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understand the visual deficits of PD patients. This paper is therefore a novel contribution to current PD and visual illusions
research.
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  Abstract

Word count: 254

 

Parkinson's disorder (PD) is a common neurodegenerative disorder affecting approximately 1-3% of the population aged 60 years
and older. In addition to motor difficulties, PD is also marked by visual disturbances, including depth perception, abnormalities in
basal ganglia functioning, and dopamine deficiency. Reduced ability to perceive depth has been linked to an increased risk of falling
in this population. The purpose of this paper was to determine whether disturbances in PD patients’ visual processing manifest
through atypical performance on visual illusion (VI) tasks. This insight will advance understanding of high-level perception in PD, as
well as indicate the role of dopamine deficiency and basal ganglia pathophysiology in VIs susceptibility. Groups of 28 PD patients
(Mage = 63.46, SD = 7.55) and 28 neurotypical controls (Mage = 63.18, SD = 9.39) matched on age, general cognitive abilities
(memory, numeracy, attention, language), and mood responded to Ebbinghaus, Ponzo, and Muller-Lyer illusions in a computer-based
task. Our results revealed no reliable differences in VI susceptibility between PD and neurotypical groups. In the early- to
mid-stage of PD, abnormalities of the basal ganglia and dopamine deficiency are unlikely to be involved in top-down processing or
depth perception, which are both thought to be related to VI susceptibility. Furthermore, depth-related issues experienced by PD
patients (e.g., increased risk for falling) may not be subserved by the same cognitive mechanisms as VIs. Further research is
needed to investigate if more explicit presentations of illusory depth are affected in PD, which might help to understand the depth
processing deficits in PD.

   

  Funding statement

 
The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

In review



   

  Ethics statements

  Studies involving animal subjects
Generated Statement: No animal studies are presented in this manuscript.

   

  Studies involving human subjects
Generated Statement: The studies involving humans were approved by Lancaster University Faculty of Science and Technology
Ethics Committee . The studies were conducted in accordance with the local legislation and institutional requirements. The
participants provided their written informed consent to participate in this study.

   

  Inclusion of identifiable human data
Generated Statement: No potentially identifiable images or data are presented in this study.

In review



   

  Data availability statement

Generated Statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue
reservation.

   

In review



Running head: VISUAL ILLUSIONS IN PARKINSON’S DISORDER 1 

Susceptibility to Geometrical Visual Illusions in Parkinson’s Disorder 1 

Word count: 5365 (excluding abstract, tables, figures, and references) 2 

Radoslaw Wincza 1, Calum Hartley 2†, Megan Readman 2†, Sally Linkenauger 2†, 3 

Trevor Crawford 2† 4 

Department of Psychology, Lancaster University 5 

Wincza’s email: r.wincza@lancaster.ac.uk  6 

Hartley’s email: c.hartley@lancaster.ac.uk 7 

Megan Readman’s email: m.readman1@lancaster.ac.uk 8 

Linkenauger’s email: s.linkenauger@lancaster.ac.uk  9 

Crawford’s email: t.crawford@lancaster.ac.uk  10 

Funding: 11 

No funding was obtained to support this research. However, MR receives support from the 12 

NIHR Applied Research Collaboration ARC North West Coast and Alzheimer’s Society and 13 

are funded through a Post-Doctoral Fellowship. The views expressed are those of the authors 14 

and not necessarily those of the funders, NHS, or the Department of Health and Social Care. 15 

Authors’ Contributions: 16 

R.W. designed the study, as well as conducted the majority of the research. R.W. has also 17 

written the manuscript and conducted the analyses. M.R. helped by providing access to PD 18 

patients, as well as by providing theoretical feedback. S.L., C.H., and T.C. supervised the 19 

project, provided theoretical feedback, and assisted with editing the manuscript and revisions.  20 

Conflict of Interest: 21 

Wincza declares that he has no conflict of interest. Hartley declares that he has no conflict of 22 

interest. Readman declares that she has no conflict of interest. Linkenauger declares that she 23 

has no conflict of interest. Crawford declares that he has no conflict of interest. 24 

Corresponding Author: 25 

Radoslaw Wincza 26 

In review

mailto:r.wincza@lancaster.ac.uk
mailto:c.hartley@lancaster.ac.uk
mailto:m.readman1@lancaster.ac.uk
mailto:s.linkenauger@lancaster.ac.uk
mailto:t.crawford@lancaster.ac.uk


VISUAL ILLUSIONS IN PARKINSON’S DISORDER 2 
 

Address: Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United 27 

Kingdom  28 

Email: r.wincza@lancaster.ac.uk / r.wincza@gmail.com 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

In review

mailto:r.wincza@lancaster.ac.uk
mailto:r.wincza@gmail.com


VISUAL ILLUSIONS IN PARKINSON’S DISORDER 3 
 

Abstract 48 

Parkinson's disorder (PD) is a common neurodegenerative disorder affecting approximately 1-49 

3% of the population aged 60 years and older. In addition to motor difficulties, PD is also 50 

marked by visual disturbances, including depth perception, abnormalities in basal ganglia 51 

functioning, and dopamine deficiency. Reduced ability to perceive depth has been linked to an 52 

increased risk of falling in this population. The purpose of this paper was to determine whether 53 

disturbances in PD patients’ visual processing manifest through atypical performance on visual 54 

illusion (VI) tasks. This insight will advance understanding of high-level perception in PD, as 55 

well as indicate the role of dopamine deficiency and basal ganglia pathophysiology in VIs 56 

susceptibility. Groups of 28 PD patients (Mage = 63.46, SD = 7.55) and 28 neurotypical controls 57 

(Mage = 63.18, SD = 9.39) matched on age, general cognitive abilities (memory, numeracy, 58 

attention, language), and mood responded to Ebbinghaus, Ponzo, and Muller-Lyer illusions in 59 

a computer-based task. Our results revealed no reliable differences in VI susceptibility between 60 

