⊗ ω3〉L∞(Ĝ)⊗̄L∞(Ĝ),L1(Ĝ)⊗̂L1(Ĝ)

= 〈(L⊗ id)(∆̂(a)(1 ⊗ b)), ω1 ⊗ ω3〉L∞(Ĝ)⊗̄L∞(Ĝ),L1(Ĝ)⊗̂L1(Ĝ)

= 〈L∗(ω1)⊗ ω3, ∆̂(a)(1⊗ b)〉(C0(Ĝ)⊗C0(Ĝ))∗,C0(Ĝ)⊗C0(Ĝ)

= 〈L∗(ω1), (id⊗ ω3)(∆̂(a)(1⊗ b))〉C0(Ĝ)∗,C0(Ĝ)

= 〈L∗(ω1), (id⊗ ω2)∆̂(a)〉C0(Ĝ)∗,C0(Ĝ)

= 〈L∗(ω1) ⋆ ω2, a〉C0(Ĝ)∗,C0(Ĝ).

It follows that L∗(ω1 ⋆ ω2) = L∗(ω1) ⋆ ω2 in C0(Ĝ)∗. As L1(Ĝ) is an ideal in C0(Ĝ)∗ ([45, Proof

of Proposition 8.3]), this shows that L∗(ω1 ⋆ ω2) ∈ L1(Ĝ), and as products have dense linear span

in L1(Ĝ) ([13, Section 3]), we conclude that L∗ restricts to a map on L1(Ĝ), say T ∈ CB(L1(Ĝ)).

Then T (ω1 ⋆ ω2) = T (ω1) ⋆ ω2 for all ω1, ω2, and so T ∈ Clcb(L
1(Ĝ)). We finally calculate that, for

a ∈ C0(Ĝ), ω ∈ L1(Ĝ),

〈T ∗(a), ω〉L∞(Ĝ),L1(Ĝ) = 〈a, T (ω)〉L∞(Ĝ),L1(Ĝ) = 〈L∗(ω), a〉C0(Ĝ)∗,C0(Ĝ) = 〈L(a), ω〉L∞(Ĝ),L1(Ĝ),

and so T ∗ restricts to L, as required. �

We can now characterise what it means for an operator in CB(C0(Ĝ)) to be a centraliser.

Condition (2) in the following proposition should be thought of as a C0(Ĝ) variant of what it

means to be a left L1(Ĝ)-module homomorphism.

Proposition 3.5. For L ∈ CB(C0(Ĝ)) the following are equivalent:

(1) there is T ∈ Clcb(L
1(Ĝ)) such that T ∗ restricts to L;

(2) (L⊗ id)(∆̂(a)(1⊗ b)) = ∆̂(L(a))(1 ⊗ b) for each a, b ∈ C0(Ĝ);

Furthermore, the restriction map Clcb(L
1(Ĝ)) ∼=

L1(Ĝ)
CBσ(L∞(Ĝ)) → CB(C0(Ĝ)) is a complete

isometry; in particular, there is a bijection between Clcb(L
1(Ĝ)) and the space of all maps L ∈

CB(C0(Ĝ)) satisfying (2).

Proof. If (1) holds then ∆̂T ∗ = (T ∗ ⊗ id)∆̂ and so certainly the condition in (2) will hold for T ∗

and hence also for L. Conversely, suppose that (2) holds. Then due to Lemma 3.4 we know that

L∗ restricts to a map T ∈ Clcb(L
1(Ĝ)) such that T ∗ restricts to L, showing (1).

The restriction map
L1(Ĝ)

CBσ(L∞(Ĝ)) → CB(C0(Ĝ)) is clearly a complete contraction. With

T, L as above, this restriction map is given by T ∗ 7→ L, and as T is the restriction of L∗ and

L 7→ L∗, T 7→ T ∗ are completely isometric, it follows that
L1(Ĝ)

CBσ(L∞(Ĝ)) → CB(C0(Ĝ)) is a

complete isometry. �

Proposition 3.6. Equip the space CB(C0(Ĝ),L∞(Ĝ)) with the weak∗-topology arising from the

canonical predual C0(Ĝ)⊗̂L1(Ĝ). The restriction map

Clcb(L
1(Ĝ)) ∼=

L1(Ĝ)
CBσ(L∞(Ĝ)) → CB(C0(Ĝ),L∞(Ĝ))

is a complete isometry which has weak∗-closed image.

Proof. Proposition 3.5 shows that the restriction map
L1(Ĝ)

CBσ(L∞(Ĝ)) → CB(C0(Ĝ),L∞(Ĝ)) is

a complete isometry. Let (Ti)i∈I be a net in Clcb(L
1(Ĝ)) such that the image of the net (T ∗

i )i∈I
in CB(C0(Ĝ),L∞(Ĝ)) converges weak∗ to L ∈ CB(C0(Ĝ),L∞(Ĝ)). Let a, b ∈ C0(Ĝ) and ω1, ω2 ∈
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L1(Ĝ), and note that (id⊗ ω2)(∆̂(a)(1 ⊗ b)) ∈ C0(Ĝ). We now calculate that

〈∆̂(L(a))(1⊗ b), ω1 ⊗ ω2〉 = lim
i∈I

〈T ∗
i (a), ω1 ⋆ (bω2)〉 = lim

i∈I
〈a, Ti(ω1) ⋆ (bω2)〉

= lim
i∈I

〈∆̂(a)(1⊗ b), Ti(ω1)⊗ ω2〉 = lim
i∈I

〈T ∗
i

(
(id⊗ ω2)(∆̂(a)(1 ⊗ b))

)
, ω1〉

= 〈L
(
(id⊗ ω2)(∆̂(a)(1 ⊗ b))

)
, ω1〉 = 〈(L⊗ id)(∆̂(a)(1⊗ b)), ω1 ⊗ ω2〉.

All the above pairings are between a von Neumann algebra and its predual. It follows that we have

∆̂(L(a))(1 ⊗ b) = (L ⊗ id)(∆̂(a)(1 ⊗ b)) in L∞(Ĝ)⊗̄L∞(Ĝ). By Lemma 3.4, L∗ restricts to T ∈
Clcb(L

1(Ĝ)) such that T ∗ restricts back to give L. That is, T ∗
i −−→

i∈I
T ∗ weak∗ in CB(C0(Ĝ),L∞(Ĝ)),

as required. �

We now wish to show that the resulting weak∗-topology on Clcb(L
1(Ĝ)) given by Proposition 3.6

agrees with the weak∗-topology on Clcb(L
1(Ĝ)) ∼= Ml

cb(A(G)) given by the predual Ql(A(G)). In
the following, for a Banach space E, we denote by κE : E → E∗∗ the canonical map to the bidual.

Lemma 3.7. Let E,F be Banach spaces, and let α : E∗ → F ∗ be a bounded linear map. Let
D ⊆ F be a subset with dense linear span. Then α is weak∗-weak∗-continuous if and only if
α∗κF (D) ⊆ κE(E). In this case, and when further α is a bijection, the resulting preadjoint
α∗ : F → E is also an isomorphism of Banach spaces and α is a weak∗-weak∗-homeomorphism.

Proof. If α is weak∗-continuous, then there is a preadjoint operator α∗ : F → E with (α∗)∗ = α,
and so α∗κF (D) = (α∗)∗∗κF (D) = κEα∗(D) ⊆ κE(E), as claimed. Conversely, if α∗κF (D) ⊆
κE(E) then by norm density of spanD in F , and norm continuity of α∗, we have that α∗κF (F ) ⊆
κE(E). We could now directly apply [16, Lemma 10.1], but let us give the argument. There is a
linear map T : F → E with α∗κF (x) = κE(T (x)) for each x ∈ F . As κE , κF are isometries, T is
bounded with ‖T ‖ ≤ ‖α∗‖ = ‖α‖. Then for x ∈ F, µ ∈ E∗,

〈T ∗(µ), x〉 = 〈µ, T (x)〉 = 〈κE(T (x)), µ〉 = 〈α∗κF (x), µ〉 = 〈α(µ), x〉.
Hence T ∗ = α and so α is weak∗-continuous, with preadjoint T .

When α is a bijection, by the Open Mapping Theorem, it is an isomorphism. Thus also α∗ is
an isomorphism, and so as α∗κF = κEα∗ it follows that α∗ is bounded below and so has closed
image. If µ ∈ (α∗(F ))⊥ then 0 = 〈µ, α∗(x)〉 = 〈α(µ), x〉 for all x, µ and so α(µ) = 0 so µ = 0.
Hence α∗ is a surjection, and so an isomorphism. �

Theorem 3.8. The weak∗-topology on Clcb(L
1(Ĝ)) given by the embedding into CB(C0(Ĝ),L∞(Ĝ))

agrees with the weak∗-topology on Ml
cb(A(G)) given by Ql(A(G)).

Proof. We use Lemma 3.7. Set E = Ql(A(G)). To avoid confusion, for this proof only, we shall

write θ : Clcb(L
1(Ĝ)) → CB(C0(Ĝ),L∞(Ĝ)) for the complete isometry T 7→ T ∗|C0(Ĝ), given by

Proposition 3.6. As the image of θ is weak∗-closed, it has canonical predual F which is a quotient

of C0(Ĝ)⊗̂L1(Ĝ). Let π : C0(Ĝ)⊗̂L1(Ĝ) → F be the quotient map. We hence corestrict θ to give

an isomorphism θ : Clcb(L
1(Ĝ)) → F ∗. Let α0 : E∗ = Ml

cb(A(G)) → Clcb(L
1(Ĝ)) be the canonical

bijection, and set α = θ ◦ α0 : E∗ → F ∗.
Given a ∈ Ml

cb(A(G)) and set T = α0(a), so by definition, aλ̂(ω) = λ̂(T (ω)) for each ω ∈ L1(Ĝ).

Equivalently, (1⊗a)WĜ = (T ∗⊗ id)(WĜ). Given ω ∈ L1(Ĝ), f ∈ L1(G), set u = π((id⊗f)(WĜ)⊗
ω) ∈ F , and calculate that

〈κE(λ̂(ω)f), a〉E∗∗,E∗ = 〈a, λ̂(ω)f〉E∗,E = 〈aλ̂(ω), f〉L∞(G),L1(G) = 〈(T ∗ ⊗ id)(WĜ), ω ⊗ f〉
= 〈T ∗((id⊗ f)(WĜ)

)
, ω〉L∞(Ĝ),L1(Ĝ) = 〈θ(T )

(
(id⊗ f)(WĜ)

)
, ω〉L∞(Ĝ),L1(Ĝ) = 〈α(a), u〉F∗,F .

It follows that α∗(κF (u)) = κE(λ̂(ω)f) ∈ κE(E). As the linear span of such elements u is dense
in F , the conditions of the lemma are verified, and the result follows. �

Using this result we can characterise functionals in the predual spaceQl(A(G)). In the following,
we work with infinite matrices with entries in operator spaces, see [23, Chapter 10].
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Proposition 3.9. For any Hilbert space H and x ∈ C0(Ĝ)⊗K(H), ω ∈ L1(Ĝ)⊗̂B(H)∗, the bounded
linear functional

Ωx,ω : Ml
cb(A(G)) ∋ a 7→ 〈(Θl(a)⊗ id)x, ω〉 ∈ C.

belongs to Ql(A(G)). Furthermore, all functionals in Ql(A(G)) are of this form for some separable
Hilbert space.

This result was recorded without proof in [13, Proposition 3.2]. In the classical context of locally
compact groups, an analogous result was proved by Haagerup and Kraus in [31, Proposition 1.5].
For the convenience of the reader, we give a proof using Theorem 3.8.

Proof. We first show that Ωx,ω is a member of Ql(A(G)). As Ql(A(G)) ⊆ Ml
cb(A(G))∗ is norm

closed, by first approximating x, ω by sums of elementary tensors, and then collapsing the pairing

between K(H) and B(H)∗, we reduce the problem to the case when H = C, when x = (id⊗ ω)WĜ

for some ω ∈ L1(G), and when ω̂ ∈ L1(Ĝ). We then calculate

〈Θl(a)
(
(id⊗ ω)WĜ

)
, ω̂〉 = 〈λ̂(ω̂ ◦Θl(a)), ω〉 = 〈aλ̂(ω̂), ω〉 = 〈a, λ̂(ω̂)ω〉 (a ∈ Ml

cb(A(G))),

which shows that Ωx,ω = αl(λ̂(ω̂)ω) ∈ Ql(A(G)), as required.
Now, take any functional in Ql(A(G)), which by Theorem 3.8 is represented by some element

ρ ∈ L1(Ĝ)⊗̂C0(Ĝ) (note that the projective operator space tensor product is symmetric). By [23,
Theorem 10.2.1], we can find infinite matrices

α ∈ M1,∞×∞, β ∈ K∞(L1(Ĝ)), γ ∈ K∞(C0(Ĝ)), α′ ∈ M∞×∞,1

such that ρ = α(β ⊗ γ)α′ (for the introduction to infinite matrices with entries in an operator
space, see [23, Sections 10.1, 10.2]). Writing α = [α1,(i,j)](i,j)∈N2 etc., this means that

(3.4) 〈Θl(a), ρ〉 =
∞∑

i,j,k,l=1

α1,(i,j)〈Θl(a)(γj,l), βi,k〉α′
(k,l),1 (a ∈ Ml

cb(A(G))).

Let H be an infinite dimensional, separable Hilbert space with orthonormal basis {en}∞n=1 and
let ei,j (i, j ∈ N) be the corresponding rank one operators. Write T (H) for the operator space of
trace class operators, identified in a completely isometric way with B(H)∗. For any n ∈ N we have
‖[ej,i]ni,j=1‖Mn(T (H)) = 1. Indeed, the matrix [ej,i]

n
i,j=1 corresponds to the map En ∈ CB(B(H),Mn)

given by En(x) = [Tr(ej,ix)]
n
i,j=1. If we denote by Vn : C

n → H the canonical inclusion associated
with the choice of basis, one easily sees that En(x) = V ∗

n xVn (x ∈ B(H)) and ‖En‖cb = 1 follows.
Consequently [ej,i]

∞
i,j=1 is a well defined matrix in M∞(T (H)). Finally, define

ω = α(β ⊗ [ej,i]
∞
i,j=1)α

′ ∈ L1(Ĝ)⊗̂T (H) = L1(Ĝ)⊗̂B(H)∗.

A choice of basis gives us an isomorphism H ∼= ℓ2 and consequently we can consider γ as an

element of C0(Ĝ)⊗ K(H) ([23, Equation 10.1.2]). Finally, using equation (3.4) we can show that
the functional associated to ρ is of the form Ωγ,ω. Indeed, we have

〈a,Ωγ,ω〉 = 〈(Θl(a)⊗ id)γ, ω〉 =
∞∑

i,j,k,l=1

α1,(i,j)〈(Θl(a)⊗ id)γ, βi,k ⊗ el,j〉α′
(k,l),1

=

∞∑

i,j,k,l=1

α1,(i,j)〈Θl(a)(γj,l), βi,k〉α′
(k,l),1

for any a ∈ Ml
cb(A(G)). �

3.3. Viewing multipliers as bimodule maps. In this section we provide another way of looking
at CB multipliers and the associated weak∗-topology which will be useful in later considerations.

Let us first introduce some terminology. As usual, let CBσ(B(L2(G))) be the space of normal CB
maps on B(L2(G)). Notice that CBσ(B(L2(G))) ∼= CB(K(L2(G)),B(L2(G))). This is an operator
space which is equipped with the weak∗-topology given by the predual K(L2(G))⊗̂B(L2(G))∗. Via
left and right multiplication, B(L2(G)) becomes a L∞(G)′-bimodule, hence we can consider normal
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CB bimodule maps on B(L2(G)). We can also look at those maps which leave L∞(Ĝ) ⊆ B(L2(G))
globally invariant. We will denote the set of CB normal L∞(G)′-bimodule maps on B(L2(G))

which leave L∞(Ĝ) globally invariant by L∞(G)′CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). One easily checks that this

space is weak∗-closed in CBσ(B(L2(G))), hence it naturally inherits an operator space structure
and a weak∗-topology.

According to [34, Theorem 4.5] (and [18, Proposition 3.3] for the left version), for any a ∈
Ml
cb(A(G)) there exists a unique map Φ(a) ∈ L∞(G)′CB

σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))) which extends Θl(a) ∈

CBσ(L∞(Ĝ)). This map satisfies

1⊗ Φ(a)(x) = WĜ
(
(Θl(a)⊗ id)(WĜ∗(1⊗ x)WĜ)

)
WĜ∗ (x ∈ B(L2(G))).

Furthermore, the resulting map

(3.5) Ml
cb(A(G)) ∋ a 7→ Φ(a) ∈ L∞(G)′CB

σ,L∞(Ĝ)
L∞(G)′ (B(L2(G)))

is a completely isometric isomorphism which is additionally a weak∗-homeomorphism ([18, Theo-
rem 6.2]).

When a arises from an element of the Fourier algebra, Φ(a) takes a special form.

Lemma 3.10. For ω ∈ L1(Ĝ) let a = λ̂(ω) ∈ A(G), so that Θl(a) = (ω ⊗ id)∆̂. The associated
map Φ(a) is

Φ(a) : B(L2(G)) ∋ x 7→ (ω ⊗ id)(WĜ∗(1⊗ x)WĜ) ∈ B(L2(G)).

Proof. As before, the left centraliser associated with a is simply left multiplication by ω, and so

Θl(a) has the given form. Then for x ∈ B(L2(G)), using that (∆̂⊗ id)(WĜ) = WĜ
13W

Ĝ
23,

1⊗ Φ(a)(x) = WĜ
(
((ω ⊗ id)∆̂⊗ id)(WĜ∗(1⊗ x)WĜ)

)
WĜ∗

= WĜ
(
(ω ⊗ id⊗ id)(WĜ∗

23 W
Ĝ∗
13 (1⊗ 1⊗ x)WĜ

13W
Ĝ
23)

)
WĜ∗

= WĜWĜ∗(ω ⊗ id⊗ id)(WĜ∗
13 (1⊗ 1⊗ x)WĜ

13)W
ĜWĜ∗

= 1⊗ (ω ⊗ id)(WĜ∗(1⊗ x)WĜ),

and so Φ(a) has indeed the claimed form. �

4. The approximation property

We define the approximation property for a locally compact quantum group G (abbreviated
AP) in a way completely analogous to the definition of AP for locally compact groups by Haagerup

and Kraus in [31]. Recall that we fix the predual Ql(A(G)) of Ml
cb(A(G)), and we always refer to

the corresponding weak∗-topology on Ml
cb(A(G)).

Definition 4.1. We say that a locally compact quantum group G has the approximation property
(AP) if there is a net (ai)i∈I in A(G) which converges to 1 in the weak∗-topology of Ml

cb(A(G)).

Remark 4.2.

• We could call the above property “left AP” and introduce also a right variant of AP.
However, in Proposition 4.14 we will show that these properties are equivalent, so that
there is no need to distinguish between them.

• A variant of AP was considered by Kraus-Ruan [41] (for Kac algebras) and Crann in [14].
Their property is a priori stronger, but in Theorem 4.4 we show that this variant is in fact
equivalent to Definition 4.1. This proves a conjecture by Kraus-Ruan [41, Remark 4.2].

Let us list some examples and counter-examples:

• In Section 5 we show weak amenability implies AP, therefore all compact quantum groups

and the discrete quantum groups Ô+
F , Û

+
F have AP ([25, 22]). Furthermore, the locally

compact quantum group SUq(1, 1)ext has AP, see [11].
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• Permanence properties of AP with respect to quantum subgroups (Theorem 7.1), direct
products (Proposition 7.21), free products (Theorem 7.7) and the Drinfeld double construc-
tion (Theorem 7.15) allow us to construct examples with and without AP. For instance,
the Drinfeld double of SL(3,R), or of any classical locally compact group without AP, see
[47], gives rise to non-classical quantum groups without AP.

4.1. Equivalent characterisations. We check first that the approximation property is preserved
under taking the commutant quantum groupG′, or the opposite quantum groupGop, for definitions
see [46, Section 4].

Proposition 4.3. The following conditions are equivalent:

(1) G has AP,
(2) G′ has AP.
(3) Gop has AP,

Proof. Assume that G has AP, i.e. there is a net (ωi)i∈I in L1(Ĝ) such that λ
Ĝ
(ωi) −−→

i∈I
1 weak∗

in Ml
cb(A(G)).

First we will prove that G′ has AP. Recall that Ĝ′ = Ĝop ([46, Proposition 4.2]). Using
Proposition 3.9, choose an arbitrary functional Ωy,ω ∈ Ql(A(G′)) where H is a separable Hilbert

space, y ∈ C0(Ĝ) ⊗ K(H) and ν ∈ L1(Ĝ)⊗̂B(H)∗. Pick some selfadjoint antiunitary J on H

(for example, pick an orthonormal basis and let J be coordinate-wise complex conjugation) and

define j : K(H) → K(H) by j(x) = J x∗J , an ⋆-antihomomorphism with j2 = id. Then R̂ ⊗ j

is a well-defined bounded map on the spatial tensor product C0(Ĝ) ⊗ K(H), and R̂∗ ⊗ j∗ is

well-defined on L1(Ĝ)⊗̂B(H)∗. Indeed, R̂ ⊗ j acts via (R̂ ⊗ j)(X) = (Jϕ ⊗ J )X∗(Jϕ ⊗ J ) for

X ∈ C0(Ĝ)⊗K(H) and then we can define R̂∗⊗ j∗ as the restriction of (R̂⊗ j)∗ to L1(Ĝ)⊗̂B(H)∗:

(R̂ ⊗ j)∗ preserves this subspace as (R̂ ⊗ j)∗(ωξ⊗η) = ωJϕξ⊗J η for ξ ∈ L2(G), η ∈ H. Since

L1(Ĝ)⊗̂K(H)∗ ⊆ (C0(Ĝ)⊗K(H))∗ is closed, the claim follows. Furthermore, both these maps are
isometric bijections.

Set x = (R̂⊗ j)(y), ω = (R̂∗ ⊗ j∗)(ν). Then using Lemma 3.10

〈λ
Ĝ
(ωi),Ωx,ω〉 = 〈((ωi ⊗ id)∆

Ĝ
⊗ id)(R̂ ⊗ j)(y), (R̂∗ ⊗ j∗)(ν)〉

= 〈(R̂(ωi ⊗ id)∆
Ĝ
R̂⊗ id)(y), ν〉 = 〈((id ⊗ R̂∗(ωi))∆Ĝ

⊗ id)(y), ν〉
= 〈((R̂∗(ωi)⊗ id)∆

Ĝop ⊗ id)(y), ν〉 = Ωy,ν(λĜop (R̂∗(ωi)))

and since λ
Ĝ
(ωi) −−→

i∈I
1 weak∗, we conclude λ

Ĝop(R̂∗(ωi)) −−→
i∈I

1 weak∗. This shows that G′ has

AP.
Next we prove that Gop has AP. By [46, Proposition 4.2] we have Ĝop = Ĝ′. Write R∼

for the extension of the unitary antipode on G, B(L2(G)) ∋ x 7→ Jϕ̂x
∗Jϕ̂ ∈ B(L2(G)), so that

ω̃i = ωi ◦ R∼ ∈ L1(Ĝ′). We claim that the net (λ
Ĝ′(ωi ◦ R∼))i∈I converges weak∗ to 1 in

Ml
cb(A(Gop)). Take z ∈ C0(Ĝ

′)⊗K(H), θ ∈ L1(Ĝ′)⊗̂B(H)∗. Recall that C0(Ĝ
′) = Jϕ̂C0(Ĝ)Jϕ̂ and

∆
Ĝ′ : L∞(Ĝ)′ ∋ x 7→(Jϕ̂ ⊗ Jϕ̂)∆Ĝ

(Jϕ̂xJϕ̂)(Jϕ̂ ⊗ Jϕ̂)

=(R∼ ⊗R∼)∆
Ĝ
(R∼(x)) ∈ L∞(Ĝ)′⊗̄L∞(Ĝ)′.

Using this, we obtain

〈λ
Ĝ′(ωi ◦R∼),Ωz,θ〉 = 〈(Θl(λ

Ĝ′ (ωi ◦R∼))⊗ id)z, θ〉 = 〈((ωi ◦R∼ ⊗ id)∆
Ĝ′ ⊗ id)z, θ〉

= 〈(R∼ ⊗ j)
(
(ωi ⊗ id)∆

Ĝ
⊗ id

)
(R∼ ⊗ j)z, θ〉 = 〈λ

Ĝ
(ωi),Ω(R∼⊗j)z,θ◦(R∼⊗j)〉

−−→
i∈I

〈1,Ω(R∼⊗j)z,θ◦(R∼⊗j)〉 = 〈z, θ〉 = 〈1,Ωz,θ〉

and thus Gop has AP. The converse implications follow since (G′)′ = G and (Gop)op = G. �
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The next result shows that the version of the approximation property considered in [41] and
[14] is equivalent to AP as defined in Definition 4.1. Both [41, Definition 4.1] and [14, Page 1728]
take condition (2) of the following theorem as their definition of AP.

Theorem 4.4. The following conditions are equivalent:

(1) G has AP,
(2) there is a net (ai)i∈I in the Fourier algebra A(G), such that the corresponding net (Θl(ai))i∈I

converges to the identity in the stable point-weak∗-topology of CBσ(L∞(Ĝ)).

In order to prove Theorem 4.4 we need to establish some preliminary results. Recall that L∞(G)
is a right L1(G)-module via x ⋆ ω = (ω ⊗ id)∆(x) for x ∈ L∞(G), ω ∈ L1(G).

Proposition 4.5. Let a ∈ L∞(G) and ω ∈ L1(G).

(1) If a ∈ A(G) then a ⋆ ω ∈ A(G).

(2) If a ∈ Ml
cb(A(G)) then a ⋆ ω ∈ Ml

cb(A(G)) with ‖a ⋆ ω‖cb ≤ ‖a‖cb‖ω‖ and

Θl(a ⋆ ω)(x̂) = (ω ⊗ id)
(
(id⊗Θl(a))((1⊗ x̂)WG∗)WG

)
(x̂ ∈ L∞(Ĝ)).

Proof. (1) Write a = λ̂(ω̂) for ω̂ ∈ L1(Ĝ). Then

a ⋆ ω = (ω ⊗ id)∆
(
(ω̂ ⊗ id)WĜ

)
= (ω̂ ⊗ ω ⊗ id)

(
WĜ

13W
Ĝ
12

)

= (ω̂ ⊗ id)
(
WĜ((id ⊗ ω)WĜ ⊗ 1)

)
= λ̂

(
ω̂
(
· (id⊗ ω)WĜ

))
∈ A(G)

as required.

(2) As WG ∈ L∞(G)⊗̄L∞(Ĝ), there is a well-defined linear map T on L∞(Ĝ) given by

T (x̂) = (ω ⊗ id)
(
(id⊗Θl(a))((1 ⊗ x̂)WG∗)WG

)
(x̂ ∈ L∞(Ĝ)).

Clearly T is completely bounded with ‖T ‖cb ≤ ‖a‖cb‖ω‖ and weak∗-continuous. We first show

that T is the adjoint of a centraliser, equivalently, that ∆̂T = (T ⊗ id)∆̂. If x̂ ∈ L∞(Ĝ) then using

∆̂Θl(a) = (Θl(a)⊗ id)∆̂ gives

∆̂T (x̂) = (ω ⊗ id⊗ id)
(
(id⊗ ∆̂Θl(a))((1⊗ x̂)WG∗)WG

13W
G
12

)

= (ω ⊗ id⊗ id)
(
(id⊗Θl(a)⊗ id)

(
(1⊗ ∆̂(x̂))WG∗

12 W
G∗
13

)
WG

13W
G
12

)

= (ω ⊗ id⊗ id)
(
(id⊗Θl(a)⊗ id)

(
(1⊗ ∆̂(x̂))WG∗

12

)
WG

12

)

= (T ⊗ id)∆̂(x̂).

Consequently T is the adjoint of a centraliser, and so there exists b ∈ Ml
cb(A(G)) with T = Θl(b).

Then bλ̂(ω̂) = λ̂(ω̂ ◦ T ) for each ω̂ ∈ L1(Ĝ), equivalently, (1 ⊗ b)WĜ = (T ⊗ id)(WĜ). In other
words, we have

(b ⊗ 1)WG∗ = (id⊗ T )(WG∗) = (id⊗ ω ⊗ id)
(
(id⊗ id⊗Θl(a))(WG∗

13 W
G∗
23 )W

G
23

)
,

or equivalently

b⊗ 1 = (id⊗ ω ⊗ id)
(
(id⊗ id⊗Θl(a))(WG∗

13 W
G∗
23 )W

G
23W

G
13

)

= (ω ⊗ id⊗ id)
(
(id⊗ id⊗Θl(a))(WG∗

23 W
G∗
13 )W

G
13W

G
23

)
.(4.1)

Now, (1⊗ a)WĜ = (Θl(a)⊗ id)(WĜ) so a⊗ 1 = (id⊗Θl(a))(WG∗)WG and hence

a ⋆ ω ⊗ 1 = (ω ⊗ id)∆(a)⊗ 1 = ((ω ⊗ id)∆⊗ id)
(
(id⊗Θl(a))(WG∗)WG

)

= (ω ⊗ id⊗ id)
(
(id⊗ id⊗Θl(a))(WG∗

23 W
G∗
13 )W

G
13W

G
23

)
.(4.2)

As (4.1) and (4.2) agree, we conclude that b = a ⋆ ω. Thus a ⋆ ω ∈ Ml
cb(A(G)) with Θl(a ⋆ ω) = T

as required. �

Lemma 4.6. For any locally compact quantum group G and x ∈ L∞(G), a ∈ C0(G), ω ∈ L1(G)
we have ω ⋆ (xa) ∈ C0(G).
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Proof. As L1(G) is a closed C0(G)-submodule of C0(G)∗, by [60, Lemma 2.1] we know that ω = bω1

for some b ∈ C0(G) and ω1 ∈ L1(G). Then

ω ⋆ (xa) = (id⊗ ω)∆(xa) = (id⊗ ω1)
(
∆(x)∆(a)(1 ⊗ b)

)
.

As a, b ∈ C0(G) we know that ∆(a)(1 ⊗ b) ∈ C0(G) ⊗ C0(G), the minimal C∗-algebraic tensor
product. By continuity, it hence suffices to prove that

(id⊗ ω1)
(
∆(x)(c ⊗ d)

)
∈ C0(G)

for c, d ∈ C0(G). However, this equals
(
(id⊗ dω1)∆(x)

)
c and by [60, Theorem 2.4] we know that

(id⊗ dω1)∆(x) ∈ M(C0(G)), and so the result follows. �

Next we introduce certain functionals in Ql(A(G)) in analogy to [31, Proposition 1.3]. For a

Hilbert space H, x ∈ L∞(Ĝ)⊗̄B(H), ω ∈ L1(Ĝ)⊗̂B(H)∗ and f ∈ L1(G) define

(4.3) Ωx,ω,f : Ml
cb(A(G)) ∋ a 7→ 〈(Θl(a ⋆ f)⊗ id)x, ω〉 ∈ C.

Note that Ωx,ω,f is well-defined and bounded by Proposition 4.5.

Proposition 4.7. The linear functional Ωx,ω,f is weak∗-continuous, hence is contained in Ql(A(G)).

Proof. Clearly Ωx,ω,f is bounded with ‖Ωx,ω,f‖ ≤ ‖x‖‖f‖‖ω‖, so it suffices to prove the result

when ω is in the algebraic tensor product of L1(Ĝ) with B(H)∗, and hence by linearity, we may
suppose that ω = ω̂ ⊗ u. Then

Ωx,ω,f(a) = 〈(Θl(a ⋆ f)⊗ id)(x), ω̂ ⊗ u〉 = 〈Θl(a ⋆ f)((id⊗ u)(x)), ω̂〉 (a ∈ Ml
cb(A(G))).

Thus, it suffices to show that for ω̂ ∈ L1(Ĝ) and x̂ ∈ L∞(Ĝ)

µ : Ml
cb(A(G)) ∋ a 7→ 〈Θl(a ⋆ f)(x̂), ω̂〉 ∈ C

is weak∗-continuous. By Proposition 4.5, given the form of Θl(a ⋆ f),

µ(a) = 〈(id⊗Θl(a))((1 ⊗ x̂)WG∗)WG, f ⊗ ω̂〉 (a ∈ Ml
cb(A(G))).

As WG ∈ L∞(G)⊗̄L∞(Ĝ), also WG(f⊗ ω̂) ∈ L1(G)⊗̂L1(Ĝ), so again by approximation, it suffices

to show that for f ′ ∈ L1(G), ω̂′ ∈ L1(Ĝ) the map

µ′ : Ml
cb(A(G)) ∋ a 7→ 〈(id ⊗Θl(a))((1⊗ x̂)WG∗), f ′ ⊗ ω̂′〉 = 〈Θl(a)(x̂ŷ

)
, ω̂′〉 ∈ C

is weak∗-continuous, where ŷ = (f ′ ⊗ id)(WG∗) ∈ C0(Ĝ).
By linear density of products, compare Lemma 5.3, it suffices to consider the case when ω̂′ =

ω̂1 ⋆ ω̂2 for ω̂1, ω̂2 ∈ L1(Ĝ). As Θl(a)∗(ω̂1 ⋆ ω̂2) = Θl(a)∗(ω̂1) ⋆ ω̂2 by the left centraliser property,
we see that

µ′(a) = 〈Θl(a)(x̂ŷ), ω̂1 ⋆ ω̂2〉 = 〈ω̂2 ⋆ (x̂ŷ),Θ
l(a)∗(ω̂1)〉 (a ∈ Ml

cb(A(G))).

As ŷ ∈ C0(Ĝ), by Lemma 4.6 applied to Ĝ, we know that ω̂2 ⋆ (x̂ŷ) ∈ C0(Ĝ). Thus µ′ ∈ Ql(A(G))
by Proposition 3.9. �

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. (2) ⇒ (1) follows directly from the characterisation of functionals in the

predual Ql(A(G)) of Ml
cb(A(G)) in Proposition 3.9.

(1) ⇒ (2) Assume that (ai)i∈I is a net in A(G) which converges weak∗ to 1 in Ml
cb(A(G)). Pick

a state f ∈ L1(G), and for each i ∈ I set bi = ai ⋆ f . By Proposition 4.5 we have bi ∈ A(G). We
now show that (Θl(bi))i∈I converges to the identity in the stable point-weak∗-topology.

Given a separable Hilbert space H, x ∈ L∞(Ĝ)⊗̄B(H), and ω ∈ L1(Ĝ)⊗̂B(H)∗, using Proposi-
tion 4.7 we see that

〈(Θl(bi)⊗ id)x, ω〉 = 〈(Θl(ai ⋆ f)⊗ id)x, ω〉 = 〈ai,Ωx,ω,f〉
−−→
i∈I

〈1,Ωx,ω,f〉 = 〈(Θl(1 ⋆ f)⊗ id)(x), ω〉,
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Since f is a state, we have 1⋆f = (f⊗id)∆(1) = 1, hence Θl(1⋆f) = id, and so (Θl(bi)⊗id)(x) −−→
i∈I

x weak∗ as required. �

4.2. Further general properties. Let us start with an auxiliary technical result. Recall that
for a von Neumann algebra M and a linear map T : M → M we define T † : M ∋ x 7→ T (x∗)∗ ∈ M.

Lemma 4.8. If T ∈ CBσ(M), then T † ∈ CBσ(M) and ‖T †‖cb = ‖T ‖cb. If M = L∞(G) for a
locally compact quantum group G then R ◦T ◦R ∈ CBσ(L∞(G)) and ‖R ◦T ◦R‖cb = ‖T ‖cb. Both
operations T 7→ T †, T 7→ R ◦ T ◦R are continuous with respect to the stable point-weak∗-topology.

Proof. Let M ⊆ B(H). Using the normal version of Wittstock’s Theorem (compare with the start
of the proof of [32, Theorem 2.5] for example), we can find a Hilbert space K, bounded linear
maps V,W : H → K and a normal representation π : M → B(K) such that T (x) = W ∗π(x)V for
x ∈ M, and ‖T ‖cb = ‖V ‖‖W‖. Consequently T †(x) = V ∗π(x)W for x ∈ M, and it follows that
T † ∈ CBσ(M) and ‖T †‖cb ≤ ‖T ‖cb. As (T †)† = T we in fact have ‖T †‖cb = ‖T ‖cb. Assume
now that (Ti)i∈I is a net in CBσ(M) which converges to T ∈ CBσ(M) in the stable point-weak∗-
topology, and take x ∈ M ⊗̄B(ℓ2), ω ∈ M∗ ⊗̂B(ℓ2)∗. Then we have

〈(T †
i ⊗ id)x, ω〉 = 〈(Ti ⊗ id)(x∗)∗, ω〉 = 〈(Ti ⊗ id)(x∗), ω〉

−−→
i∈I

〈(T ⊗ id)(x∗), ω〉 = 〈(T ⊗ id)(x∗)∗, ω〉 = 〈(T † ⊗ id)(x), ω〉.

This calculation shows the stable point-weak∗-continuity of the map T 7→ T †.
Now assume that M = L∞(G). If T ∈ CBσ(L∞(G)), then clearly R ◦ T ◦ R is normal since

the unitary antipode R is normal. Using again Wittstock’s Theorem, write T † = W ∗π(·)V and
choose an antiunitary J on H which satisfies J ∗ = J . Then, for x ∈ L∞(G),

R ◦ T ◦R(x) = Jϕ̂T (Jϕ̂x
∗Jϕ̂)

∗Jϕ̂ = Jϕ̂T
†(Jϕ̂xJϕ̂)Jϕ̂

= Jϕ̂W
∗π(Jϕ̂xJϕ̂)V Jϕ̂ = (JWJϕ̂)

∗J π(Jϕ̂xJϕ̂)J (J V Jϕ̂).
As L∞(G) ∋ x 7→ J π(Jϕ̂xJϕ̂)J ∈ B(H) is a ⋆-homomorphism, it follows that R ◦T ◦R is CB with
‖R ◦ T ◦R‖cb ≤ ‖T ‖cb. Again, as R ◦ (R ◦ T ◦R) ◦R = T , we have in fact ‖R ◦ T ◦R‖cb = ‖T ‖cb.

Let (Ti)i∈I be a net in CBσ(L∞(G)) converging to T in the stable point-weak∗-topology. Choose
a self-adjoint antiunitary J ′ on ℓ2 and define j = J ′(·)∗J ′, a normal ⋆-antiautomorphism of
B(ℓ2). Then R ⊗ j extends to a well-defined normal bounded linear map on L∞(G)⊗̄B(ℓ2).
Indeed, in the proof of Proposition 4.3 we argued that R∗ ⊗ (j|K(ℓ2))

∗ is a bounded linear map

on L1(G)⊗̂B(ℓ2)∗, and we just need to take the dual map R ⊗ j = (R∗ ⊗ (j|K(ℓ2))
∗)∗. For

x ∈ L∞(G)⊗̄B(ℓ2), ω ∈ L1(G)⊗̂B(ℓ2)∗ we have

〈(R ◦ Ti ◦R⊗ id)x, ω〉 = 〈(R ◦ Ti ◦R⊗ j2)x, ω〉 = 〈(Ti ⊗ id)
(
(R ⊗ j)(x)

)
, ω ◦ (R ⊗ j)〉

−−→
i∈I

〈(T ⊗ id)
(
(R⊗ j)(x)

)
, ω ◦ (R ⊗ j)〉 = 〈(R ◦ T ◦R⊗ id)x, ω〉,

which concludes the proof. �

We now show that Ml
cb(A(G)) admits an interesting involution. Recall that S denotes the

antipode of G.

Proposition 4.9. Let a ∈ Ml
cb(A(G)). Then a∗ ∈ Dom(S) and S(a∗) ∈ Ml

cb(A(G)) with
Θl(S(a∗)) = Θl(a)†.

Proof. By Lemma 4.8, we know that Θl(a)† ∈ CBσ(L∞(G)). One easily checks that Θl(a)† is a

left L1(Ĝ)-module map, hence Θl(a)† = Θl(b) for some b ∈ Ml
cb(A(G)). The claim follows now

from [17, Theorem 5.9].
For the convenience of the reader let us also indicate a direct argument. As Θl(a)† = Θl(b) we

have that

(1⊗ b)WĜ = (Θl(b)⊗ id)WĜ = (Θl(a)† ⊗ id)WĜ = ((Θl(a)⊗ id)WĜ∗)∗,

and hence

WĜ∗(1⊗ b∗) = (Θl(a)⊗ id)WĜ∗ ⇒ (id⊗ ω̂)(WG)b∗ = (id⊗ ω̂ ◦Θl(a))WG
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for each ω̂ ∈ L1(Ĝ). In what follows, we treat S as a densely-defined, closed operator on L∞(G)
equipped with the weak∗-topology. From [68, Proposition 2.24], compare [45, Proposition 8.3], we
know that for any ω̂ we get (id ⊗ ω̂)WG ∈ D(S) and S((id ⊗ ω̂)WG) = (id ⊗ ω̂)WG∗. It follows
that (id⊗ ω̂)(WG)b∗ ∈ D(S) with

S
(
(id⊗ ω̂)(WG)b∗

)
= (id⊗ ω̂ ◦Θl(a))WG∗ = (ω̂ ◦Θl(a)⊗ id)WĜ = a (ω̂ ⊗ id)(WĜ)

= a (id⊗ ω̂)WG∗ = aS
(
(id⊗ ω̂)WG

)
.(4.4)

Let C = {(id⊗ ω̂)WG | ω̂ ∈ L1(Ĝ)} ⊆ D(S). We shall show that C contains a net (ai)i∈I such that
both ai −−→

i∈I
1 and S(ai) −−→

i∈I
1 weak∗ in L∞(G). It follows that aib

∗ −−→
i∈I

b∗ and aS(ai) −−→
i∈I

a

weak∗, and so as S is weak∗-closed, it follows from (4.4) that b∗ ∈ D(S) with S(b∗) = a. Hence
a∗ = S(b∗)∗ ∈ Dom(S) and S(a∗) = S(S(b∗)∗) = b, as claimed.

We now show the claim about C, using some standard “smearing” techniques, compare [42].
For a ∈ C0(G) and r > 0, z ∈ C, define

a(r, z) =
r√
π

∫

R

exp(−r2(t− z)2)τt(a) dt.

Then a(r, z) is analytic for the one-parameter automorphism group (τt)t∈R with τw(a(r, z)) =

a(r, z + w) for w ∈ C. Similarly, for ω̂ ∈ L1(Ĝ), define

ω̂(r, z) =
r√
π

∫

R

exp(−r2(t− z)2)ω̂ ◦ τ̂t dt.

Given ω̂, let a = (id⊗ ω̂)(WG). As (τt⊗ τ̂t)(W
G) = WG, it follows that τt(a) = (id⊗ ω̂ ◦ τ̂−t)(WG)

and hence a(r, z) = (id ⊗ ω̂(r,−z))(WG). Finally, as S = Rτ−i/2, it follows that S(a(r, z)) =

R(a(r, z − i/2)) = (id⊗ (ω̂ ◦ R̂)(r,−z + i/2))(WG).
As C is norm dense in C0(G), we can find a net (ω̂i)i∈I with ai = (id⊗ωi)(WG) −−→

i∈I
1 strictly.

By [42, Proposition 2.25], the net (ai(r, z))i∈I converges strictly to 1(r, z) = 1, for any choice of
r, z. By the above discussion, ai(r, z) ∈ C. Then also S(ai(r, z)) = R(ai(r, z− i/2)) −−→

i∈I
R(1) = 1

strictly. Cohen–Hewitt’s Factorisation Theorem shows that strict convergence implies weak∗-
convergence in L∞(G), hence we have constructed the required net. �

Corollary 4.10. Let a ∈ Ml
cb(A(G)). Then Θl(a) ∈ CBσ(L∞(Ĝ)) preserves the adjoint if and

only if S(a∗) = a.

Next we check that Ml
cb(A(G)) is globally invariant under the scaling and modular automor-

phism groups.

Lemma 4.11. Let G be a locally compact quantum group and let a ∈ Ml
cb(A(G)). For any t ∈ R,

• τt(a) ∈ Ml
cb(A(G)) with Θl(τt(a)) = τ̂t ◦Θl(a) ◦ τ̂−t.

• σϕt (a) ∈ Ml
cb(A(G)) with Θl(σϕt (a)) : x 7→ δ̂it τ̂t ◦Θl(a)

(
δ̂−itτ̂−t(x)

)
.

• σψt (a) ∈ Ml
cb(A(G)) with Θl(σψt (a)) : x 7→ τ̂−t ◦Θl(a)

(
τ̂t(x)δ̂

−it)δ̂it.

Proof. Take ω ∈ L1(Ĝ). Using (τ̂t ⊗ τt)W
Ĝ = WĜ (see proof of [45, Proposition 6.10]) we obtain

τt(a)λ̂(ω) = τt
(
a τ−t(λ̂(ω))

)
= τt

(
aλ̂(ω ◦ τ̂t)

)
= λ̂

(
Θl(a)∗(ω ◦ τ̂t) ◦ τ̂−t

)

which implies τt(a) ∈ Ml
cb(A(G)) and Θl(τt(a)) = τ̂t ◦ Θl(a) ◦ τ̂−t; notice that clearly the right-

hand-side of this final expression gives a completely bounded map.
We now use the following facts. Firstly, by the definition of WG we have (ρ⊗ id)(WG∗)Λϕ(x) =

Λϕ((ρ⊗id)∆(x)) for ρ ∈ L1(G), x ∈ Nϕ. Secondly, (σ
ϕ
t ⊗σψ−t)◦∆ = ∆◦τt, see [45, Proposition 6.8].

Thus

(ρ ◦ σϕt ⊗ id)(WG∗)Λϕ(x) = Λϕ((ρ ◦ σϕt ⊗ id)∆(x)) = Λϕ
(
(ρ⊗ σψt )∆(τt(x))

)

= ν
t
2∇it

ψΛϕ((ρ⊗ id)∆(τt(x))) = ∇it
ψ(ρ⊗ id)(WG∗)P itΛϕ(x),
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which implies that (σϕt ⊗ id)(WG∗) = (1⊗∇it
ψ)W

G∗(1⊗P it); here we have also used [68, Definition

5.1, Remark 5.2]. Next, since WĜ = χ(WG∗) and δ̂−it = ∇it
ψP

it ([68, Theorem 5.17]), and using

that τ̂−t(y) = P−ityP it for y ∈ L∞(Ĝ) see [45, Proposition 8.23], we arrive at

(4.5) (id⊗ σϕt )(W
Ĝ) = (∇it

ψ ⊗ 1)WĜ(P it ⊗ 1) = (δ̂−it ⊗ 1)(τ̂−t ⊗ id)(WĜ).

Using this formula and τ̂t(δ̂) = δ̂ ([68, Theorem 3.11]) we calculate

σϕt (a)λ̂(ω) = σϕt
(
aσϕ−t(λ̂(ω))

)
= σϕt

(
a(ω ⊗ id)

(
(δ̂it ⊗ 1)(τ̂t ⊗ id)(WĜ)

))

= σϕt
(
aλ̂((ωδ̂it) ◦ τ̂t)

)
= σϕt

(
λ̂(Θl(a)∗((ωδ̂

it) ◦ τ̂t))
)

= λ̂
(((

Θl(a)∗((ωδ̂
it) ◦ τ̂t)

)
δ̂−it

)
◦ τ̂−t

)
.

The above shows that σϕt (a) ∈ Ml(A(G)), and for x ∈ L∞(Ĝ) we get

〈Θl(σϕt (a))(x), ω〉 = 〈x,Θl(σϕt (a))∗(ω)〉 = 〈x,
(
Θl(a)∗((ωδ̂

it) ◦ τ̂t)δ̂−it
)
◦ τ̂−t〉

= 〈δ̂−itτ̂−t(x),Θl(a)∗((ωδ̂it) ◦ τ̂t)〉 = 〈δ̂itτ̂t ◦Θl(a)
(
δ̂−itτ̂−t(x)

)
, ω〉.

The final claim is shown in a similar way. We have (σψt ⊗ τ−t) ◦∆ = ∆ ◦ σψt ([45, Proposition
8.23]) and hence for x ∈ Nϕ,

(ρ ◦ σψt ⊗ id)(WG∗)Λϕ(x) = Λϕ((ρ ◦ σψt ⊗ id)∆(x)) = Λϕ
(
(ρ⊗ τt)∆(σψt (x))

)

= ν−
t
2P itΛϕ((ρ⊗ id)∆(σψt (x))) = P it(ρ⊗ id)(WG∗)∇it

ψΛϕ(x),

consequently (σψt ⊗ id)(WG∗) = (1⊗ P it)WG∗(1⊗∇it
ψ) and so

(id⊗ σψt )(W
Ĝ) = (P it ⊗ 1)WĜ(∇it

ψ ⊗ 1) = (τ̂t ⊗ id)(WĜ)(δ̂−it ⊗ 1).

Calculating as before,

σψt (a)λ̂(ω) = σψt
(
a(ω ⊗ id)

(
(τ̂−t ⊗ id)(WĜ)(δ̂it ⊗ 1)

))

= σψt
(
aλ̂((δ̂itω) ◦ τ̂−t)

)
= λ̂

(((
δ̂−itΘl(a)∗((δ̂

itω) ◦ τ̂−t)
))

◦ τ̂t
)

and so

〈Θl(σψt (a))(x), ω〉 = 〈τ̂−t ◦Θl(a)
(
τ̂t(x)δ̂

−it)δ̂it, ω〉 (x ∈ L∞(Ĝ))

as desired. �

In the next proposition we show that for any a ∈ Ml
cb(A(G)) the map Θl(a) is bounded on the

Hilbert space level; the final claim should be compared with Proposition 4.9.

Proposition 4.12. Let a ∈ Ml
cb(A(G)). Then for b ∈ Nϕ̂ we have Θl(a)(b) ∈ Nϕ̂, and the densely

defined operator

L2(G) ⊇ Λϕ̂(Nϕ̂) ∋ Λϕ̂(b) 7→ Λϕ̂(Θ
l(a)(b)) ∈ L2(G)

is bounded. In fact, we have

Λϕ̂(Θ
l(a)(b)) = S−1(a)Λϕ̂(b) = S(a∗)∗Λϕ̂(b) (b ∈ Nϕ̂).

In order to prove Proposition 4.12 we start with a general lemma; recall (2.2) for the definition
of J .

Lemma 4.13. Let ω ∈ J ⊆ L1(G), let a ∈ L∞(G), and let b ∈ Dom(σϕ−i/2) ⊆ L∞(G). Then

aωb ∈ J with Λϕ̂(λ(aωb)) = aJϕσ
ϕ
−i/2(b)

∗JϕΛϕ̂(λ(ω)).