PD and neurotypical groups. In the early- to mid-stage of PD, abnormalities of the basal ganglia 61 

and dopamine deficiency are unlikely to be involved in top-down processing or depth 62 

perception, which are both thought to be related to VI susceptibility. Furthermore, depth-related 63 

issues experienced by PD patients (e.g., increased risk for falling) may not be subserved by the 64 

same cognitive mechanisms as VIs. Further research is needed to investigate if more explicit 65 

presentations of illusory depth are affected in PD, which might help to understand the depth 66 

processing deficits in PD.  67 

Keywords: Parkinson’s disease, visual illusions, Ebbinghaus illusion, Ponzo illusion, 68 

Muller-Lyer illusion, depth perception 69 

 70 

 71 
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Susceptibility to Geometrical Visual Illusions in Parkinson’s Disorder 72 

Visual illusions (VIs) occur when the configuration of a stimulus causes the viewer to 73 

incorrectly perceive relationships between its parts (Notredame et al., 2014). VIs have been 74 

widely used as a tool to investigate how visual perception develops (e.g., Doherty et al., 2010) 75 

and the impact of neuropsychological disorders such as schizophrenia (for a review see King 76 

et al., 2017; Costa et al., 2023) and autism (for a review see Gori et al., 2016). Although 77 

impairment of visual perception (e.g., hallucinations) is now well established in Parkinson’s 78 

disorder (PD) (Nieto-Escamez et al., 2023; Sauerbier and Chaudhuri, 2013; Weil et al., 2016), 79 

research has yet to investigate how PD affects susceptibility to VIs. Furthermore, depth 80 

perception – which is linked to VI susceptibility (e.g., Doherty et al., 2010; Gregory, 1963, 81 

1966) and increased risk of falling (Cummings et al., 1995) – is shown to be affected in PD 82 

(Maschke et al., 2006). Therefore, studying VI susceptibility in this population may indicate 83 

how neuropsychological characteristics of PD (e.g., dopamine deficits and the pathophysiology 84 

of the basal ganglia) impact depth perception and top-down visual processing.  85 

PD is a common neurodegenerative disorder affecting approximately 1-3% of the 86 

population aged 60 years and older (Ball et al., 2019; Pringsheim et al., 2014). It is 87 

characterised by motor deficits including tremors, rigidity, bradykinesia (slowed movement 88 

execution and initiation), and postural instability (Berardelli et al., 1983; Guttman et al., 2003). 89 

Although PD was traditionally considered to be a paradigmatic motor disorder, non-motor 90 

disruptions (including visual distortions) are experienced by the majority of PD patients 91 

(Chaudhuri et al., 2011). Visual distortions in PD include decreased contrast sensitivity 92 

(Sauerbier and Chaudhuri, 2013; Uc et al., 2005; van der Lijn et al., 2022), decreased colour 93 

discrimination (Pieri et al., 2000), deficits in motion and spatial perception (Uc et al., 2005), 94 

visual acuity deficits (Uc et al., 2005), and visual hallucinations (Barnes and David, 2001; Weil 95 

et al., 2016).  96 
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It is widely regarded that visual disturbances in PD are caused by a reduction of 97 

dopamine (Bodis-Wollner, 1990). Dopamine, a key neurotransmitter in the mammalian brain 98 

(Bibb, 2005), is believed to play a crucial role in visual perception (Harris et al., 2003). For 99 

example, Andreou and colleagues (2015) showed that dopamine influences neurotypical 100 

adults’ sensitivity to detecting an object in snowy (noisy) black-and-white pictures. Dopamine 101 

has also been shown to influence visual perception in PD. Multiple studies have found that 102 

retinal dopamine levels and dopaminergic innervation surrounding the fovea are reduced in PD 103 

(Harnois and Di Paolo, 1990; Nieto-Escamez et al., 2023; Sauerbier and Chaudhuri, 2013), 104 

resulting in visual perception deficits such as poorer light adaptation and decreased contrast 105 

sensitivity (e.g., Armstrong, 2015; Pieri et al., 2000). Other visual deficits that are linked to 106 

dopamine deficiency include greater thresholds for motion detection (e.g., Trick et al., 1994), 107 

colour discrimination (e.g., Buttner et al., 1994), as well as visuospatial deficits (e.g., Gibson 108 

et al., 1987; for an overview of dopamine-related deficits in PD, see Brandies & Yehuda, 2008).  109 

Another hallmark of PD is the pathophysiology of the basal ganglia (Obeso et al., 2000). 110 

The basal ganglia are believed to control motor and cognitive functioning (Macpherson & 111 

Hikida, 2019); however, recent research has implicated their role in visual perception (Maschke 112 

et al., 2006; Nieto-Escamez et al., 2023). Maschke and colleagues (2006) showed that PD 113 

patients and patients with spinocerebellar ataxia (a movement disorder) made greater errors 114 

when estimating the slant of an illusory display (Ames Trapezoidal Window). The difficulties 115 

evidenced by PD patients were attributed to differences in the basal ganglia’s functioning. 116 

Furthermore, dopamine losses across key components of the basal ganglia (e.g., subthalamic 117 

nucleus, substantia nigra, and globus pallidus) are observed in PD (Benazzouz et al., 2014). 118 

Dopamine deficiency in the basal ganglia is of particular interest, as the link between these two 119 

is thought to be related to the processing of visual information. Sil’kis (2007) proposed a 120 

mechanism in which the basal ganglia modulates the efficiency of synaptic transmission in an 121 
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interconnected parallel circuit that involves the limbic cortex, basal ganglia, thalamus, and 122 

cortex. This process is contingent on dopamine-dependent processes. It is, therefore, plausible 123 

to suspect that changes to this circuit in PD, could result in abnormal VIs susceptibility.  124 