Proof. Take x ∈ Nϕ. We have

〈x∗, aωb〉 = 〈(a∗xb∗)∗, ω〉 = 〈Λϕ(a∗xb∗) |Λϕ̂(λ(ω))〉
= 〈a∗Jϕσϕi/2(b∗)∗JϕΛϕ(x) |Λϕ̂(λ(ω))〉 = 〈Λϕ(x) | aJϕσϕi/2(b∗)JϕΛϕ̂(λ(ω))〉

which proves the claim. �
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Proof of Proposition 4.12. Take b = (id⊗ω)WĜ for ω ∈ L1(G) such that ω ∈ L1
♯ (G) and ω♯ ∈ J ;

that such an ω exists follows from Lemma 2.1, for example. Then, for any ω̂ ∈ L1(Ĝ),

〈Θl(a)(b), ω̂〉 = 〈(id⊗ ω)WĜ,Θl(a)∗(ω̂)〉 = 〈λ̂(Θl(a)∗(ω̂)), ω〉
= 〈aλ̂(ω̂), ω〉 = 〈(ω̂ ⊗ id)WĜ, ωa〉 = 〈(id⊗ ωa)WĜ, ω̂〉,

which shows that

Θl(a)(b) = (id⊗ ωa)WĜ.

Observe also that

(4.6) b = (ω ⊗ id)(WG∗) = ((ω ⊗ id)WG)∗ = (ω♯ ⊗ id)WG = λ(ω♯),

in particular b ∈ Nϕ̂. Now for y ∈ Dom(S), as a∗ ∈ D(S) by Proposition 4.9, we have that
S(y)∗a∗ ∈ Dom(S), and hence

〈S(y), ωa〉 = 〈aS(y), ω〉 = 〈S(y)∗a∗, ω〉 = 〈S(y)∗a∗, ω♯♯〉

= 〈S(S(y)∗a∗), ω♯〉 = 〈yS(a∗)∗, ω♯〉 = 〈yS−1(a), ω♯〉 = 〈y, S−1(a)ω♯〉
hence ωa ∈ L1

♯ (G) and ωa♯ = S−1(a)ω♯. Consequently

Θl(a)(b) = (id⊗ ωa)WĜ = (ωa♯ ⊗ id)WG = (S−1(a)ω♯ ⊗ id)WG = λ(S−1(a)ω♯).

This calculation, combined with Lemma 4.13, shows that Θl(a)(b) ∈ Nϕ̂ with

Λϕ̂(Θ
l(a)(b)) = Λϕ̂(λ(S

−1(a)ω♯)) = S−1(a)Λϕ̂(λ(ω
♯)) = S−1(a)Λϕ̂(b).

Now let b ∈ Nϕ̂ be arbitrary. By Lemma 2.1 the space

{(id⊗ ω)WĜ |ω ∈ L1(G) : ω ∈ L1
♯ (G), ω♯ ∈ J }

= {λ(ω♯) |ω ∈ L1(G) : ω ∈ L1
♯ (G), ω♯ ∈ J }

is a σ-sot × ‖ · ‖ core for Λϕ̂. Hence there is a net (ωi)i∈I of suitable functionals with b =
σ-sot − limi∈I λ(ωi) and Λϕ̂(b) = limi∈I Λϕ̂(λ(ωi)). By σ-sot -continuity of Θl(a) and the
previous reasoning we obtain

Θl(a)(λ(ωi))
σ-sot−−−→
i∈I

Θl(a)(b)

and

Λϕ̂(Θ
l(a)(λ(ωi))) = S−1(a)Λϕ̂(λ(ωi)) −−→

i∈I
S−1(a)Λϕ̂(b).

Thus, since Λϕ̂ is σ-sot× ‖ · ‖ closed,

Θl(a)(b) ∈ Dom(Λϕ̂) = Nϕ̂ and Λϕ̂(Θ
l(a)(b)) = S−1(a)Λϕ̂(b)

as claimed. �

4.3. Left versus right. We have defined AP of a locally compact quantum group G in Defini-
tion 4.1 using left CB multipliers. Let us verify that we would have obtained the same notion
using right CB multipliers.

Proposition 4.14. The following conditions are equivalent:

(1) G has AP, i.e. there is a net in A(G) which converges to 1 in the weak∗-topology of

Ml
cb(A(G)),

(2) there is a net in ρ̂(L1(Ĝ)) which converges to 1 in the weak∗-topology of Mr
cb(ρ̂(L

1(Ĝ))).

Proof. Assume that (ai)i∈I is a net in A(G) which converges to 1 in the weak∗-topology of

Ml
cb(A(G)). Let R̂∼ : B(L2(G)) → B(L2(G)) be the extension of the unitary antipode of G given

by R̂∼(x) = Jϕx
∗Jϕ (x ∈ B(L2(G))). For each i there is ωi ∈ L1(Ĝ) with ai = λ̂(ωi), and so

by Lemma 3.1, if we define b′i = R̂∼(ai) then b′i = ρ̂(ωi ◦ R̂) ∈ ρ̂(L1(Ĝ)) ⊆ Mr
cb(ρ̂(L

1(Ĝ))) with

Θr(b′i) = R̂ ◦Θl(ai) ◦ R̂ ∈ CBσ(L∞(Ĝ)).
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Let us now argue that b′i
w∗

−−→
i∈I

1: choose a functional θ ∈ Qr(ρ̂(L1(Ĝ))). We have to show that

θ ◦ R̂∼ ∈ Ql(A(G)) (this makes sense by Lemma 3.1). We can write θ = limj∈J αr(νj) for some

νj ∈ L1(G′). Then, as R̂∼ : Ml
cb(L

1(Ĝ)) → Mr
cb(L

1(Ĝ)) is an isometry (Lemma 4.8) we obtain

‖θ ◦ R̂∼ − αl(νj ◦ R̂∼)‖ = sup
a∈Ml

cb
(A(G))1

|〈θ ◦ R̂∼ − αl(νj ◦ R̂∼), a〉|

= sup
a∈Ml

cb
(A(G))1

|〈θ − αr(νj), R̂
∼(a)〉| = sup

b′∈Mr
cb
(A(G))1

|〈θ − αr(νj), b
′〉| = ‖θ − αr(νj)‖ −−→

j∈J
0,

so θ ◦ R̂∼ = limj∈J αl(νj ◦ R̂∼) ∈ Ql(A(G)). Now we can calculate

〈1− b′i, θ〉 = 〈1− R̂∼(ai), θ〉 = 〈1− ai, θ ◦ R̂∼〉 −−→
i∈I

0,

which shows that (b′i)i∈I is a net giving us condition (2). The converse implication is analogous. �

5. Relation to other approximation properties

In this section we discuss the relation between AP and other approximation properties for
locally compact quantum groups which have been studied in the literature. Recall the following
definitions, compare [7, Theorem 3.1], [9, Section 5.2].

Definition 5.1. Let G be a locally compact quantum group.

• Ĝ is coamenable if A(G) has a bounded approximate identity,
• G is weakly amenable if A(G) has a left approximate identity (ei)i∈I which is bounded in

Ml
cb(A(G)). In this case, the smallest M such that we can choose ‖ei‖cb ≤M for each i is

the Cowling–Haagerup constant of G, denoted Λcb(G).

Remark 5.2. If (ei)i∈I is a left approximate identity for A(G) then (R(ei))i∈I is a right approx-

imate identity, where R is the unitary antipode on L∞(G). Indeed, let R̂ be the unitary antipode

on L∞(Ĝ). As Rλ̂ = λ̂R̂∗, each R(ei) is a member of A(G), and as R̂∗ is anti-multiplicative, it
follows that (R(ei))i∈I is indeed a right approximate identity. Thus it does not matter if we work

in Ml
cb(A(G)) or in Mr

cb(A(G)), see also Lemma 4.8.

We shall show that if G has the AP, and the approximating net can be chosen in an appropriately
bounded way, then G will enjoy one of the stronger properties in Definition 5.1.

Let us first record some general results. For a proof of the following fact see for example [13,
Section 3].

Lemma 5.3. For any locally compact quantum group G, the linear span of {ab | a, b ∈ A(G)} is
dense in A(G).

Next we recall a standard result in Banach algebra theory which follows from the Hahn–Banach
Theorem and the fact that convex sets have the same norm and weak closures; see for example
[52, Theorem 5.1.2(e)].

Proposition 5.4. Let A be a Banach algebra which has a weak bounded left approximate identity,
meaning that there is a bounded net (ei)i∈I in A such that µ(eia−a) −−→

i∈I
0 for each a ∈ A, µ ∈ A∗.

Then A has a bounded left approximate identity (of the same bound).

Proposition 5.4 does not say that the weak blai is itself a blai, but rather that having a weak
blai implies there is a possibly different net forming a blai.

Let us denote by Alcb(G) the closure of A(G) inside Ml
cb(A(G)) and use Proposition 5.4 to obtain

the following result, compare [24, Proposition 1].

Lemma 5.5. The inclusion map A(G) → Alcb(G) is an injective contraction. The locally compact
quantum group G is weakly amenable with Cowling–Haagerup constant at most K if and only if
Alcb(G) has a bounded left approximate identity of bound at most K.
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Proof. Let ω ∈ L1(Ĝ) be an element of norm one. Then the map

L1(Ĝ) → L1(Ĝ)⊗̂L1(Ĝ) : ν 7→ ω ⊗ ν

is a complete isometry, and so applying ∆̂∗ shows that L1(Ĝ) → L1(Ĝ) : ν 7→ ω ⋆ ν is a complete

contraction. Thus ‖λ̂(ω)‖cb ≤ ‖λ̂(ω)‖, here and below writing ‖ · ‖cb for the norm on Alcb(G) and

‖ · ‖ for the norm on A(G). The diagram (3.1) shows in particular that A(G) → Ml
cb(A(G)) is

injective, and hence A(G) → Alcb(G) is injective.
Now suppose that G is weakly amenable and that (ei)i∈I is a left approximate identity for A(G)

with ‖ei‖cb ≤ K for each i. Then (ei)i∈I is a bounded net in Alcb(G). For x ∈ Alcb(G) and ǫ > 0
there is a ∈ A(G) with ‖x− a‖cb < ǫ, and there is i0 so that ‖eia− a‖ < ǫ when i ≥ i0. Thus

‖eix− x‖cb ≤ ‖eix− eia‖cb + ‖eia− a‖cb + ‖a− x‖cb < Kǫ+ ǫ+ ǫ (i ≥ i0).

It follows that eix −−→
i∈I

x in Alcb(G). Consequently (ei)i∈I is a blai for Alcb(G) of bound ≤ K.

Conversely, suppose that Alcb(G) has a bounded left approximate identity of bound K, say

(fi)i∈I . For (i, n) ∈ I × N pick ei,n ∈ A(G) with ‖ei,n − fi‖cb < 1
n . For x ∈ Alcb(G) and ǫ > 0

there is i0 so that ‖fix− x‖cb < ǫ for i ≥ i0. With n > 1
ε ,

‖ei,nx− x‖cb ≤ ‖ei,nx− fix‖cb + ‖fix− x‖cb < ε‖x‖cb + ε,

and so ei,nx −−−−−−−→
(i,n)∈I×N

x. We conclude that we may assume that (fi)i∈I was actually a net in

A(G) and ‖fi‖cb ≤ K for each i. It remains to show that (fi)i∈I is a left approximate identity
for A(G). Given a ∈ A(G) and ǫ > 0, by Lemma 5.3, we can find elements ak, bk ∈ A(G) for
k = 1, . . . , n for some n such that a0 =

∑n
k=1 akbk ∈ A(G) is within ǫ distance of a. Then

‖fia− a‖ ≤ ‖fia− fia0‖+ ‖fia0 − a0‖+ ‖a0 − a‖

≤ K‖a− a0‖+
n∑

k=1

‖fiakbk − akbk‖+ ‖a0 − a‖

≤ (K + 1)ǫ+

n∑

k=1

‖fiak − ak‖cb‖bk‖.

Here we used that for x ∈ Alcb(G) and y ∈ A(G) we have ‖xy‖ ≤ ‖x‖cb‖y‖. As (fi)i∈I is a left

approximate identity in Alcb(G), if i is sufficiently large then ‖fiak − ak‖cb‖bk‖ < ǫ
n for each k,

and so ‖fia− a‖ ≤ (K + 2)ǫ. Hence (fi)i∈I is a left approximate identity for A(G). �

The following is an improvement on [31, Theorem 1.13] in the classical situation; Haagerup and
Kraus only consider the case where each element of the approximating net comes from a state.

Proposition 5.6. Assume that G is a locally compact quantum group with the approximation

property. If we can choose the approximating net (ei)i∈I in A(G) to be bounded then Ĝ is coa-
menable.

Proof. By definition, ei −−→
i∈I

1 weak∗ in Ml
cb(A(G)). By Proposition 4.7, we consider elements

of the form Ωx̂,ω̂,f ∈ Ql(A(G)). Here we will just consider x̂ ∈ L∞(Ĝ) and ω̂ ∈ L1(Ĝ), with

f ∈ L1(G) a state. According to equation (4.3), we get

lim
i∈I

〈Θl(ei ⋆ f)(x̂), ω̂〉 = lim
i∈I

〈ei,Ωx̂,ω̂,f 〉 = 〈1,Ωx̂,ω̂,f 〉 = 〈Θl(1 ⋆ f)(x̂), ω̂〉 = 〈x̂, ω̂〉,

using 1 ⋆ f = 1 and Θl(1) = id in the last step. For each i ∈ I let ei be associated to ω̂i ∈ L1(Ĝ),

so that ei = λ̂(ω̂i). Then

ei ⋆ f = (f ⊗ id)∆(ei) = (f ⊗ id)∆((id ⊗ ω̂i)(W
G∗)) = (f ⊗ id⊗ ω̂i)(W

G∗
23 W

G∗
13 )

= (id⊗ ω̂i)
(
WG∗(1⊗ (f ⊗ id)(WG∗))

)
= λ̂(ω̂′

i),

where ω̂′
i = (f ⊗ id)(WG∗)ω̂i ∈ L1(Ĝ). Notice that ‖ω̂′

i‖ ≤ ‖f‖‖ω̂i‖ = ‖ω̂i‖.
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As computed in Lemma 3.10, it follows that Θl(ei ⋆ f)(x̂) = (ω̂′
i ⊗ id)∆̂(x̂), so we see that

lim
i∈I

〈x̂, ω̂′
i ⋆ ω̂〉 = lim

i∈I
〈(ω̂′

i ⊗ id)∆̂(x̂), ω̂〉 = 〈x̂, ω̂〉 (x̂ ∈ L∞(Ĝ), ω̂ ∈ L1(Ĝ)).

Thus (ω̂′
i)i∈I is a weak bounded left approximate identity for L1(Ĝ). By Proposition 5.4, we obtain

that L1(Ĝ) has a bounded left approximate identity. This already implies that Ĝ is coamenable,
see [7, Theorem 3.1]. �

The following is [31, Theorem 1.12] in the classical situation.

Proposition 5.7. Let G be a locally compact quantum group with the approximation property,
and assume that we can choose the approximating net (ei)i∈I in A(G) to be bounded with respect to
‖ ·‖cb. Then G is weakly amenable, with Cowling–Haagerup constant at most the bound of (ei)i∈I .

Proof. We proceed as in the previous proof, starting with a net (ei)i∈I in A(G), but now only

with ‖ei‖cb ≤ K for each i. We set ei = λ̂(ω̂i) and ω̂
′
i = (f ⊗ id)(WG∗)ω̂i, where f is some fixed

state and we are considering the natural (left) L∞(Ĝ)-module structure on L1(Ĝ). Then (ω̂′
i)i∈I is

a weak left approximate identity for L1(Ĝ). Furthermore, ‖λ̂(ω̂′
i)‖cb = ‖ei ⋆ f‖cb ≤ ‖ei‖cb‖f‖ ≤ K

by Proposition 4.5.

For each i let fi = λ̂(ω̂′
i) ∈ A(G). Let θ : A(G) → Alcb(G) be the inclusion map, and consider

the adjoint, θ∗ : Alcb(G)∗ → A(G)∗. For µ ∈ Alcb(G)∗ and a ∈ A(G) we see that

lim
i∈I

〈µ, θ(fi)θ(a)〉 = lim
i∈I

〈θ∗(µ), fia〉 = 〈θ∗(µ), a〉 = 〈µ, θ(a)〉.

As θ has dense range, and (θ(fi))i∈I is bounded in Alcb(G), it follows that (θ(fi))i∈I is a weak

bounded left approximate identity. By Proposition 5.4, Alcb(G) has a bounded left approximate
identity, and so Lemma 5.5 shows that G is weakly amenable, with Cowling–Haagerup constant
at most K. �

6. Discrete quantum groups and operator algebraic approximation properties

If the quantum group being studied is discrete, we can obtain better results. In Proposition 6.5
we will show that the net exhibiting AP can be chosen to have additional properties. We also
relate AP to approximation properties of the associated operator algebras, in both the locally
compact case, Proposition 6.10, and the discrete case, Proposition 6.12.

For the rest of this section Γ stands for an arbitary discrete quantum group. Then Γ̂ is a
compact quantum group, and we freely use the additional theory available in the compact case.
We follow [50] as well as [48, 64], being aware that we use the “left” convention for multiplicative
unitaries and corepresentations.

Every irreducible unitary representation of Γ̂ is finite-dimensional, and we denote by Irr(Γ̂) the

collection of equivalence classes of irreducibles. We write α for the conjugate of α ∈ Irr(Γ̂). For

each α ∈ Irr(Γ̂) let Uα ∈ C(Γ̂) ⊗ B(Hα) be a unitary corepresentation in the class of α. With
respect to an orthonormal basis of Hα we regard Uα as a matrix [Uαi,j ]1≤i,j≤dim(α). The matrix

coefficients Uαi,j span a dense Hopf ⋆-algebra Pol(Γ̂) ⊆ C(Γ̂). We denote by h the Haar state on

C(Γ̂) and L∞(Γ̂), and let Λh : C(Γ̂) → L2(Γ̂) be the GNS map for h. As as L∞(Γ̂) is in standard

position on L2(Γ̂), the set {ωΛh(a),Λh(b) | a, b ∈ Pol(Γ̂)} is dense in L1(Γ̂). As each member of

Pol(Γ̂) is analytic for the modular automorphism group of h, this agrees in fact with the set

{ωΛh(a),Λh(1) | a ∈ Pol(Γ̂)}. Notice that ωΛh(a),Λh(1) is the functional h(a∗·).
For each α ∈ Irr(Γ̂) there is a positive invertible operator ρα related to the possible non-

traciality of the Haar state h, see [50, Section 1.7]. We choose and fix a basis of Hα such that ρα
is diagonal. We define the Woronowicz characters {fz | z ∈ C} by the relation (fz⊗ id)(Uα) = ρ

z
α,

valid for each α. The modular automorphism group is then implemented as

σhz (a) = fiz ⋆ a ⋆ fiz (a ∈ Pol(Γ̂), z ∈ C),
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or equivalently, (σhz ⊗ id)(Uα) = (1⊗ρ
iz
α )Uα(1⊗ρ

iz
α ). Similarly, the scaling group is implemented

as

τz(a) = f−iz ⋆ a ⋆ fiz (a ∈ Pol(Γ̂), z ∈ C),

or equivalently, (τz ⊗ id)(Uα) = (1 ⊗ ρ
iz
α )Uα(1 ⊗ ρ

−iz
α ). As we assume that ρα is diagonal, say

with entries ρα,i (1 ≤ i ≤ dim(α)), we get

(6.1) τz(U
α
i,j) = (ρα,i)

iz(ρα,j)
−izUαi,j .

The algebra c0(Γ) is isomorphic to the direct sum of full matrix algebras Mdim(α) indexed

by α ∈ Irr(Γ̂), and ℓ∞(Γ) is isomorphic to the direct product of these matrix algebras. Given
a ∈ ℓ∞(Γ) we write a = (aα)α∈Irr(Γ̂) where a

α ∈ Mdim(α), and similarly for c0(Γ). With respect to

this isomorphism,

(6.2) WΓ̂ =
⊕

α∈Irr(Γ̂)

dim(α)∑

i,j=1

Uαi,j ⊗ eαi,j ∈ M
(
C(Γ̂)⊗ c0(Γ)

)
,

where {eαi,j}
dim(α)
i,j=1 are the matrix units of the matrix algebra Mdim(α) ⊆ c0(Γ).

We start with a result expressing the action of Θl(a) ∈ CBσ(L∞(Γ̂)), for a ∈ Ml
cb(A(Γ)), on

matrix elements.

Lemma 6.1. For any a = (aα)α∈Irr(Γ̂) ∈ Ml
cb(A(Γ)) ⊆ ℓ∞(Γ) with aα = [aαi,j ]

dim(α)
i,j=1 we have

Θl(a)(Uαi,j) =

dim(α)∑

k=1

aαi,kU
α
k,j (α ∈ Irr(Γ̂), 1 ≤ i, j ≤ dim(α)).

Proof. Let x ∈ Pol(Γ̂) and set ω = h(x·) ∈ L1(Γ̂). Recall that aλ̂(ω) = λ̂(Θl(a)∗(ω)), equivalently,

a(ω ⊗ id)(WΓ̂) = (Θl(a)∗(ω)⊗ id)(WΓ̂). Using the expression for WΓ̂ from (6.2), it follows that

∑

α∈Irr(Γ̂)

dim(α)∑

i,j,k=1

〈Uαk,j , ω〉aαi,keαi,j =
∑

α∈Irr(Γ̂)

dim(α)∑

k,j=1

〈Uαk,j , ω〉aeαk,j

= a(ω ⊗ id)(WΓ̂)

= (Θl(a)∗(ω)⊗ id)(WΓ̂) =
∑

α∈Irr(Γ̂)

dim(α)∑

j,k=1

〈Θl(a)(Uαi,j), ω〉eαi,j .

By density, this holds for all ω, and so we conclude Θl(a)(Uαi,j) =
∑dim(α)
k=1 aαi,kU

α
k,j , as claimed. �

Remark 6.2. Later, see Proposition 6.5, we shall consider a ∈ Ml
cb(A(Γ)) with Θl(a) unit pre-

serving. Let e denote the trivial representation of Γ̂, so dim(e) = 1 and Ue = 1 ⊗ 1. From
Lemma 6.1, for such an a, we see that 1 = Θl(a)(1) = ae1,11 and so ae1,1 = 1. Further, as the Haar

state h annihilates all coefficients of all irreps except e, and as Pol(Γ̂) is dense in C(Γ̂), it follows
that h ◦Θl(a) = h.

For discrete quantum groups we will also look at a central variation of AP. We denote by
c00(Γ) ⊆ c0(Γ) the dense subspace of elements x = (xα)α∈Irr(Γ̂) such that xα = 0 for all but finitely

many α. From the description of WΓ̂ in (6.2) it is clear that we have c00(Γ) ⊆ A(Γ). Notice that
the centre of ℓ∞(Γ), denoted Z(ℓ∞(Γ)), consists of families of matrices x = (xα)α∈Irr(Γ̂) such that

each xα ∈ Mdim(α) is a scalar multiple of the identity.

Definition 6.3. We say that a discrete quantum group Γ has the central approximation property
(central AP) if there is a net (ai)i∈I in c00(Γ) ∩ Z(ℓ∞(Γ)) which converges to 1 in the weak∗-
topology of Ml

cb(A(Γ)).
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It is clear from the definitions that central AP implies AP. At first sight, it might seem more
natural to use A(Γ) instead of c00(Γ) in Definition 6.3, and indeed, this alternative definition (for
other approximation properties) is taken in [9, Definition 7.1]. However, in terms of applications,
and also from the point of view of representation categories, working with c00(Γ) is in fact the
most appropriate choice. Let us point out that the examples considered in [9] actually do end up
working with c00(Γ). We will discuss the relation of central AP to properties of the representation

category Rep(Γ̂) in Section 8.

Remark 6.4. We shall say that a ∈ Ml
cb(A(Γ)) is finitely supported if a ∈ c00(Γ). Of course, we

have c00(Γ) ⊆ A(Γ) ⊆ Ml
cb(A(Γ)). For a ∈ c00(Γ), it follows from Lemma 6.1 that Θl(a)(Uαi,j) = 0

for all but finitely many α. Hence Θl(a) restricted to Pol(Γ̂) is a finite-rank map, and so by

continuity, Θl(a) restricted to C(Γ̂) is finite-rank, and hence by normality, Θl(a) is also finite-
rank.

In the next result we show that whenever a discrete quantum group has AP, then this is
implemented by a net of elements with convenient properties.

Proposition 6.5. Assume that Γ is a discrete quantum group with AP. Then there is a net (ai)i∈I
of elements in c00(Γ) such that

• ai −−→
i∈I

1 in (Ml
cb(A(Γ)), w∗),

• every ai is invariant under the scaling group of Γ and modular automorphism groups of
the left/right Haar integrals,

• every Θl(ai) is star and unit preserving.

If Γ has central AP then we can additionally assume that ai ∈ c00(Γ) ∩ Z(ℓ∞(Γ)).

For the proof of Proposition 6.5 we shall need two lemmas. For any operator space X , we
denote by κ : X∗⊗̂X → C the canonical completely contractive map ω ⊗ x 7→ 〈ω, x〉.

Lemma 6.6. Let H be a Hilbert space, let M,N be von Neumann algebras, and let

v ∈
(
M ⊗̄L∞(Γ̂)⊗̄N ⊗̄B(H)

)
⊗̂
(
M∗ ⊗̂L1(Γ̂)⊗̂N∗ ⊗̂B(H)∗

)
.

The bounded linear functional

Ωv : Ml
cb(A(Γ)) ∋ a 7→ κ

(
((id⊗Θl(a)⊗ id⊗2)⊗ id⊗4)v

)
∈ C

belongs to Ql(A(Γ)), and we have ‖Ωv‖ ≤ ‖v‖.