Given the well-documented abnormalities in depth perception in PD (Maschke et al., 125 

2006; Ou et al., 2018), which could be linked to dopamine deficiency and the role of the basal 126 

ganglia (e.g., Maschke et al., 2006), it may be that susceptibility to depth-related VIs (e.g., the 127 

Ponzo illusion) is atypical in this population. Studying VIs in PD will enable us to comprehend 128 

the potential relationship between dopamine losses and basal ganglia pathophysiology with 129 

susceptibility to VIs. Consequently, VIs could offer a promising approach to address perceptual 130 

depth deficits in PD.  131 

Although abnormalities in the basal ganglia and deficiency in dopamine levels could 132 

potentially influence sensitivity to depth-related VIs in PD, there are reasons to believe that 133 

sensitivity to high-level VIs may be preserved. The term ‘high-level VIs’ is used to classify 134 

illusions that are thought to emerge at a later stage of visual processing (from approximately 135 

the V1 and beyond) compared to low-level illusions that are mediated at the retinal level and 136 

up to V1 (King et al., 2017). The Ebbinghaus, Ponzo, and Muller-Lyer are examples of high-137 

level illusions, while the Brightness and Herman Grid illusions are examples of low-level 138 

illusions (King et al., 2017).  139 

Milner and Goodale’s (1992) classic theory proposes that there are two visual streams 140 

in the brain. The ventral stream is responsible for perception for vision, while the dorsal stream 141 

is responsible for perception for action. VIs represent a unique method for investigating 142 

differences between these two streams. Research shows that even if the Ebbinghaus illusion is 143 

perceived, grip aperture is not affected by the illusion in neurotypical adults (e.g., Haffenden 144 

et al., 2001). Also, for the Ponzo illusion, it has been shown that grasping in neurotypical adults 145 
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is not ‘fooled’ by illusory displays (Ozana & Ganel, 2020). Studies on differences in perception 146 

and action relating to VIs have been used to demonstrate the dichotomy between dorsal and 147 

ventral streams. Research examining the functioning of ventral and dorsal visual streams in PD 148 

patients has revealed abnormalities in vision for action in a blind walking task coupled with 149 

intact performance on a line matching task (Giovannini et al., 2006). These findings suggest 150 

that impairments in visual perception in PD may be explained by abnormalities in dorsal stream 151 

processing, while the ventral stream remains unaffected, potentially preserving sensitivity to 152 

high-level VIs. In line with these findings, PD patients also experience deficits associated with 153 

higher level visual processing of motor actions including slower motor imagery (Poliakoff, 154 

2013) and difficulties observing other people perform actions (Tremblay et al., 2008). These 155 

differences in processing visual action signal possible impairments in dorsal stream 156 

functioning.   157 

 This study is the first to test PD patients on their susceptibility to the Ebbinghaus, 158 

Ponzo, and Muller-Lyer illusions using the method of adjustment. PD patients and neurotypical 159 

age-matched controls completed a series of online illusion tasks in their own homes. On one 160 

hand, based on evidence of depth perception abnormalities in PD (e.g., Ou et al., 2018), we 161 

anticipated that PD patients may be less susceptible to these VIs than controls. However, we 162 

also believe the differences are likely to be stronger for VIs with most explicit depth, like the 163 

Ponzo illusion. However, on the other hand, we recognized that PD patients’ susceptibility to 164 

these VIs could be unaffected due to a lack of severe disruption to the ventral stream. Our 165 

findings will advance theoretical understanding of how PD impacts susceptibility to high-level 166 

VIs and ventral stream visual processing.  167 

Method 168 

Participants  169 
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Power Analysis 170 

G*Power software (Faul et al., 2007) was used to perform an a priori power analysis 171 

to ascertain the necessary sample size required. Power (1- β) was specified as .80 and the 172 

significance level (α) was set to .05. The anticipated effect size was modelled on the results 173 

obtained by Grzeczkowski et al., (2018). Due to this, we anticipated a medium effect size of d 174 

= 0.46. For the frequentist parameters defined, a sample size of N = 56 is required to achieve 175 

a power of .80 at an alpha of .05. Hence, we aimed to recruit 56 participants. 176 

Demographics  177 

Participants included 27 PD patients (15 females, 12 males) and 28 neurotypical 178 

participants (17 females, 11 males). PD participants were recruited from the Department of 179 

Psychology database of PD patients at Lancaster University, while controls were recruited via 180 

convenience sampling (n = 18) and sign-ups to the Centre for Aging Research at Lancaster 181 

University (n = 10). All PD patients were medicated. Participants were predominantly white 182 

British (n = 47). Participants were largely well-educated, with the majority holding at least an 183 

undergraduate degree (n = 35). None of the participants reported having a cognitive impairment 184 

or any neurological illness. Nine participants reported having a psychiatric illness (anxiety: n 185 

= 5; 3 in the control group, and depression: n = 4; 3 in the control group). Eleven participants 186 

reported visual impairments for which they were receiving treatment, including glaucoma (n = 187 

3; 1 in the control group), age-related macular degeneration (n = 2), double vision (n = 3), 188 

astigmatism (control group), keratoconus, and short-sightedness (control group; all n = 1). All 189 

participants confirmed that they had corrected-to-normal vision despite having these 190 

conditions, and the aforementioned difficulties did not affect their ability to perceive the VIs. 191 

Participants' visual acuity was not assessed as previous research indicates that VIs 192 
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susceptibility is not related to it (Cretenoud et al., 2021) as well as in PD visual acuity remains 193 

largely perseverated (Hunt et al., 1995).  194 

 No significant differences between PD patients and neurotypical controls were 195 

observed for age (t = 0.05, p = .96), years of formal education (t = 0.21, p = .835), scores for 196 

mild cognitive dysfunction (t = -0.706, p = .484), anxiety (t = 0.599, p = .07), and depression 197 