Proof. Since Ql(A(Γ)) is closed in Ml
cb(A(Γ))∗, it is enough to consider v = x⊗ (ω1⊗ω2⊗ω3⊗ω4)

for x ∈ M ⊗̄L∞(Γ̂)⊗̄N ⊗̄B(H), ω1 ∈ M∗, ω2 ∈ L1(Γ̂), ω3 ∈ N∗, ω4 ∈ B(H)∗. Let ε ∈ ℓ1(Γ) be the

counit of ℓ∞(Γ). Define y = (ω1 ⊗ id⊗ ω3 ⊗ id)x ∈ L∞(Γ̂)⊗̄B(H). For a ∈ Ml
cb(A(Γ)) we have

〈Ωv, a〉 = κ
(
(id⊗Θl(a)⊗ id⊗2)x⊗ (ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4)

)

= 〈(id⊗Θl(a)⊗ id⊗2)x, ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4〉 = 〈(Θl(a)⊗ id)y, ω2 ⊗ ω4〉
= 〈(Θl(a ⋆ ε)⊗ id)y, ω2 ⊗ ω4〉 = 〈a,Ωy,ω2⊗ω4,ε〉

hence Ωv = Ωy,ω2⊗ω4,ε and the claim follows from Proposition 4.7. �

In the following, recall that a mean on R is a state mR on L∞(R) which is invariant under the
translation action of R. Such a state exists as the group R is abelian and hence amenable.

Lemma 6.7. Let mR be a mean on R, let H be a Hilbert space, and let x ∈ C(Γ̂) ⊗ K(H), ρ ∈
L1(Γ̂)⊗̂B(H)∗. Then

Ωτx,ρ : Ml
cb(A(Γ)) ∋ a 7→ mR

(
t 7→ 〈(Θl(a)⊗ id)(τ̂−t ⊗ id)(x), ρ ◦ (τ̂t ⊗ id)〉

)
∈ C

defines a bounded functional on Ml
cb(A(Γ)). Furthermore, Ωτx,ρ ∈ Ql(A(Γ)) and ‖Ωτx,ρ‖ ≤ ‖x‖‖ρ‖.
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Proof. As t 7→ ρ ◦ (τ̂t⊗ id) is norm continuous, it follows that the function t 7→ 〈(Θl(a)⊗ id)(τ̂−t⊗
id)(x), ρ ◦ (τ̂t ⊗ id)〉 is continuous, and bounded, and so we can indeed apply mR to it. The only
nontrivial claim is that Ωτx,ρ is a normal functional.

In order to verify this take t ∈ R. Using the canonical complete contraction κ we can write

〈(Θl(a)⊗ id)(τ̂−t ⊗ id)(x), ρ ◦ (τ̂t ⊗ id)〉 = κ(Θl(a)⊗ id⊗ id⊗ id)
(
(τ̂−t ⊗ id)(x) ⊗ ρ ◦ (τ̂t ⊗ id)

)
.

Let x = Uαi,j ∈ Pol(Γ̂), y = Uβk,l ∈ Pol(Γ̂) and set ρ = h(y·) ∈ L1(Γ̂). As h is (τ̂t)t∈R invariant,

it follows that (ρ ◦ τ̂t)(z) = h(yτ̂t(z)) = h(τ̂t(τ̂−t(y)z)) = h(τ̂−t(y)z) for each z ∈ C(Γ̂), and so
ρ ◦ τ̂t = h(τ̂−t(y)·). From (6.1) we hence see that

τ̂−t(x) ⊗ ρ ◦ τ̂t = (ρα,i)
−it(ρα,j)

it(ρβ,k)
−it(ρβ,l)

itx⊗ ρ.

It follows that mR

(
t 7→ τ̂−t(x) ⊗ ρ ◦ τ̂t

)
∈ Pol(Γ̂) ⊙ L1(Γ̂), the algebraic tensor product. By

linearity, this holds for any x, y ∈ Pol(Γ̂). By linearity again, given x ∈ Pol(Γ̂) ⊙ K(H) and

ρ ∈ h(Pol(Γ̂) · )⊙ B(H)∗, it follows that

v = mR

(
t 7→ (τ̂−t ⊗ id)(x) ⊗ ρ ◦ (τ̂t ⊗ id)

)
∈
(
L∞(Γ̂)⊙ B(H)

)
⊙
(
L1(Γ̂)⊙ B(H)∗

)

and we have

Ωτx,ρ(a) = κ
(
(Θl(a)⊗ id⊗ id⊗ id)v

)
= Ωv(a).

Consequently we have Ωτx,ρ ∈ Ql(A(Γ)) by Lemma 6.6. Furthermore,

‖Ωτx,ρ‖ ≤ ‖v‖ ≤ ‖x‖‖ρ‖.

General elements x ∈ C(Γ̂) ⊗ K(H), ρ ∈ L1(Γ̂)⊗̂B(H)∗ can be approximated in norm by x, ρ as

above, hence Ωτx,ρ is a normal functional, using again that Ql(A(Γ)) ⊆ Ml
cb(A(Γ))

∗ is a closed
subspace. �

Proof of Proposition 6.5. By assumption, there is a net (ai)i∈I in A(Γ) which converges to 1 in

the weak∗-topology of Ml
cb(A(Γ)). For each i ∈ I there is ωi ∈ L1(Γ̂) with ai = λ̂(ωi), and there

are ξi, ηi ∈ L2(Γ̂) with ωi = ωξi,ηi . Given n ∈ N we may choose ξi,n, ηi,n ∈ Λh(Pol(Γ̂)) with
‖ξi − ξi,n‖ ≤ ǫ1 and ‖ηi − ηi,n‖ ≤ ǫ2, where

ǫ1 = 1
1+2n‖ηi‖ , ǫ2 = 1

2n(ǫ1+‖ξi‖) .

Set ai,n = λ̂(ωξi,n,ηi,n), so that ai,n ∈ c00(Γ), and

‖ai − ai,n‖A(Γ) = ‖ωi − ωξi,n,ηi,n‖ ≤ ‖ωξi,ηi − ωξi,n,ηi‖+ ‖ωξi,n,ηi − ωξi,n,ηi,n‖
≤ ǫ1‖ηi‖+ ǫ2‖ξi,n‖ ≤ ǫ1‖ηi‖+ ǫ2

(
ǫ1 + ‖ξi‖

)
≤ 1

n .

Equipping I × N with the product order, it follows that ai,n −−−−−−−→
(i,n)∈I×N

1 in (Ml
cb(A(Γ)), w

∗).

Fix (i, n) ∈ I × N and choose mR ∈ L∞(R)∗, a mean on R. Let bi,n be the unique element of
ℓ∞(Γ) with

〈bi,n, ω〉 = mR(t 7→ 〈τt(ai,n), ω〉) (ω ∈ ℓ1(Γ)).

As each τt leaves each matrix block Mdim(α) ⊆ ℓ∞(Γ) invariant, it follows that bi,n ∈ c00(Γ),
because ai,n ∈ c00(Γ). Next, we set

ci,n = 1
2 (bi,n + R(bi,n)

∗) ∈ c00(Γ).

Clearly each bi,n, and consequently each ci,n, is invariant under (τt)t∈R. Thus ci,n is analytic for

(τt)t∈R, and so ci,n ∈ D(S−1) and S−1(ci,n) = R(ci,n). Then as ∇it
ϕ = ∇−it

ψ = P it, see [40, Lemma

6.2], each ci,n is also invariant under the modular automorphism group. Since

c∗i,n = 1
2 (b

∗
i,n +R(bi,n)) = R(ci,n) = S−1(ci,n),

the operator Θl(ci,n) is star preserving by Corollary 4.10.
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We now show that (ci,n)(i,n)∈I×N converges to 1 weak∗ in Ml
cb(A(Γ)). We will show this first

for (bi,n)(i,n)∈I×N. Choose ρ ∈ ℓ1(Γ), ω ∈ L1(Γ̂) and set y = (id⊗ ρ)WΓ̂. We have

〈Θl(bi,n)(y), ω〉 = 〈(id⊗ ρ)(WΓ̂),Θl(bi,n)∗(ω)〉 = 〈bi,n(ω ⊗ id)(WΓ̂), ρ〉
= mR

(
t 7→ 〈τt(ai,n)(ω ⊗ id)(WΓ̂), ρ〉

)
= mR

(
t 7→ 〈Θl(τt(ai,n))y, ω〉

)
.

(6.3)

By continuity, the above equation holds for each y ∈ C(Γ̂).

Let H be a separable Hilbert space, and consider x ∈ C(Γ̂) ⊙ K(H) and ρ ∈ L1(Γ̂) ⊙ B(H)∗.
Then using linearity and (6.3), it follows that

〈bi,n,Ωx,ρ〉 = 〈(Θl(bi,n)⊗ id)x, ρ〉 = mR

(
t 7→ 〈(Θl(τt(ai,n))⊗ id)x, ρ〉

)
.

Lemmas 4.11 and 6.7 imply

〈bi,n,Ωx,ρ〉 = mR

(
t 7→ 〈(Θl(ai,n)⊗ id)(τ̂−t ⊗ id)(x), ρ ◦ (τ̂t ⊗ id)〉

)
= 〈ai,n,Ωτx,ρ〉.

Both sides of the above equation are continuous with respect to x, ρ, hence it holds also for

x ∈ C(Γ̂)⊗K(H) and ρ ∈ L1(Γ̂)⊗̂B(H)∗. Since Ωτx,ρ is a normal functional, it follows that

lim
(i,n)∈I×N

〈bi,n,Ωx,ρ〉 = lim
(i,n)∈I×N

〈ai,n,Ωτx,ρ〉 = 〈1,Ωτx,ρ〉

= mR

(
t 7→ 〈(τ̂−t ⊗ id)(x), ρ ◦ (τ̂t ⊗ id)〉

)
= 〈x, ρ〉 = 〈1,Ωx,ρ〉

and so bi,n
w∗

−−−−−−−→
(i,n)∈I×N

1, as the functionals Ωx,ρ give all of Ql(A(Γ)), by Proposition 3.9. Then

using Proposition 4.9,

〈R(bi,n)∗,Ωx,ρ〉 = 〈S(b∗i,n),Ωx,ρ〉 = 〈(Θl(bi,n)† ⊗ id)x, ρ〉
= 〈(Θl(bi,n)⊗ id)(x∗)∗, ρ〉 = 〈(Θl(bi,n)⊗ id)(x∗), ρ〉

which converges to 〈x∗, ρ〉 = 〈x, ρ〉 = 〈1,Ωx,ρ〉. We can conclude that ci,n = 1
2 (bi,n + R(bi,n)

∗)
also converges weak∗ to 1.

We have now shown all the properties required of the net (ci,n)(i,n)∈I×N except that each Θl(ci,n)
is unit preserving. By Lemma 3.2, we know that there is a family of scalars (αi,n)(i,n)∈I×N with

Θl(ci,n)(1) = αi,n1 for each (i, n). As Θl(ci,n) is star-preserving, each αi,n ∈ R. As ci,n −−−−−−−→
(i,n)∈I×N

1 weak∗, Θl(ci,n)(1) = αi,n1 −−−−−−−→
(i,n)∈I×N

1 weak∗ and so αi,n −−−−−−−→
(i,n)∈I×N

1. We may hence replace

ci,n by α−1
i,nci,n.

Finally, when Γ has central AP, then we can skip the first step (as ai ∈ c00(Γ) ∩ Z(ℓ∞(Γ)) by
assumption), and proceed as above to form bi. It follows from (6.1) that τ̂t(U

α
i,i) = Uαi,i, and the

equality (τ̂t ⊗ τt)WΓ̂ = WΓ̂, together with (6.2), shows τt(ai) = ai for each t, i. Thus actually
bi = ai, and the final step of forming ci, and rescaling, will also give central elements. �

In the unimodular case there is no difference between AP and central AP.

Proposition 6.8. Let G be a unimodular discrete quantum group. Then G has AP if and only if
it has central AP.

Proof. Since the Haar integral h ∈ L1(Ĝ) is a trace there exists a unique state-preserving normal

faithful conditional expectation E : L∞(Ĝ)⊗̄L∞(Ĝ) → ∆̂(L∞(Ĝ)) ⊆ L∞(Ĝ)⊗̄L∞(Ĝ). Explicitly,
we have

E(Uαi,j ⊗ Uβk,l) =
δαβδjk
dim(α)

∆̂(Uαi,l),

compare [9, Section 6.3.2]. Set ∆̂♯ = ∆̂−1E : L∞(Ĝ)⊗̄L∞(Ĝ) → L∞(Ĝ). Given a ∈ Ml
cb(A(G))

define

Ψ(a) = ∆̂♯(id⊗Θl(a))∆̂ ∈ CBσ(L∞(Ĝ)).

That Ψ(a) is normal and completely bounded is clear, and note that we have ‖Ψ(a)‖cb ≤ ‖a‖cb.
Moreover, if a is finitely supported then Ψ(a) has finite-rank, see Remark 6.4.
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Define also A : ℓ∞(G) → Zℓ∞(G) by

A(f) =
∑

α∈Irr(Ĝ)

Trα(f)

dim(α)
pα,

where pα ∈ ℓ∞(G) is the central projection corresponding to B(Hα) ⊆ ℓ∞(G) and Trα ∈ ℓ1(G)
is the projection onto B(Hα) composed with the (non-normalised) trace on B(Hα). Then A is a

contractive linear map. Given a ∈ Ml
cb(A(G)) and ω ∈ h(Pol(Ĝ)·), we compute

λ
Ĝ
(Ψ(a)∗(ω)) =

∑

α∈Irr(Ĝ)

dim(α)∑

i,j=1

〈Ψ(a)(Uαi,j), ω〉eαi,j

=
∑

α∈Irr(Ĝ)

dim(α)∑

i,j,k=1

〈∆̂♯(Uαi,k ⊗Θl(a)(Uαk,j)), ω〉eαi,j =
∑

α∈Irr(Ĝ)

dim(α)∑

i,j,k,l=1

aαk,l〈∆̂♯(Uαi,k ⊗ Uαl,j), ω〉eαi,j

=
∑

α∈Irr(Ĝ)

dim(α)∑

i,j,k=1

aαk,k

dim(α) 〈Uαi,j , ω〉eαi,j =
∑

α∈Irr(Ĝ)

dim(α)∑

i,j=1

〈Uαi,j , ω〉Trα(a)
dim(α)e

α
i,j = A(a)λ

Ĝ
(ω).

Here we used Lemma 6.1 to compute the action of Θl(a), and notice that by the choice of ω,

all the sums involved are finite. As such ω are dense in L1(Γ̂), it follows that A(a) is a left CB

multiplier and Θl(A(a)) = Ψ(a). In particular, A(a) ∈ ZMl
cb(A(G)) and ‖A(a)‖cb ≤ ‖a‖cb.

Now assume that G has AP and let (fi)i∈I in c00(G) be a net converging weak∗ to 1 in

Ml
cb(A(G)). In order to prove that G has central AP, we shall show that A(fi) −−→

i∈I
1 weak∗ in

Ml
cb(A(G)). Take x ∈ C(Ĝ)⊗K(H), ω ∈ L1(Ĝ)⊗̂B(H)∗ for a separable Hilbert space H. Then we

have

〈A(fi),Ωx,ω〉 = 〈(Ψ(fi)⊗ id)x, ω〉
= 〈(∆̂♯ ⊗ id)(id ⊗Θl(fi)⊗ id)(∆̂⊗ id)x, ω〉
= 〈(id⊗Θl(fi)⊗ id)(∆̂⊗ id)x, ω ◦ (∆̂♯ ⊗ id)〉.

By applying Lemma 6.6, with M = L∞(Γ̂),N = C, it follows that

lim
i∈I

〈A(fi),Ωx,ω〉 = 〈(id⊗ id⊗ id)(∆̂⊗ id)x, ω ◦ (∆̂♯ ⊗ id)〉 = 〈x, ω〉 = 〈1,Ωx,ω〉,

hence showing that A(fi) −−→
i∈I

1 weak∗, as required. �

In the remainder of this section we relate AP to approximation properties of associated operator
algebras. Let us start by recalling the appropriate von Neumann algebraic approximation property,
see [31, Section 2].

Definition 6.9. Let M be a von Neumann algebra. Then M has the weak∗ operator approximation
property (W∗OAP) if there exists a net (Θi)i∈I of finite rank normal CB maps on M which

converges to the identity in the stable point-weak∗-topology, i.e. (Θi⊗ id)x
w∗

−−→
i∈I

x for all separable

Hilbert spaces H and x ∈ M ⊗̄B(H).

The following result was established by Kraus and Ruan for Kac algebras, [41, Theorem 4.15],
using the formally stronger definition of AP (which by Theorem 4.4 is equivalent to the definition
taken in this paper). A result of this type was also obtained in [13, Proposition 4.7], again with a
formally stronger definition of AP, and under the assumption that G is strongly inner amenable.
We record a proof for the convenience of a reader.

Proposition 6.10. Let G be a locally compact quantum group. If G has AP, then L∞(Ĝ) has
W∗OAP.
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Proof. Assume that G has AP. By Theorem 4.4 there is a net (λ̂(ωi))i∈I in A(G) such that

Θl(λ̂(ωi)) −−→
i∈I

id in the stable point-weak∗-topology of CBσ(L∞(Ĝ)). Extend ωi ∈ L1(Ĝ) to

ω̃i ∈ B(L2(G))∗ with the same norm and define

Ψi : B(L2(G)) ∋ T 7→(ω̃i ⊗ id)
(
VĜ(T ⊗ 1)VĜ∗) ∈ B(L2(G)).

Clearly Ψi is a normal CB map on B(L2(G)), and as VĜ ∈ L∞(G)′⊗̄L∞(Ĝ) the image of Ψi lies

in L∞(Ĝ). Note that if x ∈ L∞(Ĝ) then

Ψi(x) = (ω̃i ⊗ id)
(
VĜ(x⊗ 1)VĜ∗) = (ω̃i ⊗ id)∆̂(x) = Θl(λ̂(ωi))(x).

Thus Ψi is an extension of Θl(λ̂(ωi)) to all of B(L2(G)). As B(L2(G)) has W∗CPAP, see [10,
Propositions 2.1.4, 2.2.7], there is a net (Υλ)λ∈Λ of finite rank normal unital CP maps on B(L2(G))
which converges to the identity in the point-weak∗-topology. Consider now the maps

Ψi,λ = Ψi ◦Υλ|L∞(Ĝ) : L∞(Ĝ) → L∞(Ĝ).

These are normal and CB, and, because Υλ has finite rank, also each Ψi,λ is finite-rank. Fix a

separable Hilbert space H and finite sets F ⊆ L∞(Ĝ)⊗̄B(H), G ⊆ L1(Ĝ)⊗̂B(H)∗ and 0 < ε < 1.
Given x ∈ F, ρ ∈ G, we have

〈(Ψi ⊗ id)x, ρ〉 = 〈(Θl(λ̂(ωi))⊗ id)x, ρ〉 −−→
i∈I

〈x, ρ〉.

Thus there is i(F,G, ε) ∈ I such that

|〈(Ψi(F,G,ε) ⊗ id)x− x, ρ〉| ≤ ε
2 (x ∈ F, ρ ∈ G).

Next, since Ψi(F,G,ε) is normal, we have

|〈(Ψi(F,G,ε) ◦Υλ ⊗ id)x− (Ψi(F,G,ε) ⊗ id)x, ρ〉| −−−→
λ∈Λ

0 (x ∈ F, ρ ∈ G),

hence there is λ(F,G, ε) ∈ Λ so that

|〈(Ψi(F,G,ε) ◦Υλ(F,G,ε) ⊗ id)x− (Ψi(F,G,ε) ⊗ id)x, ρ〉| ≤ ε
2 (x ∈ F, ρ ∈ G),

and by triangle inequality

|〈(Ψi(F,G,ε) ◦Υλ(F,G,ε) ⊗ id)x− x, ρ〉| ≤ ε (x ∈ F, ρ ∈ G).

Consequently, the net (Ψi(F,G,ε),λ(F,G,ε))(F,G,ε) (indexed by finite subsets of L∞(Ĝ)⊗̄B(H),

L1(Ĝ)⊗̂B(H)∗ and ]0, 1[) shows that L∞(Ĝ) has the W∗OAP. �

Remark 6.11. An analogous argument shows that if Ĝ is coamenable then L∞(Ĝ) has W∗CPAP.

In fact, a formally stronger result holds: W∗CPAP of L∞(Ĝ) follows from amenability of G by [7,
Theorem 3.3].

When the quantum group Γ is discrete and has AP, we obtain approximation properties also for
the associated C∗-algebra. If Γ is furthermore unimodular, the converse implications hold. These
results are already known (see e.g. [41, Theorem 5.13]), hence we skip the proof. For the definition
of OAP and strong OAP, see [23, Page 204] or [10, Section 12.4], for example.

Proposition 6.12. Let Γ be a discrete quantum group. Consider the following conditions:

(1) Γ has AP,

(2) C(Γ̂) has strong OAP,

(3) C(Γ̂) has OAP,

(4) L∞(Γ̂) has W∗OAP.

Then (1) ⇒ (2) ⇒ (3) and (1) ⇒ (4). If Γ is unimodular then all the above conditions are
equivalent.

Remark 6.13. Combining Proposition 6.12 and Proposition 6.8, we see that when Γ is unimodular

and L∞(Γ̂) has W∗OAP, then Γ has the central AP.
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Following [66, Definition 1.27], we say that a discrete quantum group Γ is exact when the
reduced crossed product functor Γ ⋉r −, preserves short exact sequences.

Corollary 6.14. Let Γ be a discrete quantum group. If Γ has AP then it is exact.

Proof. By Proposition 6.12, the C∗-algebra C(Γ̂) has strong OAP. It is then exact by a combination
of [23, Corollary 11.3.2] and [36, Theorem 1.1]. The result now follows from [66, Proposition 1.28].

�

We end this section with a result which shows that for a discrete quantum group Γ, AP is

equivalent to a strengthening of W∗OAP of L∞(Γ̂) which takes into consideration ℓ∞(Γ). Let us
introduce this strengthening in a general setting, compare [39, Definition 6.9].

Definition 6.15. Let (M, θ) be a von Neumann algebra with a n.s.f. weight.

• Let Φ ∈ CBσ(M) be a normal CB map satisfying Φ(Nθ) ⊆ Nθ. We say that Φ has an
L2-implementation if there is T ∈ B(Hθ) such that Λθ(Φ(x)) = TΛθ(x) for x ∈ Nθ.

• Let N ⊆ B(Hθ) be a von Neumann algebra. We say that (M, θ) has W∗OAP relative to N
if there is a net (Φi)i∈I such that:

– each Φi is a normal, CB, finite rank map on M,
– each Φi satisfies Φi(Nθ) ⊆ Nθ and has L2-implementation Ti ∈ N,
– the net (Φi)i∈I converges to the identity in the stable point-weak∗-topology.

Note that an L2-implementation is unique. If it is clear from the context which weight on M
we choose, we will simply say that M has W∗OAP relative to N.

Theorem 6.16. Let Γ be a discrete quantum group. Consider the following conditions:

(1) Γ has AP.

(2) L∞(Γ̂) has W∗OAP relative to ℓ∞(Γ).

(3) L∞(Γ̂) has W∗OAP relative to ℓ∞(Γ)′.
(4) Γ has central AP.

(5) L∞(Γ̂) has W∗OAP relative to Z(ℓ∞(Γ)).

Then (1) ⇔ (2) ⇔ (3) ⇐ (4) ⇔ (5).

Remark 6.17. This result is an analogue of Theorem 6.11 in [39], for (co)amenability and rel-
ative W∗CPAP. Furthermore, it is similar in spirit to [61, Theorem 3] which is concerned with
amenability and injectivity.

We start with an auxiliary result (compare [39, Proposition 6.12]). Recall that for a normal CB
map Φ on a von Neumann algebra, we denote by Φ† the normal CB map given by x 7→ Φ(x∗)∗.

Proposition 6.18. Let G be a locally compact quantum group with left Haar integral ϕ and let

Φ ∈ CBσ(L∞(Ĝ)) be a normal CB map. Assume that Φ† satisfies Φ†(Nϕ̂) ⊆ Nϕ̂ and has L2-

implementation T : L2(G) → L2(G). We have:

(1) T ∈ L∞(G) if and only if Φ∗(ω ⋆ ν) = Φ∗(ω) ⋆ ν for all ω, ν ∈ L1(Ĝ),

(2) T ∈ L∞(G)′ if and only if Φ∗(ω ⋆ ν) = ω ⋆ Φ∗(ν) for all ω, ν ∈ L1(Ĝ),

(3) T ∈ Z(L∞(G)) if and only if Φ∗(ω ⋆ ν) = Φ∗(ω) ⋆ ν = ω ⋆ Φ∗(ν) for all ω, ν ∈ L1(Ĝ).

Proof. Using the biduality G =
̂̂
G and [68, Definition 4.6] (see also Section 2), we deduce that the

subspace

N = {λ̂(ω) |ω ∈ L1(Ĝ) : ∃ξ∈L2(G)∀x∈Nϕ̂
〈Λϕ̂(x) | ξ〉 = ω(x∗)} ⊆ L∞(G)

is a core for Λϕ, and that for λ̂(ω) ∈ N we have Λϕ(λ̂(ω)) = ξ. Before we proceed with the main
proof, let us establish some preliminary results:

• For λ̂(ω) ∈ N we have λ̂(Φ∗(ω)) ∈ N and

(6.4) T ∗Λϕ(λ̂(ω)) = Λϕ(λ̂(Φ∗(ω))).
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Indeed, for x ∈ Nϕ̂,

〈Λϕ̂(x) |T ∗Λϕ(λ̂(ω))〉 = 〈TΛϕ̂(x) |Λϕ(λ̂(ω))〉 = 〈Λϕ̂(Φ†(x)) |Λϕ(λ̂(ω))〉
= ω(Φ†(x)∗) = ω(Φ(x∗)) = Φ∗(ω)(x

∗),

which proves that λ̂(Φ∗(ω)) ∈ N and that equation (6.4) holds.

• For ω ∈ L1(Ĝ), λ̂(ν) ∈ N we have λ̂(ω ⋆ ν) ∈ N and

(6.5) Λϕ(λ̂(ω ⋆ ν)) = λ̂(ω)Λϕ(λ̂(ν)).

Indeed, take x ∈ Nϕ̂. Using the left invariance of the Haar integral ϕ and the definition of WG we
obtain

(ω ⋆ ν)(x∗) = ν((ω ⊗ id)∆(x∗)) = ν((ω ⊗ id)∆(x)∗) = 〈Λϕ̂((ω ⊗ id)∆(x)) |Λϕ(λ̂(ν))〉
= 〈(ω ⊗ id)(WĜ∗)Λϕ̂(x) |Λϕ(λ̂(ν))〉 = 〈Λϕ̂(x) | λ̂(ω)Λϕ(λ̂(ν))〉,

which proves the claim.

Let us now prove (1). If T ∈ L∞(G) then (6.4) implies that Λϕ(λ̂(Φ∗(ω))) = T ∗Λϕ(λ̂(ω)) =

Λϕ(T
∗λ̂(ω)) and so T ∗λ̂(ω) = λ̂(Φ∗(ω)), for each ω ∈ L1(Ĝ) such that λ̂(ω) ∈ N , and by density

of such ω (see Lemma 2.1) this equation holds for all ω ∈ L1(Ĝ). Consequently

λ̂(Φ∗(ω ⋆ ν)) = T ∗λ̂(ω ⋆ ν) = T ∗λ̂(ω)λ̂(ν) = λ̂(Φ∗(ω))λ̂(ν) = λ̂(Φ∗(ω) ⋆ ν),

and so Φ∗(ω ⋆ ν) = Φ∗(ω) ⋆ ν for all ω, ν ∈ L1(Ĝ).

For the converse, assume that Φ∗(ω⋆ν) = Φ∗(ω)⋆ν for all ω, ν ∈ L1(Ĝ). Let us take λ̂(ω), λ̂(ν) ∈
N and assume that the map R ∋ t 7→ (ωδ̂−it) ◦ τ̂−t ∈ L1(Ĝ) extends to an entire map, and

denoting by ρ the value of this map at t = − i
2 , we have furthermore λ̂(ρ) ∈ N . We now use

WĜ = χ(WG)∗, together with (σϕt ⊗ id)(WG) = (τt ⊗ id)(WG)(1⊗ δ̂it), see [68, Proposition 5.15],
and (τt ⊗ τ̂t)(W

G) = WG, see [45, Proposition 8.23]. It follows that for each t ∈ R,

σϕt (λ̂(ω)) = (ω ⊗ id)((id ⊗ σϕt )W
Ĝ) = (id⊗ ω)((σϕt ⊗ id)(WG))∗

= (id⊗ ω)((τt ⊗ id)(WG)(1⊗ δ̂it))∗ = (id⊗ ω)((id ⊗ τ̂−t)(W
G)(1⊗ δ̂it))∗

= (id⊗ ω)((1⊗ δ̂−it)(id⊗ τ̂−t)(W
G)∗) = (ω ⊗ id)((δ̂−it ⊗ 1)(τ̂−t ⊗ id)(WĜ))

= λ̂((ωδ̂−it) ◦ τ̂−t).

Consequently we obtain λ̂(ω) ∈ Dom(σϕ−i/2) and σ
ϕ
−i/2(λ̂(ω)) = λ̂(ρ). Take x ∈ Nϕ̂. From (6.5),

we know that λ̂(ν ⋆ ρ), λ̂(Φ∗(ν) ⋆ ρ) ∈ N . By assumption, Φ∗(ν ⋆ ρ) = Φ∗(ν) ⋆ ρ, and so we arrive
at

〈Λϕ̂(x) |T ∗Jϕλ̂(ω)
∗JϕΛϕ(λ̂(ν))〉 = 〈TΛϕ̂(x) |Λϕ(λ̂(ν)σϕ−i/2(λ̂(ω)))〉

= 〈Λϕ̂(Φ†(x)) |Λϕ(λ̂(ν ⋆ ρ))〉 = (ν ⋆ ρ)(Φ†(x)∗) = Φ∗(ν ⋆ ρ)(x
∗) = (Φ∗(ν) ⋆ ρ)(x

∗)

= 〈Λϕ̂(x) |Λϕ(λ̂(Φ∗(ν) ⋆ ρ))〉 = 〈Λϕ̂(x) |Λϕ
(
λ̂(Φ∗(ν))σ

ϕ
−i/2(λ̂(ω))

)
〉

= 〈Λϕ̂(x) | Jϕλ̂(ω)∗JϕT ∗Λϕ(λ̂(ν))〉.

By Lemma 2.1, we know that the collection of such ω is dense in L1(Ĝ), and so the corresponding

collection of operators Jϕλ̂(ω)
∗Jϕ is dense in L∞(G)′. Thus T ∗ ∈ L∞(G)′′ = L∞(G), as required.

Next we consider (2). Suppose that T ∈ L∞(G)′. By equations (6.4) and (6.5), given

λ̂(ω), λ̂(ν) ∈ N , we have

Λϕ(λ̂(Φ∗(ω ⋆ ν))) = T ∗Λϕ(λ̂(ω ⋆ ν)) = T ∗λ̂(ω)Λϕ(λ̂(ν)) = λ̂(ω)T ∗Λϕ(λ̂(ν)) = Λϕ(λ̂(ω ⋆ Φ∗(ν))),

hence Φ∗(ω ⋆ ν) = ω ⋆ Φ∗(ν). As these functionals are dense in L1(G) by Lemma 2.1, the claim
follows.
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Conversely, suppose that Φ∗(ω ⋆ ν) = ω ⋆ Φ∗(ν) for all ω, ν ∈ L1(Ĝ). For λ̂(ω), λ̂(ν) ∈ N we
then have

λ̂(ω)T ∗Λϕ(λ̂(ν)) = Λϕ(λ̂(ω ⋆ Φ∗(ν))) = Λϕ(λ̂(Φ∗(ω ⋆ ν))) = T ∗λ̂(ω)Λϕ(λ̂(ν)).

Again by density, it follows that T ∗ ∈ L∞(G)′, as required.
Finally, (3) follows by combining (1) and (2). �

Proof of Theorem 6.16. If Γ has AP then by Proposition 6.5 we have a net (ai)i∈I in c00(Γ)

which converges in (Ml
cb(A(Γ)), w∗) to 1, and the associated maps Θl(ai) satisfy Θl(ai)

† = Θl(ai).
Proposition 4.12 show that each Θl(ai) has an L2-implementation equal to S−1(ai) ∈ ℓ∞(Γ).
Proposition 4.7, for f = ε ∈ ℓ1(Γ) being the counit of Γ, shows that (Θl(ai))i∈I converges to

the identity in the stable point-weak∗-topology, and consequently L∞(Γ̂) has W∗OAP relative to
ℓ∞(Γ). This shows (1) ⇒ (2).

If Γ has central AP then additionally S−1(ai) ∈ Z(ℓ∞(Γ)) and so L∞(Γ̂) has W∗OAP relative

to Z(ℓ∞(Γ̂)). Thus (4) ⇒ (5).
Let us now show the equivalence of (2) and (3). Assume (2) and let (Φi)i∈I be a net giving

W∗OAP of L∞(Γ̂) relative to ℓ∞(Γ). Define a net (Ψi)i∈I by Ψi = R̂ ◦ Φ†
i ◦ R̂. Lemma 4.8 shows

that each Ψi is a normal, finite rank CB map on L∞(Γ̂) and Ψi −−→
i∈I

id in the stable point-weak∗-

topology. Let Ti ∈ ℓ∞(Γ) be the L2-implementation of Φi. By [46, Proposition 2.11] we know that

JϕΛh(x) = Λh(R̂(x)
∗) for each x ∈ L∞(Γ̂), and so

Λh(Ψi(x)) = Λh
(
R̂
(
Φ†
i (R̂(x))

))
= JϕΛh(Φ

†
i (R̂(x))

∗)

= JϕΛh(Φi(R̂(x)
∗)) = JϕTiΛh(R̂(x)

∗) = JϕTiJϕΛh(x).

Hence Ψi has L
2-implementation JϕTiJϕ ∈ ℓ∞(Γ)′, showing (3). The converse is analogous.

Now assume (2), i.e. that L∞(Γ̂) has W∗OAP relative to ℓ∞(Γ). As before, let (Φi)i∈I be
the corresponding net of normal, finite rank CB maps with L2-implementations Ti ∈ ℓ∞(Γ). For

i ∈ I, let Ψ = Φ†
i , so that Ψ is a normal CB map such that Ψ† = Φi has L2-implementation

Ti ∈ ℓ∞(Γ). By Proposition 6.18(1), Ψ∗ is a left centraliser. Hence also Φi,∗ is a left centraliser,

compare with the proof of Proposition 4.9, and so there is ai ∈ Ml
cb(A(Γ)) with Θl(ai) = Φi. By

Lemma 6.1, as Φi is finite-rank, it must be that ai ∈ c00(Γ). By definition, (Φi)i∈I = (Θl(ai))i∈I
converges to the identity in the stable point-weak∗-topology, and so by Proposition 3.9, ai −−→

i∈I
1

in (Ml
cb(A(Γ)), w∗) and consequently Γ has AP. Therefore (1) and (2) are equivalent.

Finally, suppose that L∞(Γ̂) has W∗OAP relative to Z(ℓ∞(Γ)), and proceed as above. By defini-

tion, we have that TiΛh(x) = Λh(Φi(x)) = Λh(Θ
l(ai)(x)) for each x ∈ C(Γ̂). By Proposition 4.12,

it follows that Ti = S(a∗i )
∗. As Ti ∈ Z(ℓ∞(Γ)), it follows that ai ∈ Z(ℓ∞(Γ)) ∩ c00(Γ), which

shows that Γ has central AP. This establishes that (4) and (5) are equivalent. The implication (4)
⇒ (1) is trivial. �

7. Permanence properties

7.1. Quantum subgroups. For classical locally compact groups, AP passes to closed subgroups,
see [31, Proposition 1.14]. We shall show that an analogous property holds also in the quantum
case.

Let us start by recalling the notion of a closed quantum subgroup of a locally compact quantum
group, see [20]. In what follows we will use the universal C∗-algebra Cu0 (G) and the reducing map
ΛG : Cu0 (G) → C0(G), see [43], along with the semi-universal and universal multiplicative unitaries,
compare [20, Section 1.2]. We will also use the notion of a quantum homomorphism as explored
in [49], see also [19, Section 2.1].

Let H,G be locally compact quantum groups. Assume that there is a homomorphism H →
G exhibited by a strong quantum homomorphism in the sense of [20, Section 1.3], i.e. a non-
degenerate ⋆-homomorphism π : Cu0 (G) → M(Cu0 (H)) such that ∆u

H ◦ π = (π ⊗ π) ◦ ∆u
G. Then

there is a dual strong quantum homomorphism π̂ : Cu0 (Ĥ) → M(Cu0 (Ĝ)) which is related to π
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via (π ⊗ id)V V
G = (id ⊗ π̂)V V

H, see [20, Section 1.3]. In this situation we say that H is a closed
quantum subgroup of G in the sense of Vaes if there is a normal unital injective ⋆-homomorphism

γ : L∞(Ĥ) → L∞(Ĝ) such that γ(Λ
Ĥ
(x)) = Λ

Ĝ
(π̂(x)) for all x ∈ Cu0 (Ĥ), see [65, Definition 2.5],

[20, Definition 3.1]. Notice that this condition implies that ∆
Ĝ
γ = (γ ⊗ γ)∆

Ĥ
.

Theorem 7.1. Let H,G be locally compact quantum groups and assume that H is a closed quantum
subgroup of G in the sense of Vaes. If G has AP then so does H.

Proof. Since H is a closed quantum subgroup of G we obtain maps π, π̂, γ as discussed above. If
G has AP, then according to Theorem 4.4 we can choose a net (ai)i∈I in A(G) ⊆ C0(G) such that

(Θl(ai))i∈I converges to the identity in the stable point-weak∗-topology of CBσ(L∞(Ĝ)). For each

i ∈ I let ωi ∈ L1(Ĝ) be such that ai = λ
Ĝ
(ωi), and define bi = λ

Ĥ
(γ∗(ωi)). As γ∗(ωi) ∈ L1(Ĥ),

we see that bi ∈ A(H). Let H be a separable Hilbert space and take x ∈ C0(Ĥ) ⊗ K(H), ω ∈
L1(Ĥ)⊗̂B(H)∗. We have

〈bi,Ωx,ω〉 = 〈(Θl(bi)⊗ id)x, ω〉 = 〈
(
(γ∗(ωi)⊗ id)∆

Ĥ
⊗ id

)
x, ω〉.

Since γ is a complete isometry, γ∗ is a completely quotient map ([23, Corollary 4.1.9]). By [23,

Proposition 7.1.7], γ∗ ⊗ id : L1(Ĝ)⊗̂B(H)∗ → L1(Ĥ)⊗̂B(H)∗ is also a complete quotient map,

hence we can find ω′ ∈ L1(Ĝ)⊗̂B(H)∗ such that ω = (γ∗ ⊗ id)ω′.
Since γ intertwines the coproducts,

〈bi,Ωx,ω〉 = 〈(ωi ⊗ id⊗ id)
(
(γ ⊗ γ)∆

Ĥ
⊗ id

)
x, ω′〉

= 〈((ωi ⊗ id)∆
Ĝ
⊗ id)(γ ⊗ id)x, ω′〉 = 〈(Θl(ai)⊗ id)(γ ⊗ id)x, ω′〉.

Using stable point-weak∗-convergence we obtain

〈bi,Ωx,ω〉 −−→
i∈I

〈(γ ⊗ id)x, ω′〉 = 〈x, ω〉 = 〈1,Ωx,ω〉.

Hence bi
w∗

−−→
i∈I

1 showing that (bi)i∈I witnesses that H has the AP. �

7.2. Direct limits. In this section we show that AP is preserved by taking direct limits of discrete
quantum groups obtained from directed systems with injective connecting maps. The correspond-
ing fact for classical groups is certainly known, but we were not able to locate a reference.

Let us first recall some facts about quantum subgroups of discrete quantum groups, using
the notation and terminology from Section 6. In the discrete setting there is no difference be-
tween closed quantum subgroups in the sense of Vaes, closed quantum subgroups in the sense of
Woronowicz [20, Theorem 6.2], and open quantum subgroups in the sense of [35]. We will therefore
simply speak of quantum subgroups of discrete quantum groups in the sequel.

Let Γ,Λ be discrete quantum groups and assume that Λ is a quantum subgroup of Γ. Then

one can identify Irr(Λ̂) with a subset of Irr(Γ̂), and one obtains a corresponding identification of

L2(Λ̂) with a subspace of L2(Γ̂). Let p ∈ ℓ∞(Γ) ⊆ B(L2(Γ̂)) be the projection onto L2(Λ̂). Then
p is a group-like projection (i.e. p is a central projection satisfying ∆Γ(p)(1 ⊗ p) = p ⊗ p, see
[35, Definition 4.1]) and the strong quantum homomorphism π : c0(Γ) → c0(Λ) associated with
the inclusion of Λ into Γ is given by π(f) = fp. Dually, we have an injective, normal, unital

⋆-homomorphism ι : L∞(Λ̂) → L∞(Γ̂) which respects the coproducts. The map ι restricts to

injective ⋆-homomorphisms C(Λ̂) → C(Γ̂) and Pol(Λ̂) → Pol(Γ̂).
The following fact is well-known, compare for instance [69, Section 2]. Using ι we can view

L∞(Λ̂) as a subalgebra of L∞(Γ̂), and so in the following, make sense of E being a conditional
expectation in the usual sense of a contractive projection onto a subalgebra.

Lemma 7.2. The formula L∞(Γ̂) ∋ x 7→ pxp ∈ B(pL2(Γ̂)) = B(L2(Λ̂)) defines a normal condi-

tional expectation E : L∞(Γ̂) → L∞(Λ̂) satisfying E(Uαi,j) = 0 for α ∈ Irr(Γ̂) \ Irr(Λ̂), 1 ≤ i, j ≤
dim(α). Furthermore, E restricts to a conditional expectation C(Γ̂) → C(Λ̂).

We shall be interested in directed systems of discrete quantum groups in the following sense.
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Definition 7.3. Let I be a directed set. A directed system of discrete quantum groups with
injective connecting maps is a family of discrete quantum groups (Γi)i∈I together with injective
unital normal ⋆-homomorphisms

ιj,i : L∞(Γ̂i) → L∞(Γ̂j) (i, j ∈ I : i ≤ j),

compatible with coproducts, such that

• ιi,i = id for i ∈ I,
• ιk,jιj,i = ιk,i for all i, j, k ∈ I satisfying i ≤ j ≤ k.

If (Γi)i∈I is a directed system of discrete quantum groups with injective connecting maps then

Γi is a quantum subgroup of Γj for i ≤ j, and we have injective maps Pol(Γ̂i) → Pol(Γ̂j). The

algebraic direct limit lim−→i∈I Pol(Γ̂i) becomes naturally a unital Hopf ∗-algebra, equipped with an

invariant faithful state induced by the Haar integrals of Γ̂i. We therefore have lim−→i∈I Pol(Γ̂i) =

Pol(Γ̂) for a uniquely determined discrete quantum group Γ, see for example [37, Chapter 11,
Theorem 27]. We denote Γ = lim−→i∈I Γi and call this the direct limit of the directed system (Γi)i∈I .

Proposition 7.4. Let (Γi)i∈I be a directed system of discrete quantum groups with injective
connecting maps and let Γ be its associated direct limit. If Γi has (central) AP for all i ∈ I, then
Γ has (central) AP.

Proof. By construction each Γi is a quantum subgroup of Γ. Consequently we obtain injective nor-

mal ⋆-homomorphisms ιi : L
∞(Γ̂i) → L∞(Γ̂), and normal conditional expectations Ei : L∞(Γ̂) →

L∞(Γ̂i) for all i ∈ I.

Identifying Irr(Γ̂i) with a subset of Irr(Γ̂) gives us the extension by zero map ρi : ℓ
∞(Γi) →

ℓ∞(Γ). For ω ∈ L1(Γ̂) we have ω◦ ιi ∈ L1(Γ̂i) and so λ
Γ̂i
(ω◦ ιi) ∈ ℓ∞(Γi). We see that ρiλΓ̂i

(ω◦ ιi)
agrees with λ

Γ̂
(ω) ∈ ℓ∞(Γ) restricted to ℓ∞(Γi) and set to zero in the remaining matrix blocks.

Similarly, for ω ∈ L1(Γ̂i), by normality, ω ◦ Ei ∈ L1(Γ̂), and as Ei(U
α
i,j) = 0 for α 6∈ Irr(Γ̂i), see

Lemma 7.2, it follows that λ
Γ̂
(ω ◦ Ei) = ρiλΓ̂i

(ω).

We claim that ρi restricts to a contraction Ml
cb(A(Γi)) → Ml

cb(A(Γ)). Indeed, take a ∈
Ml
cb(A(Γi)) and ω ∈ L1(Γ̂). Using the observations from the previous paragraph,

ρi(a)λΓ̂
(ω) = ρi

(
aλ

Γ̂i
(ω ◦ ιi)

)

= ρi
(
λ

Γ̂i
(Θl(a)∗(ω ◦ ιi))

)
= ρi

(
λ

Γ̂i
(ω ◦ ιi ◦Θl(a))

)

= λ
Γ̂

(
ω ◦ ιi ◦Θl(a) ◦ Ei

)
.

It follows that ρi(a) ∈ Ml
cb(A(Γ)) and

Θl(ρi(a)) = ιi ◦Θl(a) ◦ Ei ∈ CBσ(L∞(Γ̂)),

which yields the claim. By the definition of ρi it is clear that ρ∗i (ℓ
1(Γ)) ⊆ ℓ1(Γi) ⊆ Ql(A(Γi)),

which shows that the induced map ρi : M
l
cb(A(Γi)) → Ml

cb(A(Γ)) is weak∗-weak∗-continuous.
If Γi has AP then the identity element 1 ∈ Ml

cb(A(Γi)) is in the weak∗-closure of c00(Γi) inside
Ml
cb(A(Γi)). As ρi is weak∗-weak∗-continuous, it follows that ρi(1) is contained in the weak∗-

closure of ρi(c00(Γi)) ⊆ c00(Γ). So pi = ρi(1), the projection corresponding to Irr(Γ̂i) ⊆ Irr(Γ̂), is

contained in the weak∗-closure of c00(Γ) inside Ml
cb(A(Γ)). Clearly we have 〈pi, ω〉 −−→

i∈I
〈1, ω〉 for

all ω ∈ ℓ1(Γ). Moreover we have ‖pi‖cb = 1 since pi ∈ Ml
cb(A(Γ)) with Θl(pi) = ιi ◦ Ei. Hence if

all Γi have AP we see that 1 ∈ Ml
cb(A(Γ)) is contained in the weak∗-closure of c00(Γ). This means

that Γ has AP.
If all Γi have central AP then we additionally know that 1 ∈ Ml

cb(A(Γi)) is in the weak∗-closure
of Z(ℓ∞(Γi))∩ c00(Γi), hence each pi is in the weak∗-closure of Z(ℓ∞(Γ))∩ c00(Γ). It follows that
Γ has central AP. �
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7.3. Free products. In this section we show that AP is preserved by the free product construction
for discrete quantum groups. For classical groups this fact is probably known to experts, but we
could not find a proof in the literature. Our proof is based on results of Ricard and Xu from [57]
which we recall first.

7.3.1. Ricard-Xu results. Let (Ai, φi)i∈I be a family of unital C∗-algebras with faithful states
indexed by some set I. Denote by Hi the GNS Hilbert space for φi, and by H

op
i the Hilbert space

obtained from Ai by completion with respect to the norm given by a 7→ φi(aa
∗)1/2. Then a 7→ a∗

extends to an antilinear isometry Hi → H
op
i .

We write A = ⋆i∈I(Ai, φi) for the reduced unital free product of the family (Ai, φi)i∈I , and
A ⊆ A for its canonical dense unital ⋆-subalgebra (the algebraic unital free product), compare [5].
Next, for d ≥ 0, denote by Σd ⊆ A the subspace of length-d elements. That is, we have Σ0 = C1,
and if Åi denotes the set of all a ∈ Ai with φi(a) = 0, then Σd for d ≥ 1 is the subspace of A

spanned by all elements of the form a1 · · ·ad where aj ∈ Åij for each j, and with ij 6= ij+1 for
1 ≤ j < d. Moreover we let Ad ⊆ A be the norm closure of Σd.

In the sequel we shall use two results from [57], the first one being the following.

Lemma 7.5. [57, Corollary 3.3] For d ≥ 0, the natural projection A→ Σd onto length-d elements
extends to a CB map Pd : A → Ad with ‖Pd‖cb ≤ max(4d, 1).

The second fact which we need is a minor extension of [57, Lemma 4.10].

Lemma 7.6. Fix d ≥ 1. For i ∈ I and 1 ≤ k ≤ d, let Ti,k ∈ CB(Ai) be linear maps which satisfy
φi ◦ Ti,k = λkφi for some λk ∈ C, and which extend to bounded maps Hi → Hi and H

op
i → H

op
i . If

K = (2d+ 1)

d∏

k=1

sup
i

max
(
‖Ti,k‖cb, ‖Ti,k‖B(Hi), ‖Ti,k‖B(Hop

i
)

)
<∞

then the natural map ΠkTi,k : Σd → Σd given by

a1 · · · ad 7→ Ti1,1(a1) · · ·Tid,d(ad) (aj ∈ Åij , ij 6= ij+1)

extends to a CB map Ad → Ad with CB norm bounded above by K.

Proof. The only difference between this claim and [57, Lemma 4.10] is that [57, Lemma 4.10] has
the stronger hypothesis that φi ◦ Ti,k = φi for each i, k. A close examination of the proof of [57,
Lemma 4.10] shows that this hypothesis is only used to ensure that the map ΠkTi,k is well-defined,

because each Ti,k maps Åi to itself. This condition remains true under our weaker hypothesis,
and the rest of the proof of [57, Lemma 4.10] carries over without change. �

7.3.2. AP for free products. Let Γ1,Γ2 be discrete quantum groups and let Γ = Γ1⋆Γ2 be their free

product. Recall from [71] that this means in particular that A = C(Γ̂) is the unital reduced free

product C(Γ̂1) ⋆ C(Γ̂2) with respect to Haar integrals, and h
Γ̂
is the free product state h

Γ̂1
⋆ h

Γ̂2
.