(t = 0.15, p = .882). These non-significant group differences indicate that the groups were 198 

closely matched (see Table 1 for more details). Full details of the PD patients’ cohort are 199 

presented in Table 2 below.  200 

 201 

 202 

 203 

 204 

 205 

Table 1 

Means and Standard Deviations for PD Patients and Neurotypical Adults 

 Total Age Education Depression MOCA Anxiety Screen Size  

PD Patients 27 63.3(7.64) 15.11(4.17) 4.67(2.73) 24.89(2.04) 5.78(3.94) 35.48(9.93) 

Neurotypical 

Adults 

28 63.18(9.39) 14.89(3.52) 3.93(2.61) 24.54(2.04) 5.64(2.64) 36.93(4.3) 

Note. Higher values for depression and anxiety indicate more severe symptoms. Higher MOCA scores indicate better 

cognitive functioning. Screen size is reported in centimetres.  

 206 
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 207 

Table 2 

Characteristics of PD Patients  

Participant Age Gender 

Years 

since  

the PD 

diagnosis 

Years 

since 

PD 

onset  LEDD 

Last 

dose  MOCA 

HADS-

A 

HADS-

D 

Hoehn 

and 

Yahr 

Stage 

1 51 Female 3 5 555 204 22 4 1 1 

2 62 Female 8 11 760 30 26 11 6 1 

3 65 Male 5 5 660 148 25 1 2 0 

4 63 Female 5 6 350 180 26 6 7 2 

5 57 Female 2 6 375 85 25 15 6 2 

6 56 Male 6 8 1000 136 18 3 5 2 

7 58 Male 2 3 973 120 26 6 7 1 

8 74 Female 4 5 195 2 26 1 1 2 

9 59 Male 5 15 220 0 23 2 3 1 

10 70 Male 5 7 595 210 25 4 3 1 

11 67 Male 5 10 960 720 25 1 5 1 

12 67 Male 9 21 N.A. 204 26 3 0 2 

13 70 Male 13 30 N.A. 90 26 2 2 2 

14 71 Female 3 6 400 230 26 2 1 0 

15 59 Male 4 7 590 25 26 4 3 2 

16 67 Male 6 10 840 60 27 12 5 1 

17 63 Male 4 5 475 240 25 7 6 1 

18 59 Female 6 7 362 420 25 14 5 0 

19 75 Female 7 7 1680 127 25 5 7 2 

20 51 Female 3 5 555 150 24 3 1 1 

21 70 Female 11 2 578 0 27 6 3 2 

22 57 Female 2 5 300 150 24 8 5 2 

23 67 Female 5 6 500 120 26 6 8 1 

24 51 Female 1 4 800 210 20 11 8 2 

25 59 Female 5 16 355 1440 26 5 9 1 

26 81 Female 7 7 640 255 26 8 9 2 

27 60 Male 4 6 715 45 26 6 8 3 

Note. The time since the last dose is in minutes. HADS-A and HADS-D correspond to anxiety and depression, 

respectively (described in further detail below). LEDD corresponds to L-dopa equivalent daily dose, which is 

amongst the most common medication for PD (Julien, 2021). Hoehn and Yahr’s scale refers to the severity of 

symptoms in PD, ranging from 0 (least severe) to 5 (most severe) (MDS, 2008).  
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Materials 208 

All study stimuli were developed using Unity 3D© Gaming Engine and were visually 209 

displayed to participants using the ‘screen share’ function in Microsoft Teams. The stimuli 210 

were modeled on existing work in the field (e.g., Chouinard et al., 2013; Sperandio et al., 2023). 211 

These studies were conducted virtually as a precaution to protect both participants and 212 

experimenters from COVID-19. Though it may be seen as a potential confound, previous 213 

research indicates that online testing yields reliable measurements, however, the effect sizes 214 

tend to be smaller (e.g., Chuey et al., 2021; Pallen et al., 2022). As participants viewed the 215 

stimuli through screen share on their personal devices, screen size ranged between 23 and 61 216 

inches. An independent samples t-test indicated that screen sizes of PD patients (M = 35.48, 217 

SD = 10.56) and neurotypical controls (M = 36.93, SD = 4.30) did not significantly differ, t(53) 218 

= -0.706, p = .484. Also, no significant correlations were observed between illusion strength 219 

and screen size.  220 

Three visual illusions were used: the Ebbinghaus illusion, the Ponzo illusion, and the 221 

Muller-Lyer illusion. Participants were required to adjust the size of a line or circle (depending 222 

on the illusion) until they perceived it as equivalent in size to the reference stimuli. The size 223 

was adjusted using the right and left arrow keys, and trials were progressed using the ENTER 224 

key. The experimental software obtained a measure of reaction time (ms). RT data was only 225 

used to detect skipped trials (responses faster than approximately 5 seconds, which were 226 

accompanied by large Z-score values, at least 2 standard deviations (SDs) away from the 227 

mean). Average RTs significantly differed between illusions [F(1.63, 88.05) = 5.37, p = .006] 228 

but not between participant groups [F(1, 54) = 1.12, p = .294]. Post hoc comparisons with Holm 229 

correction showed differences between RTs for the Ebbinghaus (M = 21.24, SD = 6.11) and 230 

the Muller-Lyer (M = 23.87, SD = 9.10) illusions, t = -2.75, p = .014, as well as between the 231 

Muller-Lyer (M = 23.87, SD = 9.10) and Ponzo illusions (M = 21.08, SD = 6.01), t = 1.92, p = 232 
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.013. No difference was detected between RTs for the Ebbinghaus and Ponzo illusions; p = 233 

.867. Furthermore, we conducted correlations between the illusion’s strength and RTs for both 234 

groups individually, and the whole sample, to access if prolonged exposure affected VIs 235 

susceptibility (Bressan & Kramer, 2021). None of the correlations approached significance.  236 