Moreover Pol(Γ̂) is the algebraic unital free product of Pol(Γ̂1) and Pol(Γ̂2). The irreducible

representations of Γ̂ are given as follows, see [71, Theorem 3.10]. Each α ∈ Irr(Γ̂) has a well-
defined length len(α) ∈ Z+. The trivial representation is the only representation of length 0, and
for n ≥ 1 we have

{α ∈ Irr(Γ̂) | len(α) = n} = {αi1 ⊠ · · ·⊠ αin | ∀1≤j≤n αij ∈ Irr(Γ̂ij ) \ {e}, ∀1≤j<n ij 6= ij+1}.
Again, here we denote by e the trivial representation of a compact quantum group. More explicitly,

given α ∈ Irr(Γ̂k) associated to the corepresentation matrix Uα = [Uαi,j ]
dim(α)
i,j=1 ∈ Mdim(α)(C(Γ̂k)),

by regarding C(Γ̂k) as a subalgebra of C(Γ̂), we may regard Uα as a corepresentation of (C(Γ̂),∆
Γ̂
).

Then ⊠ is just the usual tensor product of corepresentations.
To ease notation, we will write h = h

Γ̂
in the sequel.

Theorem 7.7. Let Γ1,Γ2 be discrete quantum groups and let Γ = Γ1 ⋆Γ2 be their free product. If
Γ1,Γ2 have (central) AP, then Γ has (central) AP.
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Before we can prove Theorem 7.7 we need to establish some auxiliary results. For d ∈ N let us
define the (non-linear) map

(7.1) Ψ̃d :
d⊕

k=1

ℓ∞(Γ1)⊕∞ ℓ∞(Γ2) → ℓ∞(Γ)

(here ⊕ is the ℓ∞-direct sum) via

Ψ̃d((g1,k, g2,k)
d
k=1) =

(
Ψ̃d((g1,k, g2,k)

d
k=1)α

)
α∈Irr(Γ̂)

, where

Ψ̃d((g1,k, g2,k)
d
k=1)α =

{
0, len(α) 6= d,

gi1,1,α1
⊗ · · · ⊗ gid,d,αd

, α = α1 ⊠ · · ·⊠ αd : αj ∈ Irr(Γ̂ij ).

We consider

V =
{
(g1,k, g2,k)

d
k=1 ∈

d⊕

k=1

Ml
cb(A(Γ1))⊕∞ Ml

cb(A(Γ2)) | ∀1≤k≤d g1,k,e = g2,k,e
}
,

and write Ψd for the restriction of Ψ̃d to V . Recall that Pd : A → Ad is induced by the projection
onto elements of length d.

Lemma 7.8. The image of Ψd is a subset of Ml
cb(A(Γ)), that is, we can regard Ψd as a map

V → Ml
cb(A(Γ)). Furthermore, Pd extends to a weak∗-weak∗-continuous CB map L∞(Γ̂) → Ad

w∗

.

Proof. Fix (g1,k, g2,k)
d
k=1 ∈ V . Proposition 4.12 shows that each Θl(gi,k) extends to a bounded

linear map on L2(Γ̂i) with norm ‖S−1
Γi

(gi,k)‖. Next, using Proposition 4.9 and Proposition 4.12,

for x ∈ L∞(Γ̂), we have

‖Θl(gi,k)(x)‖L2(Γ̂i)op
= ‖Θl(gi,k)(x)∗‖2 = ‖Θl(gi,k)†(x∗)‖2 = ‖Θl(SΓi

(g∗i,k))(x
∗)‖2

≤ ‖S−1
Γi

(SΓi
(g∗i,k))‖‖x∗‖2 = ‖g∗i,k‖ ‖x‖L2(Γ̂i)op

= ‖gi,k‖ ‖x‖L2(Γ̂i)op
.

Hence Θl(gi,k) extends to a bounded linear map on L2(Γ̂i)
op with norm bounded by ‖gi,k‖.

Let us consider Ti,k = Θl(gi,k) ∈ CB(C(Γ̂i)) for 1 ≤ k ≤ d. Then, according to Lemma 7.5 and

Lemma 7.6, we obtain a CB map Υ on C(Γ̂) acting by 0 on elements of length d′ 6= d, and on
elements of length d by

a1 · · · ad 7→ Θl(gi1,1)(a1) · · ·Θl(gid,d)(ad),
where aj ∈ C(Γ̂ij ), and the CB norm of Υ is bounded above by

4d(2d+ 1)

d∏

k=1

max
i∈{1,2}

max(‖gi,k‖cb, ‖S−1
Γi

(gi,k)‖, ‖gi,k‖).

Since ‖ · ‖ ≤ ‖ · ‖cb on Ml
cb(A(Γi)) we have, using Lemma 4.8 and Proposition 4.9,

‖S−1
Γi

(gi,k)‖ = ‖S−1
Γi

(gi,k)
∗‖ ≤ ‖S−1

Γi
(gi,k)

∗‖cb = ‖gi,k‖cb,
and hence we get in fact

(7.2) ‖Υ‖cb ≤ 4d(2d+ 1)

d∏

k=1

max
i∈{1,2}

‖gi,k‖cb.

We claim that Υ extends to a normal map on L∞(Γ̂). For this it suffices to show that Υ∗

preserves L1(Γ̂) ⊆ C(Γ̂)∗. Indeed, if this is the case, then the extension may be defined as

(Υ∗|L1(Γ̂))
∗ ∈ CBσ(L∞(Γ̂)).

Thus take ρ ∈ L1(Γ̂). Since Υ is bounded and L1(Γ̂) ⊆ C(Γ̂)∗ is norm-closed, it is enough to

consider ρ = h(a·) for a ∈ L∞(Γ̂). Take b ∈ L∞(Γ̂) and denote by Υ2 the extension of Υ to a
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bounded linear map on L2(Γ̂). Note that this extension exists since the GNS Hilbert space for h
is

L2(Γ̂) = CΩ⊕
∞⊕

d=1

⊕

i1 6=···6=id

L2(Γ̂i1)
◦ ⊗ · · · ⊗ L2(Γ̂id)

◦,

where L2(Γ̂i)
◦ is the subspace of L2(Γ̂i) orthogonal to Λhi

(1) (see [5, Section 2]) , and Θl(gi,k)

has bounded extension to L2(Γ̂i) by Proposition 4.12. We have

Υ∗(ρ)(b) = h(aΥ(b)) = 〈Λh(a∗) |Λh(Υ(b))〉 = 〈Λh(a∗) |Υ2Λh(b)〉 = 〈Υ∗
2Λh(a

∗) |Λh(b)〉.
Hence Υ∗(ρ) = ωΥ∗

2Λh(a∗),Λh(1) ∈ L1(Γ̂). Let us denote the resulting normal extension of Υ to

L∞(Γ̂) with the same symbol.
In particular, taking gi,k = 1 for all 1 ≤ k ≤ d in the above discussion shows that the projection

Pd : C(Γ̂) → Ad extends to a normal CB map L∞(Γ̂) → Ad
w∗

.
We finally identify Υ with the adjoint of a centraliser, namely we claim that Ψd((g1,k, g2,k)

d
k=1) ∈

Ml
cb(A(Γ)) and Υ = Θl(Ψd((g1,k, g2,k)

d
k=1)). For α = α1 ⊠ · · ·⊠αd ∈ Irr(Γ̂) let us write ij ∈ {1, 2}

for indices such that αj ∈ Irr(Γ̂ij ) \ {e}, ij 6= ij+1. Furthermore, write each matrix block as

gi,k,α = [gi,k,α,m,n]
dim(α)
m,n=1 =

∑dim(α)
m,n=1 gi,k,α,m,ne

α
m,n, where {eαm,n}dim(α)

m,n=1 are the matrix units in

B(Hα). Choose arbitrary ω ∈ h(Pol(Γ̂)·) ⊆ L1(Γ̂). We can calculate Ψd((g1,k, g2,k)
d
k=1)λΓ̂

(ω) as
follows:

Ψd((g1,k, g2,k)
d
k=1)λΓ̂

(ω)

=
∞∑

d′=0

∑

α=α1⊠···⊠αd′

dim(α1)∑

m1,n1=1

· · ·
dim(αd′ )∑

md′ ,nd′=1

〈Uα(m1,...,md′),(n1,...,nd′)
, ω〉

Ψd((g1,k, g2,k)
d
k=1)(e

α1

m1,n1
⊗ · · · ⊗ eαd′

md′ ,nd′
)

=
∑

α=α1⊠···⊠αd

dim(α1)∑

m1,n1=1

· · ·
dim(αd)∑

md,nd=1

〈Uα(m1,...,md),(n1,...,nd)
, ω〉(gi1,1,α1

eα1

m1,n1
⊗ · · · ⊗ gid,d,αd

eαd
md,nd

)

=
∑

α=α1⊠···⊠αd

dim(α1)∑

m1,k1,n1=1

· · ·
dim(αd)∑

md,kd,nd=1

〈Uα1

m1,n1
· · ·Uαd

md,nd
, ω〉

(gi1,1,α1,k1,m1
eα1

k1,n1
⊗ · · · ⊗ gid,d,αd,kd,md

eαd

kd,nd
),

note that as ω ∈ h(Pol(Γ̂)·), the sums above are finite. On the other hand, using Lemma 6.1, we
have

λ
Γ̂
(Υ∗(ω))

=
∞∑

d′=0

∑

α=α1⊠···⊠αd′

dim(α1)∑

m1,n1=1

· · ·
dim(αd′)∑

md′ ,nd′=1

〈Uα(m1,...,md′),(n1,...,nd′)
,Υ∗(ω)〉(eα1

m1,n1
⊗ · · · ⊗ eαd′

md′ ,nd′
)

=
∑

α=α1⊠···⊠αd

dim(α1)∑

m1,n1=1

· · ·
dim(αd)∑

md,nd=1

〈Θl(gi1,1)(Uα1

m1,n1
) · · ·Θl(gid,d)(Uαd

md,nd
), ω〉(eα1

m1,n1
⊗ · · · ⊗ eαd

md,nd
)

=
∑

α=α1⊠···⊠αd

dim(α1)∑

m1,k1,n1=1

· · ·
dim(αd)∑

md,kd,nd=1

〈(gi1,1,m1,k1U
α1

k1,n1
)· · ·(gid,d,md,kdU

αd

kd,nd
), ω〉(eα1

m1,n1
⊗· · ·⊗ eαd

md,nd
)

These two computations show that Ψd((g1,k, g2,k)
d
k=1)λΓ̂

(ω) = λ
Γ̂
(Υ∗(ω)). As the space of func-

tionals h(Pol(Γ̂)·) is dense in L1(Γ̂), this proves the claim. �

Define

V0 =
{
(g1, g2) ∈ Ml

cb(A(Γ1))⊕∞ Ml
cb(A(Γ2)) | g1,e = g2,e

}
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so that V =
⊕d

k=1 V0.

Note that
⊕d

k=1 M
l
cb(A(Γ1))⊕∞ Ml

cb(A(Γ2)) is a dual Banach space with predual given by the

ℓ1-direct sum
⊕d

k=1Q
l(A(Γ1)) ⊕1 Q

l(A(Γ2)). We can restrict the corresponding weak∗-topology
to V , and similarly for V0.

Lemma 7.9. V is weak∗-closed, and Ψd is separately weak∗-weak∗-continuous.

Proof. We show that Ψd is separately weak∗-weak∗-continuous. We need to show that for any
1 ≤ k ≤ d and fixed elements (g1,k′ , g2,k′) ∈ V0 for 1 ≤ k′ ≤ d and k′ 6= k, the map

V0 ∋ (g1,k, g2,k) 7→ Ψd((g1,k′ , g2,k′)
d
k′=1) ∈ Ml

cb(A(Γ))

is weak∗-weak∗-continuous.
Assume that

(gλ1,k, g
λ
2,k)

w∗

−−−→
λ∈Λ

(g1,k, g2,k) in V0.

By definition of the restricted topology on V0, we have

(gλ1,k, g
λ
2,k)

w∗

−−−→
λ∈Λ

(g1,k, g2,k) in Ml
cb(A(Γ1))⊕∞ Ml

cb(A(Γ2))

and so in particular,

(gλ1,k, g
λ
2,k)

w∗

−−−→
λ∈Λ

(g1,k, g2,k) in ℓ∞(Γ1)⊕∞ ℓ∞(Γ2).

Take Ω ∈ Ql(A(Γ)). Since Ql(A(Γ)) is the norm closure of ℓ1(Γ) in Ml
cb(A(Γ))

∗, we can find a
sequence (Ωn)n∈N in ℓ1(Γ) ⊆ Ql(A(Γ)) which converges in norm to Ω. By the description (7.1) of

Ψ̃d, we see that the map

ℓ∞(Γ1)⊕∞ ℓ∞(Γ2) ∋ (g′1,k, g
′
2,k) 7→ Ψ̃d

(
(g1,k′ , g2,k′)

k−1
k′=1, (g

′
1,k, g

′
2,k), (g1,k′ , g2,k′)

d
k′=k+1

)
∈ ℓ∞(Γ)

is weak∗-weak∗-continuous, hence the linear functional

Ωn ◦ Ψ̃d
(
(g1,k′ , g2,k′)

k−1
k′=1, · , (g1,k′ , g2,k′)dk′=k+1

)

is contained in ℓ1(Γ1)⊕1 ℓ
1(Γ2) for each n ∈ N. Consider the projection

P : Ml
cb(A(Γ1))⊕∞ Ml

cb(A(Γ2)) → V0

given by

P(g1, g2) = (g′1, g
′
2) where g′i,αi

= gi,αi
(αi ∈ Irr(Γ̂i) \ {e}), g′1,e = g′2,e =

g1,e+g2,e
2 .

This is linear and continuous since the linear functional Ml
cb(A(Γi)) ∋ g 7→ ge ∈ C is continuous,

and the image of P is contained in the space Ml
cb(A(Γ1)) ⊕∞ Ml

cb(A(Γ2)) because we alter each
gi only in one entry. Furthermore, P is weak∗-weak∗-continuous. Indeed, its adjoint is given by
an analogous formula on ℓ1(Γ1)⊕1 ℓ

1(Γ2). The existence of P shows that V0 is weak∗-closed, and
hence also V is weak∗-closed.

Consider the difference

Ωn ◦Ψd
(
(g1,k′ , g2,k′)

k−1
k′=1, · , (g1,k′ , g2,k′)dk′=k+1

)
◦ P

−Ω ◦Ψd
(
(g1,k′ , g2,k′)

k−1
k′=1, · , (g1,k′ , g2,k′)dk′=k+1

)
◦ P,

living in Ml
cb(A(Γ1))

∗ ⊕1 M
l
cb(A(Γ2))

∗. Because of the bound (7.2) we can estimate
∥∥(Ω− Ωn) ◦Ψd

(
(g1,k′ , g2,k′)

k−1
k′=1, · , (g1,k′ , g2,k′)dk′=k+1

)
◦ P

∥∥
= sup

(g′
1,k
,g′

2,k
)∈(Ml

cb
(A(Γ1))⊕∞Ml

cb
(A(Γ2)))1

∣∣(Ω− Ωn) ◦Ψd
(
(g1,k′ , g2,k′)

k−1
k′=1, · , (g1,k′ , g2,k′)dk′=k+1

)
◦ P(g′1,k, g′2,k)

∣∣

≤ sup
(g′

1,k
,g′

2,k
)∈(V0)‖P‖

∣∣(Ω− Ωn)
(
Ψd

(
(g1,k′ , g2,k′)

k−1
k′=1, (g

′
1,k, g

′
2,k), (g1,k′ , g2,k′)

d
k′=k+1

))∣∣

≤ ‖Ω− Ωn‖ ‖P‖4d(2d+ 1)

d∏

k′=1,k′ 6=k
max
i∈{1,2}

‖gi,k′‖cb −−−−→
n→∞

0.
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This shows

Ω ◦Ψd
(
(g1,k′ , g2,k′)

k−1
k′=1, · , (g1,k′ , g2,k′)dk′=k+1

)
◦ P ∈ Ql(A(Γ1))⊕1 Q

l(A(Γ2)),

and hence

Ω ◦Ψd
(
(g1,k′ , g2,k′)

k−1
k′=1, (g

λ
1,k, g

λ
2,k), (g1,k′ , g2,k′)

d
k′=k+1

)
−−−→
λ∈Λ

Ω ◦Ψd
(
(g1,k′ , g2,k′)

d
k′=1

)

as desired. This proves that Ψd is separately weak∗-weak∗-continuous. �

For d ≥ 1 consider pd ∈ ℓ∞(Γ) defined via pd = (pd,α)α∈Irr(Γ̂) where

pd,α =

{
0, length of α 6= d,

1, length of α = d.

Lemma 7.10. pd ∈ Ml
cb(A(Γ)) and Θl(pd) = Pd.

Proof. We already know that Pd is a weak∗-continuous map on L∞(Γ̂). Take a linear functional

ω ∈ h(Pol(Γ̂) ·) ⊆ L1(Γ̂). Then we get

(ω ⊗ id)
(
(1⊗ pd)W

Γ̂
)
=

∞∑

d′=1

∑

α∈Irr(Γ̂): len(α)=d′

dim(α)∑

i,j=1

(ω ⊗ id)
(
Uαi,j ⊗ pd e

α
i,j

)

=
∑

α∈Irr(Γ̂): len(α)=d

dim(α)∑

i,j=1

(ω ⊗ id)
(
Uαi,j ⊗ eαi,j

)

=

∞∑

d′=1

∑

α∈Irr(Γ̂): len(α)=d′

dim(α)∑

i,j=1

(ω ⊗ id)
(
Pd(Uαi,j)⊗ eαi,j

)
= (ω ◦ Pd ⊗ id)WΓ̂,

noting that all sums in this calculation are finite, because of the form of ω. As such ω are dense,

this yields (1⊗ pd)W
Γ̂ = (Pd ⊗ id)WΓ̂ as required. �

Finally, we are ready to prove that AP is preserved by taking free products of discrete quantum
groups.

Proof of Theorem 7.7. Assume that Γ1,Γ2 have AP and choose families (fi,λ)λ∈Λi
in c00(Γi) con-

verging to 1 in (Ml
cb(A(Γi)), w

∗). Due to Proposition 6.5 we may assume without loss of generality
that each Θl(fi,λ) is unit preserving. As in Remark 6.2, it then follows that Θl(fi,λ) preserves the

Haar integral on Γ̂i, and that fi,λ,e = 1 for all i ∈ {1, 2}, λ ∈ Λi.

Fix d ∈ N. We shall first show that pd ∈ c00(Γ)
w∗

⊆ Ml
cb(A(Γ)). To do this, we will consider a

net of the form
(f1,λ1,k

, f2,λ2,k
)dk=1 ∈ V .

where each λi,k ∈ Λi for i = 1, 2 and 1 ≤ k ≤ d. Lemma 7.9 gives us

Ψd
(
(f1,λ1,k

, f2,λ2,k
)dk=1

)
∈ Ml

cb(A(Γ)).

In fact, using the definition of Ψ̃d, we see that these multipliers are in c00(Γ) since all of the fi,λ
are finitely supported.

We first consider the case when we keep λi,k fixed, for k ≥ 2. Since Ψd is separately weak∗-
weak∗-continuous, by Lemma 7.9, we have

Ψd
(
(f1,λ1,1

, f2,λ2,1
), (f1,λ1,k

, f2,λ2,k
)dk=2

) w∗

−−−−−−−−−−−−→
(λ1,1,λ2,1)∈Λ1×Λ2

Ψd
(
(1,1), (f1,λ1,k

, f2,λ2,k
)dk=2

)
.

We now repeat this argument in the second variable, and so forth, and using that (c00(Γ)
w∗

)−w
∗

=

c00(Γ)
w∗

, we obtain

pd = Ψd((1,1)
d
k=1) ∈ c00(Γ)

w∗

⊆ Ml
cb(A(Γ)).

Clearly we also have p0 = (δα,e1)α∈Irr(Γ̂) ∈ c00(Γ) ⊆ c00(Γ)
w∗

.
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We now show that 1 ∈ c00(Γ)
w∗

. Consider

Tn =

n∑

d=0

(1− 1√
n
)dpd ∈ c00(Γ)

w∗

⊆ Ml
cb(A(Γ)) (n ∈ N).

According to [57, Proposition 3.5], limn→∞ ‖Tn‖cb = 1 and (Θl(Tn))n∈N converges pointwise to

the identity on C(Γ̂). Take x ∈ C(Γ̂)⊙K(H), ω ∈ L1(Γ̂)⊙ B(H)∗ for a separable Hilbert space H.
Then we obtain

〈Tn − 1,Ωx,ω〉 = 〈
(
(Θl(Tn)− id)⊗ id

)
x, ω〉 −−−−→

n→∞
0,

and since (Tn)n∈N is uniformly bounded in CB norm, the same holds for general x ∈ C(Γ̂) ⊗
K(H), ω ∈ L1(Γ̂)⊗̂B(H)∗. By Proposition 3.9, this shows that Tn −−−−→

n→∞
1 weak∗ in Ml

cb(A(Γ)).

As each pd is in the weak∗-closure of c00(Γ), the same is true of each Tn, and hence we conclude
that 1 is in the weak∗-closure of c00(Γ), showing that Γ has AP.

If fi,λ ∈ Z(ℓ∞(Γi)) ∩ c00(Γi) for each i, λ, then Ψd((f1,λ1,k
, f2,λ2,k

)dk=1) is also central. Conse-
quently, if Γ1,Γ2 have central AP then so does Γ = Γ1 ⋆ Γ2. �

Corollary 7.11. Let (Γi)i∈I be a family of discrete quantum groups with (central) AP. Then the
free product Γ = ⋆i∈IΓi has (central) AP.

Proof. If I is finite the claim follows from Theorem 7.7 by induction. In the general case, for
any finite (nonempty) set F ⊆ I, the free product ⋆i∈FΓi is a quantum subgroup of ⋆i∈IΓi in
a natural way. Moreover (⋆i∈FΓi)F⊆I forms a directed system of discrete quantum groups with
injective connecting maps over the directed set of finite subsets of I, compare Definition 7.3, and
⋆i∈IΓi = lim−→F⊆I ⋆i∈FΓi. Since ⋆i∈FΓi has (central) AP, the claim follows from Proposition 7.4. �

7.4. Double crossed products. In this section we study how the approximation property be-
haves with respect to the double crossed product construction. This contains the Drinfeld double
of a locally compact quantum group as a special case.

7.4.1. Preliminaries. We start by recalling some definitions, following the conventions in [6].
A matching between two locally compact quantum groups G1,G2 is a faithful normal ⋆-

homomorphism m: L∞(G1)⊗̄L∞(G2) → L∞(G1)⊗̄L∞(G2) satisfying

(∆1 ⊗ id)m = m23 m13(∆1 ⊗ id) and (id⊗∆2)m = m13 m12(id⊗∆2).

Given this data one defines the double crossed product Gm of G1,G2 as follows. The von Neumann
algebra of functions on Gm and its comultiplication are given by

L∞(Gm) = L∞(G1)⊗̄L∞(G2), ∆m = (id⊗ χm⊗id)(∆op
1 ⊗∆2).

To ease notation, we will decorate objects related to G1 (resp. G2,Gm) with 1 (resp. 2,m) in the
sequel, e.g. W1 = WG1 . We will also denote the unit in B(L2(Gm)) by 1m.

Let J (resp. Ĵ) be the modular conjugation of the left Haar integral on the bicrossed product
of G1,G2 and its dual, see [6, Section 2.4]. Define a unitary

Z = JĴ(Ĵ1J1 ⊗ Ĵ2J2).

It implements m in the sense that m(z) = ZzZ∗ for all z ∈ L∞(G1)⊗̄L∞(G2). The Kac-Takesaki
operator of Gm is given by

Wm = (ΣV∗
1Σ)13Z

∗
34W2,24Z34.

One can describe structure of Gm and its dual, see in particular [6, Theorem 5.3]. For example,
we have

L∞(Ĝm) =
(
(L∞(Ĝ1)

′ ⊗ 1) ∪ Z∗(1⊗ L∞(Ĝ2))Z
)′′
,

L∞(Ĝm)
′ =

(
Z∗(L∞(Ĝ1)⊗ 1)Z ∪ (1⊗ L∞(Ĝ2)

′)
)′′
.
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A special case of this construction is the (generalised) Drinfeld double. Let G1,G2 be locally
compact quantum groups and assume that Z ∈ L∞(G1)⊗̄L∞(G2) is a bicharacter. That is, Z is
a unitary satisfying

(∆1 ⊗ id)Z = Z23Z13 and (id⊗∆2)Z = Z13Z12.

Then one obtains an inner ⋆-automorphism

m: L∞(G1)⊗̄L∞(G2) ∋ x 7→ ZxZ∗ ∈ L∞(G1)⊗̄L∞(G2),

and it is easy to check that this defines a matching between G1 and G2. Consequently, one can
form the double crossed product Gm, and this is called the generalised Drinfeld double of G1,G2

with respect to Z.

In particular, if H is a locally compact quantum group then we can consider G1 = Hop,G2 = Ĥ

together with the bicharacter Z = WH. The corresponding double crossed product Gm is called
the Drinfeld double of H.

7.4.2. G
op
1 ,G2 are quantum subgroups of Gm. Let us return to the general situation of locally

compact quantum groups G1,G2 with a matching m. It is stated in [6, Theorem 5.3], see also the
introduction to [6, Section 6], that Gop

1 and G2 are closed quantum subgroups of Gm. We give a
quick argument for the convenience of the reader.

Lemma 7.12. G
op
1 and G2 are closed quantum subgroups of Gm in the sense of Vaes.

Proof. Note first that Ĝop
1 = Ĝ1

′
, compare [46, Proposition 5.4]. We have natural normal, injective

⋆-homomorphisms

γ1 : L∞(Ĝ1)
′ → L∞(Ĝm) : x̂

′ 7→ x̂′ ⊗ 1,

γ2 : L∞(Ĝ2) → L∞(Ĝm) : x̂ 7→ Z∗(1⊗ x̂)Z,

hence by [20, Theorem 3.3] it is enough to show that both maps respect coproducts.