The Ebbinghaus Illusion  237 

The two orange centre circles were surrounded either by eight pink large inducers (125 238 

pixels in diameter, positioned 35 and 90 pixels away from the central circle) or eight pink small 239 

inducers (50 pixels in diameter, positioned 32 and 80 pixels away from the central circle) 240 

presented on a black background (see Figure 1). The orange centre circle was 100 pixels in 241 

diameter (an example display is illustrated in Figure 1). There were 16 trials in total. The 242 

starting size of the adjustable centre circle was 50 pixels in 8 trials and 150 pixels in 8 trials. 243 

The side of appearance (left or right) and inducer size (large or small) for the adjustable circle 244 

varied between trials, with four trials for each size and side combination. The order of 245 

presentation was randomised. 246 

Figure 1 247 

Example Ebbinghaus Illusion Trial 248 

 249 

Note. Participants were required to manipulate the size of the right orange circle to match the 250 

size of the left orange circle (or vice versa).  251 

The Ponzo Illusion  252 

Four pink converging lines were used as inducers (two at 420 pixels in length at a 64-253 

degree angle, and two at 380 pixels in length at a 10-degree angle). The adjustable and reference 254 

horizontal lines were orange and 135 pixels apart. The reference line for both methods of 255 

In review



VISUAL ILLUSIONS IN PARKINSON’S DISORDER 13 
 

measurement was held constant at 100 pixels. An example display can be found in Figure 2. 256 

There were 8 trials in total; in 4 trials the adjustable line started at 50 pixels, and in 4 trials the 257 

adjustable line started at 150 pixels. In half of the trials, the adjustable line appeared above the 258 

horizontal midline and half below. The order of presentation was randomised.  259 

Figure 2 260 

Example Ponzo Illusion Trial 261 

 262 

Note. Participants would be required to manipulate the length of the bottom orange line to 263 

match the length of the top orange line (or vice versa).  264 

The Muller-Lyer Illusion 265 

Two orange lines with inwards or outwards facing arrows (40 pixels in length) at a 45-266 

degree angle were presented. The reference line for both methods of measurement was held 267 

constant at 150 pixels. An example display can be found in Figure 3. There were 16 trials in 268 

total with four trials for each side of the presentation (left or right) and arrow type (inwards or 269 

outwards facing) combination. The starting size of the adjustable line was 75 pixels in 8 trials 270 

and 225 pixels in 8 trials. The order of presentation was randomised. 271 

Figure 3 272 

Example Muller-Lyer Illusion Trial 273 

 274 

Note. Participants would be required to manipulate the left orange line (between the 275 

arrowheads) to match the length of the right orange line (between the arrowheads), or vice 276 

versa. 277 
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Questionnaires and Screening Tools 278 

 Questionnaires and screening tools were administered to participants via an online 279 

interview. These included the Hospital Anxiety and Depression Scale (HADS; Snaith, 2003), 280 

the Montreal Cognitive Assessment (MOCA; Nasreddine et al., 2005), and the Movement 281 

Disorder Society – Unified Parkinson Disease Rating Scale (MDS-UPDRS; Goetz, 2007). 282 

These measures were included to test whether potential differences in susceptibility to VIs were 283 

influenced by participants’ cognitive abilities and/or mood.  284 

 HADS consists of 14 statements that measure traits of depression (7 items) and anxiety 285 

(7 items). Each statement has four corresponding answers which the interviewee can choose 286 

between. For example, for the statement ‘I feel tense or wound up’ (an anxiety item), the 287 

response options are: ‘most of the time’ (3 points), ‘a lot of the time’ (2 points), ‘from time to 288 

time, occasionally’ (1 point), and ‘not at all’ (0 points). Higher scores indicate more severe 289 

symptomology. During the interview, the participant was instructed to think about their 290 

feelings over the past week. The statements were read out loud, followed by the answers, and 291 

then the participant chose one of them. If they were unsure, the interviewee was asked to make 292 

their best guess. For half of the questions the response options were read in order from negative 293 

to positive, and for the other half the response options were read in order from positive to 294 

negative.  295 

 The MOCA includes 13 tasks measuring a variety of cognitive functions, including 296 

visuospatial/executive functions, naming, memory, attention, language, abstraction, delayed 297 

recall, and orientation. As the study was conducted online, small changes were implemented. 298 

The first part of the visuospatial/executive task (connecting numbered dots) was omitted as the 299 

participant was unable to respond due to online administration. Also, in the orientation task, 300 

participants were not asked about their present location as the researchers were unable to 301 
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validate their responses. The participant could therefore score up to 27 points (30 points 302 

originally).  303 

 The MDS-UPDRS consists of four subscales measuring: I – non-motor aspects of 304 

experiences of daily living (1.1 – 1.6), (questions 1.7 to 1.13 were excluded as they were 305 

unrelated to our study’s objective); II – motor aspects of experiences of daily living (2.1 – 306 

2.13); III – motor examinations (3.1 – 3.8; 3.15 – 3.18) (questions 3.9 to 3.14 were dropped as 307 

the study’s online nature prevented the researchers from correctly assessing the participant’s 308 

performance); IV – motor complications (4.1 – 4.6). Parts I, II, and IV included questions 309 

asking participants to rate their difficulty engaging with a variety of daily tasks (e.g., getting 310 

dressed and getting out of a deep chair) from normal to severe on a five-point scale. Part III 311 

involved a motor examination of the participants, who performed tasks as they were described 312 

by the researcher (e.g., holding their hands still in front of them). The researcher then scored 313 

the performed action according to the MDS-UPDRS guidelines.  314 

Procedure 315 

All participants were tested online via Microsoft Teams. Before taking part in the online 316 

session, participants were required to complete a survey requesting basic demographic 317 

information (e.g., age and gender), history of PD and diagnosis, and current medication intake. 318 

Then, all participants were screened for mild cognitive impairment (MOCA) and mood 319 

disorders (HADS). Individuals with PD symptoms were also assessed using the MDS-UPDRS. 320 

Participants were then given control over the researcher’s laptop using the Teams share 321 

function [(if that waswhich was not possible in some cases (< 5), participants were asked to 322 

provide oral instructions to the researcher, however, our RT correlations with VIs susceptibility 323 

failed to reach significance, hence the different modes of entering data were not deemed 324 

problematic]). Once control was given, participants were presented with the experimental 325 
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stimuli and asked to manipulate the size of a line (Müller-Lyer or Ponzo display) or centre 326 

circle (Ebbinghaus display; either to increase or decrease) using the right and left (left to 327 

decrease, right to increase) arrow keys (see Figure 4). Once the participant believed that their 328 

stimulus matched the size of the reference non-adjusted line or circle, they were prompted to 329 

press Enter. If the participant was unable to take control, they were asked to orally instruct the 330 

researcher to either increase or decrease the sizes until they were happy with it. Participants 331 

were prompted to be as accurate as possible in their judgements and instructed to make their 332 

judgements as quickly as possible. In both scenarios, the researcher looked away from the 333 

screen to prevent the participant from feeling pressured to respond quickly or to prevent any 334 

gaze cues. The order of illusion blocks and trials within blocks were randomised. Once the 335 

experiment finished, participants were fully debriefed and encouraged to ask questions. The 336 

study took between 45 to 60 minutes to complete.  337 

Figure 4 338 

Example Trial 339 

Note. During adjustment, the participant used the arrows on their keyboard to match the larger 340 

of the two orange, inner circles with the other, target circle. Once they perceived the circles as 341 

equal in size, they pressed enter to proceed to the next trial.  342 

Analysis Plan  343 

The data were screened to assess for normality of distribution. The magnitude of the 344 

illusion was calculated as the difference between the actual size of the target and the 345 

participant’s response. A 2 (Group: PD patients, neurotypical controls) x 3 (Illusion: 346 

Ebbinghaus, Ponzo, and Muller-Lyer) repeated measures ANOVA was conducted. 347 

Correlations between VIs, demographic data, and Parkinsonian symptoms were computed 348 

using both frequentist and Bayesian analyses. Multiple comparisons were analysed with Holm 349 
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correction (e.g., Grzeczkowski et al., 2018). Screening analyses were performed using IBM 350 

SPSS Statistics (Version 27) and all the remaining analyses were performed in JASP Team 351 

(2022).  352 

Results 353 

Normality of The Data Set 354 

Each participant’s data were screened for outliers (40 responses per participant) located 355 

at least two SDs away from the response mean (unusually low or high values reported), and 356 

compared against the population’s mean for each particular illusion. Outliers were screened for 357 

PD patients and neurotypical adults separately. To ensure consistency across responses, all 358 

individual outliers were replaced with a second value for the same trial type. 359 

Several outliers were identified across the data. For the Ebbinghaus illusion, there were 360 

27 outliers (3.01%) out of 896 trials, including 18 in the PD group (16 belonged to one 361 

participant, meaning every single trial of that participant was outside -/+ 2 SDs away from the 362 

mean, resulting in the exclusion of this participant) and 9 in the neurotypical group. For the 363 

Ponzo illusion, there were 20 outliers (4.46%) out of 448 trials, including 14 in the PD group 364 

and 6 in the neurotypical group. For the Muller-Lyer illusion, there were 31 outliers (3.45%) 365 

out of 896 trials, including 18 in the PD group and 13 in the neurotypical group. The majority 366 

of outliers were due to the participant pressing the enter key too forcefully, which resulted in 367 

skipping a trial (this was identified by unusually quick reaction times of less than 3 seconds). 368 

These scores were replaced with the participant’s second score in the same condition.  369 

Group Differences Between PD Patients and Neurotypical Controls 370 

 To examine differences between PD patients and neurotypical participants on their 371 

susceptibility to the Ebbinghaus, Ponzo, and Muller-Lyer illusions, a 2 x 3 repeated measures 372 

ANOVA was conducted. Both Levene’s test for equality of variance for all three illusions and 373 
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Mauchly’s W test of sphericity indicated that the assumptions for a two-way ANOVA were 374 

met; p = .349, p = .777, p = .663, and p = .057 respectively. The results revealed a significant 375 

effect of the illusion, F(2, 108) = 628.63, p < .001, η2  = .87. The difference between PD patients 376 

and neurotypical approached significance, F(1, 54) = 3.79, p = .057, η2  = .003, as did the 377 

Population x Illusion interaction F(2, 54) = 3.07, p = .050, η2  = .004. Given our a priori 378 

predictions, we proceeded to conduct post-hoc comparisons though note that these should be 379 

treated with caution as the interaction was only marginally significant. Post-hoc comparisons 380 

using Holm correction (after Grzeczkowski et al., 2017) showed that PD patients were 381 

significantly less susceptible (M = -0.18, SD = 0.08) than controls (M = -0.23, SD = 0.09) to 382 

the Ponzo illusion; t(54) = 2.19, p = .033, d = 0.59. No significant differences were observed 383 

for the Ebbinghaus (PD; M = -0.14, SD = 0.04 and controls; M = -0.13, SD = 0.05) and Muller-384 

Lyer illusions (PD; M = -0.54, SD = 0.07 and controls; M = -0.57, SD = 0.08).  385 

 Similar results were observed by conducting a Bayesian 2 x 3 repeated measures 386 

ANOVA. Based on Jeffreys’ (1939) rule of thumb for interpreting Bayesian results (1-3, 3-10, 387 

and 10+, are considered weak, moderate, and strong effects, respectively), we observed weak 388 

evidence for an effect of VIs (BF = 0.89), very weak evidence for an effect of group (BF < 389 