First, take x̂′ ∈ L∞(Ĝ1)
′. Then x̂′ ⊗ 1 ∈ L∞(Ĝm) and

∆̂m(x̂
′ ⊗ 1) = ΣWm((x̂

′ ⊗ 1)⊗ 1m)W
∗
mΣ = Σ(ΣV∗

1Σ)13(x̂
′ ⊗ 1⊗ 1⊗ 1)(ΣV1Σ)13Σ,

noting that all the other parts of Wm cancel out. By slight abuse of notation, we write here Σ
both for the swap map on L2(Gm) ⊗ L2(Gm), which is identified with Σ13Σ24, and for the swap
map on L2(G1) ⊗ L2(G1). From the proof of [46, Proposition 4.2] we find that the coproduct on

L∞(Ĝ1)
′ is given by ∆

Ĝ1

′(x̂′) = V∗
1(1⊗ x̂′)V1, and so

∆̂m(x̂
′ ⊗ 1) = Σ(ΣV∗

1(1⊗ x̂′)V1Σ)13Σ = Σ24∆Ĝ1

′(x̂′)13Σ24 = ∆
Ĝ1

′(x̂′)13.

Since the inclusion L∞(Ĝ1)
′⊗̄L∞(Ĝ1)

′ → L∞(Ĝm)⊗̄L∞(Ĝm) is given by a 7→ a13, this concludes
the proof that Gop

1 is a closed quantum subgroup of Gm.

Take now x̂ ∈ L∞(Ĝ2) so that Z∗(1⊗ x̂)Z ∈ L∞(Ĝm). Then, following exactly the proof of [6,
Proposition 3.5],

∆̂m(Z
∗(1⊗ x̂)Z) = ΣWm(Z

∗(1⊗ x̂)Z ⊗ 1m)W
∗
mΣ = (Z∗ ⊗ Z∗)∆̂2(x̂)24(Z ⊗ Z),

which is exactly the embedding of ∆
Ĝ2
(x̂) ∈ L∞(Ĝ2)⊗̄L∞(Ĝ2) into L∞(Ĝm)⊗̄L∞(Ĝm). �

As a consequence of Theorem 7.1 and Proposition 4.3 we therefore obtain the following fact.

Corollary 7.13. Suppose that Gm has AP. Then both G1 and G2 have AP.

Remark 7.14. In view of the close analogy between Drinfeld doubles of q-deformations of compact
semisimple Lie groups and the corresponding complex Lie groups [1], [70], it is natural to speculate
that the converse to Corollary 7.13 does not hold, see also Remark 7.4 in [2]. Specifically, the
Drinfeld double of SUq(3) might be an example of a locally compact quantum group which does
not have AP.
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7.4.3. AP for Ĝm. We now aim to prove the following result.

Theorem 7.15. Let G1,G2 be locally compact quantum groups with a matching m.

• If Ĝ1 and Ĝ2 have AP then so does Ĝm.

• If Ĝ1 and Ĝ2 are weakly amenable with Cowling–Haagerup constants Λcb(Ĝ1),Λcb(Ĝ2)

then Ĝm is weakly amenable with Λcb(Ĝm) ≤ Λcb(Ĝ1) Λcb(Ĝ2).
• If G1,G2 are coamenable then so is Gm.

An analogous result for the Haagerup property was obtained in [58], but we note that the
terminology used in [58] is different. We also note that for generalised Drinfeld doubles the
statement on coamenability in Theorem 7.15 can be shown quite easily using standard properties
of bicharacters, as discussed in a preprint version of [58].

Before we prove Theorem 7.15 we need to establish a number of auxiliary results. Recall from

Section 3.3 the construction of a normal CB map Θl(a) on L∞(Ĥ) and its extension Φ(a) ∈
CBσ(B(L2(H))) for any locally compact quantum group H and a ∈ Ml

cb(A(H)). Moreover, in the

proof of Lemma 7.12 we introduced injective, normal ⋆-homomorphisms γ1 : L∞(Ĝ1)
′ → L∞(Ĝm)

and γ2 : L∞(Ĝ2) → L∞(Ĝm). We will now use these maps to transport elements of the Fourier

algebras A(Ĝop
1 ),A(Ĝ2) to left CB multipliers of A(Ĝm).

Lemma 7.16. For ω ∈ L1(G1) we have a = γ1(λ
op
1 (ω)) ∈ Ml

cb(A(Ĝm)). The associated maps are

Θl(a) = Θl(λop1 (ω))⊗ id ∈ CBσ(L∞(Gm)) = CBσ(L∞(G1)⊗̄L∞(G2))

and

Φ(a) = Φ(λop1 (ω))⊗ id ∈ CBσ(B(L2(Gm))) = CBσ(B(L2(G1))⊗̄B(L2(G2))).

Proof. Take ω1 ⊗ ω2 ∈ L1(Gop
1 )⊗̂L1(G2) = L1(Gm). Using Wop

1 = ΣV∗
1Σ, see [46, Section 4], we

get

λm(ω1 ⊗ ω2) = (ω1 ⊗ ω2 ⊗ id⊗ id)
(
(ΣV∗

1Σ)13Z
∗
34W2,24Z34

)

=
(
(ω1 ⊗ id)(ΣV∗

1Σ)⊗ 1

)
Z∗(

1⊗ (ω2 ⊗ id)(W2)
)
Z

= γ1(λ
op
1 (ω1))γ2(λ2(ω2)),

(7.3)

and consequently, writing ⋆ for the product on L1(Gop
1 ),

aλm(ω1 ⊗ ω2) = γ1(λ
op
1 (ω))λm(ω1 ⊗ ω2) = γ1

(
λop1 (ω)λop1 (ω1)

)
γ2(λ2(ω2))

= γ1
(
λop1 (ω ⋆ ω1)

)
γ2(λ2(ω2)) = λm

(
(ω ⋆ ω1)⊗ ω2

)
.

By linearity and continuity, a maps A(Ĝm) into itself, and Θl(a) has the given form.
The second assertion is verified using a direct calculation. Indeed, if x ∈ B(L2(Gm)) =

B(L2(G1))⊗̄B(L2(G2)) then

1m ⊗ Φ(a)(x) = Wm

(
(((ω ⊗ id)∆op

1 ⊗ id)⊗ id)(W∗
m(1m ⊗ x)Wm)

)
W∗

m

= Wm

(
((ω ⊗ id)∆op

1 ⊗ id⊗3)(Z∗
34W

∗
2,24Z34W

op ∗
1,13x34W

op
1,13Z

∗
34W2,24Z34)

)
W∗

m

= WmZ
∗
34W

∗
2,24Z34

(
((ω ⊗ id)∆op

1 ⊗ id⊗3)Wop ∗
1,13x34W

op
1,13

)
Z∗
34W2,24Z34W

∗
m

= WmZ
∗
34W

∗
2,24Z34

(
(ω ⊗ id⊗4)(Wop ∗

1,24W
op ∗
1,14x45W

op
1,14W

op
1,24)

)
Z∗
34W2,24Z34W

∗
m

= WmZ
∗
34W

∗
2,24Z34W

op ∗
1,13

(
(ω ⊗ id⊗ id)(Wop ∗

1,12x23W
op
1,12)

)
34
Wop

1,13Z
∗
34W2,24Z34W

∗
m

= 1m ⊗ (ω ⊗ id⊗ id)(Wop ∗
1,12x23W

op
1,12).

Here we use that (∆op
1 ⊗ id)Wop

1 = Wop
1,13W

op
1,23. The claim follows from Lemma 3.10. �

Lemma 7.17. For ω ∈ L1(G2) we have b = γ2(λ2(ω)) ∈ Ml
cb(A(Ĝm)). The associated maps are

Θl(b) = m−1(id⊗Θl(λ2(ω)))m

and

Φ(b) : B(L2(Gm)) ∋ x 7→ Z∗(id⊗ Φ(λ2(ω)))(ZxZ
∗)Z ∈ B(L2(Gm)).
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Proof. Using equation (7.3), we get for ω0 ∈ L1(G2) and ω1 ⊗ ω2 ∈ L1(Gm) the relation

λm(ω1 ⊗ ω2)γ2(λ2(ω0)) = γ1(λ
op
1 (ω1))γ2(λ2(ω2))γ2(λ2(ω0))

= γ1(λ
op
1 (ω1))γ2(λ2(ω2 ⋆ ω0)) = λm(ω1 ⊗ (ω2 ⋆ ω0)),

here with ⋆ the product on L1(G2). Thus, if T0 : L∞(Gm) → L∞(Gm) is the map given by
T0 = id⊗ (id⊗ ω0)∆2, then T0 is normal, and the pre-adjoint (T0)∗ satisfies

λm(ω1 ⊗ ω2)γ2(λ2(ω0)) = λm((T0)∗(ω1 ⊗ ω2)).

As γ2 intertwines the coproducts, it automatically intertwines the unitary antipodes ([49, Propo-
sition 3.10]). The same is true for λm and λ2, and hence we get

λm
(
(Rm ◦ T0 ◦Rm)∗(Rm ∗(ω1 ⊗ ω2))

)
= λm((T0 ◦Rm)∗(ω1 ⊗ ω2)) = R̂m(λm((T0)∗(ω1 ⊗ ω2)))

= R̂m

(
γ2(λ2(ω0))

)
R̂m(λm(ω1 ⊗ ω2)) = γ2(λ2(R2∗(ω0)))λm(Rm ∗(ω1 ⊗ ω2)).

Now set ω0 = ω◦R2 for our given ω. As the set of functionals of the form Rm ∗(ω1⊗ ω2) is linearly

dense, we obtain from Lemma 4.8 that b = γ2(λ2(ω)) ∈ Ml
cb(A(Ĝm)) and Θl(b) = Rm ◦ T0 ◦ Rm.

By [6, Theorem 5.3] we know that Rm = m−1(R1 ⊗R2) = (R1 ⊗R2)m. Therefore

Rm ◦ T0 ◦Rm = m−1(R1 ⊗R2)(id⊗ (id⊗ ω ◦R2)∆2)(R1 ⊗R2)m

= m−1(id⊗R2 ◦ (id⊗ ω ◦R2)∆2 ◦R2)m

= m−1(id⊗ (id⊗ ω)∆op
2 )m

= m−1(id⊗ (ω ⊗ id)∆2)m,

and this yields the stated formula for Θl(b).
In order to verify the formula for Φ(b), recall that the unitary operator Z implements m by

m(·) = Z · Z∗, and hence m−1(·) = Z∗ · Z. Moreover, from [6, Proposition 3.5] we know that
(m⊗id)(Wm) = Z∗

34W2,24Z34W
op
1,13. For x ∈ B(L2(Gm)), by applying the expression for Θl(b) just

obtained, we get

(Θl(b)⊗ id)(W∗
m(1m ⊗ x)Wm)

= (m−1 ⊗id⊗ id)(id⊗ (ω ⊗ id)∆2 ⊗ id⊗ id)
(
Wop ∗

1,13Z
∗
34W

∗
2,24Z34(1⊗ 1⊗ x)Z∗

34W2,24Z34W
op
1,13

)
.

Now using (∆2 ⊗ id)W2 = W2,13W2,23, this expression becomes

= (m−1 ⊗id⊗ id)
(
Wop ∗

1,13Z
∗
34(id⊗ ω ⊗ id⊗3)(W∗

2,35W
∗
2,25(ZxZ

∗)45W2,25W2,35)Z34W
op
1,13

)

= (m−1 ⊗ id⊗ id)
(
Wop ∗

1,13Z
∗
34W

∗
2,24(ω ⊗ id⊗ id)(W∗

2,13(ZxZ
∗)23W2,13)34W2,24Z34W

op
1,13

)
.

Finally, we use the form of Φ(λ2(ω)) ∈ CBσ(B(L2(G2))), as in Lemma 3.10 to get

= (m−1 ⊗ id⊗ id)
(
Wop ∗

1,13Z
∗
34W

∗
2,24(id⊗ Φ(λ2(ω)))(ZxZ

∗)34W2,24Z34W
op
1,13

)
.

Using again (m⊗id)(Wm) = Z∗
34W2,24Z34W

op
1,13, we continue the calculation as

= (m−1⊗id⊗ id)
(
(m⊗id)(W∗

m)Z∗
34(id⊗ Φ(λ2(ω)))(ZxZ

∗)34Z34(m⊗id)(Wm)
)

= W∗
m(m

−1 ⊗id⊗ id)(Z∗
34(id⊗ Φ(λ2(ω)))(ZxZ

∗)34Z34)Wm

= W∗
mZ

∗
12Z

∗
34(id⊗ Φ(λ2(ω)))(ZxZ

∗)34Z34Z12Wm,

where at the end we used that m−1(·) = Z∗ · Z. It follows that
1m ⊗ Φ(b)(x) = Wm(Θ

l(b)⊗ id)(W∗
m(1m ⊗ x)Wm)W∗

m

= Wm

(
W∗

mZ
∗
12Z

∗
34(id⊗ Φ(λ2(ω)))(ZxZ

∗)34Z34Z12Wm

)
W∗

m

= (Z ⊗ Z)∗(1m ⊗ (id⊗ Φ(λ2(ω)))(ZxZ
∗))(Z ⊗ Z),

and hence Φ(b)(x) = Z∗(id⊗ Φ(λ2(ω)))(ZxZ
∗)Z as claimed. �
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In the next step, we shall establish continuity properties of the maps A(Ĝop
1 ) → Ml

cb(A(Ĝm))

and A(Ĝ2) → Ml
cb(A(Ĝm)) described in Lemmas 7.16, 7.17. For this we need the following general

fact.

Lemma 7.18.

• Let E,F be operator spaces. The map (E⊗̌F )⊗̂F ∗ → E given on simple tensors by
(x⊗ y)⊗ f 7→ 〈f, y〉x is completely contractive.

• Let A,B be C∗-algebras. The map (A ⊗ B)⊗̂(A∗⊗̂B∗) → A⊗̂A∗ given on simple tensors
by (a⊗ b)⊗ (µ⊗ ω) 7→ 〈ω, b〉a⊗ µ is completely contractive.

Proof. Due to [23, Theorem 8.1.10] the “tensor interchange” map F ∗⊗̂(F ⊗̌E) → (F ∗⊗̂F )⊗̌E,
which is the formal identity on simple tensors, is a complete contraction. Since (F ∗⊗̂F )∗ ∼=
CB(F ∗), the identity map idF∗ induces the (completely) contractive linear functional F ∗⊗̂F →
C : f ⊗ y 7→ 〈f, y〉. Composing these complete contractions shows that F ∗⊗̂(F ⊗̌E) → E : f ⊗
(y⊗ x) 7→ 〈f, y〉x is a complete contraction. By commutativity of the projective and the injective
tensor products of operators spaces, respectively, the first claim follows.

For the second part recall that the injective operator space tensor product agrees with the
spatial tensor product on C∗-algebras. Using the re-bracketing isomorphism

(A⊗B)⊗̂(A∗⊗̂B∗) ∼= (((A ⊗B)⊗̂B∗)⊗̂A∗,

the assertion hence follows by applying the first part to E = A,F = B and tensoring with A∗. �

Lemma 7.19. Let (ωi)i∈I be a net in L1(Gop
1 ) such that λop1 (ωi) −−→

i∈I
1 weak∗ in Ml

cb(A(Ĝ
op
1 )).

Consider γ1(λ
op
1 (ωi)) ∈ Ml

cb(A(Ĝm)) and Φ(γ1(λ
op
1 (ωi))) ∈ CBσ(B(L2(Gm))). Then Φ(γ1(λ

op
1 (ωi)))

−−→
i∈I

id weak∗, and thus γ1(λ
op
1 (ωi)) −−→

i∈I
1m weak∗ in Ml

cb(A(Ĝm)).

Proof. By Lemma 7.16 we have Φ(γ1(λ
op
1 (ωi))) = Φ(λop1 (ωi))⊗ id for each i ∈ I. Applying Lemma

7.18 with A = K(L2(G1)) and B = K(L2(G2)) we obtain a completely contractive map

T :
(
K(L2(G1))⊗K(L2(G2))

)
⊗̂
(
B(L2(G1))∗⊗̂B(L2(G2))∗

)
→ K(L2(G1))⊗̂B(L2(G1))∗

given by T ((a⊗ b)⊗ (ω1 ⊗ ω2)) = 〈ω2, b〉a⊗ ω1 on simple tensors. Then

〈Φ(γ1(λop1 (ωi))), (a⊗ b)⊗ (ω1 ⊗ ω2)〉 = 〈Φ(λop1 (ωi))(a), ω1〉〈b, ω2〉
= 〈Φ(λop1 (ωi)), T ((a⊗ b)⊗ (ω1 ⊗ ω2))〉,

and hence Φ(γ1(λ
op
1 (ωi))) = T ∗(Φ(λop1 (ωi))). As λop1 (ωi) −−→

i∈I
1 weak∗, we know that Φ(λop1 (ωi))

−−→
i∈I

id weak∗, and so Φ(γ1(λ
op
1 (ωi))) −−→

i∈I
T ∗(id) = id weak∗, as required. �

Lemma 7.20. Let (ωi)i∈I be a net in L1(G2) with λ2(ωi) −−→
i∈I

1 weak∗ in Ml
cb(A(Ĝ2)). Then

Φ(γ2(λ2(ωi))) −−→
i∈I

id weak∗ in CBσ(B(L2(Gm))), and consequently γ2(λ2(ωi)) −−→
i∈I

1m weak∗ in

Ml
cb(A(Ĝm)).

Proof. According to Lemma 7.17 we have Φ(γ2(λ2(ωi)))(x) = Z∗(id⊗Φ(λ2(ωi)))(ZxZ
∗)Z. We can

now argue exactly as in the proof of Lemma 7.19. Explicitly, for x⊗u in K(L2(Gm))⊗̂B(L2(Gm))∗,
the predual of CBσ(B(L2(Gm))), consider

〈Φ(γ2(λ2(ωi))), x ⊗ u〉 = 〈Z∗(id⊗ Φ(λ2(ωi)))(ZxZ
∗)Z, u〉

= 〈(id ⊗ Φ(λ2(ωi)))(ZxZ
∗), ZuZ∗〉 = 〈(id⊗ Φ(λ2(ωi))), ZxZ

∗ ⊗ ZuZ∗〉.
Since x 7→ ZxZ∗ is a complete isometry on K(L2(Gm)) and u 7→ ZuZ∗ is a complete isometry
on B(L2(Gm))∗, we obtain a complete isometry T on K(L2(Gm))⊗̂B(L2(Gm))∗ given on simple
tensors by T (x⊗ u) = ZxZ∗ ⊗ ZuZ∗. Thus

Φ(γ2(λ2(ωi))) = T ∗(id⊗ Φ(λ2(ωi))) −−→
i∈I

T ∗(id) = id

weak∗, as required. �
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Proof of Theorem 7.15. Assume that Ĝ1 and Ĝ2 have AP. Due to Proposition 4.3 it follows that

(Gop
1 )∧ = (Ĝ1)

′ also has AP. Choose nets (ω
(1)
i )i∈I in L1(G1) with ai = λop1 (ω

(1)
i ) −−→

i∈I
1 weak∗ in

Ml
cb(A(Ĝop

1 )), and similarly (ω
(2)
j )j∈J in L1(G2) with bj = λ2(ω

(2)
j ) −−→

j∈J
1 weak∗ in Ml

cb(A(Ĝ2)).

Then, by Lemmas 7.16, 7.17, we have γ1(ai), γ2(bj) ∈ Ml
cb(A(Ĝm)), and (7.3) gives

ci,j = γ1(ai)γ2(bj) = λm(ω
(1)
i ⊗ ω

(2)
j ) ∈ A(Ĝm).

Since Ml
cb(A(Ĝm)) is a dual Banach algebra, see Proposition 3.3, it follows from Lemma 7.19 that

limi∈I ci,j = γ2(bj) weak
∗ for each j ∈ J . Hence γ2(bj) is contained in the weak∗-closure of A(Ĝm)

in Ml
cb(A(Ĝm). Taking the limit in j and using Lemma 7.20 we see that 1m is contained in the

weak∗-closure of A(Ĝm) in Ml
cb(A(Ĝm)), as required.

The remaining statements regarding weak amenability and coamenability are verified in a sim-

ilar way: if Ĝ1, Ĝ2 are weakly amenable with Cowling-Haagerup constants Λcb(Ĝ1),Λcb(Ĝ2) then
we additionally know that

‖ai‖cb = ‖Φ(ai)‖cb ≤ Λcb(Ĝ1), ‖bj‖cb = ‖Φ(bj)‖cb ≤ Λcb(Ĝ2),

and consequently ‖ci,j‖cb ≤ Λcb(Ĝ1) Λcb(Ĝ2). The result then follows from Proposition 5.7.
If G1,G2 are coamenable then we can choose ai, bj such that supi∈I,j∈J ‖ci,j‖A(Ĝm)

=

supi∈I,j∈J ‖ωi ⊗ ωj‖ < +∞. The result then follows from Proposition 5.6. �

7.5. Direct products. The double crossed product construction contains as a special case the
direct product of locally compact quantum groups. More precisely, assume that H1,H2 are locally
compact quantum groups and let m = id be the trivial matching between G1 = H

op
1 and G2 = H2.

In this case we write Gm = H1 ×H2 and call this the direct product of H1 and H2. Note that this
definition agrees with the usual one since

L∞(H1 ×H2) = L∞(Gop
1 )⊗̄L∞(G2) = L∞(H1)⊗̄L∞(H2),

∆H1×H2
= (id⊗ χ⊗ id)(∆G

op

1
⊗∆G2

) = (id⊗ χ⊗ id)(∆H1
⊗∆H2

),

and we have ̂H1 ×H2 = Ĥ1 × Ĥ2. Consequently, Corollary 7.13 and Theorem 7.15 immediately
give the following result.

Proposition 7.21. The direct product H1 × H2 of two locally compact quantum groups H1,H2

has AP if and only if H1 and H2 have AP.

8. Categorical AP

In this section we discuss the approximation property in the setting of rigid C∗-tensor categories,
building on [2], [3], [4], [56]. As an application we show in particular that the central approximation
property for discrete quantum groups is invariant under monoidal equivalence.

Let us first fix some notation and terminology regarding C∗-tensor categories, referring to [50]
for more details and background. If T is a C∗-category and X,Y ∈ T are objects we write
T(X,Y ) for the space of morphisms from X to Y . We denote by idX or id the identity morphism
in T(X,X). By definition, a C∗-tensor category is a C∗-category T together with a bilinear
∗-functor ⊗ : T×T → T, a distinguished object 11 ∈ T and unitary natural isomorphisms

11⊗X ∼= X ∼= X ⊗ 11, (X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z)

satisfying certain compatibility conditions. For simplicity we shall always assume that T is strict,
which means that these unitary natural isomorphisms are identities, and we also assume that the
tensor unit 11 is simple.

A C∗-tensor category T is called rigid if all objects of T are dualisable. This means that for
every object X ∈ T there exists an object X∨ ∈ T and morphisms sX ∈ T(X ⊗ X∨, 11), tX ∈
T(X∨ ⊗X, 11) which form a standard solution of the conjugate equations. That is, we have

(tX ⊗ idX∨)(idX∨ ⊗ s∗X) = idX∨ , (sX ⊗ idX)(idX ⊗ t∗X) = idX ,
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and sX(f ⊗ id)s∗X = tX(id ⊗ f)t∗X for all f ∈ T(X,X). The quantum trace Trq : T(X,X) → C

of X is defined by Trq(f) = sX(f ⊗ id)s∗X = tX(id ⊗ f)t∗X , and the quantum dimension of X is
dimq(X) = Trq(idX). Every rigid C∗-tensor category T is semisimple, that is, every object of T
is isomorphic to a finite direct sum of simple objects. We write Irr(T) for the set of isomorphism
classes of simple objects in T, and choose representatives Xi ∈ T for elements i = [Xi] ∈ Irr(T),
with the convention that we also write i = 0 for the class [11].

The fusion algebra C[T] is the vector space with basis Irr(T) equipped with the fusion product

[Xi] · [Xj ] =
∑

k∈Irr(T)

Nk
ij [Xk],

where Nk
ij = dim(T(Xi⊗Xj, Xk)), and the ∗-structure determined by [Xi]

∗ = [X∨
i ]. We will follow

the usual abuse of notation and identify X ∈ Irr(T) with its class [X ]. The regular representation
λ : C[T] → B(ℓ2(Irr(T))) is defined by λ(X)(Y ) = X · Y . The tube algebra Tub(T) is

(8.1) Tub(T) =
⊕

i,j,k∈Irr(T)

T(Xk ⊗Xi, Xj ⊗Xk)

equipped with a suitable multiplication and ⋆-structure, see [26, Definition 3.3]. Let us only
note that Tub(T) is a non-unital ⋆-algebra with local units, which are given by the projections
pi = id ∈ T(11 ⊗ Xi, Xi ⊗ 11) = T(Xi, Xi) ⊆ Tub(T) for i ∈ Irr(T). Moreover, the corner
p0 Tub(T)p0 corresponding to [11] ∈ Irr(T) is canonically isomorphic to the fusion algebra C[T],
see [26, Proposition 3.1].

There is a natural faithful positive trace Tr : Tub(T) → C which vanishes on T(Xk ⊗Xi, Xj ⊗
Xk) for i 6= j or Xk 6= 11, and is given by the quantum trace Trq on T(11 ⊗ Xi, Xi ⊗ 11) for all

i ∈ Irr(T). We write L2(Tub(T)) for the associated GNS-Hilbert space. This yields the regular
representation λ : Tub(T) → B(L2(Tub(T))) of Tub(T). The reduced C∗-algebra C∗

red(Tub(T))
and the von Neumann algebra L(Tub(T)) are defined as the closure of λ(Tub(T)) in the operator
norm and the weak operator topology, respectively. The map Tr extends to a n.s.f trace on
L(Tub(T)) by [55, Proposition 3.10].

Let us next recall the definition of multipliers on rigid C∗-tensor categories from the work of
Popa-Vaes [56, Section 3].

Definition 8.1. Let T be a rigid C∗-tensor category. A multiplier on T is a family θ = (θX,Y )
of linear maps θX,Y : T(X ⊗ Y,X ⊗ Y ) → T(X ⊗ Y,X ⊗ Y ) for X,Y ∈ T such that

θX2,Y2
(gfh∗) = gθX1,Y1

(f)h∗,

θX2⊗X1,Y1⊗Y2
(idX2

⊗ f ⊗ idY2
) = idX2

⊗ θX1,Y1
(f)⊗ idY2

,

for allXi, Yi ∈ T, f ∈ T(X1⊗Y1, X1⊗Y1) and g, h ∈ T(X1, X2)⊗T(Y1, Y2) ⊆ T(X1⊗Y1, X2⊗Y2).
A multiplier θ = (θX,Y ) on T is said to be completely positive (or a CP multiplier) if all the maps
θX,Y are completely positive. A multiplier θ = (θX,Y ) on T is said to be completely bounded (or a
CB multiplier) if all the maps θX,Y are completely bounded and ‖θ‖cb = supX,Y ∈T

‖θX,Y ‖cb <∞.

It is shown in [56, Proposition 3.6] that multipliers on T are in canonical bijection with functions
Irr(T) → C. We will often identify a multiplier θ = (θX,Y ) with its associated function θ =
(θ(k))k∈Irr(T). Note that we have ‖(θ(k))k∈Irr(T)‖∞ ≤ ‖θ‖cb.

Let us write Mcb(T) for the space of CB multipliers on T. Via composition of maps and the CB
norm this becomes naturally a Banach algebra. From the definition of the correspondance between
functions on Irr(T) and multipliers, compare [56, Formula (3.5)], it follows that the product on
Mcb(T) corresponds to pointwise multiplication of functions. It is shown in [2, Corollary 5.3] that
Mcb(T) is a dual Banach algebra, whose predual Q(T) can be constructed using the tube algebra
of T. More specifically, if θ ∈ Mcb(T) is a CB multiplier, define Mθ : Tub(T) → Tub(T) by

Mθ(f) = θ(k)f, f ∈ T(Xk ⊗Xi, Xj ⊗Xk) ⊆ Tub(T).
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Due to [4, Proposition 5.1] the map M gives an isometric embedding of Mcb(T) into the space
CBσ(L(Tub(T))) of normal CB maps on L(Tub(T)), and also an isometric embedding with weak∗-
closed image Mcb(T) → CB(C∗

red(Tub(T)),L(Tub(T))). Then the predual Q(T) of Mcb(T) ob-

tained in [2] is constructed as the resulting quotient of the predual C∗
red(Tub(T))⊗̂L(Tub(T))∗ of

CB(C∗
red(Tub(T)),L(Tub(T))).

We can approximate elements of Q(T) by taking tensor products of elements in Tub(T)
and vector functionals associated to vectors from L2(Tub(T)). Noting that Tub(T) is dense
in L2(Tub(T)), a linearly dense collection of functionals in L(Tub(T))∗ is given by L(Tub(T)) ∋
T 7→ 〈f |Tg〉 = Tr(f∗Tg) = Tr(Tgf∗) for f, g ∈ Tub(T). As Tub(T) has local units, it suffices
to look at functionals of the form T 7→ Tr(Tf) for f ∈ Tub(T). Under this identification, the
canonical pairing of f ⊗ g ∈ Tub(T) ⊙ Tub(T) ⊆ C∗

red(Tub(T))⊗̂L(Tub(T))∗ with θ ∈ Mcb(T)
becomes

(8.2) 〈θ, f ⊗ g〉 = Tr(gMθ(f)).

Let us define a weighted ℓ1-norm on c00(Irr(T)) by

‖f‖1 =
∑

k∈Irr(T)

dimq(Xk)|f(k)|,

and denote by ℓ1(Irr(T)) the corresponding completion, compare [56, Remark 10.4]. The weighting
by quantum dimensions ensures that admissible ∗-representations of C[T] in the sense of [56, Def-
inition 4.1] extend to contractive ∗-representations of ℓ1(Irr(T)). Note that there is a contractive
embedding ι : ℓ1(Irr(T)) → Mcb(T)∗ given by

ι(ω)(θ) =
∑

k∈Irr(T)

dimq(Xk)ω(k)θ(k) (ω ∈ ℓ1(Irr(T)), θ ∈ Mcb(T)).

Lemma 8.2. Let T be a rigid C∗-tensor category. Then the Banach space Q(T) can be identified
with the closure of ℓ1(Irr(T)) in Mcb(T)∗ under the embedding ι.

Proof. It follows from the explicit formulas that the image of the subspace Tub(T) ⊙ Tub(T) ⊆
C∗

red(Tub(T))⊗̂L(Tub(T))∗ in Mcb(T)∗ agrees with the image of c00(Irr(T)) under the map ι. In-
deed, that we obtain all of c00(Irr(T)) in this way can be seen by considering f, g ∈ p0 Tub(T)p0 ∼=
C[T] in (8.2). The claim therefore follows from density of the former space inside Q(T). �

Remembering that the weak∗-topology on Mcb(T) means the one induced by the predual Q(T),
we shall now give the following definition.

Definition 8.3. Let T be a rigid C∗-tensor category. We say that T has the approximation
property (AP) if there exists a net of finitely supported CB multipliers of T converging to 1 in
the weak∗-topology of Mcb(T).

Comparing with [56, Definition 5.1] we see that every weakly amenable rigid C∗-tensor category
has AP. Indeed, a uniformly bounded net of finitely supported CB multipliers converging pointwise
to 1 converges also in the weak∗-topology since c00(Irr(T)) is dense in Q(T) by Lemma 8.2.

Next recall the definition of the central approximation property for discrete quantum groups
from Definition 6.3. We aim to show that the central approximation property for a discrete
quantum group Γ is equivalent to the approximation property for the rigid C∗-tensor category

Corep(Γ) of finite dimensional unitary corepresentations of Γ (i.e. representations of Γ̂). To make

the notation more coherent, we will write in this section C[Γ] = Pol(Γ̂) and C∗
red(Γ) = C(Γ̂),

L(Γ) = L∞(Γ̂), and use the same conventions for the Drinfeld double D(Γ).
We shall first discuss the relation between categorical AP for Corep(Γ) and AP for the Drinfeld

double D(Γ) of Γ. Recall from Section 7.4.1 that L∞(D(Γ)) = ℓ∞(Γ)⊗̄L(Γ) with the coproduct

∆D(Γ) = (id⊗ χ⊗ id)(id ⊗ ad(W) ⊗ id)(∆⊗ ∆̂),

where W ∈ ℓ∞(Γ)⊗̄L(Γ) is the Kac-Takesaki operator of Γ. Note also that we have a canonical

identification of the center Zℓ∞(Γ) of ℓ∞(Γ) with ℓ∞(Irr(Corep(Γ))) = ℓ∞(Irr(Γ̂)). In particular,
every multiplier θ ∈ Mcb(Corep(Γ)) can be viewed as a (central) element of ℓ∞(Γ).
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In what follows we will use the notion of an algebraic quantum group, see [67], [70, Section 3.2].
By definition, an algebraic quantum group is a multiplier Hopf ⋆-algebra for which there exists
a positive left invariant functional and a positive right invariant functional. For example, if Γ is
a discrete quantum group then c00(Γ) and C[Γ] equipped with their respective comultiplications
and Haar integrals are examples of algebraic quantum groups. Every algebraic quantum group
gives rise to a locally compact quantum group in the sense of Kustermans-Vaes via an appropriate
completion procedure, see [44]. Moreover, one finds that all elements of the underlying multiplier
Hopf ⋆-algebra are contained in the Fourier algebra of the locally compact quantum group, see
e.g. the end of Section 1 in [44].

The Drinfeld double D(Γ) of a discrete quantum group Γ and its dual D̂(Γ) are also algebraic
quantum groups. The corresponding multiplier Hopf ∗-algebras are c00(Γ) ⊙ C[Γ] ⊆ L∞(D(Γ))
and

D(D(Γ)) = C[Γ] ⊲⊳ c00(Γ) = span{γ1(x̂)γ2(x) | x̂ ∈ C[Γ], x ∈ c00(Γ)} ⊆ L(D(Γ)),

where

γ1 : L(Γ) → L(D(Γ)) : x̂ 7→ x̂⊗ 1,

γ2 : ℓ
∞(Γ) → L(D(Γ)) : x 7→ Z∗(1⊗ x)Z

are the maps introduced in Lemma 7.12. We will write γ1(x̂)γ2(x) = x̂ ⊲⊳ x for x̂ ∈ C[Γ], x ∈ c00(Γ).

Lemma 8.4. Let Γ be a discrete quantum group and let D(Γ) be its Drinfeld double. There is an
isometric embedding

N : Mcb(Corep(Γ)) → CBσ(L(D(Γ))) : θ 7→ Nθ

given by
Nθ(U

α
i,j ⊲⊳ xβ) = θ(α)Uαi,j ⊲⊳ xβ

for Uαi,j ∈ C[Γ], xβ ∈ B(Hβ) ⊆ c00(Γ). If θ ∈ Mcb(Corep(Γ)) then θ ⊗ 1 ∈ Ml
cb(A(D(Γ))) ⊆

L∞(D(Γ)) and Nθ = Θl(θ ⊗ 1).

Proof. We wish to apply the results of [51, Section 3]. For this we need to work with the annular
algebra

Tub(Γ) =
⊕

α,β∈Irr(Γ̂)

( ⊕

γ∈Irr(Γ̂)

Mor(γ ⊗ α, β ⊗ γ)
)
⊗ B(Hα,Hβ),

which is equipped with the multiplication given by the product from Tub(Corep(Γ)) in (8.1) and
the composition of operators between the Hilbert spaces Hγ . We refer to [26, Section 3] for the
general definition of annular algebras associated with full weight sets.

We again obtain a trace on Tub(Γ) and so can perform the GNS construction, and construct
the associated von Neumann algebra L(Tub(Γ)). Furthermore, [4, Proposition 5.1] applies, and

we obtain a map M̃ : Mcb(Corep(Γ)) → CBσ(L(Tub(Γ))) given by M̃θ(f) = θ(γ)f for f = f ′⊗T ∈
Mor(γ⊗α, β⊗γ)⊗B(Hα,Hβ) ⊆ Tub(Γ) ⊆ L(Tub(Γ)), which is a well-defined isometric embedding.

It is shown in [51, Theorem 3.5] that there is a ⋆-isomorphism between Tub(Γ) and the algebraic
convolution algebraD(D(Γ)) = C[Γ] ⊲⊳ c00(Γ) of the Drinfeld double of Γ. Under this isomorphism,
the trace Tr on Tub(Γ) does not correspond to the left invariant functional on D(D(Γ)) on the nose,
but both functionals can be obtained from one another by multiplication with a positive invertible
element in the algebraic multiplier algebra of Tub(Γ) ∼= D(D(Γ)). It follows that the regular
representations of Tub(Γ) ∼= D(D(Γ))) on L2(Tub(Γ)) and L2(D(Γ)) are unitarily equivalent, which
means that the isomorphism in [51, Theorem 3.5] induces a normal ⋆-isomorphism L(Tub(Γ)) ∼=
L(D(Γ)), which restricts to a ⋆-isomorphism C∗

red(Tub(T)) ∼= C∗
red(D(Γ)).

Inspecting the formulas in [51] one checks that M̃θ : Tub(Γ) → Tub(Γ) identifies under the
isomorphism Tub(Γ) ∼= D(D(Γ))) with the map Nθ : D(D(Γ)) → D(D(Γ)) in the statement of the
lemma. Consequently, we see that Nθ extends to a normal CB map on L(D(Γ)).

An explicit formula for the multiplication in D(D(Γ)) is given in [70, page 219], though be aware
that there the factors C[Γ] and c00(Γ) are swapped. In particular, for x ∈ c00(Γ) we have that
γ2(x)γ1(U

α
i,j) ∈ span{γ1(Uαk,l)γ2(y) | 1 ≤ k, l ≤ dim(α), y ∈ c00(Γ)} and so Nθ(γ2(x)γ1(U

α
i,j)) =

θ(α)γ2(x)γ1(U
α
i,j).
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From Section 7.4.1, we find that

WD(Γ)∗ = Z∗
34Ŵ

∗
24Z34W

∗
13 = (id⊗ γ2)(Ŵ

∗)234(id⊗ γ1)(W
∗)134,

where W = WΓ. Given α, i, j, there is ω ∈ ℓ1(Γ) with (ω ⊗ id)(W∗) = Uαi,j , because W∗ = χ(Ŵ)

and Ŵ is given by (6.2). Then for ω̂ ∈ L1(Γ̂),

(ω ⊗ ω̂ ⊗Nθ)(W
D(Γ)∗) = Nθ

(
γ2((ω̂ ⊗ id)(Ŵ∗))γ1(U

α
i,j))

)
= θ(α)γ2((ω̂ ⊗ id)(Ŵ∗))γ1(U

α
i,j))

using the previous observation. Given xβ ∈ B(Hβ) ⊆ c00(Γ), notice that θxβ = θ(β)xβ , and so
ωθ = θ(α)ω, as ω ∈ B(Hα)

∗. Thus

(ω ⊗ ω̂ ⊗Nθ)(W
D(Γ)∗) = θ(α)(ω ⊗ ω̂ ⊗ id)(WD(Γ)∗) = (ω ⊗ ω̂ ⊗ id)(((θ ⊗ 1)⊗ 1)WD(Γ)∗).

As such ω are linearly dense, it follows that (id⊗Nθ)(WD(Γ)∗) = ((θ⊗1)⊗1)WD(Γ)∗ or equivalently,

(Nθ ⊗ id)(WD̂(Γ)) = (1⊗ (θ ⊗ 1))WD̂(Γ).

We conclude that θ⊗1 ∈ L∞(D(Γ)) = ℓ∞(Γ)⊗̄L(Γ) satisfies θ⊗1 ∈ Ml
cb(D(Γ)) and Θl(θ⊗1) =

Nθ as claimed. �

Similar to Proposition 3.6, we can restrict Nθ to a map in CB
(
C∗

red(D(Γ)),L(D(Γ))
)
. As

C∗
red(D(Γ)) is weak∗-dense in L(D(Γ)), Kaplansky density shows that this restriction map is a

(complete) isometry.

Lemma 8.5. Let Γ be a discrete quantum group. The map

N : Mcb(Corep(Γ)) → CB
(
C∗

red(D(Γ)),L(D(Γ))
)

of Lemma 8.4 is weak∗-weak∗-continuous.

Proof. As in the proof of Lemma 8.4, we identify C∗
red(D(Γ)) with C∗

red(Tub(Γ)) and L(D(Γ)) with

L(Tub(Γ)). Then N identifies with M̃ : Mcb(Corep(Γ)) → CB(C∗
red(Tub(Γ)),L(Tub(Γ))), and we

note that M̃ is again isometric.

It hence suffices to show that M̃ is weak∗-weak∗-continuous, for which we shall apply Lemma 3.7

with α = M̃, E = Q(Corep(Γ)) and F = C∗
red(Tub(Γ))⊗̂L(Tub(Γ))∗. From the definition of Tub(Γ)

in the proof of Lemma 8.4, we see that the elements of the form ω = (f ⊗ T )⊗ Tr(·(g ⊗ S)) with
f ⊗ T ∈ Mor(γ ⊗ α, β ⊗ γ)⊗B(Hα,Hβ) ⊆ Tub(Γ) and g ⊗ S ∈ Mor(γ′ ⊗ α′, β′ ⊗ γ′)⊗B(Hα′ ,Hβ′)
form a linearly dense subset D ⊆ F .

For such an ω, given θ ∈ Mcb(Corep(Γ)) we calculate that

〈M̃θ, ω〉 = 〈M̃θ, (f ⊗ T )⊗ Tr(·(g ⊗ S))〉 = Tr
(
M̃θ(f ⊗ T )(g ⊗ S)

)
= θ(γ)Tr(fg ⊗ TS).

Hence the function θ 7→ 〈M̃θ, ω〉 lies in the image of c00(Irr(Γ̂)) inside Mcb(Corep(Γ))
∗ – in par-

ticular in Q(Corep(Γ)) by Lemma 8.2. This verifies the condition of Lemma 3.7, and the claim
follows. �

Write Z Ml
cb(A(Γ)) for the center of the Banach algebra Ml

cb(A(Γ)) and note that ZMl
cb(A(Γ)) =

Ml
cb(A(Γ))∩Zℓ∞(Γ). Furthermore, observe that ZMl

cb(A(Γ)) ⊆ Ml
cb(A(Γ)) is weak∗-closed, hence

Z Ml
cb(A(Γ)) is a dual space, with distinguished predual being a quotient of Ql(A(Γ)).

Lemma 8.6. Let Γ be a discrete quantum group. Then there is a canonical isometric isomorphism
Mcb(Corep(Γ)) ∼= Z Ml

cb(A(Γ)), and this isomorphism is a weak∗-weak∗-homeomorphism.

Proof. Let θ : Irr(Γ̂) → C be a bounded function, identified with a central element of ℓ∞(Γ). We

shall first verify that θ is contained in Mcb(Corep(Γ)) if and only if it is contained in Ml
cb(A(Γ)),

and that the corresponding CB norms agree.

Firstly, let θ ∈ Z Ml
cb(A(Γ)), considered as a map Irr(Γ̂) → C. In [56, Section 6], the associated

centraliser is denoted by Ψθ, see [56, Equation (6.1)], and then [56, Proposition 6.1] shows that
if Ψθ is completely bounded, which under our assumption it is, then the multiplier on Corep(Γ)
given by θ is also completely bounded, with ‖θ‖Mcb(Corep(Γ)) ≤ ‖θ‖Ml

cb
(A(Γ)).

Conversely, when θ ∈ Mcb(Corep(Γ)), then by Lemma 8.4, we know that θ⊗1 ∈ Ml
cb(A(D(Γ))).

We again use the normal injective ⋆-homomorphism γ1 : L(Γ) → L(D(Γ)) which identifies Γ as a
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closed quantum subgroup of D(Γ), see Lemma 7.12. As γ1(x̂) = x̂⊗ 1, it follows from Lemma 8.4
that Θl(θ ⊗ 1) = Nθ leaves the image of γ1 invariant, and so we obtain a map Lθ ∈ CBσ(L(Γ))
with γ1Lθ = Nθγ1 and ‖Lθ‖cb ≤ ‖Nθ‖cb = ‖θ‖cb. In particular, Lθ(U

α
i,j) = θ(α)Uαi,j for each

α, i, j. Thus θ ∈ Ml
cb(A(Γ)), with ‖θ‖Mcb(Corep(Γ)) ≥ ‖θ‖Ml

cb
(A(Γ)).

As these identifications are mutual inverses, we have shown that Mcb(Corep(Γ)) ∼= Z Ml
cb(A(Γ))

isometrically. Let γ : Mcb(Corep(Γ)) → Z Ml
cb(A(Γ)) be the resulting isometric isomorphism,

which we claim is weak∗-weak∗-continuous. We again use Lemma 3.7, with E = Q(Corep(Γ)) and

F the predual of ZMl
cb(A(Γ)), with D ⊆ F to be constructed. As the predual of ZMl

cb(A(Γ)) is
a quotient of Ql(A(Γ)), it suffices to take D to be the image under the quotient map of a linearly
dense subset D′ of Ql(A(Γ)). We take D′ ⊆ ℓ1(Γ) ⊆ Ql(A(Γ)) to consist of all linear functionals
ω constructed by choosing x ∈ c00(Γ) and defining 〈y, ω〉 =

∑
α∈Irr(Γ̂) dimq(α)Trα(yαxα) for

y ∈ ℓ∞(Γ). Given θ ∈ Mcb(Corep(Γ)) and ω ∈ D induced by x ∈ c00(Γ), we see that

〈γ(θ), ω〉 =
∑

α∈Irr(Γ̂)

dimq(α)θ(α)Trα(xα),

where the sum is finite. Hence if we set z = (Trα(xα))α∈Irr(Γ̂) ∈ c00(Irr(Γ̂)) then 〈γ(θ), ω〉 =

〈θ, ι(z)〉, where ι is the embedding of ℓ1(Irr(Γ̂)) into Q(Corep(Γ)) as in Lemma 8.2. It follows that
ω ◦ γ ∈ Q(Corep(Γ)), and hence γ∗κF (D) ⊆ κE(E). Now Lemma 3.7 yields the claim. �

Let us now compare the categorical approximation property of Corep(Γ) with the central ap-
proximation property of Γ.

Proposition 8.7. A discrete quantum group Γ has central AP if and only if Corep(Γ) has AP.

Proof. The claim follows from Lemma 8.6, as the isomorphism Mcb(Corep(Γ)) ≃ Z Ml
cb(A(Γ)) is a

unital weak∗-weak∗-homeomorphism which restricts to c00(Irr(Γ̂)) ≃ Zc00(Γ). �

As a consequence of Proposition 8.7 we see that central AP is invariant under monoidal equiv-
alence.

Corollary 8.8. Let Γ and Λ be discrete quantum groups such that Γ̂ and Λ̂ are monoidally
equivalent. Then Γ has central AP if and only if Λ has central AP.

Proof. According to the definition of monoidal equivalence [8], the C∗-tensor categories Corep(Γ)
and Corep(Λ) are unitarily monoidally equivalent. This means that Corep(Γ) has AP if and only
if Corep(Λ) has AP. Due to Proposition 8.7 this yields the claim. �

Finally, let us relate AP of Corep(Γ) and D(Γ).

Proposition 8.9. Let Γ be a discrete quantum group such that Corep(Γ) has AP. Then the Drinfeld
double D(Γ) has AP. If Γ is unimodular, then the converse also holds: AP of D(Γ) implies AP of
Corep(Γ).

Proof. Due to Lemma 8.4 we have an isometric embedding Mcb(Corep(Γ)) → Ml
cb(A(D(Γ))) given

by θ 7→ θ ⊗ 1. As Corep(Γ) has AP, there is a net (θi)i∈I of finitely supported elements in
Mcb(Corep(Γ)) with θi −−→

i∈I
1 in the weak∗-topology. By Lemma 8.5, it follows that the net

(Nθi)i∈I converges weak∗ to the inclusion map in CB
(
C∗

red(D(Γ)),L(D(Γ))
)
. As Nθi = Θl(θi ⊗ 1)

for each i, by Theorem 3.8 this means that θi ⊗ 1 −−→
i∈I

1⊗ 1 weak∗ in Ml
cb(A(D(Γ))). Since the

elements θi ⊗ 1 belong to the multiplier Hopf ⋆-algebra, they also belong to the Fourier algebra
A(D(Γ)) and we conclude that D(Γ) has AP.

If D(Γ) has AP then by Theorem 7.1 the same is true for Γ since Γ is a closed quantum subgroup
of D(Γ). If Γ is in addition unimodular, then AP of Γ implies central AP of Γ by Proposition 6.8,
and consequently AP of Corep(G) due to Proposition 8.7. �
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[37] A. Klimyk and K. Schmüdgen. Quantum groups and their representations. Texts and Monographs in Physics.

Springer-Verlag, Berlin, 1997.
[38] J. Krajczok. Type I locally compact quantum groups: integral characters and coamenability. Dissertationes

Math., 561:151, 2021.
[39] J. Krajczok. Modular properties of locally compact quantum groups. PhD thesis, University of Warsaw, 2022.
[40] J. Krajczok. Modular properties of type I locally compact quantum groups. J. Operator Theory, 87(2):319–354,

2022.
[41] J. Kraus and Z.-J. Ruan. Approximation properties for Kac algebras. Indiana Univ. Math. J., 48(2):469–535,

1999.
[42] J. Kustermans. One-parameter representations on c*-algebras. arXiv:funct-an/9707009, 1997.
[43] J. Kustermans. Locally compact quantum groups in the universal setting. Internat. J. Math., 12(3):289–338,

2001.
[44] J. Kustermans. The analytic structure of algebraic quantum groups. J. Algebra, 259(2):415–450, 2003.

[45] J. Kustermans and S. Vaes. Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4), 33(6):837–934,
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[51] S. Neshveyev and M. Yamashita. A few remarks on the tube algebra of a monoidal category. Proc. Edinb.

Math. Soc. (2), 61(3):735–758, 2018.
[52] T. W. Palmer. Banach algebras and the general theory of ∗-algebras. Vol. I, volume 49 of Encyclopedia of

Mathematics and its Applications. Cambridge University Press, Cambridge, 1994. Algebras and Banach alge-
bras.

[53] V. Paulsen. Completely bounded maps and operator algebras, volume 78 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2002.

[54] G. Pisier. Introduction to operator space theory, volume 294 of London Mathematical Society Lecture Note
Series. Cambridge University Press, Cambridge, 2003.

[55] S. Popa, D. Shlyakhtenko, and S. Vaes. Cohomology and L2-Betti numbers for subfactors and quasi-regular
inclusions. Int. Math. Res. Not. IMRN, 2018(8):2241–2331, 2018.

[56] S. Popa and S. Vaes. Representation theory for subfactors, λ-lattices and C∗-tensor categories. Comm. Math.
Phys., 340(3):1239–1280, 2015.
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