0.001), and weak evidence for an interaction (BF = 0.681). Bayesian t-tests yielded similar 390 

results for differences between the groups on each VIs. Weak evidence was observed for group 391 

differences on the Ebbinghaus, Ponzo, and Muller Lyer illusions; B = 0.399, B = 1.911, and B 392 

= 0.67, respectively. Evidence from these Bayesian analyses indicates a lack of differences 393 

between PD patients and neurotypical controls on the three tested illusions.   394 

Correlations 395 

 Several correlations were performed to assess whether severity of PD symptoms was 396 

associated with differences in susceptibility to VIs. The variables of interest included 397 
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susceptibility scores for each illusion, time since the last medication dose, years since PD 398 

diagnosis, years since starting medication, years since symptom onset, LEDD score, and the 399 

total MDS-UPDRS score. As some variables were not normally distributed, Spearman’s 400 

correlations and their Bayes equivalent were conducted. No frequentist or Bayesian 401 

correlations approached significance, indicating that susceptibility to VIs was not correlated 402 

with patients’ PD characteristics.   403 

Figure 5  404 

Individual Data Points for the Ebbinghaus Illusion for PD Patients (PDP) and Healthy Control 405 

Participants (HCP) 406 

 407 

Note. Both groups show overlapping similarities in their susceptibility to the Ebbinghaus 408 

illusion. 409 

Figure 6 410 

Individual Data Points for the Ponzo Illusion for PD Patients (PDP) and Healthy Control 411 

Participants (HCP) 412 

 413 

Note. Both groups show overlapping similarities in their susceptibility to the Ponzo illusion.  414 

Figure 7 415 

Individual Data Points for the Muller-Lyer Illusion for PD Patients (PDP) and Healthy Control 416 

Participants (HCP) 417 

 418 

Note. Both groups show overlapping similarities in their susceptibility to the Muller-Lyer 419 

illusion. 420 
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Discussion 421 

 This study investigated whether PD patients – a population characterised by basic and 422 

complex visual disturbances (e.g., Maschke et al., 2006) – and neurotypical adults differ in 423 

their susceptibility to the Ebbinghaus, Ponzo, and Muller-Lyer visual illusions. We formulated 424 

two competing hypotheses: (a) PD patients may be less susceptible to VIs than neurotypical 425 

adults due to abnormalities in the basal ganglia and dopamine deficits affecting their visual 426 

processing, or (b) sensitivity to VIs may not be impacted by PD due to their visual deficits 427 

specifically affecting dorsal stream processing of actions. Our analyses did not identify robust 428 

differences between the two populations’ responses for any illusion. These results suggest that 429 

dopamine deficiency and basal ganglia pathophysiology may not be directly related to VI 430 

susceptibility and that these may affect different aspects of visual perception (Maschke et al., 431 

2006). Furthermore, our data imply that the ventral stream’s processing of vision for perception 432 

in PD is largely free from pathology when viewing VIs.  433 

Previous research has shown that depth perception deteriorates in older adults (Salonen 434 

and Kivela, 2012) and that the inability to perceive depth correctly increases their risk of falls 435 

(Cummings et al., 1995; Ivers et al., 2000; Lord and Dayhew, 2001). There is also an extensive 436 

body of evidence documenting abnormal depth perception in PD (e.g., Ou et al., 2018), 437 

including in illusory contexts (Maschke et al., 2006). Our analysis, however, showed only 438 

marginal evidence for abnormal depth perception. PD patients appeared to have reduced 439 

susceptibility to the Ponzo illusion. The Ponzo illusion is considered a classic example of a 440 

depth illusion (Gregory, 1963), and creates the most apparent experience of depth among the 441 

tested illusions. These findings suggest that dopamine deficiency and/or pathophysiology of 442 

the basal ganglia may, marginally, affect depth perception as shown by the illusory depth in 443 

the Ponzo illusion, adding to already existing evidence concerning such deficits (e.g., Maschke 444 

et al., 2006). It is, however, important to note that the depth here is only illusory (induced), and 445 
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arguably less apparent compared to the Ames Window illusion (such as in Maschke et al., 446 

2006), and it is not real, 3D depth. PD patients might still have difficulties in perceiving depth 447 

in everyday situations (e.g., Cummings et al., 1995). Potentially, only a slight indication of 448 

reduced susceptibility was observed because PD participants in this study were mostly in the 449 

early- and mid-stages of PD. Therefore, it might still be possible that susceptibility to VIs starts 450 

deteriorating as PD develops, as other aspects of vision like colour and contrast discrimination 451 

abilities get progressively worse (Diederich et al., 2002).  452 

Reduced ability to interpret and process depth cues may result in abnormal 453 

susceptibility to the Ponzo illusion. Thus, an incorrect perception of an object’s position in the 454 

world (whether it appears as closer/further away than it is), could contribute to the increased 455 

risks of falls in the elderly. In line with this assumption, many PD patients are shown to exhibit 456 

difficulties in perceiving depth, experiencing both teleopsia (objects appear to be further away 457 

than they are) and pelopsia (objects appear to be closer than they are; Sasaki et al., 2022). 458 

Furthermore, it is unlikely that these differences observed between PD patients and controls 459 

arise due to the abnormal role of top-down influences in susceptibility to the Ponzo illusion, as 460 

such a deficit should also be observed for the Ebbinghaus illusion, which is considered a 461 

context sensitivity illusion (Kaldy and Kovacs, 2003).  462 

 The Ebbinghaus illusion arises due to the perceptual system’s top-down integration of 463 

display elements (Kaldy and Kovacs, 2003). Our data show that susceptibility to the 464 

Ebbinghaus illusion is not significantly different in PD, indicating typical abilities to integrate 465 

context in this population. This finding aligns with previous research reporting intact top-down 466 

influences on PD patients’ responses in visual priming tasks (Straughan et al., 2016) and visual 467 

search tasks (Horowitz et al., 2006). By contrast, Mannan and colleagues (2008) found that PD 468 

patients were impaired in visual search tasks involving highly salient targets, indicating 469 

difficulties with bottom-up processing. The illusions tested in this study belong to a category 470 
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of high-level VIs that rely on complex cognitive processing and top-down mechanisms, 471 

whereas low-level VIs (e.g., the Brightness illusion) are mediated at the level of the retina and 472 

bottom-up perception (King et al., 2017). While PD may not impact top-down processing 473 

involved in experiencing complex VIs, deficiency of retinal dopamine may result in abnormal 474 

susceptibility to low-level VIs. As deficiency in retinal dopamine results in a diminished ability 475 

to differentiate contrast (as in colour, e.g., Pieri et al., 2000; Price et al., 1992), PD patients 476 

could have higher thresholds in matching colour in Brightness or Adelson’s Checkerboard 477 

illusions. Therefore, we recommend that future research investigates whether susceptibility to 478 

low-level VIs is affected by PD.   479 

Our findings suggest that the pathophysiology of the basal ganglia and dopamine 480 

deficits may not affect PD patients' sensitivity to the Muller-Lyer illusion. Therefore, illusions 481 

such as the Ebbinghaus and Muller-Lyer may be subserved by neural mechanisms that are 482 

largely free from pathophysiology in PD, such as those located in the visual cortex (Cheng et 483 

al., 2011; King et al., 2017). The Muller-Lyer illusion is considered to rely on depth cues 484 

(Gregory, 1966), just like the Ponzo illusion, which is considered a classic example of a depth 485 

illusion (Gregory, 1963). Therefore, the inability to perceive depth cannot be a major factor 486 

driving the illusion, at least in the version used here. In line, with Doherty and colleagues’ 487 

(2010) claims that subtle depth cues are likely to play a part in susceptibility to the Ebbinghaus 488 

illusion, the depth cues in the Muller-Lyer illusion are also subtle, hence no differences in 489 

susceptibility to those two illusions might have been observed. Thus, the pathophysiology of 490 

the basal ganglia and/or dopamine deficits might only be related to more explicit perceptions 491 

of depth, and are not directly linked with susceptibility to the Muller-Lyer illusion. 492 

  Overall, our observed results support the alternative hypothesis that susceptibility to 493 

VIs is largely unaffected in PD patients due to their visual perception difficulties originating 494 

from abnormalities in dorsal stream functioning, rather than ventral stream functioning. PD 495 
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patients showed similar susceptibility to the Ebbinghaus and Muller-Lyer illusions and only 496 

marginal evidence for reduced susceptibility to the Ponzo illusion was observed. From this, we 497 

conclude that perception of depth is more crucial for executing motor actions than the 498 

integration of context. This is, in line with findings by Giovannini and colleagues (2006) who 499 

observed that PD patients display abnormalities in their vision for action in a blind walking 500 

task, but not a line-matching task. Arguably, the line-matching task does not rely on depth 501 

integration, therefore PD patients performed similarly to controls. 502 

Extending this line of research to grasping behaviour, which is guided by the dorsal 503 

stream, would potentially provide valuable insight into differences between the dorsal and 504 

ventral streams in PD. Previous findings on the dichotomy between the two streams have 505 

largely focused on whether individual illusory effects are larger on the ventral stream than the 506 

dorsal stream. Here, testing PD patients would allow for a different perspective; one would still 507 

assume that the perceptual stream is affected by the illusion in both PD patients and healthy 508 

controls, but the action stream is affected by the illusion only in PD patients.  509 

 This study has several limitations. Firstly, we did not directly assess our participants’ 510 

dopamine levels or pathophysiology of the basal ganglia. In line with other studies in the field 511 

(e.g., Maschke et al., 2006), our target population was selected based on robust pre-existing 512 

knowledge that PD is characterised by dopamine loss and basal ganglia pathophysiology which 513 

are known to adversely affect visual perception. Therefore, our conclusions that dopamine loss 514 

and the pathophysiology of the basal ganglia do not influence susceptibility to high-level VIs 515 

should be interpreted with caution. Furthermore, the online administration of the study resulted 516 

in several potential shortcomings. First, varying Internet speed could cause a lag in the delivery 517 

of the experiment, impacting the smoothness of the increase/decrease of the targets which the 518 

experimenter could not control for. Secondly, although participants were frequently reminded 519 

to rely on their visual perception alone, the experimenter could not verify whether the 520 
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participants truly did so. Finally, our study did not check for the presence of everyday VIs (that 521 

are similar to geometrical VIs, but they occur during everyday activities of the patients), that 522 

recently gained interest in medical research on PD (Nishio et al., 2018; Sasaki et al., 2022).  523 

 In conclusion, our findings suggest that PD patients and neurotypical controls do not 524 

differ in their susceptibility to the Ebbinghaus, Ponzo, and Muller-Lyer illusions. The lack of 525 

differences was especially evident in the Ebbinghaus and Muller-Lyer illusions that more 526 

strongly rely on context sensitivity rather than depth perception. Only a marginal indication of 527 

abnormalities in depth perception was indicated by reduced susceptibility to the Ponzo illusion, 528 

which compared to the other VIs is a classical illusion of depth. Collectively, our data suggest 529 

that context integration, a key component of VIs susceptibility, remains unaffected in the early 530 

to mid-stage of PD. Furthermore, our findings suggest that visual deficits in PD are more likely 531 

to be related to the dorsal visual stream. This study makes a novel contribution to a growing 532 

literature exploring visual deficits in PD and advances the understanding of how visual 533 

perception may be affected by dopamine deficiency and abnormalities in the basal ganglia.  534 
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